初高中衔接教材(数学稿调整好)
初高中数学衔接教材(已整理精品)

初高中数学衔接教材1.乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式2 2 (a b)(a b) a b ;(2)完全平方公式 2 2 2(a b) a 2 a b .b我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2 2 3 3(a b) (a a b b ) a ;b(2)立方差公式 2 2 3 3(a b) (a a b b ) a ;b(3)三数和平方公式2 2 2 2 (a b c ) a b c 2 ( a b b c ;)a c(4)两数和立方公式 3 3 2 2 3(a b) a 3 a b 3 a b ;b(5)两数差立方公式3 3 2 2 (a b) a 3 a b 3 a b .b 对上面列出的五个公式,有兴趣的同学可以自己去证明.例 1 计算:2 2 (x 1)(x 1)(x x 1)(x x 1).解法一: 原式= 2 2 2 2(x 1) (x 1) x = 2 4 2 (x 1)(x x 1)= 6 1 x .解法二: 原式=2 2 (x 1)(x x 1)(x 1)(x x1)= 3 3 (x 1)(x1)= 6 1x .例 2 已知 a b c 4,ab bc ac 4,求2 2 2 a b c 的值.解:2 2 2 ( )22( ) 8a b c a b c ab bc ac .练 习1.填空:(1)1 1 1 12 2a b ( b a) ( ); 9 4 2 3(2)(4 m 22 ) 16m 4m ( ) ;(3 )2 2 2 2 (a 2b c) a 4b c ( ) . 2.选择题:(1)若2 1x mx k 是一个完全平方式,则k 等于()2(A )2m (B)142m (C)132m (D)1162m(2)不论 a,b 为何实数, 2 2 2 4 8a b a b 的值()(A )总是正数(B)总是负数(C)可以是零(D)可以是正数也可以是负数2.因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:2 2(1)x -3x+2;(2)x +4x-12;2 ( ) 2(3)x a b xy aby ;(4)xy 1 x y .2解:(1)如图1.1-1,将二次项 x 分解成图中的两个x 的积,再将常数项 2 分解成-1初中升高中数学教材变化分析2与-2 的乘积,而图中的对角线上的两个数乘积的和为-3x,就是x -3x+2 中的一次项,所以,有2-3x+2=(x-1)(x-2).xx 1-1 1 -2 x -ay-1x -2 x1 -2 6 -by1图 1.1-1 图 1.1-3 图1.1-4图 1.1-2说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1 中的两个x 用 1 来表示(如图1.1-2 所示).(2)由图 1.1-3,得2x +4x-12=(x-2)( x+6).(3)由图 1.1-4,得2 ( ) 2x a b xy aby =(x ay)( x by)x -1(4)xy 1 x y =xy+(x-y)-1=(x-1) (y+ 1) (如图 1.1-5 所示).课堂练习一、填空题:y图 1.1-511、把下列各式分解因式:2 x(1) 5 6x __________________________________________________ 。
最新-初高中数学衔接教材(完整版) 精品

初高中数学衔接教材(完整版)篇一:初高中衔接教材数学《初高中数学衔接教材》序言童永奇高一新生,你们好,祝贺大家考入临潼区马额中学!进入我校,同学们必须努力学好《初高中数学衔接教材》,理由如下:一方面,由于我校是普通农村高中学校,生源质量相对较差;另一方面,由于高中数学是初中数学的延伸与拓展,初中我们学到的知识、方法在高中会经常使用。
既然学习《初高中数学衔接教材》如此重要,那么我们应该如何学习呢?提几点建议:一、“信心”是源泉。
人缺乏信心,就丧失了驱动力,终将一事无成。
二、“恒心”是保障。
人缺乏恒心,将“三天打鱼,两天晒网”。
三、“巧心”是支柱。
人无巧心,就缺乏灵气和创造力。
最后,衷心祝愿同学们在《初高中数学衔接教材》的学习中获得成功,请将那么成功的经验及时告诉我们,以便让更多的朋友分享你们成功的喜悦!临潼区马额中学高一数学校本教材童永奇结合我校学生的实际情况——基础知识较差,能力较差,没有掌握较好的学习方法,特设计适合我校高一学生使用的校本教材。
主要包括以下两个内容:一是《怎样学好数学》,二是《初高中数学衔接》。
怎样学好数学?要学好数学,就应该了解数学本身具有的三大特点。
(一)抽象性:数学的抽象性是无条件的,它的概念一经产生和定义之后,就稳定下来并且被看作是已知的,它们与现实的比较不是数学本身,而是它的应用问题。
(二)严谨性:由于数学的严谨性,人们往往认为数学是一种“冷而严肃的美”。
罗素说:“数学,如果正确地看它,不但拥有真理,而且也是具有至高的美,正像雕刻的美,是一种冷而严肃的美,这种美不是投合我们天性的微弱的方面,这种美没有绘画或音乐的那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地。
”(三)应用的广泛性:在任何一个领域,只要能从数学的角度提出问题,。
初高中数学衔接校本教材(Word版)

《初高中数学衔接教材》序言童永奇高一新生,你们好,祝贺大家考入临潼区马额中学!进入我校,同学们必须努力学好《初高中数学衔接教材》,理由如下:一方面,由于我校是普通农村高中学校,生源质量相对较差;另一方面,由于高中数学是初中数学的延伸与拓展,初中我们学到的知识、方法在高中会经常使用。
既然学习《初高中数学衔接教材》如此重要,那么我们应该如何学习呢提几点建议:一、“信心”是源泉。
人缺乏信心,就丧失了驱动力,终将一事无成。
二、“恒心”是保障。
人缺乏恒心,将“三天打鱼,两天晒网”。
:三、“巧心”是支柱。
人无巧心,就缺乏灵气和创造力。
最后,衷心祝愿同学们在《初高中数学衔接教材》的学习中获得成功,请将那么成功的经验及时告诉我们,以便让更多的朋友分享你们成功的喜悦!}$临潼区马额中学高一数学校本教材童永奇结合我校学生的实际情况——基础知识较差,能力较差,没有掌握较好的学习方法,特设计适合我校高一学生使用的校本教材。
主要包括以下两个内容:一是《怎样学好数学》,二是《初高中数学衔接》。
怎样学好数学。
A.要学好数学,就应该了解数学本身具有的三大特点。
(一)抽象性:数学的抽象性是无条件的,它的概念一经产生和定义之后,就稳定下来并且被看作是已知的,它们与现实的比较不是数学本身,而是它的应用问题。
(二)严谨性:由于数学的严谨性,人们往往认为数学是一种“冷而严肃的美”。
罗素说:“数学,如果正确地看它,不但拥有真理,而且也是具有至高的美,正像雕刻的美,是一种冷而严肃的美,这种美不是投合我们天性的微弱的方面,这种美没有绘画或音乐的那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地。
”(三)应用的广泛性:在任何一个领域,只要能从数学的角度提出问题,数学就能给出与所提问题的精确度相符合的答案,数学的这种威力恰恰是来源于它的抽象性。
B.要学好数学,就应该重视数学思想方法的学习。
数学思想方法的学习是一个潜移默化的过程,是在多次领悟、反复应用的基础上形成的,所以一道题做完后,就应该进行反思,回味解题中所使用的思想方法。
高中数学初高衔接教材精编版 第一讲 数与式的运算(选上)

高中数学初高衔接教材精编版第一讲数与式的运算(选上)高中数学初高衔接教材精编版第一讲数与式的运算(选上)第一课数与公式的运算在初中,我们已学习了实数,知道字母可以表示数用代数式也可以表示数,我们把实数和代数字公式缩写为数字和公式。
代数公式中有积分公式(多项式、单项式)、分数和根。
它们具有实数性质,可以操作。
在多项式的乘法中,我们学习了乘法公式(均方公式和完全平方公式),并且学习了乘法公式可以使多项式的运算变得简单。
因为我们在高中会遇到更复杂的多项式乘法,所以本节将扩展乘法公式的内容,补充三个数之和的完整平方公式、三次和和和三次差分公式。
在根式运算中,我们学习了根式运算,其中要打开的数是实数。
然而,在高中数学学习中,我们经常会遇到这样的情况:要打开的数字是一个字母,但它不涉及初中,所以我们需要在本节中补充它。
出于同样的原因,我们还应该添加“复分数”和其他相关内容一、乘法公式[Formula 1](a?B?C)2?a2?b2?c2?2ab?2bc?2ca证书:?(a?b?c)2?[(a?b)?c]2?(a?b)2?2(a?b)c?c2a22abb22ac2bcc2a2b2c22ab2bc2ca这个等式成立212x?)23122溶液:原始公式=[x?(?2x)]3【例1】计算:(x?111?(x2)2?(?2x)2?()2?2x2(?2)x?2x2??2??(?2x)3338221? x4?22x3?x2?十、三百三十九说明:多项式乘法的结果一般是按某个字母的降幂或升幂排列.【公式2】(a?b)(a?ab?b)?a?b(立方和公式)证据:(a?B)(a?AB?B)?A.ab?ab?ab?ab?BA.注:请用文字表达公式2[例2]的计算:(a?B)(a?AB?B)22223222233322331解决方案:原始公式=[a?(?B)][A2?a?(?B)?(?B)2]?a3?(?b)3?a3?B3我们得到:【公式3】(a?b)(a2?ab?b2)?a3?b3(立方差公式)请注意三次和与三次差分公式之间的区别和联系。
初高中数学衔接教材已精修订

初高中数学衔接教材已 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-初高中数学衔接教材编者的话现有初高中数学教材存在以下“脱节”:1、绝对值型方程和不等式,初中没有讲,高中没有专门的内容却在使用;2、立方和与差的公式在初中已经删去不讲,而高中还在使用;3、因式分解中,初中主要是限于二次项系数为1的二次三项式的分解,对系数不为1的涉及不多,而且对三次或高次多项式的分解几乎不作要求;高中教材中许多化简求值都要用到它,如解方程、不等式等;4、二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中数学中函数、不等式常用的解题技巧;5初中教材对二次函数的要求较低,学生处于了解水平。
