浙江省杭州市江干区2018年中考一模数学试卷及答案

合集下载

2018年杭州市中考数学试卷含答案解析(Word版)

2018年杭州市中考数学试卷含答案解析(Word版)

浙江省杭州市2018年中考数学试题一、选择题1、=( )A、 3B、 -3C、D、2、数据用科学计数法表示为( )A、 1、86B、 1、8×106C、 18×105D、 18×1063、下列计算正确得就是( )A、 B、 C、 D、4、测试五位学生“一分钟跳绳”成绩,得到五个各不相同得数据,统计时,出现了一处错误:将最高成绩写得更高了。

计算结果不受影响得就是( )A、方差B、标准差C、中位数D、平均数5、若线段AM,AN分别就是△ABC边上得高线与中线,则( )A、 B、 C、 D、6、某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答得题得0分。

已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则( )A、 B、 C、 D、7、一个两位数,它得十位数字就是3,个位数字就是抛掷一枚质地均匀得骰子(六个面分别有数字1—6)朝上一面得数字。

任意抛掷这枚骰子一次,得到得两位数就是3得倍数得概率等于( )A、 B、 C、 D、8、如图,已知点P矩形ABCD内一点(不含边界),设, , , ,若, ,则( )A、 B、C、 D、9、四位同学在研究函数(b,c就是常数)时,甲发现当时,函数有最小值;乙发现就是方程得一个根;丙发现函数得最小值为3;丁发现当时, .已知这四位同学中只有一位发现得结论就是错误得,则该同学就是( )A、甲B、乙C、丙D、丁10、如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE 得面积分别为S1, S2, ( )A、若,则B、若,则C、若,则D、若,则二、填空题11、计算:a-3a=________。

12、如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。

13、因式分解: ________14、如图,AB就是⊙得直径,点C就是半径OA得中点,过点C作DE⊥AB,交O于点D,E两点,过点D作直径DF,连结AF,则∠DEA=________。

2018年杭州市江干区数学一模试卷解析

2018年杭州市江干区数学一模试卷解析

第1页2018杭州江干区文化模拟考试数学解析考生须知:1.本试卷分试题卷和答题卷两部分,考试时间100分钟,满分120分; 2.答题前,请在答题卷的密封区内填写学校、班级、姓名和学籍号; 3.不得使用计算器;4.所有答案都必须做在答题卷规定的位置上,注意试题序号和答题序号相对应.1.如图,直线a ,b 被直线c 所截,∠1的同位角是( ) A .∠2B .∠3C .∠4D .∠5【答案】B【解析】本题属于基础题目,考察三线八角.2.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( ) A .b >-1B .ad >0C .a >dD .b+c >0【答案】C【解析】基础题,考察数轴上点的位置关系,可得四个数的大小;根据有理数的运算,绝对值的性质,可得答案。

.3.已知扇形的圆心角为30°,面积为 3p cm 2,则扇形的半径为( ) A .6cm B .12cm C .18cm D .36cm 【答案】A【解析】由扇形的圆心角为30度,面积为 3p cm 2,根据弧长公式S =n p R 2360,得 R =6cm4.如图是根据某班40名同学一周的体育锻炼情况绘制的统计图,该班40名同学一周参加体育锻炼时间的中学数,众数分别是( )A .10.5,16B .8.5,16C .8.5,8D .9,8【答案】D【解析】中位数的定义是:将这组数据从小到大的顺序排列后,处于最中间的那个数(或最中间的两个数的平均数),40名同学中间两位为第20名和21名锻炼时间都为9小时,所以中位数是9;众数是一组数据中出现次数最多的数,即:8.5.将多项式 4x 2+1再加上一项,使它能分解因式(a +b )2的形式,以下是四位学生所加的式,其中错误的是( ) A .2x B .-4x C . 4x4D .4x【答案】A【解析】本题考查对完全平方式的理解。

B 选项x2-4x +1=2x -1()2;C 选项4x 4+4x 2+1=2x 2+1()2;D 选项4x2+4x +1=2x +1()2,所以选择A6. 如图,圆O 是三角形ABC 的内切圆,分别切BA ,BC ,AC 于点E ,F ,D ,点P 在弧DE 上,如果∠EPF =70°,那么∠B =( ) A .40° B .50° C .60° D .70°【答案】A【解析】本题考查三角形的内切圆与圆心;连接OE ,OF ∵圆O 是△ABC 的内切圆\OE ^AB ,DF ^BC\ÐEOF =2ÐEPF =140° \ÐB =360°-ÐBEO -ÐEOF =40°7.如图,三角形ABC 的面积为8平方厘米,AP 垂直∠B 的平分线BP 于P ,则三角形PBC 的面积为( )A .3cm 2B .4 cm 2C .5 cm 2D .6 cm 2【答案】B【解析】延长AP 交BC 于D ,易得∠ABP ≌∠DBP ,所以AP=DP ,S △BPC = S △BPD + S △DPC =21114222ABD ACD ABC S S S cm +==△△△. 8.甲/乙两人从学校到博物馆去,甲每小时4km ,乙每小时走5km ,甲先出发0.1h ,结果乙还比甲早到0.1h ,设学校到博物馆的距离为x km ,则以下方程正确的是( )A .x 4+0.1=x 5-0.1 B . x 4-0.1=x 5+0.1 C . x 4=x5-0.1 D . 4x -0.1=5x +0.1【答案】B【解析】由题意知甲从学校到博物馆所需的时间是4x ,乙从学校到博物馆所需的时间是5x,则由题意可得0.10.145x x-=+,故选B .9.下列与反比例函数图像有关图形中,阴影部分面积最小的是( )A .B .C .D .【答案】A第3页【解析】由“k ”的几何意义可得选项B 、C 、D 面积相等且为2,故选A .10.关于一元二次方程20(0)axbx c a ++=≠,有以下命题:∠若a +b +c =0,则240b ac -≥;∠若方程20ax bx c ++=两根为-1和2,则2a +c =0;∠若方程20ax c +=有两个不相等的实根,则方程20ax bx c ++=必有两个不相等的实根;∠若有两个相等的实数根,则21ax bx c ++=无实数根,其中真命题是( )A .∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠【答案】A【解析】若a +b +c =0,则x =1,所以b 2-4ac ³0,所以①正确;把x =-1代入方程得到a -b +c =0,把x =2代入方程得4a +2b +c =0,则6a +3c =0,即2a +c =0,所以②正确; 若方程ax2+c =0有两个不相等的实根,则-4ac >0,可知b 2-4ac >0,故方程 ax 2+bx +c =0必有两个不相等的实根,所以③正确;令y =ax 2+bx +c ,由已知得其图像与x 轴只有一个交点,但由于a 的正负没有确定,导致开口方向不确定,故当a >0时,由图像可以判断y =1有实数根, 所以④不正确.故选A .二.填空题(本题共有6个小题,每小题4分,共24分) 11________。

2018年浙江省杭州市中考数学试卷含答案解析(Word版)

2018年浙江省杭州市中考数学试卷含答案解析(Word版)

浙江省杭州市2018年中考数学试题一、选择题1.=()A. 3B. -3C.D.2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106C. 18×105D. 18×1063.下列计算正确的是()A. B. C. D.4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。

计算结果不受影响的是()A. 方差B. 标准差C. 中位数D. 平均数5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B. C. D.6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。

已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则()A. B. C. D.7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。

任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A. B. C. D.8.如图,已知点P矩形ABCD内一点(不含边界),设,,,,若,,则()A. B.C. D.9.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,()A. 若,则B. 若,则C. 若,则D. 若,则二、填空题11.计算:a-3a=________。

12.如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。

13.因式分解:________14.如图,AB是⊙的直径,点C是半径OA的中点,过点C作DE⊥AB,交O于点D,E 两点,过点D作直径DF,连结AF,则∠DEA=________。

