2018年浙江杭州市中考数学试卷及答案

合集下载

2018年浙江杭州市中考数学试卷和答案

2018年浙江杭州市中考数学试卷和答案

2018浙江杭州中考数学 试题卷答案见后文一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.3-=( )A .3B .-3C .13 D .13- 2.数据1800000用科学记数法表示为( )A .61.8B .61.810⨯C .51810⨯D .61810⨯3.下列计算正确的是( )A 2=B 2=±C 2=D 2=± 4.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据.在统计时,出现了一处错误:将最高成绩写得更高了.计算结果不受影响的是( )A .方差B .标准差C .中位数D .平均数5.若线段AM ,AN 分别是ABC ∆的BC 边上的高线和中线,则( )A .AM AN >B .AM AN ≥C .AM AN <D .AM AN ≤6.某次知识竞赛共有20道题,规定:每答对一道题得5+分,每答错一道题得2-分,不答的题得0分.已知圆圆这次竞赛得了60分.设圆圆答对了x 道题,答错了y 道题,则( )A .20x y -=B .20x y +=C .5260x y -=D .5260x y +=7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1~6)朝上一面的数字.任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( )A .16B .13C .12D .238.如图,已知点P 是矩形ABCD 内一点(不含边界),设1PAD θ∠=,2PBA θ∠=,3PCB θ∠=,4PDC θ∠=.若80APB ∠=,50CPD ∠=,则( )A .1423()()30θθθθ+-+=B .2413()()40θθθθ+-+=C .1234()()70θθθθ+-+=D .1234()()180θθθθ+-+=9.四位同学在研究函数2y x bx c =++(b ,c 是常数)时,甲发现当1x =时,函数有最小值;乙发现-1是方程20x bx c ++=的一个根;丙发现函数的最小值为3;丁发现当2x =时,4y =.已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A .甲B .乙C .丙D .丁10.如图,在ABC ∆中,点D 在AB 边上,//DE BC ,与边AC 交于点E ,连结BE .记ADE ∆,BCE ∆的面积分别为1S ,2S ,( )A .若2AD AB >,则1232S S > B .若2AD AB >,则1232S S <C .若2AD AB <,则1232S S > D .若2AD AB <,则1232S S <二、填空题:本大题有6个小题,每小题4分,共24分.11.计算:3a a -= .12.如图,直线//a b ,直线c 与直线a ,b 分别交于点A ,B .若145∠=,则2∠= .13.因式分解:2()()a b b a ---= .⊥,交O于D、14.如图,AB是O的直径,点C是半径OA的中点,过点C作DE AB∠=.E两点,过点D作直径DF,连结AF,则DFA15.某日上午,甲、乙两车先后从A地出发沿同一条公路匀速前往B地.甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象,乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是.∆翻折,点A落在DC边16.折叠矩形纸片ABCD时,发现可以进行如下操作:①把ADE∆翻折,点上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把CDGC落在线段AE上的点H处,折痕为DG,点G在BC边上.若2EH=,=+,1AB AD则AD=.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时).(1)求v关于t的函数表达式.(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?18.某校积极参与垃圾分类活动,以班级为单位收集可回收垃圾.下面是七年级各班一周收集的可回收垃圾的质量的频数表和频数直方图(每组含前一个边界值,不含后一个边界值).某校七年级各班一周收集的可回收垃圾的质量的频数表(1)求a 的值;(2)已知收集的可回收垃圾以0.8元/kg 被回收,该年级这周收集的可回收垃圾被回收后所得金额能否达到50元?19.如图,在ABC ∆中,AB AC =,AD 为BC 边上的中线,DE AB ⊥于点E .(1)求证BDE CAD ∆∆:.(2)若13AB =,10BC =,求线段DE 的长.20.设一次函数y kx b =+(k ,b 是常数,0k ≠)的图象过(1,3)A ,(1,1)B --两点.(1)求该一次函数的表达式.(2)若点2(22,)a a +在该一次函数图象上,求a 的值.(3)已知点11(,)C x y 和点22(,)D x y 在该一次函数图象上.设1212()()m x x y y =--,判断反比例函数1m y x+=的图象所在的象限,说明理由. 21.如图,在ABC ∆中,90ACB ∠=,以点B 为圆心,BC 长为半径画弧,交线段AB 于点D ;以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=,求ACD ∠的度数.(2)设BC a =,AC b =.①线段AD 的长是方程2220x ax b +-=的一个根吗?说明理由.②若AD EC =,求a b的值. 22.设二次函数2()y ax bx a b =+-+(a ,b 是常数,0a ≠).(1)判断该二次函数图象与x 轴的交点的个数,说明理由.(2)若该二次函数图象经过(1,4)A -,(0,1)B -,(1,1)C 三个点中的其中两个点,求该二次函数的表达式.(3)若0a b +<,点(2,)(0)P m m >在该二次函数图象上,求证:0a >.23.如图,在正方形ABCD 中,点G 在边BC 上(不与点B ,C 重合),连结AG ,作DE AG ⊥于点E ,BF AG ⊥于点F ,设BG k BC=.(1)求证:AE BF =.(2)连结BE ,DF ,设EDF α∠=,EBF β∠=.求证:tan tan k αβ=.(3)设线段AG 与对角线BD 交于点H ,AHD ∆和四边形CDHG 的面积分别为1S 和2S .求21S S 的最大值.2018杭州中考数学参考答案一、选择题1-5: ABACD 6-10: CBABD二、填空题11. 2a - 12. 135 13. ()(1)a b a b --+ 14. 30 15. 6080v ≤≤16. 3+三、解答题17.解:(1)根据题意,得100(0)vt t =>, 所以100(0)v t t=>. (2)因为100(05)v t t =<≤, 又因为1000>,所以当0t >时,v 随着t 的增大而减小,当05t <≤时,100205v ≥=, 所以平均每小时至少要卸货20吨.18.解:(1)由图表可知,4a =.(2)设这周该年级收集的可回收垃圾被回收后所得金额为w 元,则(2 4.54 5.03 5.51 6.0)w <⨯+⨯+⨯+⨯0.841.250⨯=<.所以这周该年级收集的可回收垃圾被回收后所得金额达不到50元.19.解:(1)因为AB AC =,所以B C ∠=∠,又因为AD 为BC 边上的中线,所以AD BC ⊥,又因为DE AB ⊥,所以90BED ADC ∠=∠=,所以BDE CAD ∆∆.(2)因为10BC =,所以5BD =,根据勾股定理,得12AD =.由(1)得BD DE AC AD =,所以51312DE =, 所以6013DE =.20.解:(1)根据题意,得31k b k b +=⎧⎨-+=-⎩,解得2k =,1b =. 所以21y x =+.(2)因为点2(22,)a a +在函数21y x =+的图象上,所以245a a =+,解得5a =或1a =-.(3)由题意,得121212(21)(21)2()y y x x x x -=+-+=-,所以2121212()()2()0m x x y y x x =--=-≥, 所以10m +>, 所以反比例函数1m y x+=的图象位于第一、第三象限. 21.解:(1)因为28A ∠=,所以62B ∠=,又因为BC BD =,所以1(18062)592BCD ∠=⨯-=. 所以905931ACD ∠=-=.(2)因为BC a =,AC b =,所以AB =所以AD AB BD a =-=.①因为22)2)a a a b +--222(2)a b a =+-2222a b +-0=,所以线段AD 的长是方程2220x ax b +-=的一个根. ②因为2b AD EC AE ===, 所以2b 是方程2220x ax b +-=的根, 所以2204b ab b +-=,即243ab b =.因为0b ≠,所以34a b =. 22.解:(1)当0y =时,2()0(0)ax bx a b a +-+=≠.因为224()(2)b a a b a b ∆=++=+,所以,当20a b +=时,即0∆=时,二次函数图象与x 轴有1个交点; 当20a b +≠,即0∆>时,二次函数图象与x 轴有2个交点.(2)当1x =时,0y =,所以函数图象不可能经过点(1,1)C .所以函数图象经过(1,4)A -,(0,1)B -两点, 所以()4()1a b a b a b --+=⎧⎨-+=-⎩.解得3a =,2b =-.所以二次函数的表达式为2321y x x =--.(3)因为(2,)P m 在该二次函数图象上,所以42()3m a b a b a b =+-+=+,因为0m >,所以30a b +>.又因为0a b +<,所以23()0a a b a b =+-+>,所以0a >.23.解:(1)因为四边形ABCD 是正方形,所以90BAF EAD ∠+∠=, 又因为DE AG ⊥,所以90EAD ADE ∠+∠=,所以ADE BAF ∠=∠,又因为BF AG ⊥,所以90DEA AFB ∠=∠=.又因为AD AB =,所以Rt DAE Rt ABF ∆≅∆,所以AE BF =.(2)易知Rt BFG Rt DEA ∆∆,所以BF BG DE AD=, 在Rt DEF ∆和Rt BEF ∆中,tan EF DE α=,tan EF BFβ=, 所以tan BG EF BG EF k BC BF AD BFβ=⋅=⋅ tan BF EF EF DE BF DE α=⋅==, 所以tan tan k αβ=.(3)设正方形ABCD 的边长为1,则BG k =,所以ABG ∆的面积等于12k . 因为ABD ∆的面积为12, 又因为BH BG k HD AD==,所以112(1)S k =+, 所以22111122(1)2(1)k k S k k k -++=--=++, 所以2221151()24S k k k S =-++=--+54≤, 因为01k <<,所以当12k =,即点G 为BC 中点时, 21S S 有最大值54.。