而高中则是贯穿整个数学教材的始终的重要内容;配方、作简图、求值域(取值范围)、解二次不等式、判断单调区间、求最大最小值、研究闭区间上的函数最值等等是高中数学所必须掌握的基本题型和常用方法;6、二次函数、二次不等式与二次方程之间的联系,根与系数的关系(韦达定理)初中不作要求,此类题目仅限于简单的常规运算,和难度不大的应用题,而在高中数学中,它们的相互转化屡屡频繁,且教材没有专门讲授,因此也脱节;7、图像的对称、平移变换初中只作简单介绍,而在高中讲授函数时,则作为必备的基本知识要领;8、含有参数的函数、方程、不等式初中只是定量介绍了解,高中则作为重点,并无专题内容在教材中出现,是高考必须考的综合题型之一;9、几何中很多概念(如三角形的五心:重心、内心、外心、垂心、旁心)和定理(平行线等分线段定理、平行线分线段成比例定理、射影定理、相交弦定理)初中早就已经删除,大都没有去学习;10、圆中四点共圆的性质和判定初中没有学习。
高中则在使用。
另外,象配方法、换元法、待定系数法、双十字相乘法分解因式等等等等初中大大淡化,甚至老师根本没有去延伸发掘,不利于高中数学的学习。
初高中数学衔接教材(已整理精品)

初高中数学衔接教材1.乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-;(2)完全平方公式 222()2a b a a b b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a a b b a b +-+=+;(2)立方差公式 2233()()a b a a b b a b-++=-; (3)三数和平方公式 2222()2()a b c a b c a b b c a c ++=+++++; (4)两数和立方公式 33223()33a b a a b a b b +=+++; (5)两数差立方公式 3322()33a b a a b a b b -=-+-.对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -. 解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +-=61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 解: 2222()2()8a b c a b c ab bc ac ++=++-++=.练 习1.填空:(1)221111()9423a b b a -=+( ); (2)(4m + 22)164(m m =++ ); (3 ) 2222(2)4(a b c a b c +-=+++ ).2.选择题:(1)若212x mx k ++是一个完全平方式,则k 等于 ( )(A )2m (B )214m (C )213m (D )2116m(2)不论a ,b 为何实数,22248a b a b +--+的值 ( )(A )总是正数 (B )总是负数 (C )可以是零 (D )可以是正数也可以是负数2.因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2). 说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1中的两个x 用1来表示(如图1.1-2所示).(2)由图1.1-3,得x 2+4x -12=(x -2)(x +6).(3)由图1.1-4,得 22()x a b xy aby -++=()()x ay x by --(4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.1-5所示).-1 1 x y 图1.1-5-1 -2 x x 图1.1-1-2 6 1 1 图1.1-3-ay -by x x 图1.1-4课堂练习一、填空题:1、把下列各式分解因式:(1)=-+652x x _________________________。
初高中数学衔接教材
初高中数学衔接教材前言二次函数、二次方程、二次不等式在高中数学中占有重要地位,是高中数学学习的基础,在高中学习中一直是“重头戏”,高中函数、三角、解析几何的许多内容都与二次函数、二次方程、二次不等式有关.高中数学中有许多重要的基础性知识应用广泛,如一元二次方程根的分布、一元三次方程与不等式、高次不等式、含参数的不等式解法、“打勾函数”、恒成立问题、存在性问题、分式函数的值域等,这些知识在初高中教材中又是不常见的,几乎没有,本书在这些方面作一些补充和尝试.本书可以作为初高中衔接的教材,也是高一新生的入门教材,在高一阶段也可作为校本教材使用.目 录第一章 一元二次方程 (1)1.1一元二次方程的判别式及其作用 ...............................................................1 1.2一元二次方程根的求解 ...........................................................................1 1.3 韦达定理及其应用 .................................................................................6 1.4一元三次方程根的求解 (8)第二章 二次函数 (12)2.1二次函数常见的三种表达形式 ………………………………………………………12 2.2 二次函数在特定区间内的值域(最值) …………………………………………………17 2.3函数m x a y -=(m a ,为常数,且0≠a )的图象和性质 …………………………21 2.4函数n x b m x a y -+-=(n m b a ,,,为常数,且0≠ab )的图象和性质 ……24 2.5 “耐克函数”a a x a x y ,0(>+=为常数)与a a xax y ,0(<+=为常数)的图象和性质 26第三章 一元二次不等式 (29)3.1一元二次不等式02>++c bx ax 或02<++c bx ax (其中0≠a )的解法 (29)3.2 含参数的一元二次不等式的解法 ……………………………………………………35 3.3 一元二次方程)0(02≠=++a c bx ax 根的研究 (39)第四章 高次不等式的解法 (47)第五章 简单分式函数的值域求法 (51)5.1 函数dcx bax y ++=(其中)0≠ac 的值域 (51)5.2 函数e dx cbx ax y +++=2(其中)0≠ad 的值域 (53)5.3 函数e dx cx b ax y +++=2(其中)0≠ac 与fex dx cbx ax y ++++=22(其中)0≠ad 的值域 55第六章 恒成立问题与存在性问题 (58)6.1恒成立问题与存在性问题两个常见结论 ......................................................58 6.2 二次函数的恒成立问题 (60)第一章 一元二次方程一元二次方程是高中数学学习的基础,在高中数学中占有十分重要的位置.一元二次方程根的求解、韦达定理、判别式、根的范围的分析等都是高中数学学习的基础.1.1一元二次方程的判别式及其作用对一般地,一元二次方程)0(02≠=++a c bx ax ,判别式ac b 42-=∆. 当0>∆时,方程有两个不等实根,当0=∆时,方程有两个相等实根, 当0<∆时,方程没有实数根.1.2一元二次方程根的求解一元二次方程根的求解常用三种办法:十字相乘法(因式分解),配方法,公式法. 1.2.1 十字相乘法(因式分解) 因式分解(分解因式),把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.因式分解法就是通过因式分解将一元二次方程化成0))((=++d cx b ax 的形式(注意方程右边一定是0)从而得出a b x -=或cdx -=.十字相乘法(因式分解)是解一元二次方程最常用的方法,应用最为广泛,一定要掌握,并多加练习, 但只适用于左边易分解而右边是零的一元二次方程 .例1.2.1解下列一元二次方程 :(1) 06722=++x x ;(2) 022=--x x . 解:(1) 应用十字相乘法. 把22x 拆成x 2和x , 把6拆成2和3 x 2 3 (也可以拆成1和6 , 2和3 的位置也可变化, 具体取哪一种,要看 x 2 十字相乘能否凑成一次项的系数), 如右图,然后再将x 2和2相乘得x 4, 将x 和3相乘得到x 3,最后将x 4和x 3加起来,看是不是等于式子中的一次项x 7,如果是,就OK 了.0)2)(32(=++x x , 从而得它的两个根为21-=x ,232-=x .(2) 应用十字相乘法化为0)1)(2(=+-x x ,得它的两个根为21=x ,12-=x .1.2.2配方法 先把方程化为形如c b a c b ax ,,()(2=+为常数,0≠a )的方程,再用直接开平方法得方程的解.配方法是解一元二次方程公式法的基础,没有配方法就没有公式法.例1.2.2 解一元二次方程:0262=--x x .解:由0262=--x x ,得11)3(2=-x ,得113±=x .1.2.3 公式法 公式法是解一元二次方程的通法,较配方法简单.当十字相乘法(因式分解)较困难时,是解一元二次方程最常用的方法.对一般地,一元二次方程)0(02≠=++a c bx ax ,判别式ac b 42-=∆.当0>∆时,方程有两个不等实根,aacb b x 242-±-=;当0=∆时,方程有两个相等实根,ab x 2-=; 当0<∆时,方程没有实数根.例1.2.3 解一元二次方程:0242=--x x . 解:,2,4,1-=-==c b a 024)2(14)4(2>=-⨯⨯--=∆,方程有两个不等实根:622244±=±=x .课后作业1.2分别解下列一元二次方程.1.(1)01322=++y y ;(2)01092=--x x ; (3)031032=++x x .2.(1) 0262=--x x ; (2) 01562=-+x x ; (3)061352=-+x x .3.