河北省沧州市2019-2020学年中考数学模拟试题(3)含解析
河北省沧州市2019-2020学年中考第三次模拟数学试题含解析

河北省沧州市2019-2020学年中考第三次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,甲从A 点出发向北偏东70°方向走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的度数是( )A .85°B .105°C .125°D .160°2.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是( )A .204×103B .20.4×104C .2.04×105D .2.04×1063.在Rt △ABC 中,∠C=90°,BC=a ,AC=b ,AB=c ,下列各式中正确的是( )A .a=b•cosAB .c=a•sinAC .a•cotA=bD .a•tanA=b4.如图,△ABC 是等腰直角三角形,∠A=90°,BC=4,点P 是△ABC 边上一动点,沿B→A→C 的路径移动,过点P 作PD ⊥BC 于点D ,设BD=x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )A .B .C .D . 5.下列运算结果是无理数的是( )A .32×2B .32⨯C .722÷D .22135-6.一个关于x 的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是( )A .x >1B .x≥1C .x >3D .x≥37.如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( )A .3cmB .4cmC .5cmD .6cm8.等腰三角形三边长分别为2a b 、、,且a b 、是关于x 的一元二次方程2610x x n -+-=的两根,则n 的值为( )A .9B .10C .9或10D .8或109.A 、B 两地相距180km ,新修的高速公路开通后,在A 、B 两地间行驶的长途客车平均车速提高了50%,而从A 地到B 地的时间缩短了1h .若设原来的平均车速为xkm/h ,则根据题意可列方程为A .1801801(150%)x x -=+B .1801801(150%)x x -=+C .1801801(150%)x x -=-D .1801801(150%)x x-=- 10.如图,是由几个相同的小正方形搭成几何体的左视图,这几个几何体的摆搭方式可能是( )A .B .C .D .11.老师在微信群发了这样一个图:以线段AB 为边作正五边形ABCDE 和正三角形ABG ,连接AC 、DG ,交点为F ,下列四位同学的说法不正确的是( )A .甲B .乙C .丙D .丁12.如图,等腰三角形ABC 底边BC 的长为4 cm ,面积为12 cm 2,腰AB 的垂直平分线EF 交AB 于点E ,交AC 于点F ,若D 为BC 边上的中点,M 为线段EF 上一点,则△BDM 的周长最小值为( )A .5 cmB .6 cmC .8 cmD .10 cm二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,CD 是Rt △ABC 斜边AB 上的高,将△BCD 沿CD 折叠,B 点恰好落在AB 的中点E 处,则∠A 等于____度.14.若关于x 的函数2y kx 2x 1=+-与x 轴仅有一个公共点,则实数k 的值为 .15.如图,已知∠A+∠C=180°,∠APM=118°,则∠CQN=_____°.16.如图,正△ABO 的边长为2,O 为坐标原点,A 在x 轴上,B 在第二象限,△ABO 沿x 轴正方向作无滑动的翻滚,经第一次翻滚后得到△A 1B 1O ,则翻滚2017次后AB 中点M 经过的路径长为______.17.如图,在△ABC 中,AB=AC ,以点C 为圆心,以CB 长为半径作圆弧,交AC 的延长线于点D ,连结BD ,若∠A=32°,则∠CDB 的大小为_____度.18.比较大小:512-_____1(填“<”或“>”或“=”). 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?20.(6分)如图,ABC ∆内接于O e ,AB AC =,CO 的延长线交AB 于点D .(1)求证:AO 平分BAC ∠;(2)若6BC =,3sin 5BAC ∠=,求AC 和CD 的长. 21.(6分)A 、B 两辆汽车同时从相距330千米的甲、乙两地相向而行,s (千米)表示汽车与甲地的距离,t (分)表示汽车行驶的时间,如图,L 1,L 2分别表示两辆汽车的s 与t 的关系.(1)L 1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B 的速度是多少?(3)求L 1,L 2分别表示的两辆汽车的s 与t 的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A 、B 两车相遇?22.(8分)如图,△ABC 三个顶点的坐标分别为A (1,1)、B (4,2)、C (3,4).(1)画出△ABC 关于y 轴的对称图形△A 1B 1C 1,并写出B 1点的坐标;(2)画出△ABC 绕原点O 旋转180°后得到的图形△A 2B 2C 2,并写出B 2点的坐标;(3)在x 轴上求作一点P ,使△PAB 的周长最小,并直接写出点P 的坐标.23.