浙江省2018年中考数学猜题卷及答案

合集下载

2018年浙江省杭州市中考数学试卷含答案解析(Word版)

2018年浙江省杭州市中考数学试卷含答案解析(Word版)

浙江省杭州市2018年中考数学试题一、选择题1.=()A. 3B. -3C.D.2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106C. 18×105D. 18×1063.下列计算正确的是()A. B. C. D.4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。

计算结果不受影响的是()A. 方差B. 标准差C. 中位数D. 平均数5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B. C. D.6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。

已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则()A. B. C. D.7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。

任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A. B. C. D.8.如图,已知点P矩形ABCD内一点(不含边界),设,,,,若,,则()A. B.C. D.9.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,()A. 若,则B. 若,则C. 若,则D. 若,则二、填空题11.计算:a-3a=________。

12.如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。

13.因式分解:________14.如图,AB是⊙的直径,点C是半径OA的中点,过点C作DE⊥AB,交O于点D,E 两点,过点D作直径DF,连结AF,则∠DEA=________。

2018年浙江省宁波市中考数学试卷及答案解析

2018年浙江省宁波市中考数学试卷及答案解析

2018年浙江省宁波市中考数学试卷及答案解析2018年浙江省宁波市中考数学试卷一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)在﹣3,﹣1,0,1这四个数中,最小的数是()A.﹣3 B.﹣1 C.0 D.12.(4分)2018中国(宁波)特色文化产业博览会于4月16日在宁波国际会展中心闭幕.本次博览会为期四天,参观总人数超55万人次,其中55万用科学记数法表示为()A.0.55×106B.5.5×105C.5.5×104D.55×1043.(4分)下列计算正确的是()A.a3+a3=2a3B.a3•a2=a6 C.a6÷a2=a3D.(a3)2=a54.(4分)有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A.B.C.D.(4分)已知正多边形的一个外角等于40°,那么这个正多边形的边数为()5.A.6 B.7 C.8 D.96.(4分)如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图7.(4分)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1的度数为()A. B.C.D.12.(4分)在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD﹣AB=2时,S2﹣S1的值为()A.2a B.2b C.2a﹣2b D.﹣2b二、填空题(每小题4分,共24分)13.(4分)计算:|﹣2018|= .14.(4分)要使分式有意义,x的取值应满足.15.(4分)已知x,y满足方程组,则x2﹣4y2的值为.16.(4分)如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH 为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为米(结果保留根号).17.(4分)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为.18.(4分)如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB 的中点,连结MD,ME.若∠EMD=90°,则cosB的值为.三、解答题(本大题有8小题,共78分)19.(6分)先化简,再求值:(x﹣1)2+x(3﹣x),其中x=﹣.20.(8分)在5×3的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出线段BD,使BD∥AC,其中D是格点;(2)在图2中画出线段BE,使BE⊥AC,其中E是格点.21.(8分)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求本次调查的学生人数;(2)求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;(3)若该校共有学生1200人,试估计每周课外阅读时间满足3≤t<4的人数.22.(10分)已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).(1)求该抛物线的函数表达式;(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.23.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D 与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.24.(10分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?25.(12分)若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形.(3)如图2,在(2)的条件下,当∠ADC=90°时,求的值.26.(14分)如图1,直线l:y=﹣x+b与x轴交于点A(4,0),与y轴交于点B,点C是线段OA上一动点(0<AC<).以点A为圆心,AC长为半径作⊙A交x轴于另一点D,交线段AB于点E,连结OE并延长交⊙A于点F.(1)求直线l的函数表达式和tan∠BAO的值;(2)如图2,连结CE,当CE=EF时,①求证:△OCE∽△OEA;②求点E的坐标;(3)当点C在线段OA上运动时,求OE•EF的最大值.2018年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)在﹣3,﹣1,0,1这四个数中,最小的数是()A.﹣3 B.﹣1 C.0 D.1【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得﹣3<﹣1<0<1,最小的数是﹣3,故选:A.【点评】本题考查了有理数比较大小,利用正数大于零,零大于负数是解题关键.2.(4分)2018中国(宁波)特色文化产业博览会于4月16日在宁波国际会展中心闭幕.本次博览会为期四天,参观总人数超55万人次,其中55万用科学记数法表示为()A.0.55×106B.5.5×105C.5.5×104D.55×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:550000=5.5×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)下列计算正确的是()A.a3+a3=2a3B.a3•a2=a6 C.a6÷a2=a3D.(a3)2=a5【分析】根据同底数幂的除法法则,同底数幂的乘法的运算方法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.【解答】解:∵a3+a3=2a3,∴选项A符合题意;∵a3•a2=a5,∴选项B不符合题意;∵a6÷a2=a4,∴选项C不符合题意;∵(a3)2=a6,∴选项D不符合题意.故选:A.【点评】此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.4.(4分)有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A.B.C.D.【分析】让正面的数字是偶数的情况数除以总情况数5即为所求的概率.【解答】解:∵从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,∴正面的数字是偶数的概率为,故选:C.【点评】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.(4分)已知正多边形的一个外角等于40°,那么这个正多边形的边数为()5.A.6 B.7 C.8 D.9【分析】根据正多边形的外角和以及一个外角的度数,求得边数.【解答】解:正多边形的一个外角等于40°,且外角和为360°,则这个正多边形的边数是:360°÷40°=9.故选:D.【点评】本题主要考查了多边形的外角和定理,解决问题的关键是掌握多边形的外角和等于360度.6.(4分)如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田字,“田”字是中心对称图形,故选:C.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,又利用了中心对称图形.7.(4分)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1的度数为()A.50°B.40°C.30°D.20°【分析】直接利用三角形内角和定理得出∠BCA的度数,再利用三角形中位线定理结合平行线的性质得出答案.【解答】解:∵∠ABC=60°,∠B AC=80°,∴∠BCA=180°﹣60°﹣80°=40°,∵对角线AC与BD相交于点O,E是边CD的中点,∴EO是△DBC的中位线,∴EO∥BC,∴∠1=∠ACB=40°.故选:B.【点评】此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO是△DBC的中位线是解题关键.8.(4分)若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A.7 B.5 C.4 D.3【分析】先根据平均数为4求出x的值,然后根据中位数的概念求解.【解答】解:∵数据4,1,7,x,5的平均数为4,∴=4,解得:x=3,则将数据重新排列为1、3、4、5、7,所以这组数据的中位数为4,故选:C.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则的长为()A.πB.πC.πD.π【分析】先根据ACB=90°,AB=4,∠A=30°,得圆心角和半径的长,再根据弧长公式可得到弧CD的长.【解答】解:∵∠ACB=90°,AB=4,∠A=30°,∴∠B=60°,BC=2∴的长为=,故选:C.【点评】本题主要考查了弧长公式的运用和直角三角形30度角的性质,解题时注意弧长公式为:l=(弧长为l,圆心角度数为n,圆的半径为R).10.(4分)如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A.8 B.﹣8 C.4 D.﹣4【分析】设A(a,h),B(b,h),根据反比例函数图象上点的坐标特征得出ah=k1,bh=k2.根据三角形的面积公式得到S△ABC=AB•yA=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,求出k1﹣k2=8.【解答】解:∵AB∥x轴,∴A,B两点纵坐标相同.设A(a,h),B(b,h),则ah=k1,bh=k2.∵S△ABC =AB•yA=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,∴k1﹣k2=8.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,点在函数的图象上,则点的坐标满足函数的解析式.也考查了三角形的面积.11.(4分)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是()A. B.C.D.【分析】根据二次函数的图象可以判断a、b、a﹣b的正负情况,从而可以得到一次函数经过哪几个象限,本题得以解决.【解答】解:由二次函数的图象可知,a<0,b<0,当x=﹣1时,y=a﹣b<0,∴y=(a﹣b)x+b的图象在第二、三、四象限,故选:D.【点评】本题考查二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用函数的思想解答.12.(4分)在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD﹣AB=2时,S2﹣S1的值为()A.2a B.2b C.2a﹣2b D.﹣2b【分析】利用面积的和差分别表示出S1和S2,然后利用整式的混合运算计算它们的差.【解答】解:S1=(AB﹣a)•a+(CD﹣b)(AD﹣a)=(AB﹣a)•a+(AB﹣b)(AD ﹣a),S2=AB(AD﹣a)+(a﹣b)(AB﹣a),∴S2﹣S1=AB(AD﹣a)+(a﹣b)(AB﹣a)﹣(AB﹣a)•a﹣(AB﹣b)(AD﹣a)=(AD﹣a)(AB﹣AB+b)+(AB﹣a)(a﹣b﹣a)=b•AD﹣ab﹣b•AB+ab=b(AD﹣AB)=2b.故选:B.【点评】本题考查了整式的混合运算:整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.二、填空题(每小题4分,共24分)13.(4分)计算:|﹣2018|= 2018 .【分析】直接利用绝对值的性质得出答案.【解答】解:|﹣2018|=2018.故答案为:2018.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.14.(4分)要使分式有意义,x的取值应满足x≠1 .【分析】直接利用分式有意义则分母不能为零,进而得出答案.【解答】解:要使分式有意义,则:x﹣1≠0.解得:x≠1,故x的取值应满足:x≠1.故答案为:x≠1.【点评】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.15.(4分)已知x,y满足方程组,则x2﹣4y2的值为﹣8 .【分析】根据平方差公式即可求出答案.【解答】解:原式=(x+2y)(x﹣2y)=﹣3×5=﹣15故答案为:﹣15【点评】本题考查因式分解,解题的关键是熟练运用平方差公式,本题属于基础题型.16.(4分)如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH 为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为1200(﹣1)米(结果保留根号).【分析】在Rt△ACH和Rt△HCB中,利用锐角三角函数,用CH表示出AH、BH 的长,然后计算出AB的长.【解答】解:由于CD∥HB,∴∠CAH=∠ACD=45°,∠B=∠BCD=30°在Rt△ACH中,∵∴∠CAH=45°∴AH=CH=1200米,在Rt△HCB,∵tan∠B=∴HB====1200(米).∴AB=HB﹣HA=1200﹣1200=1200(﹣1)米故答案为:1200(﹣1)【点评】本题考查了锐角三角函数的仰角、俯角问题.题目难度不大,解决本题的关键是用含CH的式子表示出AH和BH.17.(4分)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为3或4.【分析】分两种情形分别求解:如图1中,当⊙P与直线CD相切时;如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形;【解答】解:如图1中,当⊙P与直线CD相切时,设PC=PM=m.在Rt△PBM中,∵PM2=BM2+PB2,∴x2=42+(8﹣x)2,∴x=5,∴PC=5,BP=BC﹣PC=8﹣5=3.如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC 是矩形.∴PM=PK=CD=2BM,∴BM=4,PM=8,在Rt△PBM中,PB==4.综上所述,BP的长为3或4.【点评】本题考查切线的性质、正方形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.18.(4分)如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB 的中点,连结MD,ME.若∠EMD=90°,则cosB的值为.【分析】延长DM交CB的延长线于点H.首先证明DE=EH,设BE=x,利用勾股定理构建方程求出x即可解决问题.【解答】解:延长DM交CB的延长线于点H.∵四边形ABCD是菱形,∴AB=BC=AD=2,AD∥CH,∴∠ADM=∠H,∵AM=BM,∠AMD=∠HMB,∴△ADM≌△BHM,∴AD=HB=2,∵EM⊥DH,∴EH=ED,设BE=x,∵AE⊥BC,∴AE⊥AD,∴∠AEB=∠EAD=90°∵AE2=AB2﹣BE2=DE2﹣AD2,∴22﹣x2=(2+x)2﹣22,∴x=﹣1或﹣﹣1(舍弃),∴cosB==,故答案为.【点评】本题考查菱形的性质、勾股定理、线段的垂直平分线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.三、解答题(本大题有8小题,共78分)19.(6分)先化简,再求值:(x﹣1)2+x(3﹣x),其中x=﹣.【分析】首先计算完全平方,再计算单项式乘以多项式,再合并同类项,化简后再把x的值代入即可.【解答】解:原式=x2﹣2x+1+3x﹣x2=x+1,当x=﹣时,原式=﹣+1=.【点评】此题主要考查了整式的混合运算﹣﹣化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.20.(8分)在5×3的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出线段BD,使BD∥AC,其中D是格点;(2)在图2中画出线段BE,使BE⊥AC,其中E是格点.【分析】(1)将线段AC沿着AB方向平移2个单位,即可得到线段BD;(2)利用2×3的长方形的对角线,即可得到线段BE⊥AC.【解答】解:(1)如图所示,线段BD即为所求;(2)如图所示,线段BE即为所求.【点评】本题主要考查了作图以及平行四边形的性质,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.21.(8分)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求本次调查的学生人数;(2)求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;(3)若该校共有学生1200人,试估计每周课外阅读时间满足3≤t<4的人数.【分析】(1)由条形图、扇形图中给出的级别A的数字,可计算出调查学生人数;(2)先计算出C在扇形图中的百分比,用1﹣[(A+D+C)在扇形图中的百分比]可计算出B在扇形图中的百分比,再计算出B在扇形的圆心角.(3)总人数×课外阅读时间满足3≤t<4的百分比即得所求.【解答】解:(1)由条形图知,A级的人数为20人,由扇形图知:A级人数占总调查人数的10%所以:20÷10%=20×=200(人)即本次调查的学生人数为200人;(2)由条形图知:C级的人数为60人所以C级所占的百分比为:×100%=30%,B级所占的百分比为:1﹣10%﹣30%﹣45%=15%,B级的人数为200×15%=30(人)D级的人数为:200×45%=90(人)B所在扇形的圆心角为:360°×15%=54°.(3)因为C级所占的百分比为30%,所以全校每周课外阅读时间满足3≤t<4的人数为:1200×30%=360(人)答:全校每周课外阅读时间满足3≤t<4的约有360人.【点评】本题考查了扇形图和条形图的相关知识.题目难度不大.扇形图中某项的百分比=×100%,扇形图中某项圆心角的度数=360°×该项在扇形图中的百分比.22.(10分)已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).(1)求该抛物线的函数表达式;(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.【分析】(1)把已知点的坐标代入抛物线解析式求出b与c的值即可;(2)指出满足题意的平移方法,并写出平移后的解析式即可.【解答】解:(1)把(1,0),(0,)代入抛物线解析式得:,解得:,则抛物线解析式为y=﹣x2﹣x+;(2)抛物线解析式为y=﹣x2﹣x+=﹣(x+1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y=﹣x2.【点评】此题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.23.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D 与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.【分析】(1)由题意可知:CD=CE,∠DCE=90°,由于∠ACB=90°,所以∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,所以∠ACD=∠BCE,从而可证明△ACD≌△BCE(SAS)(2)由△ACD≌△BCE(SAS)可知:∠A=∠CBE=45°,BE=BF,从而可求出∠BEF 的度数.【解答】解:(1)由题意可知:CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,∴∠ACD=∠BCE,在△ACD与△BCE中,∴△ACD≌△BCE(SAS)(2)∵∠ACB=90°,AC=BC,∴∠A=45°,由(1)可知:∠A=∠CBE=45°,∵AD=BF,∴BE=BF,∴∠BEF=67.5°【点评】本题考查全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质,本题属于中等题型.24.(10分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?【分析】(1)设甲种商品的每件进价为x元,乙种商品的每件进价为y元.根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.购进的甲、乙两种商品件数相同”列出方程;(2)设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式.【解答】解:(1)设甲种商品的每件进价为x元,则乙种商品的每件进价为(x+8)元.根据题意,得,=,解得 x=40.经检验,x=40是原方程的解.答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;(2)甲乙两种商品的销售量为=50.设甲种商品按原销售单价销售a件,则(60﹣40)a+(60×0.7﹣40)(50﹣a)+(88﹣48)×50≥2460,解得 a≥20.答:甲种商品按原销售单价至少销售20件.【点评】本题考查了分式方程的应用,一元一次不等式的应用.本题属于商品销售中的利润问题,对于此类问题,隐含着一个等量关系:利润=售价﹣进价.25.(12分)若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形.(3)如图2,在(2)的条件下,当∠ADC=90°时,求的值.【分析】(1)根据比例三角形的定义分AB2=BC•AC、BC2=AB•AC、AC2=AB•BC三种情况分别代入计算可得;(2)先证△ABC∽△DCA得CA2=BC•AD,再由∠ADB=∠CBD=∠ABD知AB=AD即可得;(3)作AH⊥BD,由AB=AD知BH=BD,再证△ABH∽△DBC得AB•BC=BH•DB,即AB•BC=BD2,结合AB•BC=AC2知BD2=AC2,据此可得答案.【解答】解:(1)∵△ABC是比例三角形,且AB=2、AC=3,①当AB2=BC•AC时,得:4=3AC,解得:AC=;②当BC2=AB•AC时,得:9=2AC,解得:AC=;③当AC2=AB•BC时,得:AC=6,解得:AC=(负值舍去);所以当AC=或或时,△ABC是比例三角形;∴∠ACB=∠CAD,又∵∠BAC=∠ADC,∴△ABC∽△DCA,∴=,即CA2=BC•AD,∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴CA2=BC•AB,∴△ABC是比例三角形;(3)如图,过点A作AH⊥BD于点H,∵AB=AD,∴BH=BD,∵AD∥BC,∠ADC=90°,∴∠BCD=90°,∴∠BHA=∠BCD=90°,又∵∠ABH=∠DBC,∴△ABH∽△DBC,∴=,即AB•BC=BH•DB,∴AB•BC=BD2,∴BD2=AC2,∴=.【点评】本题主要考查相似三角形的综合问题,解题的关键是理解比例三角形的定义,并熟练掌握相似三角形的判定与性质.26.(14分)如图1,直线l:y=﹣x+b与x轴交于点A(4,0),与y轴交于点B,点C是线段OA上一动点(0<AC<).以点A为圆心,AC长为半径作⊙A交x轴于另一点D,交线段AB于点E,连结OE并延长交⊙A于点F.(1)求直线l的函数表达式和tan∠BAO的值;(2)如图2,连结CE,当CE=EF时,①求证:△OCE∽△OEA;②求点E的坐标;(3)当点C在线段OA上运动时,求OE•EF的最大值.【分析】(1)利用待定系数法求出b即可得出直线l表达式,即可求出OA,OB,即可得出结论;(2)①先判断出∠CDF=2∠CDE,进而得出∠OAE=∠ODF,即可得出结论;②设出EM=3m,AM=4m,进而得出点E坐标,即可得出OE的平方,再根据①的相似得出比例式得出OE的平方,建立方程即可得出结论;(3)利用面积法求出OG,进而得出AG,HE,再构造相似三角形,即可得出结论.【解答】解:∵直线l:y=﹣x+b与x轴交于点A(4,0),∴﹣×4+b=0,∴b=3,∴直线l的函数表达式y=﹣x+3,∴B(0,3),∴OA=4,OB=3,在Rt△AOB中,tan∠BAO==;(2)①如图2,连接DF,∵CE=EF,∴∠CDE=∠FDE,∴∠CDF=2∠CDE,∵∠OAE=2∠CDE,∴∠OAE=∠ODF,∵四边形CEFD是⊙O的圆内接四边形,∴∠OEC=∠ODF,∴∠OEC=∠OAE,∵∠COE=∠EOA,∴△COE∽△EOA,②过点E⊥OA于M,由①知,tan∠OAB=,设EM=3m,则AM=4m,∴OM=4﹣4m,AE=5m,∴E(4﹣4m,3m),AC=5m,∴OC=4﹣5m,由①知,△COE∽△EOA,∴,∴OE2=OA•OC=4(4﹣5m)=16﹣20m,∵E(4﹣4m,3m),∴(4﹣4m)2+9m2=25m2﹣32m+16,∴25m2﹣32m+16=16﹣20m,∴m=0(舍)或m=,∴4﹣4m=,3m=,∴(,),(3)如图,设⊙O的半径为r,过点O作OG⊥AB于G,∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB=5,∴AB×OG=OA×OB,∴OG=,∴AG==×=,∴EG=AG﹣AE=﹣r,连接FH,∵EH是⊙O直径,∴EH=2r,∠EFH=90°=∠EGO,∵∠OEG=∠HEF,∴△OEG∽△HEF,∴,∴OE•EF=HE•EG=2r(﹣r)=﹣2(r﹣)2+,∴r=时,OE•EF最大值为.【点评】此题是圆的综合题,主要考查了待定系数法,相似三角形的判定和性质,锐角三角函数,勾股定理,正确作出辅助线是解本题的关键.第31页(共31页)。

2018年浙江省金华市中考数学试卷(包含答案解析版)

2018年浙江省金华市中考数学试卷(包含答案解析版)

