8数学试卷答题卡

合集下载

数学答题卡模板

数学答题卡模板

数学答题卡模板
简介
数学答题卡是用于学生在考试或作业中填写答案的表格。

本文档提供了一个数学答题卡模板,供教师和学生使用。

模板说明
数学答题卡模板包括以下几个部分:
1. 学生信息部分:学生在这一部分填写个人信息,如姓名、学号等。

2. 题目部分:学生将在指定的题目编号下填写答案。

每个问题的编号通常对应试卷或作业中的题号。

3. 答案部分:学生在相应的题目编号下填写答案。

如果问题有多个子问题,则可以在同一题目编号下填写多个答案。

使用方法
以下是使用数学答题卡模板的简单指南:
1. 打印模板:将模板打印出来,确保打印质量良好。

2. 填写学生信息:学生需要在学生信息部分填写个人信息,确保填写正确。

3. 阅读题目:学生需要仔细阅读试卷或作业中的题目,并记录下题目编号。

4. 填写答案:根据题目编号,在对应的答题区域填写答案。

如果问题有多个子问题,则可以在同一题目编号下填写多个答案。

注意事项
在使用数学答题卡模板时,请注意以下事项:
1. 请保持卡片干净整洁,避免涂改。

2. 确保使用正确的编号填写答案,以免混淆或丢失分数。

3. 使用清晰的书写和图形,以确保答案能够被正确解读。

总结
本文档提供了一个数学答题卡模板,用于学生在考试或作业中填写答案。

教师和学生可以根据需要打印模板,并按照指南使用。

---
注:这是一个数学答题卡模板,我们鼓励教师和学生根据学校或教育机构的具体要求进行个性化调整和改进。

广西桂林市2023-2024学年八年级上学期期末考试数学试卷(含解析)

广西桂林市2023-2024学年八年级上学期期末考试数学试卷(含解析)

八年级数学(考试用时120分钟,满分120分)注意事项:1.试卷分为试题卷和答题卡两部分,请在答题卡上作答,在本试题卷上作答无效.2.考试结束后,将本试卷和答题卡一并交回.3.答题前,请认真阅读答题卡上的注意事项.一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑)1. 下列实数中,属于无理数的是()A. B. 3 C. D.答案:A解析:解析:解:,3,,中,只有是无理数;故选A.2. 如果二次根式有意义,那么的值可以是()A. B. C. D. 1答案:D解析:解析:解:由题意,得:,故的值可以是1;故选:D.3. 分式和的最简公分母是()A. B. C. D.答案:C解析:解析:解:分式的分母分别为,,故最简公分母是:,故选C.4. 不等式的解集是()A. B. C. D.答案:D解析:解析:解:,∴,∴;故选:D.5. 下列命题是真命题的是()A. 相等的角是对顶角B. 两直线平行,同旁内角相等C. 两点之间直线最短D. 邻补角互补答案:D解析:解析:解:A、对顶角相等,但相等的角不一定是对顶角,原说法错误,故该选项是假命题;B、两直线平行,同旁内角互补,原说法错误,故该选项是假命题;C、两点之间线段最短,原说法错误,故该选项是假命题;D、邻补角互补是指两个相邻角,它们的互为补角,该说法正确,故该选项是真命题;故选:D.6. 下列计算正确的是()A. B.C. D.答案:C解析:解析:解:A、,此项错误;B、,此项错误;C、,此项正确;D、,此项错误;故选:C.7. 2023年10月26日17时46分,神舟十七号载人飞船与中国空间站交会对接的过程犹如“万里穿针”,其核心部件高精度“传感器加速度计”仅为探测器升空过程中最大加速度的0.0001量级,用科学记数法表示数0.0001是()A. B. C. D.答案:B解析:解析:解:;故选:B.8. 将质量分别为的物体放入天平中,两个天平均保持平衡,则下列不等关系成立的是()A. B. C. D.答案:A解析:解析:解:由题图知,,∴,∴.故选:A.9. 如图,已知,,,则的长是()A. B. C. D.答案:B解析:解析:解:∵,∴cm,cm,即cm,故选:B.10. 如图,都是的中线,连接的面积是,则的面积是()A. B. C. D.答案:C解析:解析:解:∵是的中线,∴,∵是的中线,∴为的中线,即,故选:C.11. 我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了下面的公式:如果一个三角形的三边长分别为,则该三角形的面积为.已知的三边长分别为,则的面积是()A. B. C. D.答案:C解析:解析:解:∵的三边长分别为,∴,故选:C.12. 如图,在中,的平分线交于点,点分别是上的动点,若的最小值为3,则的长是()A. 3B.C.D. 6答案:D解析:解析:解:作点P关于直线的对称点,连接交于点Q,如图:则,∵根据对称的性质知,∴,又∵是的平分线,点P在边上,点Q在直线上,∴,∴,∴点在边上.∵当时,线段最短.∵的最小值为3,即最短∵在中,∴故选D二、填空题(共6小题,每小题2分,共12分,请将答案填在答题卡上)13. 9的算术平方根是_____.答案:3解析:解析:∵,∴9算术平方根为3.故答案为:3.14. 将分式化简的结果是______.答案:解析:解析:解:,故答案为:.15. 三根长分别为的小木棒首尾相接构成一个三角形,则的取值范围是______.答案:解析:解析:由题意得:,即:,故答案为:.16. 计算:________.答案:解析:解析:.故答案:.17. 某校组织开展了“读书立志,强国有我”的知识竞赛,共20道竞赛题,选对得6分,不选或错选扣2分,得分不低于80分获奖,那么同学们要获奖至少应选对______道题.答案:15解析:解析:解::设应选对x道题,则不选或选错的有道,依题意得:,得:∴至少应选对15道题,故答案为:15.18. 如图①,点、分别为长方形纸带的边、上的点,,将纸带沿折叠成图②(为和的交点),再沿折叠成图③(为和的交点),则图③中的______(结果用含的代数式表示).答案:解析:解析:解:图①中四边形的长方形,,,,,此时图②中也有,由折叠性质得:图②中,,是的一个外角,,由折叠性质得:图③中,,,是的一个外角,,在四边形中,.故答案为:.三、解答题(本大题共8题,共72分,请将解答过程写在答题卡上)19 计算:.答案:3解析:解析:解:原式.20. 解分式方程:答案:x=1解析:解析:解:x-3+(x-2)=-3x+x=-3+3+22x=2x=1检验:当x=1时,左边=3=右边∴x=1是原方程的解21. 解不等式组:,并把解集在数轴上表示出来.答案:,图见解析解析:解析:解:由①,得:,由②,得:,在数轴上表示解集如图:∴不等式组的解集为:.22. 先化简,再求值:,请从0,1,2,3四个数中选取一个你喜欢的数代入求值.答案:,当时,原式(当时,原式)解析:解析:解:原式=由题意可知:,∴当时,原式(当时,原式)23. 如图,,,与相交于点.(1)求证:≌;(2)若,求的度数.答案:(1)证明见解析(2)解析:小问1详解:证明:在中,,∴;小问2详解:解:由(1)可得,∴,∵是的一个外角,∴,∴的度数为.24. 综合与实践(1)实践操作::已知:线段,如图1,作图:用尺规作图,作线段的垂直平分线与交于点.(只保留作图痕迹,不要求写出作法)发现:在直线上任取一点(点除外),连接后发现是______三角形.(2)类比探究::已知:如图2,在中,,作图:在线段上求作点,连接,使得和都是等腰三角形.(尺规作图,只保留作图痕迹,不要求写出作法)(3)推理证明::在(2)所作的图2中,求证:和都是等腰三角形.答案:(1)图见解析,等腰(2)图见解析(3)证明见解析解析:解析:解:如图,直线即为所求;∵直线垂直平分,∴,∴即为等腰三角形;故答案为:等腰;(2)如图,点即为所求;(3)延长至点,使,∵,,∴,∴,,∴,∴,又,∴,∴,∴,∴和都是等腰三角形.25. 为赓续中华优秀文脉,促进文明交流互鉴,某社区准备聘请甲、乙两支施工队参与布置一条长为1200米的宣传长廊.已知甲队单独布置完成工程比乙队单独布置完成工程多用10天,乙队每天布置的数量是甲队每天布置的数量的1.5倍.(1)求甲、乙两支施工队每天分别布置完成多少米宣传长廊?(2)现将宣传长廊布置任务交给乙队并要求25天内完成.乙队布置若干天后因接到其它布置任务,经社区同意将余下布置任务全部交给甲队完成.求在转交给甲队之前乙队至少要布置多少天才能按时完成全部任务?答案:(1)甲施工队每天分别布置40米宣传长廊,则乙两支施工队每天分别布置60米宣传长廊;(2)在转交给甲队之前乙队至少要布置10天,才能按照村委会要求按时完成解析:小问1详解:解:设甲施工队每天分别布置x米宣传长廊,则乙两支施工队每天分别布置米宣传长廊,根据题意得:,解得:,经检验,是所列方程的解,且符合题意,∴.答:甲施工队每天分别布置40米宣传长廊,则乙两支施工队每天分别布置60米宣传长廊;小问2详解:设在转交给甲队之前乙队施工y天,根据题意得:,解得:,∴y的最小值为10.答:在转交给甲队之前乙队至少要布置10天,才能按照村委会要求按时完成.26. 如图,已知:和都是等边三角形,点分别是上的点,点是线段延长线上的一点,连接.(1)如图1,求证:;(2)如图1,若,求证:;(3)如图2,在(2)的条件下,点是线段的中点,连接并延长至使得,交于,连接,求证:是等边三角形.答案:(1)见解析(2)见解析(3)见解析解析:小问1详解:证明:∵和都是等边三角形,∴,∴;小问2详解:∵和都是等边三角形,∴,∴,∴,∵,∴,∴,∴;小问3详解:∵为等边三角形,∴,连接,∵,∴,∴,∴,∴,∴,∴,由(2)知:,∴,又,∴,∴,∴,∴是等边三角形.。