(1)02452=--x x ; (2) 081032=-+x x ;(3)01272=++x x .4.(1)0622=--x x ; (2) 0862=-+x x ;(3)022=++x x .5.(1)0152=+-x x ; (2) 0632=--x x ;(3)02722=++x x .6..; ;0432)3(0523)2(023)1(222=--=++-=+-x x x x x x7..; ;0162)3(0126)2(02073)1(222=+-=--=-+x x x x x x8.(1) 06122=--x x ; (2) 0671122=--x x ; (3) 06122=+-x x .9.已知m 是实常数,解下列一元二次方程:(1) 0222=-+m mx x ; (2) 05161222=+-m xm x .1.3 韦达定理及其应用对一般地,一元二次方程)0(02≠=++a c bx ax ,当判别式042≥-=∆ac b 时,方程有两个实根21,x x ,则有ac x x a b x x =⋅-=+2121,.例 1.3.1 已知21,x x 是方程 07232=--x x 的两根,求: 2221)1(x x +;221)()2(x x -;21)3(x x -.解:由韦达定理37,322121-=⋅=+x x x x .则(1) 946)37(2942)(212212221=-⨯-=-+=+x x x x x x . (2) 221)(x x -988)37(4944)(21221=-⨯-=-+=x x x x .(3) 2232)(22121=-=-x x x x .例1.3.2 已知21,x x 是下列各方程的两实根, 分别求221)(x x -:)31(333)2(022)1(2222222±≠=--=++-k b kx x k x k x k )(;)( .解:(1) 由韦达定理1,)2(2212221=⋅+=+x x kk x x .则 221)(x x -4242221221)1(164)2(44)(k k k k x x x x +=-+=-+=.(2) 0)327(18)31(222=+-+-b kx x k ,由韦达定理13327,13182221221-+=⋅-=+k b x x k k x x ,则 221)(x x -222222222221221)13()39(1213)327(4)13(3244)(--+=-+--=-+=k k b b k b k k x x x x .课后作业1.31.已知21,x x 是方程 04322=-+x x 的两实根,求:2221)1(x x +;221)()2(x x -;21)3(x x -.2.已知21,x x 是方程 05232=++-x x 的两实根,求)1)(1(21--x x 的值.3.已知21,x x 是方程03)12(2=+-+x k x 的两实根,若+21x x 0)1)(1(21=--x x , 求k 的值 .4.已知方程 02=++c bx ax 的两实根为2,-3,解方程02=+-c ax bx .5.已知2,121==x x 是方程 0)1(2=+++b x ab ax 的两实根,求b a ,的值.6.已知21,x x 是方程 0542=+-m x x 的两实根,若0)2)(2(21=++x x , 求m 的值 .7.已知21,x x 是方程[]421422=-++)(k kx x 的两根, 求221)(x x -.8.已知21,x x 是方程 0722=+-x x λ的两实根,若51221<+x x x x , 求实数λ的取值范围 .9.已知21,x x 是方程 06)12(32=+-+x a x 的两不等实根,若 121<-x x , 求实数a 的取值范围 .1.4一元三次方程根的求解 1.4.1一元三次方程猜根法求解高中数学中, 一元三次方程根的求解, 主要采用先猜一个有理根 , 再进行因式分解法求解.因式分解法不是对所有的三次方程都适用,只对一些三次方程适用.对于大多数的三次方程,只有先猜出它的一个有理根,才能作因式分解.当然,因式分解的解法很简便,直接把三次方程降次.一般地, 对一个一元三次方程:0012233=+++a x a x a x a , 如果它有有理根nmx =(既约分数),其中Z n m ∈,, 且0≠n , 则m 是0a 的约数,n 是3a 的约数.例1.4.1 解一元三次方程:0563=+-x x .解:5,603==a a , 则0a 的约数有5,1±±=m , 3a 的约数有6,3,2,1±±±±=n , 若原方程有有理根,则有理根必为65,61,35,31,25,21,5,1±±±±±±±±=x , 先猜简单的1-=x 为它的根,则该一元三次方程可化为0)566)(1(2=+-+x x x ,由于方程05662=+-x x 无实根,从而得它只有一个实数根:1-=x .例1.4.2 解一元三次方程:0223=-+x x .解:对左边作因式分解,得0)22)(1(2=++-x x x , 得方程只有一个实数根:1=x . 例1.4.3 解一元三次方程:02223=+--a a a .解:先猜一个根1=a ,则化为0)2)(1(2=---a a a ,再因式分解可得三个实数根1,1,2-=a .1.4.2一元三次方程卡尔丹公式法求解(含复数根)方程03=++q px x 的三个根为(其中231iw +-=, i 为虚数单位) 332332127422742p q q p q q x +--+++-=;3322332227422742p q q w p q q w x +--⋅+++-⋅=;3323322327422742p q q w p q q w x +--⋅+++-⋅=.标准型一元三次方程023=+++d cx bx ax (其中R d c b a ∈,,,,且0≠a ),令aby x 3-=代入上式,可化为适合卡尔丹公式直接求解的特殊型一元三次方程03=++q py y .【卡尔丹判别法】 当Δ=(q/2)^2+(p/3)^3>0时,方程有一个实根和一对共轭虚根; 当Δ=(q/2)^2+(p/3)^3=0时,方程有三个实根,其中有一个两重根; 当Δ=(q/2)^2+(p/3)^3<0时,方程有三个不相等的实根.1.4.3一元三次方程盛金公式法求解盛金公式法求解一元三次方程,在这里不作介绍,有兴趣可上网查询.相关链接:/s5518/msgview-49671-5.html1.4.4 一元三次方程的根与系数的关系方程023=++++d cx bx ax (其中R d c b a ∈,,,,且0≠a )的三个根为1x ,2x ,3x ,则))()((32123x x x x x x a d cx bx ax ---=+++,展开即得abx x x -=++321, a c x x x x x x =++133221, ad x x x -=⋅⋅321.课后作业1.4分别解下列一元三次方程:1.(1) 04115223=+-+x x x ; (2) 01223=--x x ;2.(1) 01323=--x x ; (2)04323=+-x x .3.(1) 063223=++-x x x ; (2)062523=+--x x x .4.(1) 02323=--+x x x ; (2)027523=-+-x x x .5.(1) 03323=+--x x x ; (2)03103=--x x .6.(1) 015323=++-x x x ; (2)041919623=---x x x .7.(1) 0577223=+--x x x ; (2)06174323=+--x x x .8.(1) 01216311023=-++x x x ; (2) 03118423=+-+x x x .第二章 二次函数二次函数的三种表示方法、二次函数的图象和性质以及二次函数的简单应用是本节内容的重点.在高中数学中,经常采用区间来表示相应的实数值的集合.具体规定如下:()a ,∞-表示小于a 的实数的集合{}a x x <; ()∞+,a 表示大于a 的实数的集合{}a x x>;(]a ,∞-表示小于等于a 的实数的集合{}a x x≤;[)∞+,a 表示大于等于a 的实数的集合{}a x x ≥;()b a ,表示大于a 且小于b (其中a b >)的实数的集合{}b x a x<<;[]b a ,表示大于等于a 且小于等于b (其中a b >)的实数的集合{}b x a x ≤≤;[)b a ,表示大于等于a 且小于b (其中a b >)的实数的集合{}b x a x<≤; (]b a ,表示大于a 且小于等于b (其中a b >)的实数的集合{}b x a x≤<.2.1二次函数常见的三种表达形式2.1.1交点式:))((21x x x x a y --=,其中点)0,(,)0,(21x x 为该二次函数与x 轴的交点.在画交点式图象时采用描点法,一般应画出下列关键点: ①x 轴上的交点)0,(1x ,)0,(2x ;②y 轴上的交点),0(21x ax ;③顶点(横坐标为221x x x +=);④其它特殊点(例如1±=x 等).例2.1.1 画出下列二次函数的图象: (1))2)(1(+-=x x y ;(2))5)(2(21+-=x x y ;(3))3)(1(2++-=x x y . 解: (1) (2) (3)k h x a y +-=2)(,其中点),(k h 2.1.2顶点式:为该二次函数的顶点.要求能够熟练作出顶点式函数的图象,熟练说出图象的开口方向、对称轴、顶点坐标、单调性和函数的最大(小)值.二次函数k h x a y +-=2)(的图象开口由a 的正负决定:当0>a 时,开口向上;当0<a 时,开口向下.二次函数k h x a y +-=2)(的图象开口大小由a 决定:a 越大,开口越小;a 越小,开口越大.二次函数的单调性由a 的正负和对称轴决定:当0>a 时,开口向上时,在对称轴h x =的左侧(即h x <), 当x 增大时,y 随之减小(称之为单调递减,记为↓-∞),(h );在对称轴h x =的右侧(即h x >), 当x 增大时,y 随之增大(称之为单调递增,记为↑∞+),(h );当0<a 时,开口向下时,在对称轴h x =的左侧(即h x <), 当x 增大时,y 随之减小增大(称之为单调递增,记为↑-∞),(h );在对称轴h x =的右侧(即h x >), 当x 增大时,y 随之减少(称之为单调递减,记为↓∞+),(h );例2.1.2画出下列二次函数的图象, 并分别说出图象的开口方向、对称轴、顶点坐标、单调性和函数的最大(小)值:(1)2)1(2+-=x y ;(2) 1)1(2-+-=x y .