2018年杭州市中考数学试卷含答案解析(Word版)

2018年杭州市中考数学试卷含答案解析(Word版)

浙江省杭州市2018年中考数学试题一、选择题1、=( )A、 3B、 -3C、D、2、数据用科学计数法表示为( )A、 1、86B、 1、8×106C、 18×105D、 18×1063、下列计算正确得就是( )A、 B、 C、 D、4、测试五位学生“一分钟跳绳”成绩,得到五个各不相同得数据,统计时,出现了一处错误:将最高成绩写得更高了。

计算结果不受影响得就是( )A、方差B、标准差C、中位数D、平均数5、若线段AM,AN分别就是△ABC边上得高线与中线,则( )A、 B、 C、 D、6、某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答得题得0分。

已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则( )A、 B、 C、 D、7、一个两位数,它得十位数字就是3,个位数字就是抛掷一枚质地均匀得骰子(六个面分别有数字1—6)朝上一面得数字。

任意抛掷这枚骰子一次,得到得两位数就是3得倍数得概率等于( )A、 B、 C、 D、8、如图,已知点P矩形ABCD内一点(不含边界),设, , , ,若, ,则( )A、 B、C、 D、9、四位同学在研究函数(b,c就是常数)时,甲发现当时,函数有最小值;乙发现就是方程得一个根;丙发现函数得最小值为3;丁发现当时, .已知这四位同学中只有一位发现得结论就是错误得,则该同学就是( )A、甲B、乙C、丙D、丁10、如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE 得面积分别为S1, S2, ( )A、若,则B、若,则C、若,则D、若,则二、填空题11、计算:a-3a=________。