初中数学答题卡(可编辑科打印)

初中数学答题卡(可编辑科打印)

●▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄●●●2016年秋期义务教育阶段质量监测七年级数学答题卡▄▄考生严禁填涂,监考教师填涂,缺考标志学校_ _ _ _ _条码区姓名_ _ _ _ _班级_ _ _ _ _注意事项1.答题前,考生先将自己的姓名、学校、班级用碳素笔或钢笔填写清楚。

2.客观题使用2B铅笔填涂,答题区域用碳素笔或钢笔书写,字体工整、笔迹清楚,按照题号顺序在各题目的答题区域内作答,超区域书写的答案无效;在草稿纸、试卷上答题无效。

3.保持卡面清洁,不要折叠、不要弄破,客观题修改时用橡皮擦干净,答题区域修改禁用涂改液和不干胶条。

4.正确的填涂示例:正确▄一.选择题:本大题共8个小题,每小题3分,共24分.▄▄客观题▄ 01 [A] [B] [C] [D] 02[A] [B] [C] [D] 03[A] [B] [C] [D] ▄ 04[A] [B] [C] [D] 05 [A] [B] [C] [D] 06 [A] [B] [C] [D] ▄ 07[A] [B] [C] [D] 08 [A] [B] [C] [D]▄▄▄ ▄ ▄▄▄ ▄ ▄▄ ▄ ▄ ▄二.填空题:本大题共8个小题,每小题3分,共24分.9. ;10. ;11.;12. ;13. ;14. ;15. ;16. .三.解答题:本大题共8个题,共72分.按照题号顺序在各题目的答题区域内作答,超区域书写的答案无效17.(每小题5分,共10分)(1)(2)18.(每小题5分,共10分)(1)(2)19.(本小题6分)解:20.(本小题6分)解:●●●●21.(本小题8分) 解:理由如下:∵ ∠DAE =∠E , ( )∴ ∥BE , ( ) ∴ ∠D =∠DCE . ( ) 又∵ ∠B =∠D , ( ) ∴ ∠B = . ( 等量代换 )∴ ∥ , ( 同位角相等,两直线平行 )22.(本小题10分) 解:23.(本小题10分) 解:24.(本小题12分)解:(21题图)D A B EF C (22题图)O B AE FCDB C A 图1 O MN CAB图3O MN图2 C A BOMN (24题图)。