浙江省杭州市2018年中考数学模拟试题(1)及答案

浙江省杭州市2018年中考数学模拟试题(1)及答案

2018年杭州市初中毕业升学文化考试数学试题一考生须知:1. 本试卷满分120分,考试时间100分钟.2. 答题前,在答题纸上写姓名和准考证号,并在试卷首页的指定位置写上姓名和座位号.3. 必须在答题纸的对应答题位置上答题,写在其他地方无效,答题方式详见答题纸上的说明.4. 如需画图作答,必须用黑色字迹的钢笔或签字笔将图形线条描黑.5. 考试结束后,试题卷和答题纸一并上交.参考公式:二次函数:y=ax2+bx+c(a≠0)图象的顶点坐标公式:(-b2a,4ac-b24a).试题卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列实数中,结果最大的是()A. |-3|B. -(-π)C. 7D. 32. 下列运算正确的是()A. a8÷a2=a4B. b3+b3=b6C. a2+ab+b2=(a+b)2D. (a+b)(4a-b)=4a2+3ab-b23. 某学习报经理通过对几种学习报订阅量的统计(如下表),得出应当多印刷《数学天地》报,他是应用了统计学中的()A. 平均数B. 众数C. 中位数D. 方差4. 下列几何体中,三视图有两个相同而另一个不同的是()第4题图A. (1)(2)B. (2)(3)C. (2)(4)D. (3)(4)5. 如图,网格中的四个格点组成菱形ABCD ,则tan ∠DBC 的值为( )第5题图A. 13B. 22C. 3D. 26. 现给出四个命题:①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;③正八边形的每个内角度数为45°;④一组数据2,5,4,3,3的中位数是4,众数是3,其中假命题的个数是( )A. 1个B. 2个C. 3个D. 4个7. 如图,在平面直角坐标系中,正方形的中心在原点O 处,且正方形的一组对边与x 轴平行,点P (2a ,a )是反比例函数y =2x 的图象与正方形的一个交点,则图中阴影部分的面积是( )A. 2B. 3C. 4D. 5第7题图第9题图第10题图8. 某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问原计划每天加工服装多少套?在这个问题中,设原计划每天加工x套,则根据题意可得方程为()A. 160x+400-160(1+20%)x=18 B.160x+400(1+20%)x=18C. 160x+400-16020%x=18 D.400x+400-160(1+20%)x=189. 如图,直线y=nx+3n(n≠0)与y=-x+m的交点的横坐标为-1,则关于x的不等式-x+m>nx+3n>0的整数解为()A. -2B. -5C. -4D. -110. 如图,在Rt△ABC中,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A 顺时针旋转90°,得到△AFB,连接EF,则()A. ∠AED=∠AFEB. △ABE∽△ACDC. BE+DC=DED. BE2+DC2=DE2二、填空题:本大题有6个小题,每小题4分,共24分.11. 计算:4812=________.12. 为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是________个.13. 若随机向一个边长分别为3,4,5的三角形内投一根针,则针尖落在三角形的内切圆内的概率为________.14. 已知二次函数y=(x-h)2+1(h为常数),在自变量x的值满足1≤x≤4的情况下,若其对应的函数值y的最小值为5,则h的值为________.第15题图15. 如图,点C是⊙O上一点,⊙O的半径为22,D、E分别是弦AC、BC上的点,且OD=OE=2,则AB的最大值为________.16. 若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.在和谐四边形ABCD中,AB=AD=BC,∠BAD=90°,若AC是四边形ABCD的和谐线,则∠BCD=____________.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17. (本小题满分6分)以下是小华同学做的整式运算一题的解题过程:计算:2b2-(a+b)(a-2b).解:原式=2b2-(a2-2b2)…………第①步=2b2-a2+2b2……………第②步=4b2-a2…………………第③步老师说:“小华的过程有问题”.请你指出计算过程中错误的步骤,并改正.18. (本小题满分8分)如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的点.(1)求证:△ACE≌△BCD;(2)若DE =13,BD =12,求线段AB 的长.第18题图19. (本小题满分8分)第十三届全国学生运动会将于2017年9月4日— 9月16日在杭州市举办,是首次将大、中学生运动会合并后举行的一次全国性学校体育重大活动.某校组织了主题为“我是运动会志愿者”的电子小报作品征集活动,先从中随机抽取了部分作品,按A ,B ,C ,D 四个等级进行评分,然后根据统计结果绘制了如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)求此次抽取的作品中等级为B 的作品数,并补全条形统计图; (2)求扇形统计图中等级为D 的扇形圆心角的度数;(3)该校计划从抽取的这些作品中选取部分作品参加市区的作品展.已知其中所选取的到市区参展的A 类作品比B 类作品少4份,且A 、B 两类作品数量和正好是本次抽取的四个等级作品数量的15,求选到市区参展的B 类作品有多少份.第19题图20. (本小题满分10分)如图,甲、乙两只捕捞船同时从A 港出海捕鱼,甲船以152千米/小时的速度沿北偏西60°方向前进,乙船以15千米/小时的速度沿东北方向前进,甲船航行2小时到达C 处,此时甲船发现渔具丢在乙船上,于是甲船加快速度(匀速)沿北偏东75°的方向追赶乙船,结果两船在B 处相遇.(1)甲船从C 处追赶上乙船用了多少时间? (2)求甲船追赶乙船时的速度.(结果保留根号)第20题图21. (本小题满分10分)已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处.如图,已知折痕与边BC 交于点O ,连接AP 、OP 、OA .(1)求证:OC PD =OPAP;(2)若△OCP 与△PDA 的面积比为1∶4,求边AB 的长.第21题图22. (本小题满分12分)过反比例函数y =kx (k <0)的图象上一点A 作x 轴的垂线交x 轴于点B ,O 为坐标原点,且S △ABO =4.(1)求k 的值;(2)若二次函数y =ax 2与反比例函数y =kx (k <0)的图象交于C (-2,m ).请结合函数图象写出满足ax 2<kx的x 的取值范围.23. (本小题满分12分)如图,已知▱ABCD 中,AC ⊥CD ,点E 在射线CB 上,点F 在射线DC 上,且∠EAF =∠B .(1)当∠BAD =135°时,若点E 在线段CB 上,点F 在线段DC 上,求证:BE +22DF =AD ;(2)当∠BAD =120°时,若点E 在线段CB 上,点F 在线段DC 上,求AD 、BE 、DF 之间有怎样的数量关系?并证明你的结论;(3)当∠BAD =120°时,连接EF ,设直线AF 、直线BC 交于点Q ,当AB =3,BE =2时,请分别求出EQ 和EF 的长.第23题图答案三、解答题17. (本小题满分6分)解:错误的步骤是第①步,(2分)改正:原式=2b2-(a2-2ab+ab-2b2)=2b2-a2+2ab-ab+2b2=4b2+ab-a2.(6分)18. (本小题满分8分)(1)证明:∵△aCb 与△E CD 都是等腰直角三角形, ∴C E =CD ,aC =bC ,∠aCb =∠E CD =90°,∠b =∠baC =45°,∴∠aC E =∠bCD =90°-∠aCD ,在△aC E 和△bCD 中,⎩⎪⎨⎪⎧CE =CD ∠ACE =∠BCD AC =BC, ∴△aC E ≌△bCD (SaS );(4分) (2)解:∵△aC E ≌△bCD , ∴a E =bD ,∠E aC =∠b =45°, ∵bD =12, ∴∠E aD =45°+45°=90°,a E =12, 在Rt △E aD 中,∠E aD =90°,D E =13,a E =12, 由勾股定理得:aD =5,∴ab =bD +aD =12+5=17.(8分) 19. (本小题满分8分) 解:(1)30÷25%=120(份).(2分)此次抽取的作品中等级为b 的作品数为120-36-30-6=48(份),补全条形统计图,如解图,第19题解图(4分)(2)扇形统计图中等级为D 的扇形圆心角的度数为6120×360°=18°;(6分)(3)设b 类作品共x 份,则a 类作品共(x -4)份, 根据题意得(x -4)+x =120×15,解得x =14,答:选到市区参展的b 类作品有14份.(8分) 20. (本小题满分10分)解:(1)如解图,过点a 作aD ⊥bC 于D ,第20题解图由题意得: ∠b =30°,∠baC =60°+45°=105°,则∠bCa =45°,aC =302千米, 在Rt △aDC 中,aD =CD =aC ·cos 45°=30(千米), 在Rt △abD 中,ab =2aD =60千米,t =6015=4(时).4-2=2(时),答:甲船从C 处追赶上乙船用了2小时;(5分)(2)由(1)知:bD =ab ·cos 30°=303千米, ∴bC =30+303(千米),甲船追赶乙船的速度v =(30+303)÷2=(15+153)千米/时. 答:甲船追赶乙船时的速度为:(15+153)千米/小时.(10分) 21. (本小题满分10分)(1)证明:∵四边形abCD 是矩形,∴aD =bC ,DC =ab ,∠Dab =∠b =∠C =90°,由折叠可得:a P =ab ,PO =b O ,∠P a O =∠ba O ,∠a PO =∠b . ∴∠a PO =90°. ∴∠a P D =90°-∠C PO =∠PO C . ∵∠D =∠C ,∠a P D =∠PO C . ∴△O C P ∽△P Da , ∴OC PD =OPAP ;(4分) (2)解:∵△O C P 与△P Da 的面积比为1∶4, ∴OC PD =OP PA =CP DA=14=12.∴P D =2O C ,P a =2OP ,Da =2C P ,∵aD =8,∴C P =4,bC =8.设OP =x ,则O b =x ,C O =8-x.在Rt △P C O 中,∵∠C =90°,C P =4,OP =x ,C O =8-x ,∴x 2=(8-x)2+42.解得:x =5.∴ab =a P =2OP =10.∴边ab 的长为10.(10分)22. (本小题满分12分)解:(1)设点a 的坐标为(n ,k n), ∵ab ⊥x 轴,∴O b =|n |,ab =|k n|, ∵△ab O 的面积S △ab O =12O b ·ab =|k|2=4,k <0, ∴k =-8;(4分)(2)依照题意画出图形,如解图所示.第22题解图令x =-2,y =-8-2=4, 即点C 的坐标为(-2,4).(7分)∵点C (-2,4)在二次函数y =a x 2的图象上,∴4=(-2)2·a ,解得:a =1.(9分)结合图象可知,:当-2<x <0时,y =-8x的图象在y =x 2的图象的上方, ∴满足x 2<-8x的x 的取值范围为:-2<x <0.(12分) 23. (本小题满分12分)(1)证明:∵∠baD =135°,且∠baC =90°,∴∠CaD =45°,即△abC 、△aDC 都是等腰直角三角形;∴aD =2aC ,且∠D =∠aCb =45°;又∵∠E aC =∠Da F =45°-∠F aC ,∴△a E C ∽△a F D ,∴AE AF =EC FD =AC AD =12,即E C =22F D ; ∴bC =b E +22D F ,即b E +22D F =aD ;(4分) (2)解:2b E +D F =aD ;理由如下:第23题解图①如解图①,取bC 的中点G ,连接a G ;易知:∠DaC =∠bCa =30°,∠b =∠D =60°;在Rt △abC 中,G 是斜边bC 的中点,则:∠a GE =60°,aD =bC =2a G ;∵∠G aD =∠a GE =60°=∠E a F ,∴∠E a G =∠F aD =60°-∠G a F ;又∵∠a GE =∠D =60°,∴△a GE ∽△aD F ,得:AG AD =EG FD =12; 即F D =2EG ;∴bC =2b G =2(b E +EG)=2b E +2EG =2b E +D F ,即aD =2b E +D F ;(7分)第23题解图② 第23题解图③(3)解:在Rt △abC 中,∠aCb =30°,ab =3,则bC =aD =6,E C =4.①当点E 、F 分别在线段bC 、CD 上时,如解图②,过F 作FH ⊥b Q 于H ;同(2)可知:D F =2EG =2,C F =CD -D F =1;在Rt △C FH 中,∠F C H =60°,则:C H =12,FH =32; 易知:△aD F ∽△Q C F ,由D F =2C F ,可得C Q =12aD =3; ∴EQ =E C +C Q =4+3=7;在Rt △EFH 中,EH =E C +C H =92,FH =32; 由勾股定理可求得:EF =21;(9分)②当点E 、F 分别在Cb 、DC 的延长线上时,如解图③;分别过点a 、F 作bC 的垂线,垂足分别为m 、n ,∵∠E a F =∠G aD =60°,∴∠E a G =∠F aD =60°+∠F a G ,又∵∠EG a =∠D =60°,∴△E a G ∽△F aD ,得:EG FD =AG AD =12; 即F D =2EG =10,F C =10-CD =7;在Rt △F Cn 中,∠F Cn =60°,易求得F n =732,nC =72,G n =12; 在等边△ab G 中,am ⊥b G ,易求得am =332,m G =32,mn =m G -G n =1; 由△am Q ∽△F n Q ,得:AM FN =MQ NQ =37,即Q n =710,m Q =310; EQ =E b +bm +m Q =2+32+310=195; 由勾股定理,得:EF =57;综上可知:EQ =7或195,EF =21或57.(12分)。