(8分)如图,AD 是等腰△ABC 底边BC 上的高,点O 是AC 中点,延长DO 到E ,使AE ∥BC ,连接AE .求证:四边形ADCE 是矩形;①若AB =17,BC =16,则四边形ADCE 的面积= . ②若AB =10,则BC = 时,四边形ADCE 是正方形.24.(10分)图1是一商场的推拉门,已知门的宽度2AD =米,且两扇门的大小相同(即AB CD =),将左边的门11ABB A 绕门轴1AA 向里面旋转37︒,将右边的门11CDD C 绕门轴1DD 向外面旋转45︒,其示意图如图2,求此时B 与C 之间的距离(结果保留一位小数).(参考数据:sin370.6︒≈,cos370.8︒≈,2 1.4≈)25.(10分)如图,AB 是⊙O 的直径,C 、D 为⊙O 上两点,且»»=AC BD,过点O 作OE ⊥AC 于点E ⊙O 的切线AF 交OE 的延长线于点F ,弦AC 、BD 的延长线交于点G .(1)求证:∠F =∠B ;(2)若AB =12,BG =10,求AF 的长.26.(12分)已知,抛物线2:23L y x bx =--(b 为常数).(1)抛物线的顶点坐标为( , )(用含b 的代数式表示);(2)若抛物线L 经过点()2,1M --且与k y x=图象交点的纵坐标为3,请在图1中画出抛物线L 的简图,并求k y x=的函数表达式; (3)如图2,规矩ABCD 的四条边分别平行于坐标轴,1AD =,若抛物线L 经过,A C 两点,且矩形ABCD 在其对称轴的左侧,则对角线AC 的最小值是 .27.(12分)京沈高速铁路赤峰至喀左段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.若乙队单独施工,需要多少天才能完成该项工程?若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】首先求得AB与正东方向的夹角的度数,即可求解.【详解】根据题意得:∠BAC=(90°﹣70°)+15°+90°=125°,故选:C.【点睛】本题考查了方向角,正确理解方向角的定义是关键.2.C【解析】试题分析:204000米/分,这个数用科学记数法表示2.04×105,故选C.考点:科学记数法—表示较大的数.3.C【解析】∵∠C=90°,∴cosA=bc,sinA=ac,tanA=ab,cotA=ba,∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,∴只有选项C正确,故选C.【点睛】本题考查了三角函数的定义,熟练掌握三角函数的定义并且灵活运用是解题的关键.4.B【解析】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=,故选B.5.B【解析】【分析】根据二次根式的运算法则即可求出答案.【详解】A选项:原式=3×2=6,故A不是无理数;B6,故B是无理数;C366,故C不是无理数;D(135)(135)818-+=⨯12,故D不是无理数故选B.【点睛】考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.6.C【解析】试题解析:一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x>1.故选C.考点:在数轴上表示不等式的解集.7.A【解析】分析:根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.详解:设CN=xcm,则DN=(8﹣x)cm,由折叠的性质知EN=DN=(8﹣x)cm,而EC=12BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8﹣x)2=16+x2,整理得16x=48,所以x=1.故选:A.点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.8.B【解析】【分析】【详解】由题意可知,等腰三角形有两种情况:当a,b为腰时,a=b,由一元二次方程根与系数的关系可得a+b=6,所以a=b=3,ab=9=n-1,解得n=1;当2为腰时,a=2(或b=2),此时2+b=6(或a+2=6),解得b=4(a=4),这时三边为2,2,4,不符合三角形三边关系:两边之和大于第三边,两边之差小于第三边,故不合题意.所以n只能为1.故选B9.A【解析】【分析】直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可.【详解】解:设原来的平均车速为xkm/h,则根据题意可列方程为:180 x ﹣180150%x()=1.故选A.【点睛】本题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题的关键.10.A【解析】【分析】根据左视图的概念得出各选项几何体的左视图即可判断.【详解】解:A选项几何体的左视图为;B选项几何体的左视图为;C选项几何体的左视图为;D选项几何体的左视图为;故选:A.【点睛】本题考查由三视图判断几何体,解题的关键是熟练掌握左视图的概念.11.B【解析】【分析】利用对称性可知直线DG是正五边形ABCDE和正三角形ABG的对称轴,再利用正五边形、等边三角形的性质一一判断即可;【详解】∵五边形ABCDE是正五边形,△ABG是等边三角形,∴直线DG是正五边形ABCDE和正三角形ABG的对称轴,∴DG垂直平分线段AB,∵∠BCD=∠BAE=∠EDC=108°,∴∠BCA=∠BAC=36°,∴∠DCA=72°,∴∠CDE+∠DCA=180°,∴DE∥AC,∴∠CDF=∠EDF=∠CFD=72°,∴△CDF是等腰三角形.