2018年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)(2018•金华)在0,1,﹣12,﹣1四个数中,最小的数是()A.0 B.1 C.−12D.﹣12.(3分)(2018•金华)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2 C.﹣a3 D.﹣a43.(3分)(2018•金华)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠44.(3分)(2018•金华)若分式x−3x+3的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.05.(3分)(2018•金华)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体6.(3分)(2018•金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A .16B .14C .13D .7127.(3分)(2018•金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y 轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm ,则图中转折点P 的坐标表示正确的是( )A .(5,30)B .(8,10)C .(9,10)D .(10,10)8.(3分)(2018•金华)如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tanαtanβB .sinβsinαC .sinαsinβD .cosβcosα9.(3分)(2018•金华)如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°10.(3分)(2018•金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2018•金华)化简(x﹣1)(x+1)的结果是.12.(4分)(2018•金华)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.13.(4分)(2018•金华)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是.14.(4分)(2018•金华)对于两个非零实数x ,y ,定义一种新的运算:x*y=a x +by.若1*(﹣1)=2,则(﹣2)*2的值是 .15.(4分)(2018•金华)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E ,F 分别在边AB ,BC 上,三角形①的边GD 在边AD 上,则AB BC的值是 .16.(4分)(2018•金华)如图1是小明制作的一副弓箭,点A ,D 分别是弓臂BAC 与弓弦BC 的中点,弓弦BC=60cm .沿AD 方向拉动弓弦的过程中,假设弓臂BAC 始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D 1时,有AD 1=30cm ,∠B 1D 1C 1=120°.(1)图2中,弓臂两端B 1,C 1的距离为 cm .(2)如图3,将弓箭继续拉到点D 2,使弓臂B 2AC 2为半圆,则D 1D 2的长为 cm .三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.(6分)(2018•金华)计算: 8+(﹣2018)0﹣4sin45°+|﹣2|.18.(6分)(2018•金华)解不等式组: x3+2<x2x +2≥3(x −1)19.(6分)(2018•金华)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数. (2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20.(8分)(2018•金华)如图,在6×6的网格中,每个小正方形的边长为1,点A 在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.(8分)(2018•金华)如图,在Rt △ABC 中,点O 在斜边AB 上,以O 为圆心,OB 为半径作圆,分别与BC ,AB 相交于点D ,E ,连结AD .已知∠CAD=∠B . (1)求证:AD 是⊙O 的切线.(2)若BC=8,tanB=12,求⊙O 的半径.22.(10分)(2018•金华)如图,抛物线y=ax 2+bx (a <0)过点E (10,0),矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左边),点C ,D 在抛物线上.设A (t ,0),当t=2时,AD=4. (1)求抛物线的函数表达式.(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G ,H ,且直线GH 平分矩形的面积时,求抛物线平移的距离.23.(10分)(2018•金华)如图,四边形ABCD 的四个顶点分别在反比例函数y=m x与y=n x(x >0,0<m <n )的图象上,对角线BD ∥y 轴,且BD ⊥AC 于点P .已知点B 的横坐标为4. (1)当m=4,n=20时.①若点P 的纵坐标为2,求直线AB 的函数表达式.②若点P 是BD 的中点,试判断四边形ABCD 的形状,并说明理由.(2)四边形ABCD 能否成为正方形?若能,求此时m ,n 之间的数量关系;若不能,试说明理由.24.(12分)(2018•金华)在Rt △ABC 中,∠ACB=90°,AC=12.点D 在直线CB 上,以CA ,CD 为边作矩形ACDE ,直线AB 与直线CE ,DE 的交点分别为F ,G .(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)(2018•金华)在0,1,﹣12,﹣1四个数中,最小的数是()A.0 B.1 C.−12D.﹣1【考点】18:有理数大小比较.【专题】1 :常规题型;511:实数.【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣12<0<1,∴最小的数是﹣1,故选:D.【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.2.(3分)(2018•金华)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2 C.﹣a3 D.﹣a4【考点】48:同底数幂的除法.【专题】11 :计算题.【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a3﹣1=﹣a2,故选:B.【点评】此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.3.(3分)(2018•金华)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠4【考点】J6:同位角、内错角、同旁内角.【专题】1 :常规题型.【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.【解答】解:∠B的同位角可以是:∠4.故选:D.【点评】此题主要考查了同位角的定义,正确把握定义是解题关键.4.(3分)(2018•金华)若分式x−3x+3的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.0【考点】63:分式的值为零的条件.【专题】11 :计算题.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.【点评】本题考查了分式值为0的条件,具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.(3分)(2018•金华)一个几何体的三视图如图所示,该几何体是()A .直三棱柱B .长方体C .圆锥D .立方体【考点】U3:由三视图判断几何体. 【专题】55:几何图形.【分析】根据三视图的形状可判断几何体的形状. 【解答】解:观察三视图可知,该几何体是直三棱柱. 故选:A .【点评】本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.6.(3分)(2018•金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是( )A .16B .14C .13D .712【考点】X5:几何概率. 【专题】543:概率及其应用.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率. 【解答】解:∵黄扇形区域的圆心角为90°, 所以黄区域所占的面积比例为90360=14,即转动圆盘一次,指针停在黄区域的概率是14,故选:B.【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.7.(3分)(2018•金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【考点】D3:坐标确定位置.【专题】11 :计算题.【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,OA=OD﹣AD=40﹣30=10,∴P(9,10);故选:C.【点评】此题考查了坐标确定位置,根据题意确定出CD=9,AD=10是解本题的关键.8.(3分)(2018•金华)如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tanαtanβB .sinβsinαC .sinαsinβD .cosβcosα【考点】T8:解直角三角形的应用. 【专题】552:三角形.【分析】在两个直角三角形中,分别求出AB 、AD 即可解决问题; 【解答】解:在Rt △ABC 中,AB=AC sinα,在Rt △ACD 中,AD=AC sinβ,∴AB :AD=AC sinα:AC sinβ=sinβsinα,故选:B .【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.9.(3分)(2018•金华)如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°【考点】R2:旋转的性质.【专题】55:几何图形.【分析】根据旋转的性质和三角形内角和解答即可.【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.10.(3分)(2018•金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【考点】E6:函数的图象.【专题】532:函数及其图像;533:一次函数及其应用.【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A 方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:25k+b=3055k+b=120,解得:k=3b=−45,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:50m+n=5055m+n=65,解得:m=3n=−100,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.故选:D.【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2018•金华)化简(x﹣1)(x+1)的结果是x2﹣1.【考点】4F:平方差公式.【专题】11 :计算题.【分析】原式利用平方差公式计算即可得到结果.【解答】解:原式=x2﹣1,故答案为:x2﹣1【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.12.(4分)(2018•金华)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是AC=BC.【考点】KB:全等三角形的判定.【专题】1 :常规题型.【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.【解答】解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中∠BEC=∠ADC ∠EBC=∠DAC AC=BC,∴△ADC≌△BEC(AAS),故答案为:AC=BC.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(4分)(2018•金华)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 6.9%.【考点】W5:众数.【专题】11 :计算题.【分析】根据众数的概念判断即可.【解答】解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为:6.9%.【点评】本题考查的是众数的确定,掌握一组数据中出现次数最多的数据叫做众数是解题的关键.14.(4分)(2018•金华)对于两个非零实数x,y,定义一种新的运算:x*y=ax+by.若1*(﹣1)=2,则(﹣2)*2的值是﹣1.【考点】2C :实数的运算.【专题】11 :计算题;36 :整体思想. 【分析】根据新定义的运算法则即可求出答案. 【解答】解:∵1*(﹣1)=2, ∴a1+b −1=2即a ﹣b=2 ∴原式=a−2+b2=−12(a ﹣b )=﹣1 故答案为:﹣1【点评】本题考查代数式运算,解题的关键是熟练运用整体的思想,本题属于基础题型.15.(4分)(2018•金华)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E ,F 分别在边AB ,BC 上,三角形①的边GD 在边AD 上,则AB BC的值是 2+14.【考点】LB :矩形的性质;IM :七巧板. 【专题】556:矩形菱形正方形.【分析】设七巧板的边长为x ,根据正方形的性质、矩形的性质分别表示出AB ,BC ,进一步求出AB BC的值.【解答】解:设七巧板的边长为x ,则 AB=12x +22x ,BC=12x +x +12x=2x ,AB BC =12x + 22x 2x = 2+14.故答案为:2+1 4.【点评】考查了矩形的性质,七巧板,关键是熟悉七巧板的特征,表示出AB,BC的长.16.(4分)(2018•金华)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为303cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为105﹣10cm.【考点】M3:垂径定理的应用;KU:勾股定理的应用;M5:圆周角定理.【专题】559:圆的有关概念及性质.【分析】(1)如图1中,连接B1C1交DD1于H.解直角三角形求出B1H,再根据垂径定理即可解决问题;(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.利用弧长公式求出半圆半径即可解决问题;【解答】解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是B1AC1的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=153,∴B1C1=303∴弓臂两端B1,C1的距离为303(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=120⋅π⋅30180,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2=302−202=105∴D1D2=105﹣10.故答案为303,105﹣10,【点评】本题考查垂径定理的应用、勾股定理、弧长公式等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)(2018•金华)计算:8+(﹣2018)0﹣4sin45°+|﹣2|.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】根据零指数幂和特殊角的三角函数值进行计算.【解答】解:原式=22+1﹣4×2 2+2=22+1﹣22+2=3.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.18.(6分)(2018•金华)解不等式组: x3+2<x2x +2≥3(x −1)【考点】CB :解一元一次不等式组.【专题】11 :计算题;524:一元一次不等式(组)及应用. 【分析】首先分别解出两个不等式的解集,再求其公共解集即可. 【解答】解:解不等式x3+2<x ,得:x >3,解不等式2x +2≥3(x ﹣1),得:x ≤5, ∴不等式组的解集为3<x ≤5.【点评】此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(6分)(2018•金华)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数. (2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.【考点】VC :条形统计图;V5:用样本估计总体;VB :扇形统计图. 【专题】542:统计的应用.【分析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论;(2)根据喜欢现金支付的人数(41~60岁)=参与问卷调查的总人数×现金支付所占各种支付方式的比例﹣15,即可求出喜欢现金支付的人数(41~60岁),再将条形统计图补充完整即可得出结论;(3)根据喜欢微信支付方式的人数=社区居民人数×微信支付所占各种支付方式的比例,即可求出结论.【解答】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.【点评】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)观察统计图找出数据,再列式计算;(2)通过计算求出喜欢现金支付的人数(41~60岁);(3)根据样本的比例×总人数,估算出喜欢微信支付方式的人数.20.(8分)(2018•金华)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【考点】N4:作图—应用与设计作图. 【专题】13 :作图题.【分析】利用数形结合的思想解决问题即可; 【解答】解:符合条件的图形如图所示:【点评】本题考查作图﹣应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)(2018•金华)如图,在Rt △ABC 中,点O 在斜边AB 上,以O 为圆心,OB 为半径作圆,分别与BC ,AB 相交于点D ,E ,连结AD .已知∠CAD=∠B . (1)求证:AD 是⊙O 的切线.(2)若BC=8,tanB=12,求⊙O 的半径.【考点】ME :切线的判定与性质;T7:解直角三角形. 【专题】55A :与圆有关的位置关系.【分析】(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.【解答】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BCtanB=4,根据勾股定理得:AB=42+82=45,∴OA=45﹣r,在Rt△ACD中,tan∠1=tanB=1 2,∴CD=ACtan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(45﹣r)2=r2+20,解得:r=35 2.【点评】此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.22.(10分)(2018•金华)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A (t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.【考点】HF:二次函数综合题.【专题】15 :综合题;535:二次函数图象及其性质;558:平移、旋转与对称.【分析】(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,4)代入计算可得;(2)由抛物线的对称性得BE=OA=t,据此知AB=10﹣2t,再由x=t时AD=﹣14t2+52t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣1 4,抛物线的函数表达式为y=﹣14x2+52x;(2)由抛物线的对称性得BE=OA=t , ∴AB=10﹣2t ,当x=t 时,AD=﹣14t 2+52t ,∴矩形ABCD 的周长=2(AB +AD ) =2[(10﹣2t )+(﹣14t 2+52t )]=﹣12t 2+t +20 =﹣12(t ﹣1)2+412,∵﹣12<0,∴当t=1时,矩形ABCD 的周长有最大值,最大值为412;(3)如图,当t=2时,点A 、B 、C 、D 的坐标分别为(2,0)、(8,0)、(8,4)、(2,4), ∴矩形ABCD 对角线的交点P 的坐标为(5,2),当平移后的抛物线过点A 时,点H 的坐标为(4,4),此时GH 不能将矩形面积平分;当平移后的抛物线过点C 时,点G 的坐标为(6,0),此时GH 也不能将矩形面积平分;∴当G 、H 中有一点落在线段AD 或BC 上时,直线GH 不可能将矩形的面积平分, 当点G 、H 分别落在线段AB 、DC 上时,直线GH 过点P 必平分矩形ABCD 的面积, ∵AB ∥CD ,∴线段OD 平移后得到的线段GH ,∴线段OD 的中点Q 平移后的对应点是P , 在△OBD 中,PQ 是中位线, ∴PQ=12OB=4,所以抛物线向右平移的距离是4个单位.【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.23.(10分)(2018•金华)如图,四边形ABCD 的四个顶点分别在反比例函数y=m x与y=n x(x >0,0<m <n )的图象上,对角线BD ∥y 轴,且BD ⊥AC 于点P .已知点B 的横坐标为4. (1)当m=4,n=20时.①若点P 的纵坐标为2,求直线AB 的函数表达式.②若点P 是BD 的中点,试判断四边形ABCD 的形状,并说明理由.(2)四边形ABCD 能否成为正方形?若能,求此时m ,n 之间的数量关系;若不能,试说明理由.【考点】GB :反比例函数综合题. 【专题】15 :综合题.【分析】(1)①先确定出点A ,B 坐标,再利用待定系数法即可得出结论; ②先确定出点D 坐标,进而确定出点P 坐标,进而求出PA ,PC ,即可得出结论; (2)先确定出B (4,m 4),进而得出A (4﹣t ,m 4+t ),即:(4﹣t )(m 4+t )=m ,即可得出点D (4,8﹣m4),即可得出结论.【解答】解:(1)①如图1,∵m=4,∴反比例函数为y=4 x ,当x=4时,y=1,∴B(4,1),当y=2时,∴2=4 x ,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴2k+b=2 4k+b=1,∴k=−1 2b=3,∴直线AB的解析式为y=﹣12x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=4x得,x=43,由y=20x得,x=203,∴PA=4﹣43=83,PC=203﹣4=83,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD 是菱形;(2)四边形ABCD 能是正方形,理由:当四边形ABCD 是正方形,记AC ,BD 的交点为P , ∴PA=PB=PC=PD ,(设为t ,t ≠0), 当x=4时,y=m x=m4,∴B (4,m4),∴A (4﹣t ,m 4+t ),C (4+t ,m4+t ),∴(4﹣t )(m 4+t )=m ,∴t=4﹣m 4, ∴C (8﹣m4,4), ∴(8﹣m 4)×4=n ,∴m +n=32,∵点D 的纵坐标为m4+2t=m4+2(4﹣m 4)=8﹣m4,∴D (4,8﹣m4),∴4(8﹣m4)=n ,∴m +n=32.【点评】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.24.(12分)(2018•金华)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB 上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.【考点】LO :四边形综合题. 【专题】152:几何综合题.【分析】(1)①只要证明△ACF ∽△GEF ,推出FG AF =EG AC,即可解决问题;②如图1中,想办法证明∠1=∠2=30°即可解决问题;(2)分四种情形:①如图2中,当点D 中线段BC 上时,此时只有GF=GD ,②如图3中,当点D 中线段BC 的延长线上,且直线AB ,CE 的交点中AE 上方时,此时只有GF=DG ,③如图4中,当点D 在线段BC 的延长线上,且直线AB ,EC 的交点中BD 下方时,此时只有DF=DG ,如图5中,当点D 中线段CB 的延长线上时,此时只有DF=DG ,分别求解即可解决问题;【解答】解:(1)①在正方形ACDE 中,DG=GE=6, 中Rt △AEG 中,AG= AE 2+EG 2=6 5, ∵EG ∥AC , ∴△ACF ∽△GEF , ∴FG AF =EG AC ,∴FG AF =612=12,∴FG=13AG=2 5.②如图1中,正方形ACDE 中,AE=ED ,∠AEF=∠DEF=45°, ∵EF=EF ,∴△AEF ≌△DEF ,∴∠1=∠2,设∠1=∠2=x , ∵AE ∥BC , ∴∠B=∠1=x , ∵GF=GD , ∴∠3=∠2=x ,在△DBF 中,∠3+∠FDB +∠B=180°, ∴x +(x +90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt △ABC 中,BC=AC tan 30°=12 3.(2)在Rt △ABC 中,AB= AC 2+BC 2= 122+92=15,如图2中,当点D 中线段BC 上时,此时只有GF=GD ,∵DG ∥AC ,∴△BDG ∽△BCA ,设BD=3x ,则DG=4x ,BG=5x ,∴GF=GD=4x ,则AF=15﹣9x ,∵AE ∥CB ,∴△AEF ∽△BCF ,∴AE BC =AF BF , ∴9−3x 9=15−9x9x ,整理得:x 2﹣6x +5=0,解得x=1或5(舍弃)∴腰长GD 为=4x=4.如图3中,当点D 中线段BC 的延长线上,且直线AB ,CE 的交点中AE 上方时,此时只有GF=DG ,设AE=3x ,则EG=4x ,AG=5x ,∴FG=DG=12+4x ,∵AE ∥BC ,∴△AEF ∽△BCF ,∴AE BC =AF BF , ∴3x 9=9x +129x +27,解得x=2或﹣2(舍弃),∴腰长DG=4x +12=20.如图4中,当点D 在线段BC 的延长线上,且直线AB ,EC 的交点中BD 下方时,此时只有DF=DG ,过点D 作DH ⊥FG .设AE=3x ,则EG=4x ,AG=5x ,DG=4x +12,∴FH=GH=DG•cos ∠DGB=(4x +12)×45=16x +485,∴GF=2GH=32x +965, ∴AF=GF ﹣AG=7x +965,∵AC ∥DG , ∴△ACF ∽△GEF ,∴AC EG =AF FG ,∴124x =7x +96532x +965, 解得x=12 147或﹣12 147(舍弃), ∴腰长GD=4x +12=84+48 147,如图5中,当点D 中线段CB 的延长线上时,此时只有DF=DG ,作DH ⊥AG 于H . 设AE=3x ,则EG=4x ,AG=5x ,DG=4x ﹣12,∴FH=GH=DG•cos ∠DGB=16x−485, ∴FG=2FH=32x−965, ∴AF=AG ﹣FG=96−7x 5, ∵AC ∥EG ,∴△ACF ∽△GEF ,∴AC EG =AF FG ,∴124x =96−7x 532x−965, 解得x=12 147或﹣12 147(舍弃), ∴腰长DG=4x ﹣12=−84+48 147,综上所述,等腰三角形△DFG 的腰长为4或20或84+48 147或−84+48 147.【点评】本题考查四边形综合题、正方形的性质、矩形的性质、相似三角形的判定和性质、锐角三角函数、平行线的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。