解:(1)如图2.1.2(1),开口向上, 对称轴1=x , 顶点坐标)2,1(,↑∞+↓-∞),1()1,(,2m i n =y ,无最大.(2) 如图2.1.2(2),开口向下, 对称轴1-=x , 图2.1.2(1) 图2.1.2(2)顶点坐标)1,1(--,↓∞+-↑--∞),1()1,(,1max -=y ,无最小.2.1.3一般式:)0(2≠++=a c bx ax y .要研究函数)0(2≠++=a c bx ax y 的图象和性质,一般应熟练把它化为顶点式:k h x a y +-=2)(,写出它的对称轴a b x 2-=和顶点坐标)44,2(2ab ac a b --,转化为上面的顶点式类型.)0(2≠++=a c bx ax y 的图象与系数c b a ,,的关系:a 的正负由开口方向决定,当x0>a 时开口向上, 当0<a 时开口向下;b 的大小(正负)由对称轴abx 2-=和开口(a 的正负)联合决定;c 的大小(正负)由它的图象与坐标轴y 轴的交点),0(c 的位置决定 .如图 2.1.3,当判别式042>-=∆ac b 时, )0(2≠++=a c bx ax y 的图象与x 轴有两个不同的交点;当042=-=∆ac b 时,图象与x 轴有且只有一个公共点;当042<-=∆ac b 时,图象与x 轴没有公共点.当0>a 且判别式042<-=∆ac b 时,)0(2≠++=a c bx ax y 的图象恒在x 轴的上方.当0<a 且判别式042<-=∆ac b 时, )0(2≠++=a c bx ax y 的图象恒在x 轴的下方.图2.1.3(1)0,0>∆>a 图2.1.3(2)0,0=∆>a 图2.1.3(3)0,0<∆>a图2.1.3(4)0,0>∆<a 图2.1.3(5)0,0=∆<a 图2.1.3(6)0,0<∆<a例2.1.3把下列二次函数的一般式化为顶点式:(1)172-+=x x y ;(2)2522-+-=x x y ;(3)23212+-=x x y . 解:(1)45327(2-+=x y . (2)89)45(22+--=x y . (3)25)3(212--=x y .例2.1.4分别画出下列二次函数的图象, 并说出图象的开口方向、对称轴、顶点坐标、单调性和函数的最大(小)值:(1)342++=x x y ;(2) 452-+-=x x y .解:(1)1)2(2-+=x y ,开口向上, 对称轴2-=x ,顶点坐标)1,2(--, ↑∞+-↓--∞),2()2,(,1min -=y ,无最大.(2)49)25(2+--=x y ,开口向下, 对称轴25=x , 顶点坐标)49,25(,↓∞+↑-∞),25()25,(,49max =y ,无最小.例 2.1.5 已知函数a x a ax x f +-+=)()(312在[)∞+,1上单调递增, 求实数a 的取值范围.解:0=a 或⎪⎩⎪⎨⎧≤->,1213,0aa a 得a 的取值范围是10≤≤a .课后作业2.11.分别画出下列二次函数的图象: (1))2)(1(-+=x x y ;(2))2)(23(31+-=x x y ;(3))1)(12(-+-=x x y .2.画出下列二次函数的图象, 并分别说出图象的开口方向、对称轴、顶点坐标、单调性和函数的最大(小)值: (1)2)2(2--=x y ;(2) 5)2(2++-=x y ;(3)1)1(32+--=x y .3.把下列二次函数的一般式化为顶点式: (1) 33322-+-=x x y ; (2) 1532+-=x x y ; (3) x x y --=243.4.求下列函数的最大(或最小)值,并写出它的对称轴方程: (1) x x y 232--=; (2) 122-+=x x y .5.分别画出下列二次函数的图象, 并说出图象的开口方向、对称轴、顶点坐标、单调性和函数的最大(小)值. (1) 142--=x x y ; (2) 1522++-=x x y ; (3)1232-+=x x y .6.分别求出下列二次函数图象在x 轴、y 轴上的交点坐标,判断开口方向,写出对称轴方程、顶点坐标,求出其最大值(或最小值),并画出图象: (1) x x y 22+-= ; (2) 2432--=x x y .7.分别求出下列二次函数图象在x 轴、y 轴上的交点坐标,判断开口方向,写出对称轴方程、顶点坐标,求出其最大值(或最小值),并画出图象: (1) 12+--=x x y ; (2) 132-+-=x x y .8.求下列函数的最大(或最小)值,并写出它的对称轴方程: (1) ;122+-=ax x y (2) .()012≠-+-=a x ax y2.2 二次函数在特定区间内的值域(最值)二次函数在特定区间内的值域(最值)求解的步骤:①先画出原函数在实数集R上的图象;②再在①的基础上画出它在特定区间内的图象;③ 根据图象得出该二次函数在特定区间内的值域(最值).例2.2.1求下列二次函数在特定区间内的值域:(1))21(2≤≤-=x x y ;(2))2(32≥+-=x x y ;(3))12(122<<---=x x x y .解:(1)值域[]4,0. (2)值域]1,(--∞. (3)值域⎪⎭⎫⎢⎣⎡-9,89. 例2.2.2求二次函数)21(2)(2≤≤--=x ax x x f 的最小值.解:二次函数对称轴a x =.当1-<a 时,如图2.2.2(1),a f x f 21)1()(min +=-=; 当21≤≤-a 时,如图2.2.2(2),2min )()(a a f x f -==; 当2>a 时,如图2.2.2(3),a f x f 44)2()(min -==.图2.2.2(1) 图2.2.2(2) 图2.2.2(3) 例2.2.3求二次函数)2(4)(2+≤≤+-=a x a x x x f 的最大值. 解:二次函数对称轴2=x ,开口向下.当0<a 时,如图2.2.3(1),2max 4)2()(a a f x f -=+=;图2.2.3(1) 图2.2.3(2) 图2.2.3(3) 当20≤≤a 时,如图2.2.3(2),4)2()(max ==f x f ;当2>a 时,如图2.2.3(3),2max 4)()(a a a f x f -==.例 2.2.4 已知函数)0(3)12()(2≠--+=a x a ax x f 在区间⎥⎦⎤⎢⎣⎡-2,23上的最大值为1,求实数a 的值.解:由于二次函数的最值必在端点或对称轴处取得,先由158)2(=-=a f 得43=a ,由12343)23(=--=-a f 得310-=a , 由14)12(12)221(2=---=-aa a a a f 得223±-=a . 经经验得适合条件的43=a ,或223--=a . 课后作业2.21.分别画出下列函数的图象:(1) )1232->-=x x x y (;(2))21(22≤<-+-=x x x y ; (3))1,2(422-<>++-=x x x x y 或.(1) (2) (3) 2.分别画出下列函数的图象:(1) )0(13212≤++-=x x x y ; (2) )31(342≤<--=x x x y ; (3) )1(12->+--=x x x y .(1) (2) (3)3.求下列函数的值域:(1))11(12≤≤-++-=x x x y ; (2))421(142<≤--=x x x y ; (3))11(1622≤≤-+-=x x x y .4.若二次函数)31(3)(2≤≤-+-=x m x x x f 的最大值为2 ,求m 的值.5.若二次函数)0(152)(2m x x x x f ≤≤-+-=的最大值为817,求m 的取值范围.6.求下列函数的值域:(1)1424++-=x x y ;(2)124++=x x y .7.求函数)11(1324≤≤-+-=x x x y 的值域.8.求函数)3(42<≤-=x m x x y 的值域.9.求二次函数)21(12)(2≤≤-+-=x ax x x f 的最小值.10.求函数)20(122≤≤-+-=x ax x y 的值域.11.若函数)10(8512≤≤+++-=x a ax x y 的最大值为25,求实数a .12.若0>a ,函数)11(12≤≤-++--=x b ax x y 的最大值为0 ,最小值为-4,求实数b a , 的值.13.求函数)11(132+≤≤-+-=a x a x x y 的值域.14.已知21,x x 是方程0622=++-a ax x 的两实根, 求2221)1()1(-+-x x 的最小值.15.若函数)5(462+≤≤+-=a x a x x y 的最大值为20,求实数a 的值.16.若函数)10(2≤≤-+=x a x ax y 的最大值为817,求实数a 的值.2.3函数m x a y -=(m a ,为常数,且0≠a )的图象和性质2.3.1 函数x y =与函数x y =的图象关系.把函数x y =的图象在x 轴下方部分翻转到x 轴上方即得函数x y =的图象.2.3.2 函数x y =与函数m x y -=的图象关系.把函数x y =的图象向右(0>m )或向左()0<m 平移m 个单位即得函数m x y -=的图象.2.3.3 函数x y =与函数x a y =(0>a )的图象关系.把函数x y =的图象中的折线的倾斜度变化一下 即得函数x a y =(0>a )的图象.思考题:①函数x y =与函数x a y =(0<a )的图象关系;②函数m x y -=与函数m x a y -=的图象关系.例2.3.1 解不等式x x -≥32.解:法一 讨论法 0≥x 时,1,32≥-≥x x x ;0≤x 时,3,32-≤-≥-x x x ;综上所述,原不等式的解集是{}13≥-≤x x x 或.法二 图象法 在同一坐标系下画出函数x y 2= 与x y -=3的图象,由x x -=32得1=x ;由x x -=-32 得3-=x ;如右图,得不等式的解集是{}13≥-≤x x x 或.例2.3.2 解不等式22-≤x x .