12、如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。

13、因式分解: ________14、如图,AB就是⊙得直径,点C就是半径OA得中点,过点C作DE⊥AB,交O于点D,E两点,过点D作直径DF,连结AF,则∠DEA=________。

2018年浙江省杭州市中考数学试卷含答案解析(Word版)

2018年浙江省杭州市中考数学试卷含答案解析(Word版)

浙江省杭州市2018年中考数学试题一、选择题1.=()A. 3B. -3C.D.2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106C. 18×105D. 18×1063.下列计算正确的是()A. B. C. D.4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。

计算结果不受影响的是()A. 方差B. 标准差C. 中位数D. 平均数5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B. C. D.6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。

已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则()A. B. C. D.7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。

任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A. B. C. D.8.如图,已知点P矩形ABCD内一点(不含边界),设,,,,若,,则()A. B.C. D.9.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,()A. 若,则B. 若,则C. 若,则D. 若,则二、填空题11.计算:a-3a=________。

12.如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。

13.因式分解:________14.如图,AB是⊙的直径,点C是半径OA的中点,过点C作DE⊥AB,交O于点D,E 两点,过点D作直径DF,连结AF,则∠DEA=________。

浙江省杭州市2018年中考数学真题试题(含解析)

浙江省杭州市2018年中考数学真题试题(含解析)

浙江省杭州市2018年中考数学真题试题一、选择题1.=()A. 3B. -3 C.D.【答案】A【考点】绝对值及有理数的绝对值【解析】【解答】解:|-3|=3【分析】根据负数的绝对值等于它的相反数,即可求解。

2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106 C. 18×105 D. 18×106【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:1800000=1.8×106【分析】根据科学计数法的表示形式为:a×10n。

其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1,即可求解。

3.下列计算正确的是()A. B.C.D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB、∵,因此A符合题意;B不符合题意;CD、∵,因此C、D 不符合题意;故答案为:A【分析】根据二次根式的性质,对各选项逐一判断即可。

4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。

计算结果不受影响的是()A. 方差B. 标准差 C. 中位数 D. 平均数【答案】C【考点】中位数【解析】【解答】解:∵五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了∴中位数不会受影响故答案为:C【分析】抓住题中关键的已知条件:五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了,可知最高成绩提高,中位数不会变化。

5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B.C.D.【答案】D【考点】垂线段最短【解析】【解答】解:∵线段AM,AN分别是△ABC边上的高线和中线,当BC边上的中线和高重合时,则AM=AN当BC边上的中线和高不重合时,则AM<AN∴AM≤AN故答案为:D【分析】根据垂线段最短,可得出答案。