浙江省绍兴市2018年中考数学试卷含答案解析(Word版)

浙江省绍兴市2018年中考数学试卷含答案解析(Word版)

浙江省绍兴市2018年中考数学试卷
、选择题
1•如果向东走2m记为+2m,则向西走3米可记为()
A. +3m
B. +2m
C. -3m
D. -2m
2•绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017 年清理河湖库塘淤泥约为116000000方,数字116000000用科学记数法可以表示为(

A. 1.16 109
B. 1.16 108
C. 1.16 107
3•有6个相同的立方体搭成的几何体如图所示, 则它的主视图是
D.
4•抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1, 2, 3,4,5, 6,则朝上一面的数字为2的概率是(
)A.
B. C.
_ 2 2 2
2)2=-4a4③ a43=a2,
5.下面是一位同学做的四道题①(a+b)=a +b , ②(2a
④a3 a4=a12。

其中做对的一道题的序号是
A.①
B.②
C.③
D.④
6•如图,一个函数的图像由射线BA,线段BC,射线CD,其中点A(-1,2),B (1,
3),
C(2,1),D(6,5),则此函数(
B.当x v 1,
A.当x v 1, y随x的增大而增大y随x的增大而减小
C.当x> 1, y随x的增大而增大
D.当x > 1, y随x的增大而减小
7•学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB丄BD ,。

【精品】2018年浙江省杭州市中考数学试卷以及答案(word解析版)

【精品】2018年浙江省杭州市中考数学试卷以及答案(word解析版)

2018年浙江省杭州市中考数学试卷答案与解析一、选择题:本大题有10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题日要求的。