解:法一 讨论法 2≥x 时,,22-≤x x 得2-≤x 不合;20<≤x 时,,22x x -≤得32≤x ,此时,320≤≤x ;0<x 时,,22x x -≤-得2-≥x ,此时,02<≤-x ;综上所述,原不等式的解集是⎭⎬⎫⎩⎨⎧≤≤-322x x .法二 图象法 在同一坐标系下画出函数x y 2= 与2-=x y 的图象,由x x -=22得32=x ;由x x -=-22 得2-=x ;如右图,得不等式的解集是⎭⎬⎫⎩⎨⎧≤≤-322x x . 法三 平方法 两边平方得 22)2()2(-≤x x ,0)2()2(22≤--x x ,0)23)(2(≤-+x x ,得不等式的解集是⎭⎬⎫⎩⎨⎧≤≤-322x x .例 2.3.3 解下列不等式:(1) 5132<-≤x ; (2)235>-x . 解:(1)2135-≤-<-x 或5132<-≤x ,134-≤<-x 或633<≤x , 所以不等式的解集是)2,1[]31,34( --. (2)先化为253>-x ,253>-x 或253-<-x ,即73>x 或33<x ,所以不等式的解集是),37()1,(∞+∞- .例2.3.4 讨论函数1-=x y 与函数x a y =(a 为常数,且0≠a )图象的交点个数. 解:当0<a 时,如图2.3.3(1), 两图象交点0个;当0<a 时,如图2.3.3(1), 两图象交点0个;当10<<a 或1>a 时,如图2.3.3(2), 2.3.3(3) 两图象交点2个; 当1=a 时,如图2.3.3(4), 两图象交点1个.图2.3.3(1) 图2.3.3(2) 图2.3.3(3) 图2.3.3(4)课后作业2.31.分别画出下列函数的图象:(1) 3-=x y ; (2) 12+=x y .2.分别解下列不等式:(1) 3≥x ; (2)2<x .3.分别解下列不等式:(1) 221≤-<x ; (2)312>+x .4.分别解下列不等式:(1) 143<-x ; (2)352≥-x .5.分别解下列不等式:(1) 13+>x x ; (2)522-≥-x x .6.分别解下列不等式:(1) 123+≤-x x ; (2)x x -<+112.7.分别解下列不等式:(1) 113>+-x x ; (2)452≤-+x x .8.分别解下列不等式:(1) 212+>-x x ; (2) 113-≤+x x .9.解关于x 的不等式:a x x +>2(a 为常数).10.解关于x 的不等式:32-≥-x a x (a 为常数).11.解关于x 的不等式:a x x -<2(a 为常数,且0≠a ).2.4函数n x b m x a y -+-=(n m b a ,,,为常数,且0≠ab )的图象和性质例2.4.1 画出函数21-+-=x x y 的图象. 解:当2≥x 时,32-=x y ,当21<≤x 时,1=y ,当1<x 时,x y 23-=,如右图例2.4.2 画出函数21---=x x y 的图象. 解:当2≥x 时,1=y , 当21<≤x 时,32-=x y , 当1<x 时,1-=y ,如右图例2.4.3 画出函数212-+-=x x y 的图象. 解:当2≥x 时,43-=x y ,当21<≤x 时,x y =, 当1<x 时,x y 34-=,如右图例2.4.4 画出函数212---=x x y 的图象.解:当2≥x 时,x y =, 当21<≤x 时,43-=x y , 当1<x 时,x y -=,如右图思考题:函数n x b m x a y -+-=的图象如何画最简便?课后作业2.41.分别画出下列函数的图象:(1)21++-=x x y ; (2)3212-++=x x y .2.分别画出下列函数的图象:(1)12+--=x x y ; (2)x x y 343--=.3. 若不等式a x x ≥+-2对任意的实数x 恒成立,求实数a 的取值范围.4.若不等式a x x 232212++<+-对任意的实数x 恒成立,求实数a 的取值范围.5.若存在实数x ,使得不等式a x x >--3成立,求实数a 的取值范围.6. 分别画出下列函数的图象:(1)221-++=x x y ; (2)22+-=x x y .7.分别画出下列函数的图象:(1)13+-=x x y ; (2)x x y 22--=.8.若不等式a x x >+--214对任意的实数x 恒成立,求实数a 的取值范围.2.5 “耐克函数”a a x a x y ,0(>+=为常数)与a a xax y ,0(<+=为常数)的图象和性质 2.5.1 函数的图象与性质“耐克函数”a a xax y ,0(>+=为常数)的图象, 因它的图象像个勾形,又俗称"打图2.5(1) 图2.5(2)勾函数",也称为"双勾函数".如图2.5(1).函数a a xax y ,0(<+=为常数)在↑-∞)0,(,在↑∞+),0(,如图2.5(2).例2.5.1 求函数)0,21(2≠≤<-+=x x xx y 且的值域.解:如右图,可知函数的值域是()[)∞+-∞-,223, .例2.5.2 画函数xx y 2-=的图象. 解:由0=y 得2±=x ,函数在()↑∞+,0↑-∞)0,(,图象如右图.2.5.2 函数a a xax y ,0(<+=为常数)单调性的证明 先证明函数a a xax y ,0(<+=为常数)在()∞+,0单调递增.设021>>x x ,则212121221121))(()()(x x x x a x x x ax x a x y y --=+-+=-, 因为021>>x x ,所以021>x x ,021>-x x ;又0<a ,所以021>-a x x , 从而021>-y y ,即21y y >,由定义可知,函数a a xax y ,0(<+=为常数)在()∞+,0单调递增.思考题:你能证明函数a a xax y ,0(<+=为常数)在)0,(-∞单调递增吗?课后作业2.5分别求下列函数的值域: 1.(1) )4(9≥+=x x x y ; (2) )1(41-<+=x xx y .2.(1) )0,42(4≠≤<-+=x x x x y 且; (2) )21(13≥-<+=x x xx y 或.3.(1) )2(14>-+=x x x y ; (2) )0(34<--=x x xy .4.(1) )1(114≠-+=x x x y ; (2) 1(128<-+=x x x y ,且)21≠x5.(1) )3(234>--=x x x y ; (2) )0(314<--=x x xy .6.(1) 1522++=x x y ; (2) 2322++=x x y .7.xx y 5-=(1>x ).8.xx y -+=213(3≥x ).yx第三章 一元二次不等式3.1一元二次不等式02>++c bx ax 或02<++c bx ax (其中0≠a )的解法一元二次不等式的一般形式是02>++c bx ax 或02<++c bx ax (其中0≠a ) .解一元二次不等式,应结合对应的二次函数)0(2≠++=a c bx ax y 的图象进行记忆,必须熟练掌握.3.1.1如图 3.1.1(1),若判别式042>-=∆ac b ,设对应的一元二次方程02=++c bx ax 两个实根21,x x ,其中21x x <,则当0>a 时,不等式02>++c bx ax 的解集是{}12x x x x x <>或,不等式02<++c bx ax 的解集是{}21x x x x <<;如图3.1.1(2),当判别式042=-=∆ac b ,且0>a 时,不等式02>++c bx ax 的解集是⎭⎬⎫⎩⎨⎧-≠∈a b x R x x 2,且,不等式02<++c bx ax 的解集是∅;如图3.1.1(3),当判别式042<-=∆ac b ,且0>a 时,不等式02>++c bx ax 的解集是R,不等式02<++c bx ax 的解集是∅.图3.1.1(1)0>∆ 图3.1.1(2)0= 图3.1.1(3)0<∆3.1.2如图 3.1.2(1),若判别式042>-=∆ac b ,设对应的一元二次方程02=++c bx ax 两个实根21,x x ,其中21x x <,则当0<a 时,不等式02>++c bx ax 的解集是{}21x x x x <<,不等式02<++c bx ax 的解集是{}12x x x x x <>或;如图3.1.2(2),当判别式042=-=∆ac b ,且0<a 时,不等式02>++c bx ax 的解集是∅,不等式02<++cbxax的解集是⎭⎬⎫⎩⎨⎧-≠∈abxRxx2,且;如图3.1.2(3),当判别式042<-=∆acb,0<a时,不等式02>++cbxax等式02<++cbxax的解集是R.图3.1.2(1)0>∆图3.1.2(2)0=∆图3.1.2(3)0<∆思考题:不等式02≥++cbxax和02≤++cbxax的解集分别是什么?3.1.3一元二次不等式和一元二次方程都是一元二次函数的特殊情况.一元二次方程)0(2≠=++acbxax的根21,xx就是一元二次函数)0(2≠++=acbxaxy的图象与x轴交点的横坐标;一元二次不等式02>++cbxax的解就是一元二次函数)0(2≠++=acbxaxy的图象在x轴上方的点对应的横坐标;一元二次不等式02<++cbxax的解就是一元二次函数)0(2≠++=acbxaxy的图象在x轴下方的点对应的横坐标.一元二次不等式、一元二次方程和一元二次函数是密切联系的,应该进行联系记忆与应用.3.1.4解一元二次不等式02>++cbxax或02<++cbxax(其中0≠a) 的标准步骤是:①先求判别式acb42-=∆.当0>∆时, 求出对应的一元二次方程)0(2≠=++acbxax的两个实根21,xx;②画出二次函数的草图;③根据图像和不等式的类型得它的解集.例3.1.1 解下列一元二次不等式:(1)06722<+-x x ;(2) 0342>+-x x .解:(1) 062449>⨯⨯-=∆,对应方程06722=+-x x 的两个根为23,221==x x ,根据对应二次函数图象开口向上, 得不等式解集为⎭⎬⎫⎩⎨⎧<<223x x . (2)对应方程0342=+-x x 的两个根为3,121==x x ,根据对应二次函数图象开口向上, 得不等式解集为{}31><x x x 或 .例3.1.2 解下列一元二次不等式:(1)07522<+-x x ;(2)0752<-+-x x ; (3)05432≤++-x x .解:(1)03172425<-=⨯⨯-=∆,根据对应二次函数图象开口向上, 得解集为∅.