6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。

2018年浙江省杭州市中考数学试卷-答案

2018年浙江省杭州市中考数学试卷-答案

浙江省杭州市2018年初中毕业学业考试数学答案解析第Ⅰ卷一、选择题1.【答案】A 【解析】解:33【考点】绝对值及有理数的绝对值2.【答案】B【解析】根据科学计数法的表示形式为:n ×10a ,其中110<<a .表示绝对值较大的数解:61800000 1.810=⨯【考点】科学记数法3.【答案】A 【解析】解:222=,因此A 符合题意;B 不符合题意;244=,因此C 、D 不符合题意;故选A.【考点】二次根式的性质与化简 4.【答案】C【解析】解:中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最高成绩写得更高了∴计算结果不会受影响的是中位数,故选C.【考点】方差、标准差、中位数、平均数 5.【答案】D【解析】解:线段AM,AN 分别是ABC △边上的高线和中线,当BC 边上的中线和高重合时,则=AM AN 当BC 边上的中线和高不重合时,则<AM AN∴AM AN ≤故选D.【考点】垂线段的性质6.【答案】C【解析】根据题意得:522060-+--=()x y x y ,即5260-=x y 故选C. 【考点】二元一次方程的实际应用鸡兔同笼问题7.【答案】B【解析】解:根据题意可知,这个两位数可能是:31、32、33、34、35、36,一共有6种可能得到的两位数是3的倍数的有33、36两种可能.13()3P ∴=两位数是的倍数 【考点】概率公式,复合事件概率的计算8.【答案】A【解析】解:矩形ABCD ∴90∠+∠=︒PAB PAD 即90∠=︒-∠PAB PAB80∠=︒PAB∴18080100∠+∠=︒-︒=︒PAB PBA9010010︒-∠+∠=︒∠-∠=︒即PAB PBA PBA PAB ①同理可得:180509040∠-∠=︒-︒-︒=︒PDC PCB ②由②-①得:30∠-∠-∠-∠=︒()PDC PCB PBA PAB2423 30θθθθ()-()故选A.【考点】三角形内角和定理,矩形的性质9.【答案】B【解析】解:根据题意得:抛物线的顶点坐标为:(1,3)且图像经过(2,4)设抛物线的解析式为:3(x 1)3=-+y a+3=4a解之:=1a∴抛物线的解析式为: 221324=-+=-+()y x x x当x=1时,y=7,∴乙说法错误,故选B.【考点】二次函数图象与系数的关系,二次函数的最值10.【答案】D【解析】解:如图,过D 作DF AC 于分,过B 作BM ⊥AC 于M∴∥DF BM ,设DF =1h ,BM =2h ∴=AD AE AB AC∥DE BC ∴=AD AE AB AC∴12h AD AE AB h AC 若2<AD AB设12==h AD AE AB h AC k 0.50k 0.5()∴1AE AC k CE AC AE AC k ==-=-,(),12=h h k1112221111k ,(1k)2222=⨯=⨯⨯=⨯=-S AE h AC h S CE h AC h 00.5<<k∴23(1)2-<k K ∴123S 2S <故选D.【考点】三角形的判定与性质第Ⅱ卷二、填空题11.【答案】-2a【解析】解:32-=-a a a 故答案为:-2a【考点】整式的加减12.【答案】135︒ 【解析】解:∥a b ∴1345∠=∠=︒23180∠+∠=︒ 2=18045135故答案为:135︒ 【考点】对顶角、邻补角,平行线的性质13.【答案】()()1a b a b --+【解析】解:原式=()()()()()()221.a b b a a b a b a b a b ---=-+-=--+【考点】提公因式法因式分解14.【答案】30° 【解析】解:⊥DE AB 90DCO ∴∠=︒点C 是半径OA 的中点1122==OC OA OD 30∠=︒CDO∴AOD 60弧AD =弧AD ∴1302∠=∠=︒DEA AOD 故答案为:30°【考点】垂径定理、锐角三角函数、三角形外角的性质15.【答案】6080≤≤v【解析】解:根据题意得甲车的速度为120340\-=千米小时若10点追上,则24080=⨯-v 千米小时若11点追上,则2120=v ,即60=v 千米小时60v 80≤≤故答案为:6080≤≤v【考点】一次函数的图象,一次函数的实际应用,一次函数的性质16.【答案】32+【解析】当点H 在线段AE 上时把ADE 翻折,点A 落在DC 边上的点F 处,折痕为DE ,点E 在AB 边上 ∴四边形ADFE 是正方形∴AD AE =1=-=-AH AE EH AD把CDG 翻折,点C 落在直线AE 上的点H 处,折痕为DG ,点G 在BC 边上2===+DC DH AB AD在Rt ADH 中,222+=AD AH DH解之:33=+=-AD AD33=+=-AD AD 舍去)3=+AD 【考点】勾股定理,矩形的性质,正方形的性质,翻折变换(折叠问题)三、解答题17.【答案】(1)有题意可得:100t>0vt =(),则v =100t . (2)不超过5小时卸完船上的这批货物, 5≤t , 则100205=≥v 答:平均每小时至少要卸货20吨.【解析】(1)根据已知条件易求出函数解析式.(2)根据要求不超过5小时卸完船上的这批货物,可得出t 的取值范围,再求出t=5时的函数值,就可得出答案.【考点】一元一次不等式的应用,反比例函数的性质,根据实际问题列反比例函数关系式18.【答案】(1)观察频数分布直方图可得出4=a(2)设收集的可回收垃圾总质量为W ,总金额为Q .每组含前一个边界值,不含后一个边界245453551651.5⨯+⨯+⨯+⨯=<..W kg,5150.8412⨯=<.Q 元,41.250 所以该年级这周的可回收垃圾被回收后所得全额不能达到50元.【解析】(1)观察频数分布直方图,可得出a 的值.(2)设收集的可回收垃圾总质量为W ,总金额为Q ,根据每组含前一个边界值,不含后一个边界,求出W 和Q 的取值范围,比较大小,即可求解.【考点】频数(率)分布表,频数(率)分布直方图19.【答案】(1)证明:=AB AC ,∠=∠ABC ACB ,ABC △为等腰三角形.AD 是BC 边上中线,∴=BD CD ,AD BC ⊥又∴⊥DE AB .