故丁、甲、丙正确.故选B.【点睛】本题考查正多边形的性质、等边三角形的性质、轴对称图形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12.C【解析】【分析】连接AD ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AB 的垂直平分线可知,点B 关于直线EF 的对称点为点A ,故AD 的长为BM+MD 的最小值,由此即可得出结论.【详解】如图,连接AD .∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC•AD=12×4×AD=12,解得:AD=6(cm ).∵EF 是线段AB 的垂直平分线,∴点B 关于直线EF 的对称点为点A ,∴AD 的长为BM+MD 的最小值,∴△BDM 的周长最短=(BM+MD )+BD=AD+12BC=6+12×4=6+2=8(cm ). 故选C .【点睛】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.30【解析】试题分析:根据直角三角形斜边上的中线等于斜边的一半可得:AE=CE ,根据折叠可得:BC=CE ,则BC=AE=BE=AB ,则∠A=30°.考点:折叠图形的性质14.0或-1。
河北省沧州市2019-2020学年中考数学三模考试卷含解析

河北省沧州市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.1,所以“罚球命中”的概率是0.1.其中合理的是()A.①B.②C.①③D.②③2.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )A.10 B.9 C.8 D.73.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四=;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE的大小为定值.边形BCDG其中正确的结论个数为()A.4 B.3 C.2 D.14.下列计算结果正确的是()A .329()a a -=B .236a a a ⋅=C .3332a a a +=D .0(cos 600.5)1︒-=5.1.桌面上放置的几何体中,主视图与左视图可能不同的是( ) A .圆柱 B .正方体 C .球 D .直立圆锥 6.在4-,12-,1-,83-这四个数中,比2-小的数有( )个.A .1B .2C .3D .47.在﹣3,﹣1,0,1四个数中,比﹣2小的数是( ) A .﹣3B .﹣1C .0D .18.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E.若60B ∠=︒,AC=3,则CD 的长为A .6B .23C .3D .39.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,1,85,1.关于这组数据说法错误的是( ) A .极差是20B .中位数是91C .众数是1D .平均数是9110.一组数据是4,x ,5,10,11共五个数,其平均数为7,则这组数据的众数是( ) A .4B .5C .10D .1111.若ab <0,则正比例函数y=ax 与反比例函数y=bx在同一坐标系中的大致图象可能是( ) A . B . C . D .12.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( ) A .a=2,b=3 B .a=-2,b=-3 C .a=-2,b=3D .a=2,b=-3二、填空题:(本大题共6个小题,每小题4分,共24分.) 13x 2-x 的取值范围是______.14.ABC ∆内接于圆O ,设A x ∠=o ,圆O 的半径为r ,则OBC ∠所对的劣弧长为_____(用含x r ,的代数式表示).15.有五张分别印有等边三角形、正方形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为_____.16.某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x的取值范围是_____.1721x x的取值范围是__________.18.分解因式:a2-2ab+b2-1=______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾区安置点.从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;C D 总计/tA 200B x 300总计/t 240 260 500(2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案;经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.20.(6分)定义:对于给定的二次函数y=a(x﹣h)2+k(a≠0),其伴生一次函数为y=a(x﹣h)+k,例如:二次函数y=2(x+1)2﹣3的伴生一次函数为y=2(x+1)﹣3,即y=2x﹣1.