(2) 03)7()1(425<-=-⨯-⨯-=∆,对应二次函数图象开口向下, 得解集为R.(3)对应方程05432=++-x x 的两个根为3192±=x ,根据对应二次函数图象开口向下, 得不等式的解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+≥-≤31923192x x x 或.例3.1.3 解一元二次不等式:5432≤-<-x x . 解:法一 54)2(32≤--<-x ,9)2(12≤-<x ,得123-<-≤-x 或321≤-<x ,从而得原不等式的解集是[)(]5,31,1 -.法二 先分别求出直线3-=y ,5=y 与函数x x y 42-=的图象的交点的横坐标.由542=-x x ,得5=x 或1-=x , 由342-=-x x ,得3=x 或1=x ,如图,由图象可知原不等式的解集是[)(]5,31,1 -.例 3.1.4 若一元二次不等式02≥++c bx ax 的解集是{}41≤≤x x ,解不等式02<++c ax bx .解:根据抛物线的开口与解集的关系可知0<a ,且对应的对应的一元二次方程02=++c bx ax 的两个实根4,121==x x ,依韦达定理得⎪⎩⎪⎨⎧===-=+,4,52121a c x x a b x x ⎩⎨⎧=-=⇒,4,5a c a b 代入得0452<++-a ax ax , 即有0452<--x x ,从而得不等式的解集是⎭⎬⎫⎩⎨⎧<<-154x x .课后作业3.1分别解下列一元二次不等式:1.(1)042>-x ; (2) 0232≤-x .2.(1)022>--x x ; (2) 0322≥+--x x .3.(1)0752>++x x ; (2)0432<+-x x ; (3)0162≥--x x .4.(1)0652>--x x ; (2) 0742>--x x .5.(1) 08232≤+--x x ; (2)0432≥-+-x x .6.(1)0682≤--x x ; (2) 0622≥+--x x ;7.(1) 01422>+-x x ; (2)091242>+-x x ; (3) 0962≤+-x x .8.(1)06722≥++x x ; (2) 0962≤+-x x .9.(1)0252042<+-x x ; (2) 0151482>+--x x .10.(1)01032>-+x x ; (2) 099102<-+x x .11.(1)0252≤++-x x ; (2)02322<-+-x x .12.(1)01232>+-x x ; (2)061362≤+-x x .13.(1)0362≤--x x ; (2) 0162492≥-+-x x .14.(1)02632>+-x x ; (2) 0622<-+x x .15.(1) 0532≤--x x ; (2)01692>+-x x .16.(1) 05442≥--x x ; (2) 04922>+-x x .17.(1)02322≤-+x x ; (2) 01262>--x x .18.(1)0141332≤+-x x ; (2)0313102≤++-x x .19.(1)514212<--≤x x ; (2)1332>+->x x .20.若一元二次不等式0)1(2>--+c x b x 的解集是{}31-<>x x x 或,求不等式022≥+-b x cx 的解.21.若一元二次不等式02>++c bx ax 的解集是⎭⎬⎫⎩⎨⎧<<2131x x,求不等式 02<++a bx cx 的解.3.2 含参数的一元二次不等式的解法解含参数的一元二次不等式,通常情况下,均需分类讨论(讨论应要求一步到位,避免讨论中又有讨论),讨论时考虑以下几个方面: ①一元二次不等式,对应的一元二方程是否有根,需要讨论方程的判别式Δ的正负或零;②一元二次不等式,对应的一元二方程有两不等实根,则需要讨论两根的大小,先考虑两根相等;③应对一元二次不等式的二次项的系数的正负进行分类讨论.例3.2.1已知a 为实常数,解下列关于x 的不等式:(1) 012>++ax x ; (2) 0)()2(222≥+-++a a x a x .解: (1) 42-=∆a , 由0=∆得2±=a . 当2±=a 时, 解集是⎭⎬⎫⎩⎨⎧-≠2a x x ; 当2>a 或2-<a 时, 不等式的解集是⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-+->---<242422a a x a a x x 或;当22<<-a 时, 解集是R .(2) 先用十字相乘法把不等式化为0)1)(2(≥++-a x a x ,由0)1(2>---a a得32->a . 当32->a 时,不等式的解集是⎭⎬⎫⎩⎨⎧≥--≤21a x a x x 或;当32-=a 时,不等式的解集是R ;当32-<a 时,不等式的解集是⎭⎬⎫⎩⎨⎧≤--≥21a x a x x 或. 例3.2.2已知a 为实常数,解下列关于x 的不等式:0122<+-x ax . 解: a 44-=∆,由0=∆得1=a .当0>∆且0≠a 时,对应方程的两个根aax -±=112,1. 当0<a 时, 不等式的解集是⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-->-+<a a x a a x x 1111或;当0=a 时, 不等式即为021<-x ,解集是⎭⎬⎫⎩⎨⎧>21x x ; 当10<<a 时, 不等式的解集⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-->>-+a a x a a x 1111;当1≥a 时, 不等式的解集是∅.例3.2.3 当a 为何值时, 关于x 的不等式01)3()9(22<-+--x a x a 对任意实数恒成立?解:当0392=+=-a a ,即3-=a 时,适合,3=a 显然不合;当092≠-a 时, 要使关于x 的不等式01)3()9(22<-+--x a x a 对任意实数恒成立,须满足⎩⎨⎧<-++=∆<-,0)9(4)3(,09222a a a 即⎪⎩⎪⎨⎧<<-<<-,593,33a a 得593<<-a ; 综上所述,a 的取值范围是593<≤-a .课后作业3.2已知: a 为实常数 , 分别解下列关于x 的不等式: 1.0)1(2<++-a x a x .2.0)33()2(2>+--+a x a x .3. 03222≤-+a ax x .4. 033)12(22<+-++a a x a x .6. 01242≤+-ax x .7. 01)2(2>++-x a x .8.0222>+-a x x .9.03)16(22>-++-a x a x .10.012>--+a x ax .11.012>+--a x ax .12.0)1(22≤++-a x a ax .13.02)12(2≥++-x a ax .15.022>--a x ax .16.01422≤+++a x ax .17.0)14(4)1(2>+-+-a ax x a .18.若关于x 的不等式06)1(22>++-x a ax 对任意实数恒成立,求a 的取值范围.19. 已知不等式0622<+-k x kx (常数0≠k ).(1) 如果不等式的解集是{}2,3->-<x x x 或,求常数k 的值; (2) 如果不等式的解集是实数集R ,求常数k 的取值范围.3.3 一元二次方程)0(02≠=++a c bx ax 根的研究一元二次方程)0(02≠=++a c bx ax 根的研究,一般有两种方法:一是利用韦达定理(只适用于两个根与0的关系),如类型1,2,3等;二是利用对应的二次函数c bx ax x f ++=2)(的四要素(开口, 对称轴, 判别式, 根的范围的端点值)进行研究, 如类型4,5,6,7,8,9,10,11,12等.类型1:两根均为不同正根⎝⎛>=>-=+>-=∆⇔.0,0,0421212a c x x a bx x ac b例3.3.1若关于x 的方程)0(01)21(2≠=+-+a x a ax 的两根均为正根,求a 的取值范围.解: ⎝⎛>=>-=+≥--=∆,01,012,04)21(21212a x x a a x x a a 即⎪⎪⎪⎩⎪⎪⎪⎨⎧><>-≤+≥,,或,或0021232232a a a a a 得232+≥a .类型2:两根均为不同负根⎝⎛>=<-=+>-=∆⇔.0,0,0421212a cx x a bx x ac b例3.3.2 若关于x 的方程)0(01)21(2≠=+-+a x a ax 的两根均为负根,求a 的取值范围.解: ⎝⎛>=<-=+≥--=∆.01,012,04)21(21212a x x a a x x a a 即⎪⎪⎪⎩⎪⎪⎪⎨⎧><<-≤+≥,,,或021*******a a a a 得2320-≤<a .y类型3:两根为一正一负021<=⇔acx x .例3.3.3 若关于x 的方程)0(01)21(2≠=+-+a x a ax 的两根异号,求a 的取值范围. 解:0121<=ax x 得0<a .类型4:两根均为大于m 的不同根⎪⎪⎩⎪⎪⎨⎧>⋅>->-=∆⇔.0)(,2,042m f a m a b ac b例3.3.4已知方程0)3(42=++-a x ax )0(≠a 有两个大于1的不等实根,求实数a 的取值范围.解:⎪⎩⎪⎨⎧>+-=∆>>-=0)3(416,12,0)12()1(a a aa a af ⎪⎪⎩⎪⎪⎨⎧<<-<<<>⇒,14,20,021a a a a 或得121<<a .类型5:两根均为小于m 的不同根⎪⎪⎩⎪⎪⎨⎧>⋅<->-=∆⇔.0)(,2,042m f a m a b ac b例 3.3.5 若关于x 的方程)0(0)3(42≠=++-a a x ax 的两根均小于2,求a 的取值范围.解:⎪⎩⎪⎨⎧>-=⋅<≥+-=∆0)55()2(220)3(416a a f a aa a ,,⎪⎩⎪⎨⎧<><≤≤⇒,或>,或1-40110,a a a a a 得04<≤a -.类型6:两根中一根小于m ,另一根大于m 0)(<⋅⇔m f a例3.3.6若关于x 的方程)0(0)3(42≠=++-a a x ax 的两根中一根小于-2,另一根大于-2 ,求a 的取值范围.