∠=∠DEB ADC ,又∠=∠ABC ACB ,∴BDE △∽△CAD (2) 13=AB ,11052====BC BD CD BC , ∴222+=AD BD AB ,12=AD .BDE △∽△CAD∴=BD DE CA AD 即5 1312=DE , ∴DE =60 13. 【解析】(1)根据已知易证ABC △为等腰三角形,再根据等腰三角形的性质及垂直的定义证明∠DEB =∠ADC ,根据两组角对应相等的两三角形是相似三角形,即可证得结论.(2)根据等腰三角形的性质求出BD 的长,再根据勾股定理求出AD 的长,再根据相似三角形的性质,得出对应边成比例,就可求出DE 的长.【考点】等腰三角形的性质,勾股定理,相似三角形的判定与性质20.【答案】(1)根据题意,得331+=⎧⎨-+=-⎩,,k b k b ,解得2,1==k b . 所以21y x =+.(2)因为点2(22)+,a a 在函数21=+y x 的图像上,所以245=+a a解得5=a 或1=-a(3)由题意,得121212(21)(21)2()-=+-+=-y y x x x x ,所以m =2121212()()2()0,--=-≥x x y y x x所以10m +>, 所以反比例函数y =1m x+的图像位于第一、第三象限. 【解析】(1)根据已知点的坐标,利用待定系数法,就可求出一次函数的解析式.(2)将已知点的坐标代入所求函数解析式,建立关于a 的方程,解方程求解即可.(3)先求出12122()-=-y y x x ,根据m =1212()()--x x y y ,得出m =2121212()()2()0,--=-≥x x y y x x 从而可判断m +1的取值范围,即可求解.【考点】因式分解法解一元二次方程,待定系数法求一次函数解析式,反比例函数的性质21.【答案】(1)因为28∠=︒A ,所以62B ∠=︒又因为BC -BD,所以()1 18062=592BCD ∠=⨯︒-︒︒9059=31ACD ∠=︒-︒︒∴(2)因为BC =a , AC =b ,所以AB ==AD AB BD =a①因为22222)?2)b 2)220+-=+-=a a a a a b 所以线段AD 的是方程2220+-=x ax b 的一个根.②因为===AD EC AE 2b 所以2b 号是方程2220+-=x ax b 的根, 所以22 04+-=b ab b ,即43=ab b 因为0≠b ,所以34=a b . 【解析】(1)根据三角形内角和定理可求出∠B 的度数,再根据已知可得出BCD △是等腰三角形,可求出∠BCD 的度数,从而可求得∠ACD 的度数.(2)根据己知① ==,BC a AC b ,利用勾股定理可求出AB 的值,①再求出AD 的值,再根据AD 是原方程的一个根,将AD 的k 代入方程,可得出方程左右两边相等,即可得出解;②根据已知条件可得出2b ,将===AD EC AE 2b 代入方程化筒可得出43=ab b ,就可求出a 与b 之比. 【考点】一元二次方程的根,等腰三角形的性质,勾股定理,圆的认识22.【答案】(1)当0=y 吋,2)0(0+-+=≠()ax bx a b a ,因为∆=24()=(2)+++b a a b a b所以,当20+=a b ,即=0∆时,二次函数图像与x 轴有1个交点,当20+≠a b ,即0∆时,二次函数图像与x 轴有2个交点.(2)当10==时,x y ,所以函数图象不可能经过点C (1,1)所以函数图象经过A (-1,4),B (0,-1)两点,所以()4()1--+=⎧⎨-+=-⎩,,a b a b a b 解得a =3,b =-2所以二次函数的表达式为2321=--y x x(3)因为P (2,m )在该二次函数的图像上,所以423=+-+=+()m a b a b a b因为0>m ,所以30+>a b ,又因为0+>a b ,所以2a =3a +b -(a +b )>0,所以0>a【解析】(1)根据题意求出△=24-b ac 的值,再分情况讨论,即可得出答案.(2)根据已知点的坐标,可排除点C 不在抛物线上,因此将A 、B 两点代入函数解析式,建立方程组求出a 、b 的值,就可得出函数解析式.(3)抓住已知条件点P (2,m )(0>m )在该二次函数图象上,得出m =3a +b ,结合已知条件m 的取值范围,可得出3a +b >0,再根据0+>a b ,可证得结论.【考点】待定系数法求二次函数解析式,二次函数图像与坐标轴的交点问题23.【答案】(1)因为四边形ABCD 是正方形,所以90∠+∠=︒BAF EAD ,又因为⊥DE AG ,所以90∠+∠=︒∠=∠,所以EAD ADE ADE BAF又因为⊥BF AG ,90∠=∠=︒DEA AFB ,又因为=AD AB ,所以Rt DAE Rt ABF ≅△△,==FD AE BF ,(2)易知Rt BFG Rt DEA △∽△,=BF BG DE AD ,在Rt DEF △和Rt BEF ∆中,tan α=DE EF, tan =EF BFβ, 所以ktan β= tan ====BG EF BG EF BF EF EF BC BF AD BF DE BE DEα, 所以=tan tan αβ.(3)设正方形ABCD 的边长为1,则BG =k ,所以ABG △的面积等于12k ,因为ABD △的面积等于12, 又因为k ==BH BG HD AD,所以112(k 1)=+S , 所以22211551()244=++=-+≤S k k k S , 因为0<k <1,所以当k =12,即点G 为BC 中点时,21S S 有最大值54. 【解析】(1)根据正方形的性质及垂直的定义,可证得∠ADE =∠BAF ,∠ADE =∠BAF 及AD =AB,利用全等三角形的判定,可证得Rt DAE Rt ABF ≅△△,从而可证得结论.(2)根据已知验证Rt BFG Rt DEA △∽△,得出对应边成比例,再在Rt DEF △和Rt BEF △中,根据锐角三角函数的定义,分别表示出、tan tan αβ,从而可推出=tan tan αβ.(3)设正方形ABCD 的边长为1,则=BG k ,分别表示出ABG △,ABD △的面积,再根据k ==BH BG HD AD ,求出1S 及2S ,再求出1S 与2S 之比与k 的函数解析式,求出顶点坐标,然后根据k 的取值范围,即可求解.【考点】全等三角形的判定与性质,正方形的性质,相似三角形的判定与性质,解直角三角形。