1.(3分)|﹣3|=()A.3 B.﹣3 C .D .﹣【分析】根据绝对值的定义,负数的绝对值是其相反数.【解答】解:|﹣3|=3.故选:A.【点评】本题主要考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中,比较简单.2.(3分)数据1800000用科学记数法表示为()A.1.86 B.1.8×106C.18×105D.18×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1800000=1.8×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列计算正确的是()A .=2B .=±2C .=2D .=±2【分析】根据=|a|进行计算即可.【解答】解:A 、=2,故原题计算正确;B 、=2,故原题计算错误;C 、=4,故原题计算错误;D、=4,故原题计算错误;故选:A.【点评】此题主要考查了算术平方根,关键是掌握一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.4.(3分)测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是()A.方差B.标准差C.中位数D.平均数【分析】根据中位数的定义解答可得.【解答】解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不易受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数,故选:C.【点评】本题主要考查方差、标准差、中位数和平均数,解题的关键是掌握中位数的定义.5.(3分)若线段AM,AN分别是△ABC的BC边上的高线和中线,则()A.AM>AN B.AM≥AN C.AM<AN D.AM≤AN【分析】根据垂线段最短解答即可.【解答】解:因为线段AM,AN分别是△ABC的BC边上的高线和中线,所以AM≤AN,故选:D.【点评】此题考查垂线段问题,关键是根据垂线段最短解答.6.(3分)某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20 B.x+y=20 C.5x﹣2y=60 D.5x+2y=60【分析】设圆圆答对了x道题,答错了y道题,根据“每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分”列出方程.【解答】解:设圆圆答对了x道题,答错了y道题,依题意得:5x﹣2y+(20﹣x﹣y)×0=60.故选:C.【点评】考查了由实际问题抽象出二元一次方程.关键是读懂题意,根据题目中的数量关系,列出方程,注意:本题中的等量关系之一为:答对的题目数量+答错的题目数量+不答的题目数量=20,避免误选B.7.(3分)一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A.B.C.D.【分析】根据题意得出所有2位数,从中找到两位数是3的倍数的结果数,利用概率公式计算可得.【解答】解:根据题意,得到的两位数有31、32、33、34、35、36这6种等可能结果,其中两位数是3的倍数的有33、36这2种结果,∴得到的两位数是3的倍数的概率等于=,故选:B.【点评】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.(3分)如图,已知点P是矩形ABCD内一点(不含边界),设∠PAD=θ1,∠PBA=θ2,∠PCB=θ3,∠PDC=θ4,若∠APB=80°,∠CPD=50°,则()A.(θ1+θ4)﹣(θ2+θ3)=30°B.(θ2+θ4)﹣(θ1+θ3)=40°C.(θ1+θ2)﹣(θ3+θ4)=70°D.(θ1+θ2)+(θ3+θ4)=180°【分析】依据矩形的性质以及三角形内角和定理,可得∠ABC=θ2+80°﹣θ1,∠BCD=θ3+130°﹣θ4,再根据矩形ABCD中,∠ABC+∠BCD=180°,即可得到(θ1+θ4)﹣(θ2+θ3)=30°.【解答】解:∵AD∥BC,∠APB=80°,∴∠CBP=∠APB﹣∠DAP=80°﹣θ1,∴∠ABC=θ2+80°﹣θ1,又∵△CDP中,∠DCP=180°﹣∠CPD﹣∠CDP=130°﹣θ4,∴∠BCD=θ3+130°﹣θ4,又∵矩形ABCD中,∠ABC+∠BCD=180°,∴θ2+80°﹣θ1+θ3+130°﹣θ4=180°,即(θ1+θ4)﹣(θ2+θ3)=30°,故选:A.【点评】本题主要考查了矩形的性质以及三角形内角和定理的运用,解决问题的关键是掌握:矩形的四个角都是直角.9.(3分)四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁【分析】假设两位同学的结论正确,用其去验证另外两个同学的结论,只要找出一个正确一个错误,即可得出结论(本题选择的甲和丙,利用顶点坐标求出b、c的值,然后利用二次函数图象上点的坐标特征验证乙和丁的结论).【解答】解:假设甲和丙的结论正确,则,解得:,∴抛物线的解析式为y=x2﹣2x+4.当x=﹣1时,y=x2﹣2x+4=7,∴乙的结论不正确;当x=2时,y=x2﹣2x+4=4,∴丁的结论正确.∵四位同学中只有一位发现的结论是错误的,∴假设成立.故选:B.【点评】本题考查了抛物线与x轴的交点、二次函数的性质以及二次函数图象上点的坐标特征,利用二次函数的性质求出b、c值是解题的关键.10.(3分)如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE.记△ADE,△BCE的面积分别为S1,S2()A.若2AD>AB,则3S1>2S2B.若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2D.若2AD<AB,则3S1<2S2【分析】根据题意判定△ADE∽△ABC,由相似三角形的面积之比等于相似比的平方解答.【解答】解:∵如图,在△ABC中,DE∥BC,∴△ADE∽△ABC,∴=()2,∴若2AD>AB,即>时,>,此时3S1>S2+S△BDE,而S2+S△BDE<2S2.但是不能确定3S1与2S2的大小,故选项A不符合题意,选项B不符合题意.若2AD<AB,即<时,<,此时3S1<S2+S△BDE<2S2,故选项C不符合题意,选项D符合题意.故选:D.【点评】考查了相似三角形的判定与性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.二、填空题:本大题有6个小题,每小题4分,共24分。

2018年浙江省绍兴市中考数学试卷及答案解析(可编辑修改word版)

2018年浙江省绍兴市中考数学试卷及答案解析(可编辑修改word版)