2022-2023学年度第二学期八年级数学期末考试试题附答案

2022-2023学年度第二学期八年级数学期末考试试题附答案

八年级(下)期末试卷数学注意事项:本试卷共6页.全卷满分100分.考试时间为100分钟.考生答题全部答在答题卡上,答在本试卷上无效.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡相应位置上)1.化简4的结果是A.-2 B.2 C.-4 D.42.若分式xx-1有意义,则x的取值范围是A.x>0 B.x≠0 C.x>1 D.x≠1 3.在下列事件中,是必然事件的是A.3天内将下雨B.367人中至少有2人的生日相同C.买一张电影票,座位号是奇数号D.在某妇幼保健医院里,下一个出生的婴儿是女孩4.南京奥林匹克体育中心是亚洲A级体育馆、世界第五代体育建筑的代表.如图是体育馆俯视图的示意图.下列说法正确的是A.这个图形是轴对称图形,但不是中心对称图形B.这个图形是中心对称图形,但不是轴对称图形C .这个图形既是中心对称图形,也是轴对称图形D .这个图形既不是中心对称图形,也不是轴对称图形5.已知点P(x1,y1)、Q(x2,y2)在反比例函数y =-1x 的图像上,若y1<y2<0,则x1与x2的大小关系是 A .x1<x2B .x1>x2C .x1=x2D .无法确定6.如图,在四边形ABCD 中,AD//BC ,AD =6cm ,BC =12cm ,点P 从A 出发以1cm/s 的速度向D 运动,点Q 从C 出发以2cm/s 的速度向B 运动.两点同时出发,当点P 运动到点D 时,点Q 也随之停止运动.若设运动的时间为t 秒,以点A 、B 、C 、D 、P 、Q 任意四个点为顶点的四边形中同时存在两个平行四边形,则t 的值是 A .1B .2C .3D .4(第6题)(第4题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上) 7.化简:2aa2=▲.8.若式子x -2在实数范围内有意义,则x 的取值范围是▲.9.方程(x -1)-1=2的解是▲.10.某种油菜籽在相同条件下发芽试验的结果如下:这种油菜籽发芽的概率的估计值是▲.(结果精确到0.01) 11.比较大小:4-13▲12.(填“>”、“<”或“=”)12.如图,在△ABC 中,∠ACB =90°,AB =13cm ,BC =12cm ,点D 在边AB 上,AD =AC ,AE ⊥CD ,垂足为E ,点F 是BC 的中点,则EF =▲cm .13.如图,在△ABC 中,∠C =90°,△ABC 绕点A 按顺时针方向旋转26°得到△AED ,若AD//BC ,则∠BAE =(第13题)A BCD E(第14题) ABC D EF(第12题)14.如图,正比例函数y =k1x 与反比例函数y =k2x 的图像交于点A 、B ,若点A 的坐标为(1,2),则关于x 的不等式k1x >k2x 的解集是 ▲ .15.如图,在矩形纸片ABCD 中,AD =3,将矩形纸片折叠,边AD 、边点A 与点C 恰好落在同一点处, ▲ .16.如图,在△ABC 中,∠ACB =90°,AC =3,BC =4,将△ABC 绕点C 顺时针旋转90°得到△A'B'C ,若P 为边AB 上一动点,旋转后点P 的对应点为点P',则线段PP'长度的取值范围是 ▲ . 三、解答题(本大题共10小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(6分)计算:(第15题)(第16题)A C BB'A'(1)18×3÷2;(2)8+313-2+32.18.(5分)先化简,再求值:a2-1a2-2a +1÷a +1a -1-a -1a +1,其中a =-12.19.(8分)解方程:(1)9x =8x -1; (2)x -1x -2-3=1x -2.20.(6分)疫情期间,甲、乙两工厂每小时共做3500个KN95口罩,甲工厂做1600个KN95口罩所用的时间与乙工厂做1200个KN95口罩所用的时间相等.甲、乙两工厂每小时各做多少个KN95口罩?21.(6分)为了调查某校八年级360名学生的身高情况,随机抽取了20名男生与20名女生的身高数据,得到下列图表(图表中身高分组153cm~158cm 表示大于或等于153cm 而小于158cm ,其他类同):身高分组(cm ) 频数 153~158 1 158~163 2 163~168 6 168~173 7 173~178 3 178~183 1(1)写出本次调查的总体与样本;(2)根据调查结果,绘制抽取的40名学生的身高频数分布直方图; 身高/cm频数 014 12 10 8 6 4 2 163 183 153 178 158 173 168 153 cm~158 cm158 cm~163 cm168 cm~173 cm173 cm~178 cm 163 cm~168 cm八年级20名女生身高人数分布扇形统计图 八年级20名男生身高频数分布表(3)估计该校八年级学生身高在163cm~183cm范围内的学生人数.22.(5分)已知∠MAN,按要求完成下列尺规作图(不写作法,保留作图痕迹):(1)如图①,B、C分别在射线AM、AN上,求作□ABDC;(2)如图②,点O是∠MAN内一点,求作线段PQ,使P、Q(第22题图①)(第22题图②)23.(7分)在5×5的方格纸中,每个小正方形的边长为1,我们把三个顶点都是格点的三角形称为格点三角形.按要求完成下列问题:(1)在图①中,以AB为边画一个格点三角形,使其为等腰三角形;(2)在图②中,以AB为边画一个格点三角形,使其为钝角三角形且周长为6+32;(3)如图③,若以AB为边的格点三角形的面积为3,则这个三角形的周长为▲.24.(8分)如图,在菱形ABCD中,点O是对角线AC的中点,过点O的直线EF与边AD、BC交于点E、F,∠CAE=∠FEA,连接AF、CE.(1)求证:四边形AFCE是矩形;(2)若AB=5,AC=25,直接写出四边形AFCE的面积.EADO25.(8分)如图,点A 、B 是反比例函数y =8x的图像上的两个动点,过A 、B 分别作AC ⊥x 轴、BD ⊥x 轴,分别交反比例函数y =-2x 的图像于点C 、D ,四边形ACBD 是平行四边形.(1)若点A 的横坐标为-4.①直接写出线段AC 的长度; ②求出点B 的坐标;(2)当点A 、B 不断运动时,下列关于□ACBD 的结论:①□ACBD26.(9分)已知,四边形ABCD 是正方形,点E 是正方形ABCD 所在平面内一动点(不与点D 重合),AB =AE ,过点B 作DE 的垂线交DE 所在直线于F ,连接CF .提出问题:当点E 运动时,线段CF 与线段DE 之间的数量关系是否发生改变? 探究问题:(1)首先考察点E 的一个特殊位置:当点E 与点B 重合(如图①)时,点F 与点B 也重合.用等式表示线段CF 与线段DE 之间的数量关系: ▲ ;(第26题图①)C D AB (E 、F )(2)然后考察点E 的一般位置,分两种情况:情况1:当点E 是正方形ABCD 内部一点(如图②)时; 情况2:当点E 是正方形ABCD 外部一点(如图③)时.在情况1或情况2下,线段CF 与线段DE 之间的数量关系与(1)中的结论是否相同?如果都相同,请选择一种情况证明;如果只在一种情况下相同或在两种情况下都不相同,请说明理由;拓展问题:(3)连接AF ,用等式表示线段AF 、CF 、DF 三者之间的数量关系: ▲ .(第26题图②)FAC D EB(第26题图③)C D ABE F八年级(下)期末试卷 数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分. 