解:0)115()2(<+=-a a af ,得0511<<-a . 类型7:两根均为),(n m 内的不同根()n m <⎪⎪⎩⎪⎪⎨⎧<><-<>-=∆⇔.,0)(0)(,2,042n af m af n a b m ac b例3.3.7已知方程015)34(22=++-x a x 的两不等根均在区间)5,2(内,求实数a 的取值范围.解:⎪⎪⎩⎪⎪⎨⎧>++-=>++-=<+<>-+=∆,015)34(550)5(015)34(28)2(,54342,0120)342a f a f a a ,(得⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧<<<<--<->,25,817,417454330243302a a a a a ,或 得实数a 的取值范围是81743302<<-a . 类型8:两根均为),(n m 外的不同 根()n m <⎩⎨⎧<<⇔.,0)(0)(n af m af例3.3.8若关于x 的方程)0(015)34(2≠=++-a x a ax 的两根中一根小于1,另一根大于3 , 求a 的取值范围.解:⎩⎨⎧<-=<-=0)36()3(0)312()1(a a af a a af ,⎩⎨⎧<><>⇒,或,或0204a a a a 得4>a 或0<a .类型9:两根中一根在),(11n m ,另一根在),(22n m (2211n m n m <≤<) ⎩⎨⎧<<⇔.0)()(,0)()(2211n f m f n f m f例3.3.9若关于x 的方程)0(015)34(2≠=++-a x a ax 的两根中一根在(1, 2),另一根在(3, 5) , 求a 的取值范围.解:⎩⎨⎧<⋅-=<--=05)36()3()3(0)49)(312()2()1(a a f f a a f f ,⎪⎩⎪⎨⎧<><<⇒,或,02449a a a 得449<<a .类型10:两根中至少有一根大于m⎪⎪⎩⎪⎪⎨⎧>⋅>->-=∆⇔0)(,2,042m f a m a b ac b 或0)(≤⋅m f a (等式应独立验证).例3.3.10已知方程0)3(42=++-a x ax 至少有一个大于1的实根,求实数a 的取值范围.类型11:两根中至少有一根小于m⎪⎪⎩⎪⎪⎨⎧>⋅<->-=∆⇔0)(,2,042m f a m a b ac b 或0)(≤⋅m f a (等式应独立验证). (此类问题也可转化为函数值域问题)例3.3.11已知方程0)3(42=++-a x ax 至少有一个小于2的实根,求实数a 的取值范类型12:两根中至少有一根在),(n m 内()n m <例3.3.12已知方程0)3(42=++-a x ax 至少有一根在)5,2(内,求实数a 的取值范课后作业3.31.若关于x 的方程03)12(2=-++-a x a x 有两个不等正根,求实数a 的取值范围.2.若关于x 的方程012=++-a ax x 有两个不等负根,求实数a 的取值范围.3.若关于x 的方程014)2(2=+++-a x x a 有一正一负的两根,求实数a 的取值范围.4.已知关于x 的方程023222=---a x ax 的一根大于1,另一根小于1,求实数a的取值范围.5.已知关于x 的方程0)320(2=-+-a ax x 的两个不同根21,x x 满足2131x x <<<,求实数a 的取值范围.6.已知关于x 的方程012)2(2=-+-+a x a x 的两个不同根21,x x 满足21021<<<<x x , 求实数a 的取值范围.7.已知关于x 的方程07)25()3(2=++-+x a x a 在()1,0和()3,2各有一根,求实数a 的取值范围.。
初高中数学衔接教材(已整理)
创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*初高中数学衔接教材编者的话现有初高中数学教材存在以下“脱节”:1、绝对值型方程和不等式,初中没有讲,高中没有专门的内容却在使用;2、立方和与差的公式在初中已经删去不讲,而高中还在使用;3、因式分解中,初中主要是限于二次项系数为1的二次三项式的分解,对系数不为1的涉及不多,而且对三次或高次多项式的分解几乎不作要求;高中教材中许多化简求值都要用到它,如解方程、不等式等;4、二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中数学中函数、不等式常用的解题技巧;5初中教材对二次函数的要求较低,学生处于了解水平。
而高中则是贯穿整个数学教材的始终的重要内容;配方、作简图、求值域(取值范围)、解二次不等式、判断单调区间、求最大最小值、研究闭区间上的函数最值等等是高中数学所必须掌握的基本题型和常用方法;6、二次函数、二次不等式与二次方程之间的联系,根与系数的关系(韦达定理)初中不作要求,此类题目仅限于简单的常规运算,和难度不大的应用题,而在高中数学中,它们的相互转化屡屡频繁,且教材没有专门讲授,因此也脱节;7、图像的对称、平移变换初中只作简单介绍,而在高中讲授函数时,则作为必备的基本知识要领;8、含有参数的函数、方程、不等式初中只是定量介绍了解,高中则作为重点,并无专题内容在教材中出现,是高考必须考的综合题型之一;9、几何中很多概念(如三角形的五心:重心、内心、外心、垂心、旁心)和定理(平行线等分线段定理、平行线分线段成比例定理、射影定理、相交弦定理)初中早就已经删除,大都没有去学习;10、圆中四点共圆的性质和判定初中没有学习。
高中则在使用。
另外,象配方法、换元法、待定系数法、双十字相乘法分解因式等等等等初中大大淡化,甚至老师根本没有去延伸发掘,不利于高中数学的学习。
新的课程改革,难免会导致很多知识的脱节和漏洞。
本书当然也没有详尽列举出来。
初高中数学衔接教材[新课标人教A版]
初高中数学衔接教材{新课标人教A版}第一部分如何做好初高中衔接 1-3页第二部分现有初高中数学知识存在的“脱节” 4页第三部分初中数学与高中数学衔接紧密的知识点 5-9页第四部分分章节讲解 10-66页第五部分衔接知识点的专题强化训练 67-100页第一部分,如何做好高、初中数学的衔接● 第一讲如何学好高中数学●初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿望。
但经过一段时间,他们普遍感觉高中数学并非想象中那么简单易学,而是太枯燥、乏味、抽象、晦涩,有些章节如听天书。
在做习题、课外练习时,又是磕磕碰碰、跌跌撞撞,常常感到茫然一片,不知从何下手。
相当部分学生进入数学学习的“困难期”,数学成绩出现严重的滑坡现象。
渐渐地他们认为数学神秘莫测,从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的兴趣。
造成这种现象的原因是多方面的,但最主要的根源还在于初、高中数学教学上的衔接问题。
下面就对造成这种现象的一些原因加以分析、总结。
希望同学们认真吸取前人的经验教训,搞好自己的数学学习。
一高中数学与初中数学特点的变化1 数学语言在抽象程度上突变。
不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很“玄”。
确实,初、高中的数学语言有着显著的区别。
初中的数学主要是以形象、通俗的语言方式进行表达。
而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等。
2 思维方法向理性层次跃迁。
高中数学思维方法与初中阶段大不相同。
初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步;因式分解先看什么,再看什么。
即使是思维非常灵活的平面几何问题,也对线段相等、角相等,分别确定了各自的思维套路。
因此,初中学习中习惯于这种机械的、便于操作的定势方式。
高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。
初高中数学衔接教材(人教版)
第一节 乘法公式、因式分解重点:和(差)的立方公式,立方和(差)公式及应用,十字相乘法,分组分解法,试根法难点:公式的灵活运用,因式分解一、 乘法公式(从项的角度变化) ac bc ab c b a c b a 222)(2222+++++=++(从指数的角度变化)(平方―――立方) 32232333)()()(b ab b a a b a b a b a +++==++=+3223333)(b ab b a a b a -+-=- ))(()33()(2222333b ab a b a ab b a b a b a +-+==+-+=+))((2233b ab a b a b a ++-=-▲符号的记忆,系数的区别; 注意观察结构特征,及整体的把握例(1):化简)1)(1)(1)(1(22+++--+x x x x x x (2)已知,012=-+x x 求证:x x x 68)1()1(33-=--+二、因式分解:将一个多项式化成几个整式的积的形式,与乘法运算是互逆变形。
初中学过的方法有:提取公因式法,公式法(平方差、完全平方、立方和、立方差等)(1)十字相乘法要将二次三项式x 2 + px + q 因式分解,就需要找到两个数a 、b ,使它们的积等于常数项q ,和等于一次项系数p , 满足这两个条件便可以进行如下因式分解,即x 2 + px + q = x 2 +(a + b)x + ab = (x + a)(x + b).用十字交叉线表示a +b (交叉相乘后相加)若二次项的系数不为1呢?对于二次三项式ax 2+bx+c (a ≠0),如果二次项系数a 可以分解成两个因数之积,即a=a 1a 2,常数项c 可以分解成两个因数之积,即c=c 1c 2,把a 1,a 2,c 1,c 2排列如下:a 1 +c 1a 2 +c 2a 1c 2 + a 2c 1 = a 1c 2 + a 2c 1按斜线交叉相乘,再相加,得到a 1c 2+a 2c 1,若它正好等于二次三项式ax 2+bx+c 的一次项系数b ,即a 1c 2+a 2c 1=b ,那么二次三项式就可以分解为两个因式a 1x+c 1与a 2x+c 2之积,即 ax 2+bx+c=(a 1x+c 1)(a 2x+c 2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-1- 数 学 目 录 阅读材料:1)高中数学与初中数学的联系 2)如何学好高中数学 3)熟知高中数学特点是高一数学学习关键 4)高中数学学习方法和特点 5)怎样培养好对学习的良好的习惯? 第 一 课: 绝对值 第 二 课: 乘法公式 第 三 课: 二次根式(1) 第 四 课: 二次根式(2) 第 五 课: 分式 第 六课: 分解因式(1) 第 七课: 分解因式(2) 第 八课:根的判别式 第 九课:根与系数的关系(韦达定理)(1) 第 十课:根与系数的关系(韦达定理)(2) 第 十一课:二次函数y=ax2+bx+c的图像和性质 第 十二课:二次函数的三种表示方式 第 十三课:二次函数的简单应用 第 十四课:分段函数 第 十五课: 二元二次方程组解法 第十六课: 一元二次不等式解法(1) 第十七课: 一元二次不等式解法(2) 第 十八课:国际数学大师陈省身 第 十九课: 中华民族是一个具有灿烂文化和悠久历史的民族 第二十课: 方差在实际生活中的应用 第二十一课: 平行线分线段成比例定理 第 二十二 课:相似形 第二十三课:三角形的四心 第二十四课:几种特殊的三角形 第二十五课:圆 第二十六课:点的轨迹 -2-