2018届中考优秀模拟卷——2018年江干区一模

2018届中考优秀模拟卷——2018年江干区一模

2018年杭州市初中毕业升学模拟考试数学试题考生须知:1.本试卷分试题卷和答题卷两部分,考试时间 100 分钟,满分 120 分;2.答题前,在答题纸上写姓名和准考证号;3.不能使用计算器;4.所有答案都必须做在答题卡规定的位置,注意试题序号和答题序号对等.试题卷一、仔细选一选 (本题有10小题 ,每小题 3分 ,共30 分 )1.如图,直线 a 、b 被直线 c 所截, ∠1的同位角是( )A.∠2 B .∠3 C .∠4 D .∠52.实数 a 、b 、c 、d 在数轴上的对应点的位置如图所示,则正确的结论是( )A.b >-1B.0ad >C.d a >D.b+c >03.已知扇形的圆心角为 30°,面积为 3πcm 2,则扇形的半径为( )A.6cmB.12cmC.18cmD.36cm4.如图是根据某班 40 名同学一周的体育锻炼情况绘制的统计图,该班 40名同学一周参加体育锻炼时间的中位数,众数分别是( )A.10.5,16B.8.5,16C.8.5,8D.9,85.将多项式1x 42+再加上一项,使它能分解因式成()2b a +的形式,以下是四位学生所加的项,其中错误的是( )A.2xB.-4xC.4x 4D.4x6.如图,圆0是△ABC 的内切圆,分别切 BA 、BC 、AC 于点 E 、F 、D ,点 P在弧 DE 上,如果∠EPF=70°,那么 ∠B=( )A.40°B.50°C.60°D.70°7.如图,△ABC 的面积为 8cm 2,AP 垂直 ∠B 的平分线 BP 于 P ,则 △PBC的面积为( )A.2cm 3B.2cm 4C.2cm 5D.2cm 68.甲、乙两人从学校到博物馆去,甲每小时走 4km ,乙每小时走 5km ,甲先出发 0.1h ,结果乙还比甲早到 0.1h 。

设学校到博物馆的距离为 xkm ,则以下方程正确的是( ) A.1.0-5x 1.04x =+ B.1.05x 1.0-4x += C.1.0-5x 4x = D.1.0x 51.0-x 4+=? ? ? 9.下列与反比例函数图象有关图形中,阴影部分面积最小的是( )A B C D10.关于一元二次方程()0a 0c bx ax 2≠=++,有以下命题:若①a+b+c=0,则0ac 4-b 2≥;②若方程0c bx ax 2=++两根为-1 和 2,则 2a+c=0;③若方程0c ax 2=+有两个不相等的实根,则方程0c bx ax 2=++必有两个不相等的实根;④若0c bx ax 2=++有两个相等的实数根,则1c bx ax 2=++无实数根。