2018 年浙江省绍兴市中考数学试卷一、选择题(每小题只有一个选项符合题意.共10 小题,每小题4 分,共40 分)1.(4 分)如果向东走2m 记为+2m,则向西走3m 可记为()A.+3m B.+2m C.﹣3m D.﹣2m2.(4 分)绿水青ft就是金ft银ft,为了创造良好的生态生活环境,浙江省2017 年清理河湖库塘淤泥约116 000 000 方,数字116 000 000 用科学记数法可以表示为()A.1.16×109B.1.16×108C.1.16×107D.0.116×1093.(4 分)有6 个相同的立方体搭成的儿何体如图所示,则它的主视图是()A.B.C.D.4.(4 分)抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2 的概率是()A.B.C.D.5.(4 分)下面是一位同学做的四道题:①(a+b)2=a2+b2,②(﹣2a2)2=﹣4a4,③a5÷a3=a2,④a3•a4=a12.其中做对的一道题的序号是()A.① B.② C.③D.④6.(4 分)如图,一个函数的图象由射线BA、线段BC、射线CD 组成,其中点A(﹣1,2),B(1,3),C(2,1),D(6,5),则此函数()A.当x<1 时,y 随x 的增大而增大B.当x<1 时,y 随x 的增大而减小C.当x>1 时,y 随x 的增大而增大D.当x>1 时,y 随x 的增大而减小7.(4 分)学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C 端应下降的垂直距离CD 为()A.0.2m B.0.3m C.0.4m D.0.5m8.(4 分)利用如图1 的二维码可以进行身份识别.某校建立了一个身份识别系统,图2 是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图2 第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5 班学生.表示6 班学生的识别图案是()A.B.C.D.9.(4 分)若抛物线y=x2+ax+b 与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2 个单位,再向下平移3 个单位,得到的抛物线过点()A.(﹣3,﹣6)B.(﹣3,0)C.(﹣3,﹣5)D.(﹣3,﹣1)10.(4 分)某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9 枚图钉将4 张作品钉在墙上,如图)若有34 枚图钉可供选用,则最多可以展示绘画作品()A.16 张B.18 张C.20 张D.21 张二、填空题(本题包括6 小题,每小题5 分,共30 分)11.(5 分)因式分解:4x2﹣y2=.12.(5 分)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1 托为5 尺,那么索长为尺,竿子长为尺.13.(5 分)如图,公园内有一个半径为20 米的圆形草坪,A,B 是圆上的点,O为圆心,∠AOB=120°,从A 到B 只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通过计算可知,这些市民其实仅仅少B 走了步(假设1 步为0.5 米,结果保留整数).(参考数据:≈1.732,π取3.142)14.(5 分)等腰三角形ABC 中,顶角A 为40°,点P 在以A 为圆心,BC 长为半径的圆上,且BP=BA,则∠PBC 的度数为.15.(5 分)过双曲线y= (k>0)上的动点A 作AB⊥x 轴于点B,P 是直线AB上的点,且满足AP=2AB,过点P 作x 轴的平行线交此双曲线于点C.如果△APC 的面积为8,则k 的值是.16.(5 分)实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为x cm.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A 的三条棱的长分别10cm,10cm,y cm(y≤15),当铁块的顶部高出水面2cm 时,x,y 满足的关系式是.三、填空题(本题包括8 小题,第17-20 题每小题8 分,第21 小题10 分,第22、23小题每小题8 分,第24 题14 分,共80 分)17.(8 分)(1)计算:2tan60°﹣﹣(﹣2)0+()﹣1.(2)解方程:x2﹣2x﹣1=0.18.(8 分)为了解某地区机动车拥有量对道路通行的影响,学校九年级社会实践小组对2010 年~2017 年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2016 年机动车的拥有量,分别计算2010 年~2017 年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.19.(8 分)一辆汽车行驶时的耗油量为0.1 升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.(1)根据图象,直接写出汽车行驶400 千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y 关于x 的函数关系式,并计算该汽车在剩余油量5 升时,已行驶的路程.20.(8 分)学校拓展小组研制了绘图智能机器人(如图1),顺次输入点P1,P2,P3的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1)P1(4,0),P2(0,0),P3(6,6);(2)P1(0,0),P2(4,0),P3(6,6).21.(10 分)如图1,窗框和窗扇用“滑块铰链”连接,图3 是图2 中“滑块铰链”的平面示意图,滑轨MN 安装在窗框上,托悬臂DE 安装在窗扇上,交点A 处装有滑块,滑块可以左右滑动,支点B,C,D 始终在一直线上,延长DE 交MN 于点F.已知AC=DE=20cm,AE=CD=10cm,BD=40cm.(1)窗扇完全打开,张角∠CAB=85°,求此时窗扇与窗框的夹角∠DFB 的度数;(2)窗扇部分打开,张角∠CAB=60°,求此时点A,B 之间的距离(精确到0.1cm).(参考数据:≈1.732,≈2.449)22.(12 分)数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,∠A=110°,求∠B 的度数.(答案:35°)例2 等腰三角形ABC 中,∠A=40°,求∠B 的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC 中,∠A=80°,求∠B 的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A 的度数不同,得到∠B 的度数的个数也可能不同,如果在等腰三角形ABC 中,设∠A=x°,当∠B 有三个不同的度数时,请你探索x 的取值范围.23.(12 分)小敏思考解决如下问题:原题:如图1,点P,Q 分别在菱形ABCD 的边BC,CD 上,∠PAQ=∠B,求证:AP=AQ.(1)小敏进行探索,若将点P,Q 的位置特殊化;把∠PAQ 绕点A 旋转得到∠EAF,使AE⊥BC,点E,F 分别在边BC,CD 上,如图2.此时她证明了AE=AF,请你证明.(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作AE⊥BC,AF⊥CD,垂足分别为E,F.请你继续完成原题的证明.(3)如果在原题中添加条件:AB=4,∠B=60°,如图1,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).24.(14 分)如图,公交车行驶在笔直的公路上,这条路上有A,B,C,D 四个站点,每相邻两站之间的距离为5 千米,从A 站开往D 站的车称为上行车,从D 站开往A 站的车称为下行车,第一班上行车、下行车分别从A 站、D 站同时发车,相向而行,且以后上行车、下行车每隔10 分钟分别在A,D 站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30 千米/小时.(1)问第一班上行车到B 站、第一班下行车到C 站分别用时多少?(2)若第一班上行车行驶时间为t 小时,第一班上行车与第一班下行车之间的距离为s 千米,求s 与t 的函数关系式;(3)一乘客前往A 站办事,他在B,C 两站间的P 处(不含B,C 站),刚好遇到上行车,BP=x 千米,此时,接到通知,必须在35 分钟内赶到,他可选择走到B 站或走到C 站乘下行车前往A 站.若乘客的步行速度是5 千米/小时,求x 满足的条件.2018 年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(每小题只有一个选项符合题意.共10 小题,每小题4 分,共40 分)1.(4 分)如果向东走2m 记为+2m,则向西走3m 可记为()A.+3m B.+2m C.﹣3m D.﹣2m【分析】根据正数和负数表示相反意义的量,向东走记为正,可得向西走的表示方法.【解答】解:若向东走2m 记作+2m,则向西走3m 记作﹣3m,故选:C.【点评】本题考查了正数和负数,相反意义的量用正数和负数表示.2.(4 分)绿水青ft就是金ft银ft,为了创造良好的生态生活环境,浙江省2017 年清理河湖库塘淤泥约116 000 000 方,数字116 000 000 用科学记数法可以表示为()A.1.16×109B.1.16×108C.1.16×107D.0.116×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.【解答】解:116000000=1.16×108,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(4 分)有6 个相同的立方体搭成的儿何体如图所示,则它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(4 分)抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2 的概率是()A.B.C.D.【分析】让向上一面的数字是 2 的情况数除以总情况数 6 即为所求的概率.【解答】解:∵抛掷六个面上分别刻有的1,2,3,4,5,6 的骰子有6 种结果,其中朝上一面的数字为2 的只有1 种,∴朝上一面的数字为2 的概率为,故选:A.【点评】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.5.(4 分)下面是一位同学做的四道题:①(a+b)2=a2+b2,②(﹣2a2)2=﹣4a4,③a5÷a3=a2,④a3•a4=a12.其中做对的一道题的序号是()A.① B.② C.③D.④【分析】直接利用完全平方公式以及同底数幂的乘除运算法则、积的乘方运算法则分别计算得出答案.【解答】解:①(a+b)2=a2+2ab+b2,故此选项错误;②(﹣2a2)2=4a4,故此选项错误;③a5÷a3=a2,正确;④a3•a4=a7,故此选项错误.故选:C.【点评】此题主要考查了完全平方公式以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.6.(4 分)如图,一个函数的图象由射线BA、线段BC、射线CD 组成,其中点A(﹣1,2),B(1,3),C(2,1),D(6,5),则此函数()A.当x<1 时,y 随x 的增大而增大B.当x<1 时,y 随x 的增大而减小C.当x>1 时,y 随x 的增大而增大D.当x>1 时,y 随x 的增大而减小【分析】根据函数图象和题目中的条件,可以写出各段中函数图象的变化情况,从而可以解答本题.【解答】解:由函数图象可得,当x<1 时,y 随x 的增大而增大,故选项 A 正确,选项 B 错误,当1<x<2 时,y 随x 的增大而减小,当x>2 时,y 随x 的增大而增大,故选项C、D 错误,故选:A.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.7.(4 分)学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C 端应下降的垂直距离CD 为()A.0.2m B.0.3m C.0.4m D.0.5m【分析】由∠ABO=∠CDO=90°、∠AOB=∠COD 知△ABO∽△CDO,据此得=,将已知数据代入即可得.【解答】解:∵AB⊥BD,CD⊥BD,∴∠ABO=∠CDO=90°,又∵∠AOB=∠COD,∴△ABO∽△CDO,则=,∵AO=4m,AB=1.6m,CO=1m,∴=,解得:CD=0.4,故选:C.【点评】本题主要考查相似三角形的应用,解题的关键是熟练掌握相似三角形的判定与性质.8.(4 分)利用如图1 的二维码可以进行身份识别.某校建立了一个身份识别系统,图2 是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图2 第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5 班学生.表示6 班学生的识别图案是()A.B.C.D.【分析】根据规定的运算法则分别计算出每个选项第一行的数即可作出判断.【解答】解:A、第一行数字从左到右依次为1、0、1、0,序号为1×23+0×22+1×21+0 ×20=10,不符合题意;B、第一行数字从左到右依次为0,1,1,0,序号为0×23+1×22+1×21+0×20=6,符合题意;C、第一行数字从左到右依次为1,0,0,1,序号为1×23+0×22+0×21+1×20=9,不符合题意;D、第一行数字从左到右依次为0,1,1,1,序号为0×23+1×22+1×21+1×20=7,不符合题意;故选:B.【点评】本题主要考查数字的变化类,解题的关键是根据题意弄清题干规定的运算规则.9.(4 分)若抛物线y=x2+ax+b 与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2 个单位,再向下平移3 个单位,得到的抛物线过点()A.(﹣3,﹣6)B.(﹣3,0)C.(﹣3,﹣5)D.(﹣3,﹣1)【分析】根据定弦抛物线的定义结合其对称轴,即可找出该抛物线的解析式,利用平移的“左加右减,上加下减”找出平移后新抛物线的解析式,再利用二次函数图象上点的坐标特征即可找出结论.【解答】解:∵某定弦抛物线的对称轴为直线x=1,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线解析式为y=x(x﹣2)=x2﹣2x=(x﹣1)2﹣1.