1.高中数学与初中数学的联系 同学们,首先祝贺你们进入高中数学殿堂继续学习。在经历了三年的初中数学学习后,大家对数学有了一定的了解,对数学思维有了一定的雏形,在对问题的分析方法和解决能力上得到了一定的训练。这也是我们继续高中数学学习的基础。 良好的开端是成功的一半,高中数学课即将开始与初中知识有联系,但比初中数学知识系统。高一数学中我们将学习函数,函数是高中数学的重点,它在高中数学中是起着提纲的作用,它融汇在整个高中数学知识中,其中有数学中重要的数学思想方法;如:函数与方程思想、数形结合思想、分类讨论思想、等价转化思想等,它也是高考的重点,近年来,高考压轴题都以函数题为考察方法的。高考题中与函数思想方法有关的习题占整个试题的60%以上。 1、 有良好的学习兴趣 两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。“好”和“乐”就是愿意学,喜欢学,这就是兴趣。兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。那么如何才能建立好的学习数学兴趣呢? (1)课前预习,对所学知识产生疑问,产生好奇心。 (2)听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。 (3)思考问题注意归纳,挖掘你学习的潜力。 (4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的? (5)把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能使对概念的理解切实可靠,在应用概念判断、推理时会准确。 2、 建立良好的学习数学习惯。 习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。 3、 有意识培养自己的各方面能力 数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别是,教师为了培养这些能力,会精心设计“智力课”和“智力问题”比如对习题的解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到自己各方面能力的全面发展。 -3-
2.如何学好高中数学 有许多初中阶段数学成绩很好的学生,升入高中后,感觉数学学习困难,他们在做习题或课外练习时,常常感到茫然,不知从何下手,因而,一个阶段后,数学成绩出现了严重的滑坡现象。出现这种现象的主要原因是什么呢?根据我多年的教学实践,主要是以下几个方面的原因: 教材的原因:初中数学教材,多数知识点与学生日常生活实际贴近,且初中教材遵循从感性认识上升到理性认识的规律,叙述方法比较简单,语言通俗易懂,直观性、趣味性强,结论容易记忆,应试效果也比较理想。 因而,学生一般容易接受、理解和掌握。相对而言,高中数学概念抽象,逻辑性强,教材叙述比较严谨、规范,知识难度加大,抽象思维和空间想象能力明显提高,且习题类型多,解题技巧灵活多变,计算相对复杂,体现了“起点高、难度大、容量多”的特点。这一变化,不可避免地造成了部分学生不适应高中数学学习,进而影响成绩的提高。 教法的原因:初中数学内容少,知识难度不大,教学要求较低,因而教学进度较慢,对于某些重点、难点,教师可以有充裕的时间反复讲解、多次演练,来弥补不足。但是进入高中后,数学教材内涵丰富,教学要求不断提高,教学进度相应加快,知识的重点和难点也不可能象初中那样通过反复强调来排难释疑,且高中教学往往通过设导、设问、设陷、设变,启发引导,开拓思路,然后由学生自己思考、去解答,比较注意知识的发生过程,倾重对学生思想方法的渗透和思维品质的培养。这使得刚入高中的部分学生不适应教学方法,听课时存在思维障碍,跟不上教师的思维,从而产生学习障碍,影响数学的学习。 学法的原因:在初中,部分学生习惯于围着教师转,独立思考和对规律进行归纳总结的能力较差,满足于知识的接受,缺乏学习的主动性。而到了高中,数学学习要求学生勤于思考,善于归纳总结规律,掌握数学思维方法,做到举一反三,触类旁通。但是,刚入学的高一新生,往往沿用初中时的学法,致使学习出现困难,甚至完成当天作业都有困难,更谈不上复习、总结等自我消化、自我调整了。 其它原因:学生学习数学的情感、兴趣、性格、意志品质的优劣、学习目的和学习态度如何,在某种意义上也能影响高一学生数学学习。 针对以上影响数学学习的原因,同学们应当怎样弥补这些不足呢?下面从高中学生数学学习的几个常规步骤方面谈一谈: 透彻领悟所学知识:高中数学的理论性、抽象性强,这就需要学生在知识的理解上下大功夫,不仅要弄清数学概念的实质,还要弄清概念的背景及其与其它概念的联系。例如初三学生都会解一元二次方程,我曾在高一新生中做过这种调查:为什么一元二次方程在△≥0时有根?答对率不到15%,说明了什么?学生对一元二次方程这个概念理解不透彻,相关知识缺乏联系。 科学地对待预习:对于一部分数学基础不太理想的同学,我主张课前预习。正确的方法是先不打开书,设想这节课的内容、结构,然后打开书;看到要对某个概念进行定义,马上盖上书,自己试着定义一下;看到一个定理的第一句叙述,再盖上书自己猜想他的结论;看到一个公式时,也是这样。看到例题时,先不要看解法,自己先在纸上把它做一遍,再与书上的解法进行比较、思考„„这样的预习,无论对知识的掌握,还是对思维的训练,都是有益的。 对于数学基础较好,思维反应敏锐的同学,我不主张课前预习。因为通过预习已经知道了课上要讲的内容、结论、推导过程、例题解法等,那么,课堂上还谈何“超前思维、真正做课堂的主人、在思维运动中训练思维呢?”这白白浪费了课堂上发展自己智力素质的机会。 提高听课效率:高中学习期间,学生在课堂的时间占了一大部分。因此听课效率如何,决定着学习的效果。我认为,提高听课效率应注意以下几个方面: -4-
首先应做好课前的物质准备和精神准备,上课时不至于出现书、本等物丢三落四的现象;上课前也不应做过于激烈的体育运动,以免上课后还气喘嘘嘘,不能平静下来。 其次就是听课。听课,重要的不是“听”,而是“想”。听是前提,随之是积极地思维。要全身心地投入课堂学习,做到耳到、眼到、心到、口到、手到。 耳到:就是专心听讲,听老师如何讲课,如何分析,如何归纳总结,另外,还要听同学们的答问,看是否对自己有所启发。 眼到:就是在听讲的同时看课本和板书,看老师讲课的表情,手势和演示实验的动作,生动而深刻的接受老师所要表达的思想。 心到:就是用心思考,跟上老师的教学思路,分析老师是如何抓住重点,解决疑难的。 口到:就是在老师的指导下,主动回答问题或参加讨论。 手到:就是在听、看、想、说的基础上划出教材的重点,记下讲课的要点以及自己的感受或有创新思维的见解。将听课中的要点、思维方法等作出简单扼要的记录,以便复习,消化,思考。 总之,“自己动手”的课堂听讲,是最科学的。 重视复习和总结: 1、及时做好复习. 听完课的当天,必须做好当天的复习。 复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书、笔记合起来,回忆上课时老师讲的内容,分析问题的思路、方法等(也可边想边在草稿本上写一写),尽量想得完整些。然后打开笔记与书本,对照一下还有哪些没记清的,把它补起来,就能使当天上课内容巩固下来,同时也检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。 2、做好单元复习。 学习一个单元后应进行阶段复习,复习方法同及时复习一样,采取回忆式复习,而后与书、笔记相对照,使其内容完善,而后应做好单元小节。 3、做好单元小结。 单元小结内容应包括以下部分: (1)本单元(章)的知识网络; (2)本章的基本思想与方法(应以典型例题形式将其表达出来); (3)自我体会:对本章内,自己做错的典型问题应有记载,分析其原因及正确答案,应记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。 做适量的练习题:有不少同学把提高数学成绩的希望寄托在大量做题上,这是不妥当的。事实上,要提高数学成绩,重要的不在做题多,而在于做题的效益要高。做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而加深了你的缺欠,因此,在准确地把握住基本知识和方法的基础上,做一定量的练习是必要的。而对于中档题,尢其要讲究做题的效益,即做题后有多大收获,这就需要在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过,把它们联系起来,你就会得到更多的经验和教训,更重要的是养成善于思考的好习惯,这将大大有利于你今后的学习。当然没有一定量(老师布置的作业量)的练习是不能形成技能的。 另外,无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这也是学好数学的重要方面。 课外要自学、研究:课外自学与研究的目的是扩大知识面,开阔眼界,进一步提高应用所学知识解决问题的能力。课外自学的范围不宜过大,应该围绕所学的教材进度看一些课外参考书及数学杂志,作一些较新鲜或难度较大的习题。课外自学应该是有计划地有节制地进行,不要因小失大,更不要影响其它学科的学习。