2018年浙江省杭州市中考数学一模试卷

2018年浙江省杭州市中考数学一模试卷

2018年浙江省杭州市中考数学一模试卷一、选择题:本题有10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合要求的.1.(3分)已知⊙O的半径是5cm,点O到同一平面内直线a的距离为4cm,则直线a与⊙O 的位置关系是()A.相交B.相切C.相离D.相交或相离2.(3分)二次函数y=2(x﹣1)(x﹣2)的图象与y轴的交点坐标是()A.(0,1)B.(0,2)C.(0,4)D.(0,﹣4)3.(3分)如图,已知Rt△ABC中,∠C=90°,AC=4,tan A=,则BC的长是()A.2B.8C.2D.44.(3分)酒店厨房的桌子上摆放着若干碟子,小辉分别从三个方向上看,把它们的三视图画了下来(如图所示),则桌子上共有碟子()A.17 个B.12 个C.10 个D.7 个5.(3分)已知如图:(1)、(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB、CD交于0点,对于各图中的两个三角形而言,下列说法正确的是()A.都相似B.都不相似C.只有(1)相似D.只有(2)相似6.(3分)已知二次函数的图象(0≤x≤4)如图,关于该函数在所给自变量的取值范围内,下列说法正确的是()A.有最大值2,有最小值﹣2.5B.有最大值2,有最小值1.5C.有最大值1.5,有最小值﹣2.5D.有最大值2,无最小值7.(3分)如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°8.(3分)如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为()A.r B.2r C.r D.3r9.(3分)已知点(x0,y0)是二次函数y=ax2+bx+c(a>0)的一个点且x0满足关于x的方程4ax+2b=0,则下列选项正确的是()A.对于任意实数x都有y≥y0B.对于任意实数x都有y≤y0C.对于任意实数x都有y>y0D.对于任意实数x都有y<y010.(3分)已知如图,Rt△ABC中,∠ACB=90°,E是斜边AB的中点,D是线段AC延长线上的一点,连结DB、DE,DE与BC交于点G.给出下列结论:①若AD=BD,则AC•AD=AE•AB;②若AB=BD,则DG=2GE;③若CD=BE,则∠A=2∠ADE.其中正确的是()A.①②B.①③C.②③D.①②③二、填空题:本题有6个小题,每小题3分,共24分.第10题图11.(3分)某校九年1班共有45位学生,其中男生有25人,现从中任选一位学生,选中女生的概率是.12.(3分)若0°<α<90°,tanα=1,则sinα=.13.(3分)一个圆锥的主视图是底边为12,底边上的高为8的等腰三角形,则这个圆锥的表面积为cm2.14.(3分)如图,△ABC内接于⊙O,DA、DC分别切⊙O于A、C两点,∠ABC=114°,则∠ADC的度数为.15.(3分)若抛物线y=ax2﹣x+c与y=2(x﹣3)2+1对称轴相同,且两抛物线的顶点相距3个单位长度,则c的值为.16.(3分)如图,边长为12的正△ABC中,D是BC边的中点,一束光线自D发出射到AC上的点E后,依次反射到AB、BC上的点F和G(根据光学原理∠DEC=∠AEF,∠AFE=∠BFG).(1)若∠FGB=45°,CE=;(2)若BG=9,则tan∠DEC的值是.三、解答题:本题有7小题,共66分.解答应写出文字说明,证明过程或推演步骤.17.(8分)已知二次函数y=x2+2x+m的图象过点A(3,0).(1)求m的值;(2)当x取何值时,函数值y随x的增大而增大.18.(10分)一个直四棱柱的三视图如图所示,俯视图是一个菱形,求这个直四棱柱的表面积.19.(10分)如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C.(1)求证:AB与⊙O相切;(2)若AB=16,sin A=,求⊙O的面积.20.(10分)如图,已知CD为Rt△ABC斜边上的中线,过点D作AC的平行线,过点C 作CD的垂线,两线相交于点E.(1)求证:△ABC∽△DEC;(2)若CE=3,CD=4,求CB的长.21.(10分)如图,在Rt△ABC中,∠ACB=90°,E是边BC上的点,过点E作AB的垂线交AB于点F,交射线AC于点D,连结AE,(1)若S△AFD:S△EFB=2,求sin∠BAE的值;(2)若tan∠BAE=,AC=2,AF=4,求BE的值.22.(12分)在平面直角坐标系xOy中,抛物线y=2x2﹣8x+6与x轴交于点A、B(点A在点B的左侧),与y轴交于点C.点D的坐标为(0,m),过D作y轴垂线与抛物线相交于点P(x1,y1),Q(x2,y2)(点P在点Q的左侧),与直线BC相交于点N(x3,y3).(1)在同一坐标系内画出抛物线y=2x2﹣8x+6与直线BC的草图;(2)当2<m<4时,比较x1,x2,x3的大小关系;(3)若x1<x2<x3,求x1+x2+x3的取值范围.23.(12分)如图,在边长为4的等边△ABC中,点D是射线BC上的任意一点(不含端点C),连结AD,以AD为边作等边△ADE(E与B在直线AD的两侧),连结CE.(1)当点D在线段BC上时,①求证:∠ABD=∠ACE.②记△DCE的面积为s,问s是否有最大值?请说明理由.(2)当△ABD的面积是△DCE面积的两倍时,求线段DE的长.2018年浙江省杭州市中考数学一模试卷参考答案与试题解析一、选择题:本题有10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合要求的.1.(3分)已知⊙O的半径是5cm,点O到同一平面内直线a的距离为4cm,则直线a与⊙O 的位置关系是()A.相交B.相切C.相离D.相交或相离【分析】设圆的半径为r,点O到直线l的距离为d,若d<r,则直线与圆相交;若d=r,则直线与圆相切;若d>r,则直线与圆相离,从而得出答案.【解答】解:设圆的半径为r,点O到直线l的距离为d,∵d=4,r=5,∴d<r,∴直线l与圆相交.故选:A.【点评】本题考查的是直线与圆的位置关系,解决此类问题的关键是通过比较圆心到直线距离d与圆半径大小关系完成判定.2.(3分)二次函数y=2(x﹣1)(x﹣2)的图象与y轴的交点坐标是()A.(0,1)B.(0,2)C.(0,4)D.(0,﹣4)【分析】代入x=0求出y值,进而即可得出二次函数图象与y轴的交点坐标.【解答】解:当x=0时,y=2(x﹣1)(x﹣2)=2×(0﹣1)(0﹣2)=4.∴二次函数y=2(x﹣1)(x﹣2)的图象与y轴的交点坐标是(0,4).故选:C.【点评】本题考查了二次函数图象上点的坐标特征,代入x=0求出y值是解题的关键.3.(3分)如图,已知Rt△ABC中,∠C=90°,AC=4,tan A=,则BC的长是()A.2B.8C.2D.4【分析】根据锐角三角函数定义得出tan A=,代入求出即可.【解答】解:∵tan A==,AC=4,∴BC=2,故选:A.【点评】本题考查了锐角三角函数定义的应用,注意:在Rt△ACB中,∠C=90°,sin A =,cos A=,tan A=.4.(3分)酒店厨房的桌子上摆放着若干碟子,小辉分别从三个方向上看,把它们的三视图画了下来(如图所示),则桌子上共有碟子()A.17 个B.12 个C.10 个D.7 个【分析】从俯视图中可以看出最底层的碟子个数及形状,从主视图可以看出每一层碟子的层数和个数,从而算出总的个数.【解答】解:由图可看出,桌子上的碟子可以分成三摞,他们的个数分别是5,4,3,因此桌子上碟子的个数应该是4+5+3=12个.故选:B.【点评】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出碟子的个数.5.(3分)已知如图:(1)、(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB、CD交于0点,对于各图中的两个三角形而言,下列说法正确的是()A.都相似B.都不相似C.只有(1)相似D.只有(2)相似【分析】图(1)根据三角形的内角和定理,即可求得△ABC的第三角,由有两角对应相等的三角形相似,即可判定(1)中的两个三角形相似;图(2)根据图形中的已知条件,即可证得,又由对顶角相等,即可根据对应边成比例且夹角相等的三角形相似证得相似.【解答】解:如图(1)∵∠A=35°,∠B=75°,∴∠C=180°﹣∠A﹣∠B=70°,∵∠E=75°,∠F=70°,∴∠B=∠E,∠C=∠F,∴△ABC∽△DEF;如图(2)∵OA=4,OD=3,OC=8,OB=6,∴,∵∠AOC=∠DOB,∴△AOC∽△DOB.故选:A.【点评】此题考查了相似三角形的判定.注意有两角对应相等的三角形相似与对顶角相等,即可根据对应边成比例且夹角相等的三角形相似的定理的应用.6.(3分)已知二次函数的图象(0≤x≤4)如图,关于该函数在所给自变量的取值范围内,下列说法正确的是()A.有最大值2,有最小值﹣2.5B.有最大值2,有最小值1.5C.有最大值1.5,有最小值﹣2.5D.有最大值2,无最小值【分析】直接利用利用函数图象得出函数的最值.【解答】解:∵二次函数的图象(0≤x≤4)如图,关于该函数在所给自变量的取值范围内,∴x=1时,有最大值2,x=4时,有最小值﹣2.5.故选:A.【点评】此题主要考查了二次函数的最值,利用数形结合分析是解题关键.7.(3分)如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°【分析】根据切线的性质求出∠OAC,结合∠C=40°求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.【解答】解:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故选:B.【点评】本题考查了切线的性质,三角形外角性质,三角形内角和定理,等腰三角形性质的应用,解此题的关键是求出∠AOC的度数,题目比较好,难度适中.8.(3分)如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为()A.r B.2r C.r D.3r【分析】首先求得围成的圆锥的母线长,然后利用勾股定理求得其高即可.【解答】解:∵圆的半径为r,扇形的弧长等于底面圆的周长得出2πr.设圆锥的母线长为R,则=2πr,解得:R=3r.根据勾股定理得圆锥的高为2r,故选:B.【点评】本题主要考查圆锥侧面面积的计算,正确理解圆的周长就是扇形的弧长是解题的关键.9.(3分)已知点(x0,y0)是二次函数y=ax2+bx+c(a>0)的一个点且x0满足关于x的方程4ax+2b=0,则下列选项正确的是()A.对于任意实数x都有y≥y0B.对于任意实数x都有y≤y0C.对于任意实数x都有y>y0D.对于任意实数x都有y<y0【分析】由x0满足关于x的方程4ax+2b=0,可得出点(x0,y0)是二次函数y=ax2+bx+c 的顶点坐标,再由a>0利用二次函数的性质即可得出对于任意实数x都有y≥y0,此题得解.【解答】解:∵x0满足关于x的方程4ax+2b=0,∴x0=﹣,∴点(x0,y0)是二次函数y=ax2+bx+c的顶点坐标.∵a>0,∴对于任意实数x都有y≥y0.故选:A.【点评】本题考查了二次函数的性质,牢记“当a>0时,顶点是抛物线的最低点”是解题的关键.10.(3分)已知如图,Rt△ABC中,∠ACB=90°,E是斜边AB的中点,D是线段AC延长线上的一点,连结DB、DE,DE与BC交于点G.给出下列结论:①若AD=BD,则AC•AD=AE•AB;②若AB=BD,则DG=2GE;③若CD=BE,则∠A=2∠ADE.其中正确的是()A.①②B.①③C.②③D.①②③【分析】根据直角三角形的性质、等腰三角形的三线合一、三角形的外角的性质计算即可判断.【解答】解:①∵AD=BD,E是斜边AB的中点,∴DE⊥AB,又∠ACB=90°,∠A=∠A,∴△AED∽△ACB,∴=,即AC•AD=AE•AB,①正确;②∵AB=BD,∠ACB=90°,∴BC是△ABD的中线,又DE是△ABD的中线,∴点G是△ABD的重心,∴DG=2GE,②正确;③连接CE,∵∠ACB=90°,E是斜边AB的中点,∴EC=EA=EB,∴∠A=∠ECA,CD=CE,∴∠CDE=∠CED,∵∠ECA=∠CDE+∠CED=2∠ADE,∴∠A=2∠ADE,③正确;故选:D.【点评】本题考查的是相似三角形的性质、直角三角形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.二、填空题:本题有6个小题,每小题3分,共24分.第10题图11.(3分)某校九年1班共有45位学生,其中男生有25人,现从中任选一位学生,选中女生的概率是.【分析】先求出女生的人数,再用女生人数除以总人数即可得出答案.【解答】解:∵共有45位学生,其中男生有25人,∴女生有20人,∴选中女生的概率是=;故答案为:.【点评】此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.12.(3分)若0°<α<90°,tanα=1,则sinα=.【分析】由0°<α<90°、tanα=1知∠α=45°,据此可得sinα=.【解答】解:∵0°<α<90°,tanα=1,∴∠α=45°,则sinα=,故答案为:.