一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每题2分,共20分) 7.2a8.x ≥29.x =1.510.0.9511.< 12.413.38 14.-1<x <0或x >115.6+2316.1225≤PP'≤42三、解答题(本大题共10小题,共68分)17.(6分) 解:(1)原式=54÷2…………………………………………………………………1分=27………………………………………………………………………2分=33.……………………………………………………………………3分 (2)原式=22+3-2+32……………………………………………………………5分=2+332.………………………………………………………………………6分18.(5分)解:原式=(a +1)(a -1)(a -1)2×a -1a +1-a -1a +1……………………………………………………2分 =1-a -1a +1=2a +1.…………………………………………………………………………3分当a=-12时,原式=2-12+1=4.………………………………………………………5分19.(8分)解:(1)方程两边同乘x(x-1),得9(x-1)=8x.………………………………………………………2分解这个整式方程,得x=9.………………………………………………………………3分检验:当x=9时,x(x-1)≠0,x=9是原方程的解.…………………………4分(2)方程两边同乘(x-2),得(x-1)-3(x-2)=1.………………………………………………6分解这个整式方程,得x=2.………………………………………………………………7分检验:当x=2时,x-2=0,x=2是增根,原方程无解.………………………8分20.(6分)解:设甲工厂每小时做x个KN95口罩.根据题意,得1600x=12003500-x,……………………………………………………………2分解这个方程,得x=2000.…………………………………………………………………4分经检验,x=2000是所列方程的解.当x=2000时,3500-x=1500.…………………………………………………………5分答:甲、乙两工厂每小时各做2000个、1500个KN95口罩.………………………6分21.(6分)解:(1)某校八年级360名学生的身高情况的全体是总体;抽取的20名男生与20名女生的身高情况是总体的一个样本;……………………………………………2分(2)如图所示:…………………………………………………………………………4分(3)(14+11+5+1)÷40×360=279(人)答:估计该校八年级学生身高在163cm~183cm范围内的学生人数约为279人.………………………………………………………………………………………6分22.(解四所(所求.………………………………………………………5分(第22题图①)(第22题图②)23.(7分)解:(1)如图①所示;(画出一个符合要求的三角形即可)……………………………2分(2)如图②所示;(画出一个符合要求的三角形即可)………………………………4分(3)32+10+2,42+25或32+34+2.……………………………………7分(第23题图①)AB(第23题图②)AB24.(8分)(1)证明∵四边形ABCD 是菱形, ∴AE//CF , ∴∠AEO =∠CFO , ∵点O 是AC 的中点, ∴OA =OC =12AC ,∵∠AOE =∠COF , ∴△AOE≌△COF .………………………………………………………………………3分∴OE =OF =12EF ,∵OA =OC , ∴四边形AFCE是平行四边形,…………………………………………………………4分∵∠OAE =∠AEO , ∴OA =OE , ∴AC =EF , ∴□AFCE是矩DAOE(第24题)形.………………………………………………………………………6分(2)8.……………………………………………………………………………………8分 25.(8分)解:(1)①AC的长度为2.5;……………………………………………………………2分②设点B 的横坐标为a . ∵BD ⊥x 轴, ∴xB =xD =a ,∵点B 、D 分别在反比例函数y =8x 、y =-2x 的图像上,∴yB =8a ,yD =-2a ,∴BD=10a,………………………………………………………………………………4分 ∵四边形ACBD 是平行四边形, ∴AC=BD=2.5,…………………………………………………………………………5分∴10a=2.5, 解这个方程,得a =4,经检验,a=4是原方程的解,∴点B的坐标为(4,2).…………………………………………………………………6分(2)②⑤.…………………………………………………………………………………8分26.(9分)解:(1)DE=2 CF;……………………………………………………………………3分(2)在情况1与情况2下都相同.……………………………………………………4分选择情况1证明:如图①,设BC与DF的交点为O,连接BE,过C作CG⊥CF 交DF于G.∵四边形ABCD是正方形,∴∠DAB=∠BCD=90°,AB=BC=CD=AD=AE,∵BF⊥DF,∴∠BFD=90°,∴∠CBF+∠BOF=∠CDF+∠COD=90°,∵∠BOF=∠COD,∴∠CBF=∠CDF,∵CG⊥CF,∴∠FCG=90°,FA CDEBG(第26题图①)O∴∠BCF +∠GCO =∠DCG +∠GCO =90°, ∴∠BCF =∠DCG , ∴△BCF≌△DCG ,……………………………………….………………………………5分∴BF =DG ,CF =CG , ∵AB =AD =AE ,∴∠AED =∠ADE =90°-12∠DAE ,∠AEB =∠ABE =90°-12∠BAE=45°+12∠DAE ,∴∠BEF =180°-∠AED -∠AEB =45°, ∴∠BEF =∠EBF =45°, ∴BF=EF ,……………………………………………….………………………………6分∴EF =DG ,∴DE =DG +EG =EF +EG =FG , ∵∠FCG =90°,CF =CG , ∴FG =2CF ,∴DE=2CF .…………………………………………….………………………………7分选择情况2证明:如图②,设BF 与CD 的交点为O ,连接BE ,过C 作CG ⊥CF交DF 延长线于G .∵四边形ABCD 是正方形,∴∠DAB =∠BCD =90°,AB =BC =CD =AD =AE , ∵BF ⊥DF , ∴∠BFD =90°,∴∠CBF +∠BOC =∠CDF +∠DOF =90°, ∵∠BOC =∠DOF , ∴∠CBF =∠CDF , ∵CG ⊥CF , ∴∠FCG =90°,∴∠BCO +∠DCF =∠FCG +∠DCF , ∴∠BCF =∠DCG , ∴△BCF≌△DCG ,……………………………………….………………………………5分∴BF =DG ,CF =CG , ∵AB =AD =AE ,∴∠AED =∠ADE =90°-12∠DAE ,∠AEB =∠ABE =90°-12∠BAE=45°-12∠DAE ,∴∠BEF =∠AED -∠AEB =45°, ∴∠BEF =∠EBF =45°,O G(第26题图②)CDABEF∴BF=EF,……………………………………………….………………………………6分∴EF=DG,∴DE=EF-DF=DG-DF=FG,∵∠FCG=90°,CF=CG,∴FG=2CF,∴DE=2 CF.…………………………………………….………………………………7分(3)AF+CF=2DF或|AF-CF|=2 DF.………….…………………………………9分。