(1)已知二次函数y=(x﹣1)2﹣4,则其伴生一次函数的表达式为_____;(2)试说明二次函数y=(x﹣1)2﹣4的顶点在其伴生一次函数的图象上;(3)如图,二次函数y=m(x﹣1)2﹣4m(m≠0)的伴生一次函数的图象与x轴、y轴分别交于点B、A,且两函数图象的交点的横坐标分别为1和2,在∠AOB内部的二次函数y=m(x﹣1)2﹣4m的图象上有一动点P,过点P作x轴的平行线与其伴生一次函数的图象交于点Q,设点P的横坐标为n,直接写出线段PQ的长为32时n的值.21.(6分)如图,四边形ABCD的外接圆为⊙O,AD是⊙O的直径,过点B作⊙O的切线,交DA的延长线于点E,连接BD,且∠E=∠DBC.(1)求证:DB平分∠ADC;(2)若EB=10,CD=9,tan∠ABE=12,求⊙O的半径.22.(8分)如图,在Rt△ABC中,∠C=90°,AC=12AB.求证:∠B=30°.请填空完成下列证明.证明:如图,作Rt△ABC的斜边上的中线CD,则CD=12AB=AD ().∵AC=12 AB,∴AC=CD=AD 即△ACD是等边三角形.∴∠A=°.∴∠B=90°﹣∠A=30°.23.(8分)如图,在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F.(1)当AE平分∠BAC时,求证:∠BEF=∠BFE;(2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长.24.(10分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.(1)请你用直尺和圆规作出这个输水管道的圆形截面的圆心(保留作图痕迹);(2)若这个输水管道有水部分的水面宽AB=8 cm,水面最深地方的高度为2 cm,求这个圆形截面的半径.25.(10分)如图①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直径,⊙O交AC于点D,过点D的直线交BC于点E,交AB的延长线于点P,∠A=∠PDB.(1)求证:PD是⊙O的切线;(2)若AB=4,DA=DP,试求弧BD的长;(3)如图②,点M是弧AB的中点,连结DM,交AB于点N.若tanA=,求的值.26.(12分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45°、35°.已知大桥BC与地面在同一水平面上,其长度为100m,求热气球离地面的高度.(结果保留整数)(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)27.(12分)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;(3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据图形和各个小题的说法可以判断是否正确,从而解答本题【详解】当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:411÷500=0.822,但“罚球命中”的概率不一定是0.822,故①错误;随着罚球次数的增加,“罚球命中”的频率总在0.2附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.2.故②正确;虽然该球员“罚球命中”的频率的平均值是0.1,但是“罚球命中”的概率不是0.1,故③错误.故选:B.【点睛】此题考查了频数和频率的意义,解题的关键在于利用频率估计概率.2.D【解析】分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=18°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已经有3个五边形,∴1﹣3=7,即完成这一圆环还需7个五边形.故选D.点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.3.B【解析】试题分析:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本选项正确;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G 四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C作CM⊥GB 于M,CN⊥GD于N(如图1),则△CBM≌△CDN(AAS),∴S四边形BCDG=S四边形CMGN,S四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=2S△CMG=2××CG×CG=,故本选项错误;③过点F作FP∥AE于P点(如图2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:AE=1:6,∵FP∥AE,∴PF∥BE,∴FG:BG=FP:BE=1:6,即BG=6GF,故本选项正确;④当点E,F分别是AB,AD中点时(如图3),由(1)知,△ABD,△BDC为等边三角形,∵点E,F 分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;综上所述,正确的结论有①③⑤,共3个,故选B.考点:四边形综合题. 4.C 【解析】 【分析】利用幂的乘方、同底数幂的乘法、合并同类项及零指数幂的定义分别计算后即可确定正确的选项. 【详解】A 、原式6a =,故错误;B 、原式5a =,故错误;C 、利用合并同类项的知识可知该选项正确;D 、cos600.5︒=,cos600.50︒-=,所以原式无意义,错误, 故选C . 