【点评】本题主要考查特殊锐角三角函数值,解题的关键是熟记特殊锐角的三角函数值.13.(3分)一个圆锥的主视图是底边为12,底边上的高为8的等腰三角形,则这个圆锥的表面积为96πcm2.【分析】首先求得底面的周长、面积,利用勾股定理求得圆锥的母线长,然后利用扇形的面积公式即可求得圆锥的侧面积,加上底面面积就是表面积.【解答】解:底面周长是12πcm,底面积是:π×(12÷2)2=36πcm2.母线长是:=10cm,则圆锥的侧面积是:π×(12÷2)×10=60πcm2,则圆锥的表面积为36π+60π=96πcm2.故答案是:96π.【点评】本题考查了圆锥的计算,勾股定理,圆的面积公式,圆的周长公式和扇形面积公式求解.注意圆锥表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2的应用.14.(3分)如图,△ABC内接于⊙O,DA、DC分别切⊙O于A、C两点,∠ABC=114°,则∠ADC的度数为48°.【分析】如图,在⊙O上取一点K,连接AK、KC、OA、OC.求出∠AOC的角度,即可解决问题;【解答】解:如图,在⊙O上取一点K,连接AK、KC、OA、OC.∵∠AKC+∠ABC=180°,∵∠ABC=114°,∴∠AKC=66°,∴∠AOC=2∠AKC=132°,∵DA、DC分别切⊙O于A、C两点,∴∠OAD=∠OCB=90°,∴∠ADC+∠AOC=180°,∴∠ADC=48°故答案为48°.【点评】本题考查切线的性质、圆周角定理、圆内接四边形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.15.(3分)若抛物线y=ax2﹣x+c与y=2(x﹣3)2+1对称轴相同,且两抛物线的顶点相距3个单位长度,则c的值为或﹣.【分析】根据题意求出a=,y=x2﹣x+c的顶点坐标为(3,4)或(3,﹣2),代入计算即可.【解答】解:y=2(x﹣3)2+1对称轴是x=3,顶点坐标为(3,1),∵抛物线y=ax2﹣x+c与y=2(x﹣3)2+1对称轴相同,∴﹣=3,解得,a=,∵两抛物线的顶点相距3个单位长度,∴y=x2﹣x+c的顶点坐标为(3,4)或(3,﹣2),把(3,4)代入y=x2﹣x+c得,c=,把(3,﹣2)代入y=x2﹣x+c得,c=﹣,故答案为:或﹣.【点评】本题考查的是二次函数的图形和性质,正确求出二次函数的对称轴、顶点坐标、灵活运用分情况讨论思想是解题的关键.16.(3分)如图,边长为12的正△ABC中,D是BC边的中点,一束光线自D发出射到AC上的点E后,依次反射到AB、BC上的点F和G(根据光学原理∠DEC=∠AEF,∠AFE=∠BFG).(1)若∠FGB=45°,CE=3+3;(2)若BG=9,则tan∠DEC的值是.【分析】(1)根据光学原理和等边三角形的性质及三角形的内角和定理,先求出∠DEC 的度数,再利用直角三角形求出CE的长;(2)先证明△AFE∽△BFG,△AEF∽△CED,利用相似三角形的性质求出当BG=8时CE的长,再利用直角三角形求出∠DEC的正切.【解答】解:过点D作DM⊥CE,垂足为M(1)∵△ABC是正三角形,∴∠A=∠B=∠C=60°,AB=AC=BC=12,∵∠FGB=45°,∴∠BFG=∠AFE=180°﹣60°﹣45°=75°,∴∠DEC=∠AEF=∠180°﹣75°﹣60°=45°∵D是BC边的中点,∴DC=6,在Rt△DMC中,∵∠C=60°,∴DM=3,CM=3,在Rt△DME中,∵∠DEC=45°,∴EM=DM=3,∴CE=CM+EM=3+3故答案为:3+3.(2)∵△ABC是正三角形,∴∠A=∠B=∠C=60°,AB=AC=BC=12,∵∠DEC=∠AEF,∠AFE=∠BFG∴△AFE∽△BFG,△AEF∽△CED∴△AEF∽△BFG∽△CED∴设CE=x,F A=y,∵BG=9则=∴解得x=7,即CE=7.在Rt△DMC中,∵∠C=60°,DC=6∴DM=3,CM=3,在Rt△DME中,tan∠DEC====【点评】此题是一个综合性很强的题目,主要考查等边三角形的性质、三角形相似、解直角三角形、函数等知识.难度较大,有利于培养同学们钻研和探索问题的精神.三、解答题:本题有7小题,共66分.解答应写出文字说明,证明过程或推演步骤.17.(8分)已知二次函数y=x2+2x+m的图象过点A(3,0).(1)求m的值;(2)当x取何值时,函数值y随x的增大而增大.【分析】(1)把A(3,0)代入y=x2+2x+m,根据待定系数法即可求得;(2)化成顶点式即可求得.【解答】解:(1)∵二次函数y=x2+2x+m的图象过点A(3,0).∴9+6+m=0,∴m=﹣15;(2)∵y=x2+2x﹣15=(x+1)2﹣16,∴二次函数的图象的对称轴为x=﹣1,∵a=1>0,∴当x≥﹣1时,函数值y随x的增大而增大.【点评】本题考查了二次函数图象上的坐标特征,二次函数的性质,熟练掌握二次函数的性质是解题的关键.18.(10分)一个直四棱柱的三视图如图所示,俯视图是一个菱形,求这个直四棱柱的表面积.【分析】计算两个底面的菱形的面积加上侧面四个矩形的面积即可求得直四棱柱的表面积.【解答】解:∵俯视图是菱形,∴底面菱形边长为=2.5cm,面积为×3×4=6,则侧面积为2.5×4×8=80cm2,∴直棱柱的表面积为92cm2.【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够了解该几何体的形状,难度不大.19.(10分)如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C.(1)求证:AB与⊙O相切;(2)若AB=16,sin A=,求⊙O的面积.【分析】(1)首先连接OC,然后由OA=OB,C是边AB的中点,根据三线合一的性质,可证得AB与⊙O相切;(2)首先求得OC的长,继而可求得⊙O的面积.【解答】(1)证明:连接OC,∵在△ABO中,OA=OB,C是边AB的中点,∴OC⊥AB,∵以O为圆心的圆过点C,∴AB与⊙O相切;(2)∵OA=OB,AB=16,sin A=,设OC=r,由sin A=,则AC=3r,∵AC=,由勾股定理可得:r2+82=(3r)2,解得:r2=8∴⊙O的面积为:π×r2=8π.【点评】此题考查了切线的判定、等腰三角形的性质以及三角函数的性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.20.(10分)如图,已知CD为Rt△ABC斜边上的中线,过点D作AC的平行线,过点C 作CD的垂线,两线相交于点E.(1)求证:△ABC∽△DEC;(2)若CE=3,CD=4,求CB的长.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得出CD=AD,进而可得出∠A=∠ACD,由平行线的性质可得出∠CDE=∠ACD=∠A,再结合∠ACB=∠DCE =90°,即可证出△ABC∽△DEC;(2)在Rt△DCE中,利用勾股定理可求出DE的长度,再根据相似三角形的性质即可求出CB的长.【解答】(1)证明:∵CD为Rt△ABC斜边上的中线,∴CD=AB=AD,∴∠A=∠ACD.∵DE∥AC,∴∠CDE=∠ACD=∠A.又∵∠ACB=∠DCE=90°,∴△ABC∽△DEC.(2)解:在Rt△DCE中,CE=3,CD=4,∴DE==5.∵△ABC∽△DEC,∴=,即=,∴CB=.【点评】本题考查了相似三角形的判定与性质、直角三角形斜边上的中线、等腰三角形的性质、平行线的性质以及勾股定理,解题的关键是:(1)根据等腰三角形的性质结合平行线的性质,找出∠CDE=∠ACD=∠A;(2)利用相似三角形的性质,求出CB的长.21.(10分)如图,在Rt△ABC中,∠ACB=90°,E是边BC上的点,过点E作AB的垂线交AB于点F,交射线AC于点D,连结AE,(1)若S△AFD:S△EFB=2,求sin∠BAE的值;(2)若tan∠BAE=,AC=2,AF=4,求BE的值.【分析】(1)证明△AFD∽△EFB,推出=()2=2,推出=,设EF =a,则AF=a,AE=a,根据sin∠EAB=计算机可解决问题.(2)由△EFB∽△ACB,推出=,设EB=x,则AB=2x,BF=2x﹣4,由勾股定理构建方程即可解决问题.【解答】解:(1)∵DF⊥AB,∴∠EFB=90°,∵∠ACB=90°,∴∠ECD=∠EFB=90°,∵∠CED=∠FEB,∴∠D=∠B,∵∠AFD=∠EFB=90°,∴△AFD∽△EFB,∴=()2=2,∴=,设EF=a,则AF=a,AE=a,∴sin∠EAB==.(2)∵tan∠BAE==,AF=4,∴EF=1,∵△EFB∽△ACB,∴=,设EB=x,则AB=2x,BF=2x﹣4,由勾股定理:12+(2x﹣4)2=x2,解得x=和(舍弃),∴BE=.【点评】本题考查相似三角形的判断关系,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题.22.(12分)在平面直角坐标系xOy中,抛物线y=2x2﹣8x+6与x轴交于点A、B(点A在点B的左侧),与y轴交于点C.点D的坐标为(0,m),过D作y轴垂线与抛物线相交于点P(x1,y1),Q(x2,y2)(点P在点Q的左侧),与直线BC相交于点N(x3,y3).(1)在同一坐标系内画出抛物线y=2x2﹣8x+6与直线BC的草图;(2)当2<m<4时,比较x1,x2,x3的大小关系;(3)若x1<x2<x3,求x1+x2+x3的取值范围.【分析】(1)利用二次函数图象上点的坐标特征求出点A、B、C的坐标,依此画出草图;(2)观察图1,即可找出:当2<m<4时,x1<x3<x2;(3)根据抛物线的解析式可找出顶点坐标,利用待定系数法可求出直线BC的解析式,观察图2可找出,若x1<x2<x3,则﹣2<m<0,利用一次函数图象上点的坐标特征可得出3<x3<4,由二次函数图象的对称性结合抛物线的对称轴为直线x=2可得出x1+x2=4,结合3<x3<4即可找出x1+x2+x3的取值范围.【解答】解:(1)当y=0时,有2x2﹣8x+6=0,解得:x=1或x=3,∴点A的坐标为(1,0),点B的坐标为(3,0);当x=0时,y=2x2﹣8x+6=6,∴点C的坐标为(0,6).画出草图如图1所示.(2)由图1可知,当2<m<4时,x1<x3<x2.(3)∵抛物线的解析式为y=2x2﹣8x+6,∴抛物线的顶点坐标为(2,﹣2).设直线BC的解析式为y=kx+b(k≠0),将B(3,0)、C(0,6)代入y=kx+b,得:,解得:,∴直线BC的解析式为y=﹣2x+6.由图2可知,若x1<x2<x3,则﹣2<m<0,∴3<x3<4.∵抛物线的对称轴为直线x=2,∴x1+x2=2×2=4,∴7<x1+x2+x3<8.【点评】本题考查了抛物线与x轴的交点、二次函数的图象、二次函数的性质、二次函数图象上点的坐标特征、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)利用二次函数图象上点的坐标特征求出点A、B、C的坐标,依此画出草图;(2)观察图1,利用数形结合找出结论;(3)利用一次函数图象上点的坐标特征求出x3的范围.23.(12分)如图,在边长为4的等边△ABC中,点D是射线BC上的任意一点(不含端点C),连结AD,以AD为边作等边△ADE(E与B在直线AD的两侧),连结CE.(1)当点D在线段BC上时,①求证:∠ABD=∠ACE.②记△DCE的面积为s,问s是否有最大值?请说明理由.(2)当△ABD的面积是△DCE面积的两倍时,求线段DE的长.【分析】(1)①根据等边三角形的性质得出结论,判断出△BAD≌△CAE,即可得出结论;②先求出EH,利用三角形的面积公式即可得出结论;(2)先求出△ABD的面积,再分点D在边BC和BC延长线上,利用△ABD的面积是△DCE面积的两倍,建立方程,即可得出结论.【解答】解:(1)①在等边△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE=60°,在△BAD和△CAE中,,∴△BAD≌△CAE,∴∠ABD=∠ACE=60°'②如图1,过点E作EH⊥BC于H,设BD=x,(0<x<4)∵△BAD≌△CAE,∴CE=BD=x,CD=BC﹣BD=4﹣x,∠ACE=∠ABC=∠ACB=60°,∴∠ECH=60°,在Rt△CMH中,EH=CE•sin∠ECH=x,∴s=DC•EH=(4﹣x)×x=﹣(x﹣2)2+,∴x=2时,即:点D是BC中点时,s最大;(2)如图2,过点A作AG⊥BC于G,在Rt△ABG中,AB=4,∠ABC=60°,∴AG=AB•sin∠ABC=2,∴S△ABD=BD•AG=x,①当点D在边BC上时,由(1)知,S△CDE=s=﹣(x﹣2)2+,∵△ABD的面积是△DCE面积的两倍,∴x=2[﹣(x﹣2)2+],∴x=2或x=0(舍),∴CE=BD=2,EH=,根据勾股定理得,CH=1,∴DH=CD+CH=3,在Rt△DEH中,DE=2,②当点D在BC的延长线上时,如图3,同①的方法得,∠ECM=60°,过点E作EH⊥BC于H,在Rt△CEM中,EH=CE sin∠ECM=x,∴S△DCE=(x﹣4)×x=(x﹣4),∵△ABD的面积是△DCE面积的两倍,∴x=2×(x﹣4),∴x=6或x=0(舍),∴CE=BD=6,EH=3,CH=3,∴DH=1,在Rt△DEH中,DE=2.【点评】此题是三角形综合题,主要考查了等边三角形的性质,全等三角形的判定和性质,勾股定理,用方程的思想解决问题是解本题的关键.。