数学试卷答题卡小学生专用

数学试卷答题卡小学生专用

班级:_______ 班姓名:_______ 学号:_______考试日期:_______年_______月_______日考试时间:_______时_______分---一、选择题(每题2分,共20分)1. 下列哪个数是2的倍数?A. 3B. 4C. 5D. 62. 小明有5个苹果,小红比小明多3个苹果,小红有多少个苹果?A. 2B. 5C. 8D. 103. 一个长方形的长是8厘米,宽是4厘米,这个长方形的周长是多少厘米?A. 12B. 16C. 20D. 244. 下列哪个图形是轴对称图形?A. 正方形B. 三角形C. 梯形D. 圆形5. 2.5千米等于多少米?A. 2500B. 2550C. 2600D. 26506. 小华有3个红球和4个蓝球,她把这些球都放在一个篮子里,篮子里一共有多少个球?A. 3B. 4C. 7D. 87. 下列哪个数是质数?A. 10B. 11C. 12D. 138. 一辆汽车从甲地开往乙地,每小时行驶60千米,3小时后到达。

甲地到乙地的距离是多少千米?A. 180B. 200C. 210D. 2209. 小明有5个苹果,小华有3个苹果,他们一共有多少个苹果?A. 8B. 9C. 10D. 1110. 一个圆形的半径是3厘米,这个圆形的面积是多少平方厘米?(π取3.14)A. 28.26B. 30.28C. 31.42D. 32.54---二、填空题(每题2分,共20分)11. 7 + 8 = _______12. 100 - 35 = _______13. 4 × 5 = _______14. 8 ÷ 2 = _______15. 0.5 + 0.3 = _______16. 1.2 - 0.4 = _______17. 3 × 7 = _______18. 12 ÷ 3 = _______19. 1000 ÷ 10 = _______20. 4.8 × 2 = _______---三、解答题(每题10分,共30分)21. 小华买了一些铅笔,每支铅笔2元,她买了10支铅笔,一共花了多少钱?22. 一个长方形的长是12厘米,宽是6厘米,求这个长方形的面积。

初二数学试卷含答题卡

初二数学试卷含答题卡

姓名:_____________________________ 班级:_____________________________ 学号:_____________________________一、选择题(每题3分,共30分)1. 下列数中,是质数的是()A. 14B. 15C. 17D. 182. 下列各数中,能被3整除的是()A. 25B. 27C. 29D. 313. 若a、b是实数,且a+b=0,则a、b互为()A. 相等B. 相反数C. 正数D. 负数4. 下列各图中,能表示y=2x-1的函数图象的是()(图中选项A、B、C、D分别代表不同的函数图象)5. 下列代数式中,同类项是()A. 3x^2和5x^2B. 2xy和5y^2C. 4a^3b和3ab^2D. 7mn和8mn6. 一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的体积是()A. 12cm^3B. 24cm^3C. 36cm^3D. 48cm^37. 下列等式中,正确的是()A. (a+b)^2 = a^2 + b^2B. (a-b)^2 = a^2 - b^2C. (a+b)^2 = a^2 + 2ab + b^2D. (a-b)^2 = a^2 - 2ab + b^28. 下列三角形中,是直角三角形的是()(图中选项A、B、C、D分别代表不同的三角形)9. 若x=3,则代数式2x-5的值是()A. 1B. 2C. 3D. 410. 下列函数中,是反比例函数的是()A. y=2x+3B. y=3/xC. y=x^2D. y=x^3二、填空题(每题5分,共20分)11. 若x=2,则x^2-3x+2的值为__________。

12. 下列数中,绝对值最小的是__________。

13. 若a=5,b=-3,则a^2+b^2的值为__________。

14. 一个圆的半径为r,则它的面积是__________。

三、解答题(每题10分,共30分)15. 解方程:3x-2=5。

2021年八省联考数学试题及答案(含答题卡)


由 z1z2 = z1z3 可得 z1(z2 − z3 ) = 0 ,因为 z1 0 ,所以 z2 − z3 = 0 ,即 z2 = z3 ,B 正确;
因为 z1z2 =| z1 || z2 | , z1z3 =| z1 || z3 | ,而 z2 = z3 ,所以| z2 |=| z3 |=| z2 | ,所以 z1z2 = z1z3 ,C 正确;
k2 +1
直线 AC : y − 2 = − 3 ( x − 2) .
( ) 联立
y y
−2 2=
= 2x
3(x − 2)
,得 3x2 +
4
3 −14
x +16 − 8
3 =0,

xA xB
=
16
−8 3
3
,由
xA
=
2得
xB
=
8−4 3
3 ,故 yB = 2
3 −6 , 3
( ) 联立
y y
3. 关于 x 的方程 x2 + ax + b = 0 ,有下列四个命题:甲: x = 1 是该方程的根;乙: x = 3 是该方程的根;
丙:该方程两根之和为 2 ;丁:该方程两根异号.如果只有一个假命题,则该命题是( )
A. 甲
B. 乙
C. 丙
D. 丁
【答案】A
解法一:若甲是假命题,则乙丙丁是真命题,则关于 x 的方程 x2 + ax + b = 0 的一根为 3 ,
在 如下图所示:因为椭圆
x2 + m2 +1
y2 m2
= 1(m
0) 的上顶点为点 A ,焦点为 F1 、 F2 ,所

人教版8年级数学试卷及答案

βα2022年春季期末质量监测八年级数学试卷(本卷共三道大题,26个小题。

时间:120分钟,满分:150分)注意事项:1.试题的答案用蓝黑墨水钢笔或签字笔书写在答题卷上,不得在试卷上直接作答。

2. 答题前将答题卡上密封线内的各项内容写清楚。

3. 考试结束,由监考人员将答题卡收回,试卷不回收,由所在学校保存。

一、选择题(本题共48分,每小题4分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1中字母x 的取值范围是( ) A .x <3 B .x ≤3 C .x >3 D .x ≥32.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形,但不是中心对称图形的为( )A B C D3.直角三角形中,两直角边分别是12和5,则斜边上的中线长是( ) A .34B .26C .8.5D .6.54.下列因式分解正确的是( )A.x 2-xy+x=x(x-y);B.a 3+2a 2b+ab 2=a(a+b)2;C.x 2-2x+4=(x-1)2+3;D.ax 2-9=a(x+3)(x-3). 5.下列各式中,运算正确的是( ) A2=- B= C4= D.2=6.如图,一个等边三角形纸片,剪去一个角后得到一个x xy O 2212y b=-+1y ax=P四边形,则图中∠α+∠β的度数是( )A .180°;B .220°;C .240°;D .300°.7.如果点A (1,m )与点B (3,n )都在直线21y x =-+上,那么m 与n 的关系是( ) A .m n >B .m n <C .m n =D .不能确定8.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择( ) A .甲B .乙C .丙D .丁9.在四边形ABCD 中,∠A =∠B =∠C = 90°,如果再添加一个条件,即可推出该四边形是正方形,这个条件可以是( ) A .= CDC .∠D = 90° D .AD = BC10A .1.x ; D .x 2。