2018年杭州市中考数学试卷含答案解析(Word版).docx

2018年杭州市中考数学试卷含答案解析(Word版).docx

浙江省杭州市2018年中考数学试题4. 测试五位学生 一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误: 将最高成绩写得更高了。

计算结果不受影响的是( )5.若线段AM ,AN 分别是△ABC 边上的高线和中线,则( )B. x+y = 20 C . 5x- 2y = 607.—个两位数,它的十位数字是 3 ,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1 — 6)朝上一面的数字。

任意抛掷这枚骰子一次,得到的两位数是 3的倍数的概率等于() 1 1 1 2A.B. C. D.8.如图,已知点 P 矩形ABCD 内一点(不含边界),设∙ V Fj-泓若 Z .ΓΛΦ ,,则()一、选择题 1.=() A. 3 B. -3 C.D.2•数据1800000用科学计数法表示为( ) 6 6 A. 1.8 B. 1.8 1×5C.18 ×0D. 18 10Q3•下列计算正确的是 A.B. ,l j'' -1C. J 二-: D ,"? - ..1A.方差B.标准差C.中位数D.平均数A.B.C.D.6.某次知识竞赛共有 20道题,规定:每答对一题得 +5分,每答错一题得 -2分,不答的题得 0分。

已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则(D. 5x+2jr = 60¾÷¾X⅛÷⅛-cr t B.C. 『沪S J - ⅛ =D. f⅛;-贵:(坯 E:i =9. 四位同学在研究函数「-(b, C是常数)时,甲发现当.;;■ = I.时,函数有最小值;乙发现是方程.,.:.的一个根;丙发现函数的最小值为3;丁发现当时,—」「•已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲 B.乙C.丙D. T10. 如图,在厶ABC中,点D在AB边上,DE // BC,与边AC交于点E,连结BE,记厶ADE ,△ BCE的面积分别为S I, S2 ,()13. 因式分解:(口一方F —仏一<7)= _____14. 如图,AB是O的直径,点C是半径OA的中点,过点C作DE丄AB ,交0于点D, E两点,过点D作直径DF ,连结AF ,则∠ DEA= ___________15. 某日上午,甲、乙两车先后从A地出发沿一条公路匀速前往B地,甲车8点出发,如图是其行驶路程S (千米)随行驶时间t (小时)变化的图象•乙车9点出发,若要在10点至A.若-.n ..賦,贝yC.若二山一二,贝y二、填空题11. _________________ 计算:a-3a=B.若_一" 亠;,贝UD.若_亠・一;,贝U 、农込12. __________________________________________________________________________ 如图,直线a// b,直线C与直线a, b分别交于A , B ,若∠仁45 °则∠ 2= ____________________11点之间(含10点和11点)追上甲车,则乙车的速度V(单位:千米/小时)的范围是________ C]2^^^^,1■ ■_⅛ - IZiJ r4 Z I f IJFι∣ Ii Jr 1 Z-I ra J rj ZI / -I Z qI ,[亠CTdt 抹时)16. 折叠矩形纸片ABCD 时,发现可以进行如下操作: ①把△ ADE 翻折,点A 落在DC 边上 的点F 处,折痕为DE ,点E 在AB 边上;②把纸片展开并铺平;③把△CDG 翻折,点C落在直线 AE 上的点 H 处,折痕为 DG ,点 G 在BC 边上,若 AB=AD+2,EH=I ,则A DAD= _______。

2018年浙江省杭州市中考数学试卷试题及答案

2018年浙江省杭州市中考数学试卷试题及答案

2018年浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(3分)(2018•杭州)|3|(-= ) A .3B .3-C .13D .13-2.(3分)(2018•杭州)数据1800000用科学记数法表示为( ) A .61.8B .61.810⨯C .51810⨯D .61810⨯3.(3分)(2018•杭州)下列计算正确的是( )A 2=B 2=±C 2=D 2±4.(3分)(2018•杭州)测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是( ) A .方差B .标准差C .中位数D .平均数5.(3分)(2018•杭州)若线段AM ,AN 分别是ABC ∆的BC 边上的高线和中线,则()A .AM AN >B .AM AN …C .AM AN <D .AM AN …6.(3分)(2018•杭州)某次知识竞赛共有20道题,规定:每答对一道题得5+分,每答错一道题得2-分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( ) A .20x y -=B .20x y +=C .5260x y -=D .5260x y +=7.(3分)(2018•杭州)一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字16)-朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( ) A .16B .13C .12D .238.(3分)(2018•杭州)如图,已知点P 是矩形ABCD 内一点(不含边界),设1PAD θ∠=,2PBA θ∠=,3PCB θ∠=,4PDC θ∠=,若80APB ∠=︒,50CPD ∠=︒,则( )A .1423()()30θθθθ+-+=︒B .2413()()40θθθθ+-+=︒C .1234()()70θθθθ+-+=︒D .1234()()180θθθθ+++=︒9.(3分)(2018•杭州)四位同学在研究函数2(y x bx c b =++,c 是常数) 时, 甲发现当1x =时, 函数有最小值;乙发现1-是方程20x bx c ++=的一个根;丙发现函数的最小值为 3 ;丁发现当2x =时,4y =,已知这四位同学中只有一位发现的结论是错误的, 则该同学是( ) A . 甲B . 乙C . 丙D . 丁10.(3分)(2018•杭州)如图,在ABC ∆中,点D 在AB 边上,//DE BC ,与边AC 交于点E ,连结BE .记ADE ∆,BCE ∆的面积分别为1S ,2S ,( )A .若2AD AB >,则1232S S > B .若2AD AB >,则1232S S <C .若2AD AB <,则1232S S >D .若2AD AB <,则1232S S <二、填空题:本大题有6个小题,每小题4分,共24分。

浙江省杭州市2018年中考数学试题(含答案)

浙江省杭州市2018年中考数学试题(含答案)

2018年杭州市中考数学试题一、选择题(本题有10小题,每小题3分,共30分)1. 3-=( ) A. 3 B. 3- C. 31 D. 31- 2.数据1800000用科学计数法表示为( ) A.68.1 B.6108.1⨯ C. 51018⨯ D. 61018⨯3.下列计算正确的是( )A. 222=B. 222±=C. 242=D. 242±=4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。

计算结果不受影响的是( )A.方差B. 标准差C. 中位数D. 平均数5.若线段 AM ,AN 分别是ABC ∆边上的高线和中线,则( )A.AN AM >B. AN AM ≥C. AN AM <D. AN AM ≤6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。

已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A. 20=-y xB. 20=+y xC. 6025=-y xD. 6025=+y x7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1~6)朝上一面的数字。