浙江省杭州市2018年中考数学真题试题(含解析)

浙江省杭州市2018年中考数学真题试题一、选择题1.=()A. 3B. -3 C.D.【答案】A【考点】绝对值及有理数的绝对值【解析】【解答】解:|-3|=3【分析】根据负数的绝对值等于它的相反数,即可求解。

2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106 C. 18×105 D. 18×106【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:1800000=1.8×106【分析】根据科学计数法的表示形式为:a×10n。

其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1,即可求解。

3.下列计算正确的是()A. B.C.D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB、∵,因此A符合题意;B不符合题意;CD、∵,因此C、D 不符合题意;故答案为:A【分析】根据二次根式的性质,对各选项逐一判断即可。

4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。

计算结果不受影响的是()A. 方差B. 标准差 C. 中位数 D. 平均数【答案】C【考点】中位数【解析】【解答】解:∵五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了∴中位数不会受影响故答案为:C【分析】抓住题中关键的已知条件:五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了,可知最高成绩提高,中位数不会变化。

5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B.C.D.【答案】D【考点】垂线段最短【解析】【解答】解:∵线段AM,AN分别是△ABC边上的高线和中线,当BC边上的中线和高重合时,则AM=AN当BC边上的中线和高不重合时,则AM<AN∴AM≤AN故答案为:D【分析】根据垂线段最短,可得出答案。

6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。

杭州市江干区中考一模数学试卷及答案

杭州市江干区中考一模数学试卷及答案2018年杭州市初中毕业升学模拟考试数学试题考生须知: 1.本试卷分试题卷和答题卷两部分,考试时间100分钟,满分120分;2•答题前,在答题纸上写姓名和准考证号; 3. 不能使用计算器;4. 所有答案都必须做在答题卡规定的位置,注意试题序号和答题序号对等试题卷一、仔细选一选(本题有10小题,每小题3分,共30分)1. 如图,直线a 、b 被直线c 所截,/ 1的同位角是() A. / 2B. / 3C. / 4D. / 52. 实数a 、b 、c 、d 在数轴上的对应点的位置如图所示,则正确的结论是(225.将多项式4x 2 1再加上一项,使它能分解因式成 a b 的形式,以下是四位学生所加的项,其中错误的是()6. 如图,圆0是厶ABC 的内切圆,分别切 BA 、BC 、AC 于点E 、F 、D,点P 在弧DE 上,如果/ EPF=70,那么 / B=() A.40 ° B.50°C.60°D.70°7. 如图,△ ABC 的面积为8cm 2 , AP 垂直 的面积为()A.b > -1B. ad>0C. a > dD.b+c > 03.已知扇形的圆心角为 30 °,面积为3 n cm 2,则扇形的半径为() A.6cm B.12cmC.18cmD.36cm4.如图是根据某班 40名同学一周的体育锻炼情况绘制的统计图, 该班40名同学一周参加体育锻炼时间的中位数,众数分别是()A.10.5,16B.8.5,16C.8.5,8D.9,8A.2xB.-4xC.4xD.4x7 H W 10VEY皆料卜/ B 的平分线 BP 于P ,贝U △ PBCBDD )X(2.I)C A B D入数 C A B DIt.2■ ■x-0.1 5A. 3cm 24cm 26cm 228.甲、乙两人从学校到博物馆去,甲每小时走 4km ,乙每小时走5km ,甲先出发0.1h ,结 ., __ 2 210.关于一元二次方程 ax bx c 0 a 0,有以下命题:若① a+b+c=O ,则b -4ac 0 ;②若方程ax bx c 0两根为-1和2,则2a+c=0 :③若方程ax c 0有两个不相等的实根,则方程2 o9ax bx c 0必有两个不相等的实根;④若 ax bx c 0有两个相等的实数根,则ax bx c 1无实数根。

浙江省杭州市江干区2018年中考一模数学试卷评分标准180402


三.解答题(共 66 分) 17.(本题 6 分)解:乐乐计算错误……1 分;原式=
x2 ( x 2)( x 2) ……2 分 x2 x2
4 x2 x2 4 = = ……3 分 x2 x2 x2
18.(8 分)解析:(1)E 类:50-2-3-22-18=5(人),统计图略……3 分 (2)D 类:18 50×600=216……2 分; (3)方法不限,0.3 ……3 分
若四边形 AECF 是菱形,则 AC⊥EF,AC=2AP.∵EF∥BC,∴AC⊥BC, ∴△ABC 是直角三角形,且∠ACB=90°,……2 分 ②tan∠B=
AC 3 2 = = , BC 2 3 3 1 ……2 分 2
∴∠B=30°,sin∠B=
22. 解:(1)∵抛物线 y=x2+mx+n 过点 A(﹣1,a ),B(3,a), ∴抛物线的对称轴 x=1. ∵抛物线最低点的纵坐标为﹣4,∴抛物线的顶点是(1,﹣4). ∴抛物线的表达式是 y=(x﹣1)2﹣4,即 y=x2﹣2x﹣3.m=﹣2,n=﹣3 把 A(﹣1,a )代入抛物线表达式 y=x2﹣2x﹣3,求得 a=0,……4 分 (2)把 A(﹣1,0)的坐标代入 y=kx+2,得 k=2,……2 分
2018 年杭州市初中毕业升学文化模拟考试数学评分标准
一.选择题(每题 3 分,共 30 分) 题号 答案 1 B 2 C 3 A 4 D 5 A 11. 2; 6 A 7 B 8 . ③④; 15. 小,-3;
12. 8 cm; .
2018 年杭州市初中毕业升学文化模拟考试数学参考解答和评分标准 第 2 页 共 4 页
(3)画草图,……2 分,当 y=kx+2 经过点 B(3,0)时,0=3k+2,k=