将此抛物线向左平移2 个单位,再向下平移3 个单位,得到新抛物线的解析式为y= (x﹣1+2)2﹣1﹣3=(x+1)2﹣4.当x=﹣3 时,y=(x+1)2﹣4=0,∴得到的新抛物线过点(﹣3,0).故选:B.【点评】本题考查了抛物线与x 轴的交点、二次函数图象上点的坐标特征、二次函数图象与几何变换以及二次函数的性质,根据定弦抛物线的定义结合其对称轴,求出原抛物线的解析式是解题的关键.10.(4 分)某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9 枚图钉将4 张作品钉在墙上,如图)若有34 枚图钉可供选用,则最多可以展示绘画作品()A.16 张B.18 张C.20 张D.21 张【分析】分别找出展示的绘画作品展示成一行、二行、三行、四行、五行的时候,34枚图钉最多可以展示的画的数量,比较后即可得出结论.【解答】解:①如果所有的画展示成一行,34÷(1+1)﹣1=16(张),∴34 枚图钉最多可以展示16 张画;②如果所有的画展示成两行,34÷(2+1)=11(枚)……1(枚),11﹣1=10(张),2×10=20(张),∴34 枚图钉最多可以展示20 张画;③如果所有的画展示成三行,34÷(3+1)=8(枚)……2(枚),8﹣1=7(张),3×7=21(张),∴34 枚图钉最多可以展示21 张画;④如果所有的画展示成四行,34÷(4+1)=6(枚)……4(枚),6﹣1=5(张),4×5=20(张),∴34 枚图钉最多可以展示20 张画;⑤如果所有的画展示成五行,34÷(5+1)=5(枚)……4(枚),5﹣1=4(张),5×4=20(张),∴34 枚图钉最多可以展示20 张画.综上所述:34 枚图钉最多可以展示21 张画.故选:D.【点评】本题考查了规律型中图形的变化类,观察图形,求出展示的绘画作品展示成一行、二行、三行、四行、五行时,最多可以展示的画的数量是解题的关键.二、填空题(本题包括6 小题,每小题5 分,共30 分)11.(5 分)因式分解:4x2﹣y2=(2x+y)(2x﹣y).【分析】原式利用平方差公式分解即可.【解答】解:原式=(2x+y)(2x﹣y),故答案为:(2x+y)(2x﹣y)【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.(5 分)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1 托为5 尺,那么索长为20 尺,竿子长为15 尺.【分析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x、y 的二元一次方程组,解之即可得出结论.【解答】解:设索长为x 尺,竿子长为y 尺,根据题意得:,解得:.答:索长为20 尺,竿子长为15 尺.故答案为:20;15.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.13.(5 分)如图,公园内有一个半径为20 米的圆形草坪,A,B 是圆上的点,O为圆心,∠AOB=120°,从A 到B 只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通过计算可知,这些市民其实仅仅少B 走了 15 步(假设1 步为0.5 米,结果保留整数).(参考数据:≈1.732,π取3.142)【分析】作OC⊥AB 于C,如图,根据垂径定理得到AC=BC,再利用等腰三角形的性质和三角形内角和计算出∠A=30°,则OC=10,AC=10,所以AB≈69(步),然后利用弧长公式计算出的长,最后求它们的差即可.【解答】解:作OC⊥AB 于C,如图,则AC=BC,∵OA=OB,∴∠A=∠B= (180°﹣∠AOB)= (180°﹣120°)=30°,在Rt△AOC 中,OC=OA=10,AC= OC=10 ,∴AB=2AC=20≈69(步);而的长=≈84(步),的长与AB 的长多15 步.所以这些市民其实仅仅少 B 走了15步.故答案为15.【点评】本题考查了垂径定理:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.14.(5 分)等腰三角形ABC 中,顶角A 为40°,点P 在以A 为圆心,BC 长为半径的圆上,且BP=BA,则∠PBC 的度数为30°或110°.【分析】分两种情形,利用全等三角形的性质即可解决问题;【解答】解:如图,当点P 在直线AB 的右侧时.连接AP.∵AB=AC,∠BAC=40°,∴∠ABC=∠C=70°,∵AB=AB,AC=PB,BC=PA,∴△ABC≌△BAP,∴∠ABP=∠BAC=40°,∴∠PBC=∠ABC﹣∠ABP=30°,当点P′在AB 的左侧时,同法可得∠ABP′=40°,∴∠P′BC=40°+70°=110°,故答案为30°或110°.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15.(5 分)过双曲线y=(k>0)上的动点A 作AB⊥x 轴于点B,P 是直线AB 上的点,且满足AP=2AB,过点P 作x 轴的平行线交此双曲线于点C.如果△APC 的面积为8,则k 的值是12 或4 .【分析】设点A 的坐标为(x,),分点P 在AB 的延长线上、点P 在BA 的延长线上两种情况,根据比例系数k 的几何意义、反比例函数图象上点的坐标特征计算.【解答】解:设点A 的坐标为(x,),当点P 在AB 的延长线上时,∵AP=2AB,∴AB=AP,∵PC∥x 轴,∴点C 的坐标为(﹣x,﹣),由题意得,×2x×=8,解得,k=4,当点P 在BA 的延长线上时,∵AP=2AB,PC∥x 轴,∴点C 的坐标为(x,),∴P′C′=x,由题意得,×x×=8,解得,k=12,当点P 在第三象限时,情况相同,故答案为:12 或4.【点评】本题考查的是比例系数k 的几何意义、反比例函数图象上点的坐标特征,根据坐标表示出线段的长度是解题的关键.16.(5 分)实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为x cm.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A 的三条棱的长分别10cm,10cm,ycm(y≤15),当铁块的顶部高出水面2cm 时,x,y 满足的关系式是 y= (0<x≤)或y= (6≤x<8).【分析】分两种情况:利用实心铁块浸在水中的体积等于容器中水位增加后的体积减去原来水的体积建立方程求解即可.【解答】解:①当长方体实心铁块的棱长为10cm 和ycm 的那一面平放在长方体的容器底面时,则铁块浸在水中的高度为8cm,此时,水位上升了(8﹣x)cm(x<8),铁块浸在水中的体积为10×8×y=80ycm3,∴80y=30×20×(8﹣x),∴y= ,∵y≤15,∴x≥6,即:y=(6≤x<8),②当长方体实心铁块的棱长为10cm 和10cm 的那一面平放在长方体的容器底面时,同①的方法得,y=(0<x≤),故答案为:y=(0<x≤)或y=(6≤x<8)【点评】此题主要考查了从实际问题列一次函数关系式,正确找出相等关系是解本题的关键.三、填空题(本题包括8 小题,第17-20 题每小题8 分,第21 小题10 分,第22、23 小题每小题8 分,第24 题14 分,共80 分)17.(8 分)(1)计算:2tan60°﹣﹣(﹣2)0+()﹣1.(2)解方程:x2﹣2x﹣1=0.【分析】(1)首先计算特殊角的三角函数、二次根式的化简、零次幂、负整数指数幂,然后再计算加减即可;(2)首先计算△,然后再利用求根公式进行计算即可.【解答】解:(1)原式=2﹣2 ﹣1+3=2;(2)a=1,b=﹣2,c=﹣1,△=b2﹣4ac=4+4=8>0,方程有两个不相等的实数根,x= ==1 ,则x1=1+,x2=1﹣.【点评】此题主要考查了实数的运算和一元二次方程的解法,关键是熟练掌握特殊角的三角函数、二次根式的化简、零次幂、负整数指数幂以及一元二次方程的求根公式.18.(8 分)为了解某地区机动车拥有量对道路通行的影响,学校九年级社会实践小组对2010 年~2017 年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2016 年机动车的拥有量,分别计算2010 年~2017 年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.【分析】(1)根据统计图中的数据可以解答本题;(2)根据统计图中的数据,结合生活实际,进行说明即可,本题答案不唯一,只要合情合理即可.【解答】解:(1)由图可得,2016 年机动车的拥有量为3.40 万辆,==120(次),==100(次)即;2010 年~2017 年在人民路路口和学校门口堵车次数的平均数分别是120 次、100 次;(2)随着人民生活水平的提高,居民的汽车拥有量明显增加,同时随着汽车数量的增加,也给交通带来了压力,堵车次数明显增加,学校路口学生通过次数较多,政府和交通部分加强重视,进行治理,堵车次数明显好转,人民路口堵车次数不断增加,引起政府重视,加大治理,交通有所好转.【点评】本题考查折线统计图、条形统计图、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答.19.(8 分)一辆汽车行驶时的耗油量为0.1 升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.(1)根据图象,直接写出汽车行驶400 千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y 关于x 的函数关系式,并计算该汽车在剩余油量5 升时,已行驶的路程.【分析】(1)由图象可知:汽车行驶400 千米,剩余油量30 升,行驶时的耗油量为0.1 升/千米,则汽车行驶400 千米,耗油400×0.1=40(升),故加满油时油箱的油量是40+30=70 升.(2)设y=kx+b(k≠0),把(0,70),(400,300)坐标代入可得:k=﹣0.1,b=70,求出解析式,当y=5 时,可得x=650.【解答】解:(1)由图象可知:汽车行驶400 千米,剩余油量30 升,∵行驶时的耗油量为0.1 升/千米,则汽车行驶400 千米,耗油400×0.1=40(升)∴加满油时油箱的油量是40+30=70 升.(2)设y=kx+b(k≠0),把(0,70),(400,300)坐标代入可得:k=﹣0.1,b=70∴y=﹣0.1x+70,当y=5 时,x=650即已行驶的路程的为650 千米.【点评】该题是根据题意和函数图象来解决问题,考查学生的审题识图能力和待定系数法求解析式以及根根解析式求值.20.(8 分)学校拓展小组研制了绘图智能机器人(如图1),顺次输入点P1,P2,P3的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1)P1(4,0),P2(0,0),P3(6,6);(2)P1(0,0),P2(4,0),P3(6,6).【分析】(1)根据图 2 判断出绘制直线,根据两点间的距离公式可得答案;(2)根据图 2 判断出绘制抛物线,利用待定系数法求解可得.【解答】解:(1)∵P1(4,0),P2(0,0),4﹣0=4>0,∴绘制线段P1P2,P1P2=4;(2)∵P1(0,0),0﹣0=0,∴绘制抛物线,设y=ax(x﹣4),把(6,6)代入得:6=12a,解得:a=,∴y= x(x﹣4)= x2﹣2x.【点评】本题主要考查二次函数的应用,解题的关键是看图2 的判断条件及待定系数法求函数解析式.21.(10 分)如图1,窗框和窗扇用“滑块铰链”连接,图3 是图2 中“滑块铰链”的平面示意图,滑轨MN 安装在窗框上,托悬臂DE 安装在窗扇上,交点A 处装有滑块,滑块可以左右滑动,支点B,C,D 始终在一直线上,延长DE 交MN 于点F.已知AC=DE=20cm,AE=CD=10cm,BD=40cm.(1)窗扇完全打开,张角∠CAB=85°,求此时窗扇与窗框的夹角∠DFB 的度数;(2)窗扇部分打开,张角∠CAB=60°,求此时点A,B 之间的距离(精确到0.1cm).(参考数据:≈1.732,≈2.449)【分析】(1)根据平行四边形的判定和性质可以解答本题;(2)根据锐角三角函数和题意可以求得AB 的长,从而可以解答本题.【解答】解:(1)∵AC=DE=20cm,AE=CD=10cm,∴四边形ACDE 是平行四边形,∴AC∥DE,∴∠DFB=∠CAB,∵∠CAB=85°,∴∠DFB=85°;(2)作CG⊥AB 于点G,∵AC=20,∠CGA=90°,∠CAB=60°,∴CG= ,AG=10,∵BD=40,CD=10,∴CB=30,∴BG= = ,∴AB=AG+BG=10+10 ≈10+10×2.449=34.49≈34.5cm,即A、B 之间的距离为34.5cm.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(12 分)数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,∠A=110°,求∠B 的度数.(答案:35°)例2 等腰三角形ABC 中,∠A=40°,求∠B 的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC 中,∠A=80°,求∠B 的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A 的度数不同,得到∠B 的度数的个数也可能不同,如果在等腰三角形ABC 中,设∠A=x°,当∠B 有三个不同的度数时,请你探索x 的取值范围.【分析】(1)由于等腰三角形的顶角和底角没有明确,因此要分类讨论;(2)分两种情况:①90≤x<180;②0<x<90,结合三角形内角和定理求解即可.【解答】解:(1)若∠A 为顶角,则∠B=(180°﹣∠A)÷2=50°;若∠A 为底角,∠B 为顶角,则∠B=180°﹣2×80°=20°;若∠A 为底角,∠B 为底角,则∠B=80°;故∠B=50°或20°或80°;(2)分两种情况:①当90≤x<180 时,∠A 只能为顶角,∴∠B 的度数只有一个;②当0<x<90 时,若∠A 为顶角,则∠B=()°;若∠A 为底角,∠B 为顶角,则∠B=(180﹣2x)°;若∠A 为底角,∠B 为底角,则∠B=x°.当≠180﹣2x 且180﹣2x≠x 且≠x,即x≠60 时,∠B 有三个不同的度数.综上所述,可知当0<x<90 且x≠60 时,∠B 有三个不同的度数.【点评】本题考查了等腰三角形的性质及三角形内角和定理,进行分类讨论是解。