任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( )A. 61B. 31C. 21 D. 32 8.如图,已知点P 矩形ABCD 内一点(不含边界),设1θ=∠PAD ,2θ=∠PBA ,3θ=∠PCB ,4θ=∠PDC ,若︒=∠︒=∠50,80CPD APB ,则( )A.()︒=++30-3241θθθθ)( B. ()︒=++40-3142θθθθ)( C.()︒=++70-4321θθθθ)( D. ()︒=+++1804321θθθθ)( 9.四位同学在研究函数是常数)c b c bx ax y ,(2++=时,甲发现当1=x 时,函数有最小值;乙发现1-是方程02=++c bx ax 的一个根;丙发现函数的最小值为3;丁发现当2=x 时,4=y .已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A. 甲B.乙C. 丙D.丁10.如图,在ABC ∆中,点D 在AB 边上,BC DE //,与边AC 交于点E ,连结BE ,记BCE ADE ∆∆,的面积分别为21,S S ,( )A. 若AB AD >2,则2123S S >B. 若AB AD >2,则2123S S <C. 若AB AD <2,则2123S S >D. 若AB AD <2,则2123S S <二、填空题(本大题共有6个小题,每小题4分,共24分)11.计算:=-a a 3 12.如图,直线b a //,直线c 与直线b a ,分别交于A,B ,若︒=∠451,则=∠2 13.因式分解:()()=---a b b a 214.如图,AB 是⊙的直径,点C 是半径OA 的中点,过点C 作AB DE ⊥,交O 于点D 、E 两点,过点D 作直径DF ,连结AF ,则=∠DFA15.某日上午,甲、乙两车先后从A 地出发沿一条公路匀速前往B 地,甲车8点出发,如图是其行驶路程s (千米)随行驶时间t (小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v (单位:千米/小时)的范围是16.折叠矩形纸片ABCD 时,发现可以进行如下操作:①把ADE ∆翻折,点A 落在DC 边上的点F 处,折痕为DE ,点E 在AB 边上;②把纸片展开并铺平;③把CDG ∆翻折,点C 落在直线AE 上的点H 处,折痕为DG ,点G 在BC 边上,若AB=AD+2,EH=1,则AD=三、简答题(本大题共7个小题,共66分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分6分)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v (单位:吨0/小时),卸完这批货物所需的时间为t (单位:小时)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018浙江杭州中考数学 试题卷答案见后文一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.3-=( )A .3B .-3C .13 D .13- 2.数据1800000用科学记数法表示为( )A .61.8B .61.810⨯C .51810⨯D .61810⨯3.下列计算正确的是( )A 2=B 2=±C 2=D 2=± 4.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据.在统计时,出现了一处错误:将最高成绩写得更高了.计算结果不受影响的是( )A .方差B .标准差C .中位数D .平均数5.若线段AM ,AN 分别是ABC ∆的BC 边上的高线和中线,则( )A .AM AN >B .AM AN ≥C .AM AN <D .AM AN ≤6.某次知识竞赛共有20道题,规定:每答对一道题得5+分,每答错一道题得2-分,不答的题得0分.已知圆圆这次竞赛得了60分.设圆圆答对了x 道题,答错了y 道题,则( )A .20x y -=B .20x y +=C .5260x y -=D .5260x y +=7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1~6)朝上一面的数字.任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( )A .16B .13C .12D .238.如图,已知点P 是矩形ABCD 内一点(不含边界),设1PAD θ∠=,2PBA θ∠=,3PCB θ∠=,4PDC θ∠=.若80APB ∠=,50CPD ∠=,则( )A .1423()()30θθθθ+-+=B .2413()()40θθθθ+-+=C .1234()()70θθθθ+-+=D .1234()()180θθθθ+-+=9.四位同学在研究函数2y x bx c =++(b ,c 是常数)时,甲发现当1x =时,函数有最小值;乙发现-1是方程20x bx c ++=的一个根;丙发现函数的最小值为3;丁发现当2x =时,4y =.已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A .甲B .乙C .丙D .丁10.如图,在ABC ∆中,点D 在AB 边上,//DE BC ,与边AC 交于点E ,连结BE .记ADE ∆,BCE ∆的面积分别为1S ,2S ,( )A .若2AD AB >,则1232S S > B .若2AD AB >,则1232S S <C .若2AD AB <,则1232S S > D .若2AD AB <,则1232S S <二、填空题:本大题有6个小题,每小题4分,共24分.11.计算:3a a -= .12.如图,直线//a b ,直线c 与直线a ,b 分别交于点A ,B .若145∠=,则2∠= .13.因式分解:2()()a b b a ---= .⊥,交O于D、14.如图,AB是O的直径,点C是半径OA的中点,过点C作DE AB∠=.E两点,过点D作直径DF,连结AF,则DFA15.某日上午,甲、乙两车先后从A地出发沿同一条公路匀速前往B地.甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象,乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是.∆翻折,点A落在DC边16.折叠矩形纸片ABCD时,发现可以进行如下操作:①把ADE∆翻折,点上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把CDGC落在线段AE上的点H处,折痕为DG,点G在BC边上.若2EH=,AB AD=+,1则AD=.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时).(1)求v关于t的函数表达式.(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?18.