2018年杭州市中考模拟数学试卷(附参考答案)

2018年杭州市中考数学模拟试卷考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟.2.答题时,应该在答题卷指定位置内写明校名、姓名和准考证号.3.所有答案都必须做在答题卷指定位置上,请务必注意试题序号和答题序号相对应.4.考试结束后,上交试题卷和答题卷.一. 选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案.1、下列各数中,比1小的数是( ▲ )A .-1+2B .C .π-D .0(3)-2、把y y x -2分解因式是( ▲ )A .2(1)y x -B .(1)y x +C .(1)y x -D .(1)(1)y x x +-3、如图,在△ABC 中,DE∥BC,AD=6,DB=3,则的值为( ▲ )A .B .C .D .4、一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( ▲ )A .至少有1个球是黑球B .至少有1个球是白球C .至少有2个球是黑球D .至少有2个球是白球5、若一个直六棱柱的三视图如图所示,则这个直六棱柱的体积为( ▲ )A . 4B .5.4C .5D .5.5 6、已知方程012=-+x x,下列说法中正确的是(▲ )A .该方程有两个相等的实数根B .该方程有两个不相等的实数根,且它们互为相反数C .该方程有一根为251+D. 该方程有一根为黄金分割比7、下列各式计算正确的有( ▲ )A.323452)2()q (q p q p p =÷B. 25)5)(5(2--=--+-a a a C. 2322(5)210x x y x x y --=-- D.2121422+=---a a a a8、已知点A (﹣1,m ),B (1,m ),C (2,m +1)在同一个函数图象上,这个函数图象可以是( ▲ )A .B .C .D .9、已知⊙O 的半径为3,△ABC 内接于⊙O ,AB=32,AC=33,D 是⊙O 上一点,且AD=3,则CD 的长应是( ▲ ) (西湖区试题改编) A .3 B .3或6 C .3 D .3或610、如图,在菱形ABCD 中,AB CF AD CE BC AG CD AH ⊥⊥⊥⊥,,,,垂足分别为点H ,G ,E ,F.若图中四边形APCQ 的面积为菱形ABCD 的四分之一,则sinB 的值( ▲ ) (课本改编) A.23 B.43 C.55 D.54二. 填空题(本题有6个小题, 每小题4分, 共24分) )要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.11、用科学记数方法表示=0000907.0 .12、已知ab b a =+,则=--)1(1b a )( . 13、如图,直线AB ∥CD ,BC 平分∠ABD ,∠1=67°,则∠2= 度.14、为了喜迎2022年杭州承办第19届亚运会,某校举行文艺演出,组建46人的合唱队和30人的舞蹈队,现根据演出需要,从舞蹈队中抽调部分同学参加合唱队,使合唱队的人数恰好是舞蹈队人数的3倍.设从舞蹈队中抽调x 人参加合唱队,可列方程为 .(杭州市中考试题改编) 15、若关于x,y 方程组⎩⎨⎧+=--=+4633232k y x k y x 的解为⎩⎨⎧==by ax ,且3<k ,则t=a-3b 的取值范围是 .(杭州市中考试题改编) 16、如图,在平行四边形ABCD 中,AB=10,AD=15,tanA=34,点P 为AD 边上任意一点,连接PB ,将PB 绕着P 点逆时针旋转90得到线段PQ ,若点Q 恰好落在平行四边形ABCD 的边所在的直线上,则PB= . (杭州市中考试题改编)三. 解答题 (本题有7个小题, 共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有些题目有点困难,那么把自己能写出的解答写出一部分也可以. 17、(本题6分)“你记得父母的生日吗?”这是某校在九年级学生中开展主题为“感恩”教育时设置的一个问题,有以下四个选项:A .父母生日都记得;B .只记得母亲生日;C .只记得父亲生日;D .父母生日都不记得.在随机调查了(1)班和(2)班各50名学生后,根据相关数据绘出如图所示的统计图. (1)补全频数分布直方图;(2)据此推算,九年级共900名学生中,“父母生日都不记得”的学生共多少名?(3)若两个班中“只记得母亲生日”的学生占22%,则(2)班“只记得母亲生日”的学生所占百分比是多少?18、(本题8分)已知111222---++=x xx x x A (1)化简A ; (2)当x 满足不等式组,且x 为整数时,求A 的值.19、(本题8分)如图,△ABC 中,AB=AC ,D 是BC 中点,BE⊥AC 于E , (1)求证:△ACD∽△BCE;(2)若AB=5,BC=6,求CE 的长.(课本改编)20、(本题10分)如图,正比例函数x y 21-=的图象与反比例函数1k y x-=的图象分别交于M ,N 两点,已知点M (﹣2,m ). (1)求N 的坐标;(2)若1122(,),(,)A x y B x y 是反比例函数1k y x-=图像上的两点,当12y y >时,比较12,x x 的大小.(课本改编)21、(本题10分)如图,在△ABC 中,BA=BC ,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,BC 的延长线与⊙O 的切线AF 交于点F . (1)求证:∠ABC=2∠CAF;(2)若AC=102,CE :EB=1:4,求CE ,AF 的长. (课本改编)22、(本题12分)设抛物线C 的解析式为k k kx x y )3(22++-=,k 为实数.(1)①求出该抛物线的顶点坐标(用k 表示);②说明当k 变化时,该抛物线的顶点在一条定直线上;(2)已知一直线与该抛物线中任意一条都相截,且截得的线段长都为6,求这条直线的解析式.(全国数学竞赛试题改编) 23、(本题12分)如图1,在△ABC 中,BC=4,以线段AB 为边作△ABD,使得AD=BD ,连接DC ,再以DC 为边作△CDE,使得DC=DE ,∠CDE=∠ADB=α.(1)如图2,当∠ABC=45°且α=90°时,用等式表示线段AD ,DE 之间的数量关系; (2)将线段CB 沿着射线CE 的方向平移,得到线段EF ,连接BF ,AF . ①若α=90°,依题意补全图3,求线段AF 的长; ②求出线段AF 的长(用含α的式子表示).数学参考答案及评分标准一、选择题(每小题3分,共30分)二、填空题(每小题4分,共24分)11.51007.9-⨯ 12. 1 13. 46 14.)30(346x x -=+ 15. -14<t<14 16. 28,54,8 三、解答题 (本题有7个小题, 共66分)17、解:(1)一班中A 类的人数是:50﹣9﹣3﹣20=18(人). 1分 如图所示.1分(2)(名); 2分(3)设(2)班“只记得母亲生日”的学生有x 名,依题意得:,解得x=13,∴,即(2)班“只记得母亲生日”的学生所占百分比是26%. 2分 ﹣)∵19、(1)证明:∵AB=AC,D 是BC 中点, ∴AD⊥BC,∴∠ADC=90°, 1分 ∵BE⊥AC, ∴∠BEC=90°,∴∠ADC=∠BEC, 1分 而∠ACD=∠BCE,∴△ACD∽△BCE. 2分 (2)∵△ACD∽△BCE∴AC CDBC CE = 2分 ∴536=CE ∴518=CE 2分20、解:(1)∵点M (﹣2,m )在正比例函数y=﹣21x 的图象上, ∴m=﹣21×(﹣2)=1, ∴M(﹣2,1), 2分∴根据中心对称性得到N(2,-1) 2分(2)∵反比例函数y=1k x-的图象经过点M (﹣2,1), ∴反比例函数的解析式为y=﹣x2. 1分因为A,B 是反比例函数y=2x -图像上的两点,所以有121222,y y x x --==, 1分 ∵12y y >∴1222x x ->- ∴21122()0x x x x -> 2分①当12,x x 同号时,21x x >; ②当12,x x 异号时,有12x x <. 2分 (图像法分情况讨论也好,给分)21.(1)证明:如图,连接BD . ∵AB 为⊙O 的直径, ∴∠ADB=90°,∴∠DAB+∠ABD=90°. 2分 ∵AF 是⊙O 的切线, ∴∠FAB=90°, 1分 即∠DAB+∠CAF=90°. ∴∠CAF=∠ABD. ∵BA=BC,∠ADB=90°, ∴∠ABC=2∠ABD. ∴∠ABC=2∠CAF. 2分 (2)解:如图,连接AE . ∴∠AEB=90°. 设CE=x , ∵CE:EB=1:4,∴EB=4x,BA=BC=5x ,AE=3x . 在Rt△ACE 中,AC 2=CE 2+AE 2. 即(210)2=x 2+(3x )2. ∴x=2.∴CE=2, 3分∴EB=8,BA=BC=10,AE=6. ∵tan∠ABF BAAFEB AE ==∴1086AF =. ∴AF=7.5 2分22、(1)①配方得,()k k x y 32+-=,顶点坐标为()k k 3,; 3分②设顶点坐标为(x,y ),则x=k,y=k 3,消去k 得到直线x y 3=,该抛物线的顶点在定直线x y 3=上; 3分(2)要使该直线与抛物线中任意一条相截且截得线段长都是6,则该直线必须平行于x y 3=, 2分设其为b x y +=3,考虑其与2x y =相交于点A,B ,分别过点A 作x 轴的垂线,过点B 作y 轴的垂线,交于点C ,则⎩⎨⎧+==bx y x y 32,即有032=--b x x ,解出2433,bx C B +±=, 2分所以BC=321=AB ,即有3=-C B x x ,所以有4b+3=9,解之23=b ,所以这条直线的解析式为233+=x y . 2分23、解:(1)AD+DE=4,理由是:如图1,∵∠ADB=∠EDC=∠α=90°,AD=BD ,DC=DE , ∴AD+DE=BC=4; 2分(2)①补全图形,如图2, 2分 设DE 与BC 相交于点H ,连接AE , 交BC 于点G ,∵∠ADB=∠CDE=90°, ∴∠ADE=∠BDC, 1分 在△ADE 与△BDC 中,,∴△ADE≌△BDC,∴AE=BC,∠AED=∠BCD. 2分 ∵DE 与BC 相交于点H , ∴∠GHE=∠DHC,∴∠EGH=∠EDC=90°,∵线段CB 沿着射线CE 的方向平移,得到线段EF , ∴EF=CB=4,EF∥CB, ∴AE=EF,∵CB∥EF,∴∠AEF=∠EGH=90°,∵AE=EF,∠AEF=90°,∴∠AFE=45°,∴AF==4; 2分②如图2,过E作EM⊥AF于M,∵由①知,AE=EF=BC,∴∠AEM=∠FME=,AM=FM,∴AF=2FM=EF×sin=8sin. 3分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年杭州市初中毕业升学模拟考试
数学试题
考生须知:
1.本试卷分试题卷和答题卷两部分,考试时间 100 分钟,满分 120 分;
2.答题前,在答题纸上写姓名和准考证号;
3.不能使用计算器;
4.所有答案都必须做在答题卡规定的位置,注意试题序号和答题序号对等.
试题卷
一、仔细选一选 (本题有10小题 ,每小题 3分 ,共30 分 )
1.如图,直线 a 、b 被直线 c 所截, ∠1的同位角是( )
A.∠2
B.∠3
C.∠4
D.∠5
2.实数 a 、b 、c 、d 在数轴上的对应点的位置如图所示,则正确的结论是( )
A.b >-1
B.0ad >
C.d a >
D.b+c >0
3.已知扇形的圆心角为 30°,面积为 3πcm 2,则扇形的
半径为( )
A.6cm
B.12cm
C.18cm
D.36cm
4.如图是根据某班 40 名同学一周的体育锻炼情况绘制的统计图,该班 40
名同学一周参加体育锻炼时间的中位数,众数分别是( )
A.10.5,16
B.8.5,16
C.8.5,8
D.9,8
5.将多项式1x 42+再加上一项,使它能分解因式成()2
b a +的形式,以下是四位学生所加的项,其中错误的是( )
A.2x
B.-4x
C.4x 4
D.4x
6.如图,圆0是△ABC 的内切圆,分别切 BA 、BC 、AC 于点 E 、F 、D ,点 P
在弧 DE 上,如果∠EPF=70°,那么 ∠B=( )
A.40°
B.50°
C.60°
D.70°
7.如图,△ABC 的面积为 8cm 2,AP 垂直 ∠B 的平分线 BP 于 P ,则 △PBC
的面积为( )
A.2cm 3
B.2cm 4
C.2cm 5
D.2cm 6
8.甲、乙两人从学校到博物馆去,甲每小时走 4km ,乙每小时走 5km ,甲先出发 0.1h ,结
果乙还比甲早到 0.1h 。