浙江省2018中考数学真题(含答案)(Word精校版)

2018年杭州市初中毕业升学文化考试数学一、选择题:本大题有10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项最符合题目要求的。

1.=()A. 3B. -3C.D.2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106C. 18×105D. 18×1063.下列计算正确的是()A. B. C. D.4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。

计算结果不受影响的是()A. 方差B. 标准差C. 中位数D. 平均数5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B. C. D.6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。

已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则()A. B. C. D.7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。

任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A. B. C. D.8.如图,已知点P矩形ABCD内一点(不含边界),设,,,,若,,则()(第8题)A. B.C. D.9.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,()(第10题)A. 若,则B. 若,则C. 若,则D. 若,则二、填空题:本大题有6个小题,每小题4分,共24分。

11.计算:a-3a=________。

12.如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。

2018年浙江省杭州市中考数学试卷附答案解析


B、 =2,故原题计算错误;
C、 =4,故原题计算错误;
D、 =4,故原题计算错误;
故选:A. 4.【解答】解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中
点”,不受极端值影响, 所以将最高成绩写得更高了,计算结果不受影响的是中位数, 故选:C. 5.【解答】解:因为线段 AM,AN 分别是△ABC 的 BC 边上的高线和中线, 所以 AM≤AN, 故选:D. 6.【解答】解:设圆圆答对了 x 道题,答错了 y 道题, 依题意得:5x﹣2y+(20﹣x﹣y)×0=60. 故选:C. 7.【解答】解:根据题意,得到的两位数有 31、32、33、34、35、36 这 6 种等可能结果, 其中两位数是 3 的倍数的有 33、36 这 2 种结果, ∴得到的两位数是 3 的倍数的概率等于 = ,
第4页(共16页)
②若 AD=EC,求 的值.
22.(12 分)设二次函数 y=ax2+bx﹣(a+b)(a,b 是常数,a≠0). (1)判断该二次函数图象与 x 轴的交点的个数,说明理由. (2)若该二次函数图象经过 A(﹣1,4),B(0,﹣1),C(1,1)三个点中的其中两个 点,求该二次函数的表达式. (3)若 a+b<0,点 P(2,m)(m>0)在该二次函数图象上,求证:a>0.
第1页(共16页)
A.(θ1+θ4)﹣(θ2+θ3)=30°
B.(θ2+θ4)﹣(θ1+θ3)=40°
C.(θ1+θ2)﹣(θ3+θ4)=70°
D.(θ1+θ2)+(θ3+θ4)=180°
9.(3 分)四位同学在研究函数 y=x2+bx+c(b,c 是常数)时,甲发现当 x=1 时,函数有

浙江省舟山市2018年数学中考试题及答案演示教学



165.别5 : 170.5 170.5 : 175.5 175.5 : 180.5 180.5 : 185.5 185.5 : 190.5 190.5 : 195.5




2
4
5间乙Fra bibliotek车1
2
a

分析数据:
车间
平均数
众数
甲车间
180
185
乙车间
180
180
应用数据:
6
2
1
b
2
0
中位数
方差
180
43.1
的读数为 60o ,则该直尺的宽度为 ____________ cm .
15. 甲、乙两个机器人检测零件,甲比乙每小时多检测
20 个,甲检测 300 个比乙检测 200
个所用的时间少 10% ,若设甲每小时检测 x 个,则根据题意,可列出方程:

16. 如图,在矩形 ABCD 中, AB 4 , AD 2 ,点 E 在 CD 上, DE 1 ,点 F 在边 AB
(2)化简并求值: a b ab ,其中 a 1 , b 2 . b a ab
18. 用消元法解方程组
x 3y 5, ①
时,两位同学的解法如下:
4x 3y 2.②
解法一:
由① - ②,得 3x 3 .
解法二:由②,得 3x x 3y 2 ,③ 把①代入③,得 3x 5 2 .
(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”
180
22.6
只供学习与交流
此文档仅供收集于网络,如有侵权请联系网站删除
(1)计算甲车间样品的合格率 .