(完整word版)中考数学答题卡

滨州市二0一六年初中学生学业考试数学模拟试卷答题卡姓名 座号准考证号请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效。

八年级(上)期末数学试卷 (含答题卡)

2017-2018学年山西省太原市八年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)等于()A.2B.﹣C.2D.﹣22.(3分)已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则正比例函数的解析式为()A.y=2x B.y=﹣2x C.y=x D.y=﹣x 3.(3分)在平面直角坐标系中,点(3,﹣2)关于y轴对称的点的坐标是()A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)4.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=55°,点D是AB延长线上的一点.∠CBD的度数是()A.125°B.135°C.145°D.155°5.(3分)若x,y满足方程组,则x+y的值为()A.3B.4C.5D.66.(3分)如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3).有下列结论:①关于x的方程kx+b=0的解为x=2;②关于x的方程kx+b=3的解为x=0;③当x>2时,y<0;④当x<0时,y<3.其中正确的是()A.①②③B.①③④C.②③④D.①②④7.(3分)某单位要购买一批直径为10mm 的螺丝,先从甲、乙、丙、丁四个加工厂生产的同类螺丝中各随机抽取20 个进行测量.下表记录了这些螺丝直径的平均数和方差:根据表中数据,应选择购买的厂家是()A.甲B.乙C.丙D.丁8.(3分)如图,在△ABC中,点M是AC边上一个动点.若AB=AC=10,BC=12,则BM的最小值为()A.8B.9.6C.10D.4 59.(3分)下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息可得,下列结论正确的是()A.甲队员成绩的平均数比乙队员的大B.乙队员成绩的平均数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大10.(3分)从A地到B地有一段上坡路和一段平路,如果车辆保持上坡每小时行驶30km,平路每小时行驶50km,下坡每小时行驶60km,那么车辆从A地到B地需要48分钟,从B地到A地需要27分钟,问A,B两地之间的坡路和平路各有多少千米?若设A,B两地之间的坡路为xkm,平路为ykm,根据题意可列方程组为()A.B.C.D.二、填空题(本大题含5个小题,每小题2分,共10分)把答案写在题中横线上.11.(2分)把化成最简二次根式为.12.(2分)如图是一块四边形绿地,其中AB=4m,BC=13m,CD=12m,DA=3m,∠A=90°,这块绿地的面积为m2.13.(2分)如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则方程组的解是.14.(2分)某通讯公司的4G上网套餐每月上网费用y(单位:元)与上网流量x(单位:兆)的函数关系的图象如图所示,若该公司用户月上网流量超过500兆以后,每兆流量的费用为0.28元,则图中a的值为.15.(2分)△ABC中,AB=15,AC=13,BC边上的高AD=12,则BC的长为.三、解答题(本大题含8个小题,共60分)解答应写出必要的文字说明、演算步骤或推理过程.16.(8分)计算:(1);(2)(2+)×﹣12.17.(5分)解方程组:.18.(6分)如图,在△ABC中,∠BAC=40°,∠C=70°,BD平分∠ABC,且∠ADB=35°,求证:AD∥BC.19.(6分)某校招聘一名数学老师,对应聘者分别进行了教学能力、科研能力和组织能力三项测试,其中甲、乙两名应聘者的成绩如右表:(单位:分)(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?(2)根据实际需要,学校将教学、科研和组织能力三项测试得分按5:3:2 的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?20.(6分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔和3个B种魔方共需95元;购买3个A种魔方所需款数恰好等于购买5个B 种魔方所需款数,求这两种魔方的单价.21.(8分)甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OPQ和线段EF,分别表示甲、乙两人与A地的距离y甲、y乙与他们所行时间x(h)之间的函数关系,且OP与EF相交于点M.(1)求线段OP对应的y甲与x的函数关系式(不必注明自变量x的取值范围);(2)求y乙与x的函数关系式以及A,B两地之间的距离;(3)请从A,B两题中任选一题作答,我选择题.A.直接写出经过多少小时,甲、乙两人相距3km;B.设甲、乙两人的距离为s(km),直接写出s与x的函数关系式,并注明x的取值范围.22.(9分)问题情境:已知:如图1,直线AB∥CD,现将直角三角板△PMN放入图中,其中∠MPN=90°,点P始终在直线MN右侧.PM交AB于点E,PN 交CD于点F,试探究:∠PFD与∠AEM的数量关系.(1)特例分析:如图2,当点P在直线AB上(即点E与点P重合)时,直接写出∠PFD与∠AEM的数量关系,不必证明;(2)类比探究:如图1,当点P在AB与CD之间时,猜想∠PFD与∠AEM的数量关系,并说明理由;(3)拓展延伸:如图3,当点P在直线AB的上方时,PN交AB于点H,其他条件不变,猜想∠PFD与∠AEM的数量关系,并说明理由.23.(12分)如图1,平面直角坐标系中,直线y=kx+b与x轴交于点A(6,0),与y轴交于点B,与直线y=2x交于点C(a,4).(1)求点C的坐标及直线AB的表达式;(2)如图2,在(1)的条件下,过点E作直线l⊥x轴于点E,交直线y=2x于点F,交直线y=kx+b于点G,若点E的坐标是(4,0).①求△CGF的面积;②直线l上是否存在点P,使OP+BP的值最小?若存在,直接写出点P的坐标;若不存在,说明理由;(3)若(2)中的点E是x轴上的一个动点,点E的横坐标为m(m>0),当点E在x轴上运动时,探究下列问题:请从A,B两题中任选一题作答,我选择题:A.当m取何值时,直线l上存在点Q,使得以A,C,Q为顶点的三角形与△AOC 全等?请直接写出相应的m的值.B.当△BFG是等腰三角形时直接写出m的值.2017-2018学年山西省太原市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)等于()A.2B.﹣C.2D.