设学校到博物馆的距离为 xkm ,则以下方程正确的是( ) A.1.0-5x 1.04x =+ B.1.05x 1.0-4x += C.1.0-5
x 4x = D.1.0x 51.0-x 4+=? ? ? 9.下列与反比例函数图象有关图形中,阴影部分面积最小的是( )
A B C D
10.关于一元二次方程()0a 0c bx ax 2≠=++,有以下命题:若①a+b+c=0,则0ac 4-b 2≥;
②若方程0c bx ax 2=++两根为-1 和 2,则 2a+c=0;③若方程0c ax 2=+有两个不相等的实根,则方程0c bx ax 2=++必有两个不相等的实根;④若0c bx ax 2=++有两个相等的实数根,则1c bx ax 2=++无实数根。

其中真命题是( )
A.①②③
B.①②④
C.①③④
D.②③④
二、认真填一填 (本小题 6 分 , 每小题 4 分 ,共 24 分 )
11.=4_________.
12.如图是用卡钳测量容器内径的示意图,现量的卡钳上 A 、D 两端的距离为 4cm ,
2
1==CO DO BO AO ,则容器的内径 BC=__________. 13.某公司随机调查 30 名员工平均每天阅读纸质书本的时间,绘制成
频数分布图(每组含最小值而不含最大值),由此可估计,该公司每天
阅读纸质书本的时间 25-45 分钟的人数占全公司人数的百分比是
___________.
14.下列图形中,____________是中心对称图形(只需填序号).
A B C D
15.已知 x-2y=6,当 0≤x ≤2时,y 有最____值(填“大”或“小”),这个值为____.
16.小南利用几何画板画图,探索结论,他先画∠MAN=90°,在射线 AM 上取一点 B ,在射线 AN 上取一点 C ,连接 BC ,再作点 A 关于直线 BC 的对称点 D ,连接 AD 、BD ,得到如下图
形,移动点 C ,小南发现:当 AD=BC 时, ∠ABD=90°;请你继续探索;当 2AD=BC
时, ∠ABD 的度数是____________
三、全面答一答 (本题有 7小题 ,共 66 分)
17.(本题满分 6 分)计算2x -2x x 2
++,乐乐同学的计算过程如下: ()()2
x 4x 4-2x 4x 4x -2x x 2x 2-x 2x -2x x 2x -2x x 2222++=++++=+++=++,请判断计算过程是否正确,若不正确,请写出正确的计算过程.
18.(本题满分 8 分)某校为了解八年级学生一学期参
加公益活动的时间情况,抽取 50 名八年级学生为样本
进行调查,按参加公益活动的时间 t (单位:小时),将
样本分成五类:A 类(0≤t ≤2),B 类(2<t ≤4),C 类
(4<t ≤6),D 类(6<t ≤8),E 类(t >8),绘制成尚
不完整的条形统计图.
(1)样本中,E 类学生有_______人,请补全条形统计
图;
(2)该校八年级共 600 名学生,求八年级参加公益活
动时间 6<t ≤8 的学生数;
(3)从样本中选取参加公益活动时间在 0≤t ≤4 的 2 人做志愿者,求这 2 人参加公益活动时间都在 2<t ≤4 中的概率.
19.(本题满分 8 分)如图,在△ABC 中,AD 、DE 是中线,它们相交于点 F ,EG ∥BC ,交 AD 于点 G .
(1)找出图中的一对相似三角形,并说明理由;
(2)求 AG 与 DF 的比.
20.(本题满分 10 分)2017-2018 赛季中国男子篮球职业联赛季后赛正如火如荼的进行。

在浙江广厦队与深圳马可波罗对的一场比赛中,广厦队员福特森在距篮下 4 米处跳起投篮,篮球准确落入篮圈,已知篮球运行的路线是抛物线,当球运行的水平距离为 2.5m 时,达到最大高度 3.5m ,篮圈中心到地面的距离为 3.05m .
(1)建立如图所示的直角坐标系,求抛物线的函数表达式;
(2)已知福特森身高 1.8m ,在这次跳投中,球在头顶上方 0.25m 处出手,问:球出手时,他跳离地面的高度是多少?
21.(本题满分 10 分)△ABC 中,点 P 是边 AC 上的一个动点,过点 P 作直线 MN ∥BC ,设 MN 交∠BCA 的平行线于点 E ,交∠BCA 的外角平分线于点 F .
(1)求证:PE=PF ;
(2)点 P 运动到 AC 边上某个位置时,四边形 AECF 是菱形,此时:
①∠BCA=________度,请说明理由.
②已知 PA :BC= 1:32,求 sin ∠B 的值.
22.(本题满分 12 分)二次函数n mx x y 2++=的图象经过点 A (-1,a ),B (3,a ),且最低点的纵坐标为-4.
(1)求 m 、n 和 a 的值;
(2)若直线 2kx y +=经过点 A ,求 k 的值;
(3)记(1)中的二次函数图象在点 A ,B 之间的部分图象为 G (包含 A ,B 两点),若直线2kx y +=与 G 有公共点,请结合图像探索实数 k 的取值范围.(注意:请在答题卡的直角坐标系中画出解题时使用的函数草图)
23.(本题满分 12 分)有一个正方形 ABCD 和一个以 O 为顶点直角,移动这个直角,使两
直角边分别与直线 BC,CD 交于 M,N.
(1)如图 1,若顶点 O 与点 A 重合,则线段 OM 与 ON 的数量关系是_______________;
(2)如图 2,若顶点 O 在正方形的中心(即两对角线的交点),则(1)中的结论是否仍然
成立?请说明理由;
(3)如图 3,若顶点 O 在正方形的内部(含边界)的任意位置。

①此时,(1)中的结论是否仍然成立?请说明理由(提示:若成立,请写出证明过程;若不
成立,请举反例说明);
②已知 AB=4,移动顶点 O,使 OM=ON 且四边形的面积为 1,请探究点 O 的位置(提示:可以用“点 O 在××线上,且到点×的距离是××”表示点O 的位置)。

相关文档
最新文档