2018年浙江省杭州市中考数学试卷含答案解析

浙江省杭州市2018年中考数学试题一、选择题1.=()A.3B.-3C.D.2.数据1800000用科学计数法表示为()A.1.8B.1.8×10C.18×10D.18×103.下列计算正确的是()A. B. C. D.4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。

计算结果不受影响的是()A.方差B.标准差C.中位数D.平均数5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B. C. D.6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。

已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则()A. B. C. D.7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。

任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A. B. C. D.8.如图,已知点P矩形ABCD内一点(不含边界),设,,,,若,,则()A.C.9.四位同学在研究函数B.D.(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已6656知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE△,BCE的面积分别为S,S,()12A.若C.若,则,则B.若D.若,则,则二、填空题11.计算:a-3a=________。

11. 如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。

13.因式分解:________14.如图,AB是⊙的直径,点C是半径OA的中点,过点C作DE⊥AB,交O于点D,E两点,过点D作直径DF,连结AF,则∠DEA=________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省2018年中考数学猜题卷及答案注意事项:1、本试卷满分 120 分,考试时间 100 分钟。

2、本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上。

答在 试卷上的答案无效。

一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的. 1.-3的相反数是( )A.13 B .-13C .3D .-3 2.某同学做了四道题:①3m+4n=7mn ;②(﹣2a 2)3=﹣8a 6;③6x 6÷2x 2=3x 3;④y 3•xy 2=xy 5,其中 确的题号是( )A .②④B .①③C .①②D .③④3. 如图,是某几何体的三视图及相关数据,则该几何体的侧面积是( )A .10πB .15πC .20πD .30π4.已知⊙O 1与⊙O 2相切,若⊙O 1的半径为1,两圆的圆心距为5,则⊙O 2的半径为( )A .4B .6C .3或6D .4或65.以下命题:①同位角相等;②长度相等弧是等弧;③对角线相等的平行四边形是矩形;④抛物线 y=(x+2)2+1的对称轴是直线x=﹣2.其中真命题的个数是( ) A .1 B .2C .3D .46.把抛物线y=2x 2向上平移5个单位,所得抛物线的解析式为( )A .y=2x 2+5 B .y=2x 2﹣5C .y=2(x+5)2D .y=2(x ﹣5)27.如图,在▱ABCD 中,BD 为对角线,点E ,O ,F 分别是AB ,BD ,BC 的中点,且OE =3,OF =2,则▱ABCD 的周长是( )A .10B .20C .15D .68.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是( )A .B .C .D .9.遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x 万千克,则改良后平均每亩产量为1.5x 万千克,根据题意列方程为( )A .﹣=20B .﹣=20C .﹣=20D .+=209.已知点A 为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周.设点P 运动的时间为x ,线段AP 的长为y .表示y 与x 的函数关系的图象大致如图,则该封闭图形可能是( )A .B .C .D .二、填空题(每小题3分,共15分) 11.分解因式:a 2b+2ab 2+b 3= . 12.计算 12-33= .13.点P 1(﹣1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y=﹣x 2+2x+c 的图象上,则y 1,y 2,y 3的大小关系是 .14.如图,在⊙O 中,CD 是直径,弦AB ⊥CD ,垂足为E ,若∠C=15°,AB=4cm ,则⊙O 半径为 cm .15.如图所示,点A在双曲线y=上,点A的坐标是(,2),点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.三、解答题(本大题共8个小题,满分75分)16.(本小题满分6分)解方程: +1=.17.(本小题满分7分)先化简,再求值:(﹣)÷,其中a=+1.18.(本小题满分10分)如图,在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:DF=BE.19.(本小题满分10分)一个不透明的口袋里装有红、黄、绿三种颜色的小球(除颜色不同外其余都相同),其中红球2个(分别标有1号、2号),黄球1个,从中任意摸出1球是绿球的概率是.(1)试求口袋中绿球的个数;(2)小明和小刚玩摸球游戏:第一次从口袋中任意摸出1球(不放回),第二次再摸出1球.两人约定游戏胜负规则如下:摸出“一绿一黄”,则小明赢;摸出“一红一黄”,则小刚赢.你认为这种游戏胜负规则公平吗?请用列表或画树状图的方法说明理由;若你认为不公平,请修改游戏胜负规则,使游戏变得公平.20.(本小题满分10分)某工艺品厂设计了一款成本为10元/件的小工艺品投放市场进行试销,经过调查,得到如下数据:(1)把上表中x,y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式.(2)当销售单价为多少元时,工艺品厂试销该小工艺品每天获得的利润最大?最大利润是多少?(利润=销售额﹣成本)21.(本小题满分10分)如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上的任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD.(1)弦长AB等于(结果保留根号);(2)当∠D=20°时,求∠BOD的度数;(3)当AC的长度为多少时,以A、C、D为顶点的三角形与以B、C、0为顶点的三角形相似?请写出解答过程.22.(本小题满分10分)问题探究:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.问题变式:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请求出∠AEB的度数以及判断线段CM、AE、BE之间的数量关系,并说明理由.22.(本小题满分12分)如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0).(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.参考答案:一、选择题(每小题3分,共30分)1.C2.A3.B4.D5.B6.A7.B8.C9.A 10.A二、填空题(每小题3分,共15分)11.b(a+b)2 12.2- 3 13.y1=y2>y3 14.4 15. 2三、解答题(本大题共8个小题,满分75分)16.(本小题满分6分)解:方程两边同乘以2(x﹣2),得:2(1﹣x)+2x﹣4=x,解得:x=﹣2,把x=﹣2代入原分式方程中,等式两边相等,经检验x=﹣2是分式方程的解.17.(本小题满分7分)解:原式=[﹣]×=×=当a=+1时,∴原式=18.(本小题满分10分)证明:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵在△ADF和△CBE中,,∴△ADF≌△CBE(AAS),∴DF=BE.19.(本小题满分10分)解:(1)设绿球的个数有x个.=,解得x=1.(2)共有12种情况,一绿一黄的情况有2种,小明赢的概率是=;一红一黄的情况有4种情况,那么小刚赢的概率是=;所以游戏不公平;胜负规则为:摸出“一绿一黄”的情况小明赢;摸出“两红”的情况小刚赢.20.(本小题满分10分)解:(1)画出图形,如右图所示.由图可猜想y与x是一次函数关系,设这个一次函数为y=kx+b(k≠0),∵这个一次函数的图象经过(20,500),(30,400)两点,∴,解得:,∴函数关系式是y=﹣10x+700.经验证,其他各点也在y=﹣10x+700上.(2)设工艺品试销每天获得利润为W元,由已知得:W=(x﹣10)(﹣10x+700)=﹣10x2+800x﹣7000=﹣10(x﹣40)2+9000,∵﹣10<0,∴当x=40时,W取最大值,最大值为9000.故:当销售单价为40元时,工艺品厂试销该小工艺品每天获得的利润最大,最大利润是9000元.21.(本小题满分10分)解:(1)过点O作OE⊥AB于E,则AE=BE=AB,∠OEB=90°,∵OB=2,∠B=30°,∴BE=OB•cos∠B=2×=,∴AB=2;(2)连接OA,∵OA=OB,OA=OD,∴∠BAO=∠B,∠DAO=∠D,∴∠DAB=∠BAO+∠DAO=∠B+∠D,又∵∠B=30°,∠D=20°,∴∠DAB=50°,∴∠BOD=2∠DAB=100°;(3)∵∠BCO=∠A+∠D,∴∠BCO>∠A,∠BCO>∠D,∴要使△DAC与△BOC相似,只能∠DCA=∠BCO=90°,此时∠BOC=60°,∠BOD=120°,∴∠DAC=60°,∴△DAC∽△BOC,∵∠BCO=90°,即OC⊥AB,∴AC=AB=.∴当AC的长度为时,以A、C、D为顶点的三角形与以B、C、0为顶点的三角形相似.22 .(本小题满分10分)解:问题探究:(1)∵△ACB和△DCE均为等边三角形,∴∠ACB=∠DCE=60°,CA=CB,CD=CE,∴∠ACD=∠BCE,在△CDA和△CEB中,,∴△CDA≌△CEB,∴AD=BE;(2)∵△CDA≌△CEB,∴∠CEB=∠CDA=120°,又∠CED=60°,∴∠AEB=120°﹣60°=60°;问题变式:(1)∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∠ACB=∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,∠BEC=∠ADC=135°.∴∠AEB=∠BEC﹣∠CED=135°﹣45°=90°;(2)AE=2CM+BE,在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DE=2CM.∴AE=DE+AD=2CM+BE∴AE=2CM+BE.23.(本小题满分12分)解:(1)把点C(0,﹣4),B(2,0)分别代入y=x2+bx+c中,得,解得∴该抛物线的解析式为y=x2+x﹣4.(2)令y=0,即x2+x﹣4=0,解得x1=﹣4,x2=2,∴A(﹣4,0),S△ABC=AB•OC=12.设P点坐标为(x,0),则PB=2﹣x.∵PE∥AC,∴∠BPE=∠BAC,∠BEP=∠BCA,∴△PBE∽△BAC,∴,即,化简得:S△PBE=(2﹣x)2.S△PCE=S△PCB﹣S△PBE=PB•OC﹣S△PBE=×(2﹣x)×4﹣(2﹣x)2=x2﹣x+=﹣(x+1)2+3∴当x=﹣1时,S△PCE的最大值为3.(3)△OMD为等腰三角形,可能有三种情形:(I)当DM=DO时,如答图①所示.DO=DM=DA=2,∴∠OAC=∠AMD=45°,∴∠ADM=90°,∴M点的坐标为(﹣2,﹣2);(II)当MD=MO时,如答图②所示.过点M作MN⊥OD于点N,则点N为OD的中点,∴DN=ON=1,AN=AD+DN=3,又△AMN为等腰直角三角形,∴MN=AN=3,∴M点的坐标为(﹣1,﹣3);(III)当OD=OM时,∵△OAC为等腰直角三角形,∴点O到AC的距离为×4=,即AC上的点与点O之间的最小距离为.∵>2,∴OD=OM的情况不存在.综上所述,点M的坐标为(﹣2,﹣2)或(﹣1,﹣3).。

相关文档
最新文档