﹣2【解答】解:∵2的立方等于8,∴8的立方根等于2,即等于2.故选:C.2.(3分)已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则正比例函数的解析式为()A.y=2x B.y=﹣2x C.y=x D.y=﹣x【解答】解:把点(1,﹣2)代入y=kx得k=﹣2,所以正比例函数解析式为y=﹣2x.故选:B.3.(3分)在平面直角坐标系中,点(3,﹣2)关于y轴对称的点的坐标是()A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)【解答】解:点(3,﹣2)关于y轴对称的点的坐标是(﹣3,﹣2),故选:D.4.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=55°,点D是AB延长线上的一点.∠CBD的度数是()A.125°B.135°C.145°D.155°【解答】解:∵∠CBD是△ABC的外角,∴∠CBD=∠A+∠ACB,∵∠A=55°,∠ACB=90°,∴∠CBD=55°+90°=145°,故选:C.5.(3分)若x,y满足方程组,则x+y的值为()A.3B.4C.5D.6【解答】解:,①+②得,6x+6y=18,解得x+y=3.故选:A.6.(3分)如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3).有下列结论:①关于x的方程kx+b=0的解为x=2;②关于x的方程kx+b=3的解为x=0;③当x>2时,y<0;④当x<0时,y<3.其中正确的是()A.①②③B.①③④C.②③④D.①②④【解答】解:由图象得:①关于x的方程kx+b=0的解为x=2,正确;②关于x的方程kx+b=3的解为x=0,正确;③当x>2时,y<0,正确;④当x<0时,y>3,错误;故选:A.7.(3分)某单位要购买一批直径为10mm 的螺丝,先从甲、乙、丙、丁四个加工厂生产的同类螺丝中各随机抽取20 个进行测量.下表记录了这些螺丝直径的平均数和方差:根据表中数据,应选择购买的厂家是()A.甲B.乙C.丙D.丁【解答】解:由根据方差越小越稳定可知,丙的质量误差小,故选:C.8.(3分)如图,在△ABC中,点M是AC边上一个动点.若AB=AC=10,BC=12,则BM的最小值为()A.8B.9.6C.10D.4 5【解答】解:作AD⊥BC于D,如图所示:则∠ADB=90°,∵AB=AC,∴BD=BC=6,由勾股定理得:AD==8,当BM⊥AC时,BM最小,此时,∠BMC=90°,∵△ABC的面积=AC•BM=BC•AD,即×10×BM=×12×8,解得:BM=9.6,故选:B.9.(3分)下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息可得,下列结论正确的是()A.甲队员成绩的平均数比乙队员的大B.乙队员成绩的平均数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大【解答】解:甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数=8(环),甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,9,9,10,则中位数是8环,乙10次射击成绩的平均数=(6+2×7+3×8+2×9+10)÷9=8(环),甲队的方差=[(6﹣8)2+3×(7﹣8)2+2×(8﹣8)3+3×(9﹣8)2+(10﹣8)2]=1.4;乙队的方差=[(6﹣8)2+2×(7﹣8)2+3×(8﹣8)3+2×(9﹣8)2+(10﹣8)2]=;则正确的是D;故选:D.10.(3分)从A地到B地有一段上坡路和一段平路,如果车辆保持上坡每小时行驶30km,平路每小时行驶50km,下坡每小时行驶60km,那么车辆从A地到B地需要48分钟,从B地到A地需要27分钟,问A,B两地之间的坡路和平路各有多少千米?若设A,B两地之间的坡路为xkm,平路为ykm,根据题意可列方程组为()A.B.C.D.【解答】解:设A,B两地之间的坡路为xkm,平路为ykm,由题意可得,,故选:D.二、填空题(本大题含5个小题,每小题2分,共10分)把答案写在题中横线上.11.(2分)把化成最简二次根式为.【解答】解:原式===,故答案为:.12.(2分)如图是一块四边形绿地,其中AB=4m,BC=13m,CD=12m,DA=3m,∠A=90°,这块绿地的面积为36m2.【解答】解:连接BD,∵AB=4m,DA=3m,∠A=90°,∴BD=5m,又∵CD=12m,BC=13m,∴BD2+CD2=BC2,∴∠BDC=90°,=S△ABD+S△BCD=6+30=36.∴S四边形ABCD答:这块绿地的面积是36m2.故答案为:3613.(2分)如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则方程组的解是.【解答】解:∵y=x+2的图象经过P(m,4),∴4=m+2,∴m=2,∴一次函数y=kx+b与y=x+2的图象相交于点P(2,4),∴方程组的解是,故答案为.14.(2分)某通讯公司的4G上网套餐每月上网费用y(单位:元)与上网流量x(单位:兆)的函数关系的图象如图所示,若该公司用户月上网流量超过500兆以后,每兆流量的费用为0.28元,则图中a的值为58元.【解答】解:由图象可得:a=30+(600﹣500)×0.28=58(元).故答案为:58元.15.(2分)△ABC中,AB=15,AC=13,BC边上的高AD=12,则BC的长为14或4.【解答】解:(1)如图,锐角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为BD+DC=9+5=14;(2)钝角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得:CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为DC﹣BD=9﹣5=4.故答案为14或4.三、解答题(本大题含8个小题,共60分)解答应写出必要的文字说明、演算步骤或推理过程.16.(8分)计算:(1);(2)(2+)×﹣12.【解答】解:(1)原式=﹣=﹣=﹣2=﹣;(2)原式=2×+×﹣12×=6+6﹣6=6.17.(5分)解方程组:.【解答】解:,①×2,得:6x﹣2y=26 ③,②+③,得:11x=33,解得:x=3,将x=3代入①,得:9﹣y=13,解得:y=﹣4,则方程组的解为.18.(6分)如图,在△ABC中,∠BAC=40°,∠C=70°,BD平分∠ABC,且∠ADB=35°,求证:AD∥BC.【解答】证明:在△ABC中,∠ABC=180°﹣∠BAC﹣∠C=180°﹣40°﹣70°=70°,∵BD平分∠ABC,∴∠CBD=∠ABD=∠ABC=35°,∵∠ADB=35°,∴∠CBD=∠ADB,∴AD∥BC.19.