某校积极参与垃圾分类活动,以班级为单位收集可回收垃圾.下面是七年级各班一周收集的可回收垃圾的质量的频数表和频数直方图(每组含前一个边界值,不含后一个边界值).某校七年级各班一周收集的可回收垃圾的质量的频数表 组别(kg )频数 4.0~4.52 4.5~5.0a 5.0~5.5 3 5.5~6.0 1(1)求a 的值;(2)已知收集的可回收垃圾以0.8元/kg 被回收,该年级这周收集的可回收垃圾被回收后所得金额能否达到50元?19.如图,在ABC ∆中,AB AC =,AD 为BC 边上的中线,DE AB ⊥于点E .(1)求证BDE CAD ∆∆:.(2)若13AB =,10BC =,求线段DE 的长.20.设一次函数y kx b =+(k ,b 是常数,0k ≠)的图象过(1,3)A ,(1,1)B --两点.(1)求该一次函数的表达式.(2)若点2(22,)a a +在该一次函数图象上,求a 的值.(3)已知点11(,)C x y 和点22(,)D x y 在该一次函数图象上.设1212()()m x x y y =--,判断反比例函数1m y x+=的图象所在的象限,说明理由. 21.如图,在ABC ∆中,90ACB ∠=,以点B 为圆心,BC 长为半径画弧,交线段AB 于点D ;以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=,求ACD ∠的度数.(2)设BC a =,AC b =.①线段AD 的长是方程2220x ax b +-=的一个根吗?说明理由.②若AD EC =,求a b的值. 22.设二次函数2()y ax bx a b =+-+(a ,b 是常数,0a ≠).(1)判断该二次函数图象与x 轴的交点的个数,说明理由.(2)若该二次函数图象经过(1,4)A -,(0,1)B -,(1,1)C 三个点中的其中两个点,求该二次函数的表达式.(3)若0a b +<,点(2,)(0)P m m >在该二次函数图象上,求证:0a >.23.如图,在正方形ABCD 中,点G 在边BC 上(不与点B ,C 重合),连结AG ,作DE AG ⊥于点E ,BF AG ⊥于点F ,设BG k BC=.(1)求证:AE BF =.(2)连结BE ,DF ,设EDF α∠=,EBF β∠=.求证:tan tan k αβ=.(3)设线段AG 与对角线BD 交于点H ,AHD ∆和四边形CDHG 的面积分别为1S 和2S .求21S S 的最大值.2018杭州中考数学参考答案一、选择题1-5: ABACD 6-10: CBABD二、填空题11. 2a - 12. 135 13. ()(1)a b a b --+ 14. 30 15. 6080v ≤≤16. 3+三、解答题17.解:(1)根据题意,得100(0)vt t =>, 所以100(0)v t t=>. (2)因为100(05)v t t =<≤, 又因为1000>,所以当0t >时,v 随着t 的增大而减小,当05t <≤时,100205v ≥=, 所以平均每小时至少要卸货20吨.18.解:(1)由图表可知,4a =.(2)设这周该年级收集的可回收垃圾被回收后所得金额为w 元,则(2 4.54 5.03 5.51 6.0)w <⨯+⨯+⨯+⨯0.841.250⨯=<.所以这周该年级收集的可回收垃圾被回收后所得金额达不到50元.19.解:(1)因为AB AC =,所以B C ∠=∠,又因为AD 为BC 边上的中线,所以AD BC ⊥,又因为DE AB ⊥,所以90BED ADC ∠=∠=,所以BDE CAD ∆∆.(2)因为10BC =,所以5BD =,根据勾股定理,得12AD =.由(1)得BD DE AC AD =,所以51312DE =, 所以6013DE =.20.解:(1)根据题意,得31k b k b +=⎧⎨-+=-⎩,解得2k =,1b =. 所以21y x =+.(2)因为点2(22,)a a +在函数21y x =+的图象上,所以245a a =+,解得5a =或1a =-.(3)由题意,得121212(21)(21)2()y y x x x x -=+-+=-,所以2121212()()2()0m x x y y x x =--=-≥, 所以10m +>, 所以反比例函数1m y x+=的图象位于第一、第三象限. 21.解:(1)因为28A ∠=,所以62B ∠=,又因为BC BD =,所以1(18062)592BCD ∠=⨯-=. 所以905931ACD ∠=-=.(2)因为BC a =,AC b =,所以AB =所以AD AB BD a =-=.①因为22)2)a a a b +--222(2)a b a =+-2222a b +-0=,所以线段AD 的长是方程2220x ax b +-=的一个根. ②因为2b AD EC AE ===, 所以2b 是方程2220x ax b +-=的根, 所以2204b ab b +-=,即243ab b =.因为0b ≠,所以34a b =.22.解:(1)当0y =时,2()0(0)ax bx a b a +-+=≠.因为224()(2)b a a b a b ∆=++=+,所以,当20a b +=时,即0∆=时,二次函数图象与x 轴有1个交点;当20a b +≠,即0∆>时,二次函数图象与x 轴有2个交点.(2)当1x =时,0y =,所以函数图象不可能经过点(1,1)C .所以函数图象经过(1,4)A -,(0,1)B -两点, 所以()4()1a b a b a b --+=⎧⎨-+=-⎩.解得3a =,2b =-.所以二次函数的表达式为2321y x x =--.(3)因为(2,)P m 在该二次函数图象上,所以42()3m a b a b a b =+-+=+,因为0m >,所以30a b +>.又因为0a b +<,所以23()0a a b a b =+-+>,所以0a >.23.解:(1)因为四边形ABCD 是正方形,所以90BAF EAD ∠+∠=,又因为DE AG ⊥,所以90EAD ADE ∠+∠=,所以ADE BAF ∠=∠,又因为BF AG ⊥,所以90DEA AFB ∠=∠=.又因为AD AB =,所以Rt DAE Rt ABF ∆≅∆,所以AE BF =.(2)易知Rt BFG Rt DEA ∆∆,所以BF BG DE AD=, 在Rt DEF ∆和Rt BEF ∆中,tan EF DE α=,tan EF BFβ=, 所以tan BG EF BG EF k BC BF AD BF β=⋅=⋅tan BF EF EF DE BF DE α=⋅==,所以tan tan k αβ=.(3)设正方形ABCD 的边长为1,则BG k =, 所以ABG ∆的面积等于12k . 因为ABD ∆的面积为12, 又因为BH BG k HD AD==,所以112(1)S k =+, 所以22111122(1)2(1)k k S k k k -++=--=++, 所以2221151()24S k k k S =-++=--+54≤, 因为01k <<,所以当12k =,即点G 为BC 中点时,21S S 有最大值54.。

相关文档
最新文档