(6分)某校招聘一名数学老师,对应聘者分别进行了教学能力、科研能力和组织能力三项测试,其中甲、乙两名应聘者的成绩如右表:(单位:分)(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?(2)根据实际需要,学校将教学、科研和组织能力三项测试得分按5:3:2 的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?【解答】解:(1)甲的平均成绩为=84(分);乙的平均成绩为=82(分),因为甲的平均成绩高于乙的平均成绩,所以甲被录用;(2)根据题意,甲的平均成绩为=83.2(分),乙的平均成绩为=84.8(分),因为甲的平均成绩低于乙的平均成绩,所以乙被录用.20.(6分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔和3个B种魔方共需95元;购买3个A种魔方所需款数恰好等于购买5个B 种魔方所需款数,求这两种魔方的单价.【解答】解:设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为25元/个,B种魔方的单价为15元/个.21.(8分)甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OPQ和线段EF,分别表示甲、乙两人与A地的距离y甲、y乙与他们所行时间x(h)之间的函数关系,且OP与EF相交于点M.(1)求线段OP对应的y甲与x的函数关系式(不必注明自变量x的取值范围);(2)求y乙与x的函数关系式以及A,B两地之间的距离;(3)请从A,B两题中任选一题作答,我选择B题.A.直接写出经过多少小时,甲、乙两人相距3km;B.设甲、乙两人的距离为s(km),直接写出s与x的函数关系式,并注明x的取值范围.【解答】解:(1)设线段OP对应的函数解析式为y甲=kx,9=0.5k,得k=18,∴线段OP对应的函数解析式为y甲=18x;(2)设y乙与x的函数关系式是y乙=mx+n,,得,即y乙与x的函数关系式是y乙=﹣6x+12,当x=0时,y乙=12,∴A、B两地的距离是12km;(3)请从A,B两题中任选一题作答,我选择B题,故答案为:B,B题:当0≤x≤0.5时,s=(﹣6x+12)﹣18x=﹣24x+12,甲到达B地用的时间为:12÷(9÷0.5)=小时,当0.5<x≤时,s=18x﹣(﹣6x+12)=24x﹣12,当时,s=12﹣(﹣6x+12)=6x.补充:若选A,解答如下,当0≤x≤0.5时,(﹣6x+12)﹣18x=3,解得,x=,当0.5<x≤时,18x﹣(﹣6x+12)=3,得x=.22.(9分)问题情境:已知:如图1,直线AB∥CD,现将直角三角板△PMN放入图中,其中∠MPN=90°,点P始终在直线MN右侧.PM交AB于点E,PN 交CD于点F,试探究:∠PFD与∠AEM的数量关系.(1)特例分析:如图2,当点P在直线AB上(即点E与点P重合)时,直接写出∠PFD与∠AEM的数量关系,不必证明;(2)类比探究:如图1,当点P在AB与CD之间时,猜想∠PFD与∠AEM的数量关系,并说明理由;(3)拓展延伸:如图3,当点P在直线AB的上方时,PN交AB于点H,其他条件不变,猜想∠PFD与∠AEM的数量关系,并说明理由.【解答】解:(1)∠PFD+∠AEM=90°,理由如下:∵AB∥CD,∴∠PFD=∠APF,∵∠APF+∠AEM=90°,∴∠PFD+∠AEM=90°;(2)∠PFD+∠AEM=90°,理由如下:作PQ∥AB交MN于Q,∵AB∥CD,∴PQ∥CD,∴∠AEM=∠QPE,∠PFD=∠QPF,∵∠QPE+∠QPF=90°,∴∠PFD+∠AEM=90°;(3)∠PFD﹣∠AEM=90°,理由如下:∵AB∥CD,∴∠PFD=∠PHB,∵∠PHB﹣∠PEB=90°,∠AEM=∠PEB,∴∠PHB﹣∠AEM=90°,∴∠PFD﹣∠AEM=90°.23.(12分)如图1,平面直角坐标系中,直线y=kx+b与x轴交于点A(6,0),与y轴交于点B,与直线y=2x交于点C(a,4).(1)求点C的坐标及直线AB的表达式;(2)如图2,在(1)的条件下,过点E作直线l⊥x轴于点E,交直线y=2x于点F,交直线y=kx+b于点G,若点E的坐标是(4,0).①求△CGF的面积;②直线l上是否存在点P,使OP+BP的值最小?若存在,直接写出点P的坐标;若不存在,说明理由;(3)若(2)中的点E是x轴上的一个动点,点E的横坐标为m(m>0),当点E在x轴上运动时,探究下列问题:请从A,B两题中任选一题作答,我选择A(或B)题:A.当m取何值时,直线l上存在点Q,使得以A,C,Q为顶点的三角形与△AOC 全等?请直接写出相应的m的值.B.当△BFG是等腰三角形时直接写出m的值.【解答】解:(1)将点C(a,4)代入y=2x,可得a=2,∴C(2,4),将C(2,4)和A(6,0)代入y=kx+b,可得,解得,∴直线AB的解析式为y=﹣x+6;(2)①如图1,∵l⊥x轴,点E,F,G都在直线l上,且点E的坐标为(4,0),∴点F,G的横坐标均为4,设点F(4,y1),G(4,y2),分别代入y=2x和y=﹣x+6,可得y1=8,y2=2,∴F(4,8),G(4,2),∴FE=8,GE=2,FG=6,如图2,过点C作CH⊥FG于H,∵C(2,4),∴CH=4﹣2=2,=FG×CH=×6×2=6;∴S△FCG②存在点P(4,3),使得BP+OP的值最小.理由:设点O关于直线l的对称点为D(8,0),设直线BD的解析式为y=mx+n,将B(0,6),D(8,0)代入y=mx+n,可得,解得,∴直线BD的解析式为y=﹣x+6,点P在直线l:x=4上,令x=4,则y=3,∴P(4,3);(3)A题:m的值为2或6或8.理由:分三种情况讨论:①当△OAC≌△QCA,点Q在第四象限时,∠ECA=∠EAC,∴AE=CE=4,OE=6﹣4=2,∴m=2;②当△ACO≌△ACQ,Q在第一象限时,OE=AO=6,∴m=6;③当△ACO≌△CAQ,点Q在第四象限时,四边形AOCQ是平行四边形,CQ=AO=6,AE=2,∴OE=8,∴m=8;B题:m的值为3或6或或.理由:分四种情况讨论:①如图,当BG=GF时,m=﹣m+6﹣2m,解得m=;②如图,当BF=GF时,m=2m﹣(﹣m+6),解得m=3;③如图,当GB=GF时,m=2m﹣(﹣m+6),解得m=;④如图,当BG=BF时,FG=BG,即2m﹣(﹣m+6)=×m,解得m=6.2017-2018学年山西省太原市八年级(上)期末数学试卷答题卡一、选择题(本大题共10个小题,每小题3分,共30分)(请用2B铅笔填涂)二、填空题(本大题含5个小题,每小题2分,共10分)把答案写在题中横线上.(请在各试题的答题区内作答)三、解答题(本大题含8个小题,共60分)解答应写出必要的文字说明、演算步骤或推理过程.(请在各试题的答题区内作答)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档