【点睛】本题考查了幂的运算性质及特殊角的三角函数值的知识,解题的关键是能够利用有关法则进行正确的运算,难度不大. 5.B【解析】试题分析:根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,正方体主视图与左视图可能不同,故选B . 考点:简单几何体的三视图. 6.B 【解析】 【分析】比较这些负数的绝对值,绝对值大的反而小. 【详解】 在﹣4、﹣12、﹣1、﹣83这四个数中,比﹣2小的数是是﹣4和﹣83.故选B.【点睛】本题主要考查负数大小的比较,解题的关键时负数比较大小时,绝对值大的数反而小. 7.A【分析】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,根据有理数比较大小的法则即可选出答案. 【详解】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小, 所以在-3,-1,0,1这四个数中比-2小的数是-3, 故选A . 【点睛】本题主要考查有理数比较大小,解决本题的关键是要熟练掌握比较有理数大小的方法. 8.D 【解析】 【详解】解:因为AB 是⊙O 的直径,所以∠ACB=90°,又⊙O 的直径AB 垂直于弦CD ,60B ∠=︒,所以在Rt △AEC 中,∠A=30°,又AC=3,所以CE=12AB=32,所以CD=2CE=3, 故选D. 【点睛】本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大. 9.D 【解析】 【分析】 【详解】试题分析:因为极差为:1﹣78=20,所以A 选项正确;从小到大排列为:78,85,91,1,1,中位数为91,所以B 选项正确; 因为1出现了两次,最多,所以众数是1,所以C 选项正确; 因为9178988598905x ++++==,所以D 选项错误.故选D .考点:①众数②中位数③平均数④极差. 10.B 【解析】试题分析:(4+x+3+30+33)÷3=7, 解得:x=3,根据众数的定义可得这组数据的众数是3.考点:3.众数;3.算术平均数.11.D【解析】【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【详解】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合.故选D【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.12.B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)≥13.x2【解析】二次根式有意义的条件.-≥⇒≥.x20x214.9090xrπ-o oo或9090xrπ-o oo【解析】【分析】分0°<x°≤90°、90°<x°≤180°两种情况,根据圆周角定理求出∠DOC,根据弧长公式计算即可.【详解】解:当0°<x°≤90°时,如图所示:连接OC,由圆周角定理得,∠BOC=2∠A=2x°,∴∠DOC=180°-2x°,∴∠OBC所对的劣弧长=(1802)(90)18090x r xππ--=,当90°<x°≤180°时,同理可得,∠OBC所对的劣弧长=(2180)(90)18090x xππ--=.故答案为:9090xro ooπ-或9090xrπ-o oo.【点睛】本题考查了三角形的外接圆与外心、弧长的计算,掌握弧长公式、圆周角定理是解题的关键.15.3 5【解析】【分析】判断出即是中心对称,又是轴对称图形的个数,然后结合概率计算公式,计算,即可.【详解】解:等边三角形、正方形、正五边形、矩形、正六边形图案中既是中心对称图形,又是轴对称图形是:正方形、矩形、正六边形共3种,故从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为:.故答案为.【点睛】考查中心对称图形和轴对称图形的判定,考查概率计算公式,难度中等.16.12x ≤ 【解析】【分析】通过找到临界值解决问题.【详解】由题意知,令3x-1=x , x=12,此时无输出值 当x >12时,数值越来越大,会有输出值; 当x <12时,数值越来越小,不可能大于10,永远不会有输出值 故x≤12, 故答案为x≤12. 【点睛】本题考查不等式的性质,解题的关键是理解题意,学会找到临界值解决问题.17.12x ≥ 【解析】【分析】根据二次根式的被开方数为非负数求解即可.【详解】由题意可得:210x -≥,解得:12x ≥. 所以答案为12x ≥. 【点睛】本题主要考查了二次根式的性质,熟练掌握相关概念是解题关键.18. (a -b +1)(a -b -1)【解析】【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解,前三项a 2-2ab+b 2可组成完全平方公式,再和最后一项用平方差公式分解.【详解】a 2-2ab+b 2-1,=(a-b )2-1,=(a-b+1)(a-b-1).【点睛】本题考查用分组分解法进行因式分解.难点是采用两两分组还是三一分组.本题前三项可组成完全平方公式,可把前三项分为一组,分解一定要彻底.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)w=2x+9200,方案见解析;(3)0<m<2时,(2)中调运方案总运费最小;m=2时,在40⩽x⩽240的前提下调运方案的总运费不变;2<m<15时,x=240总运费最小.【解析】【分析】(1)根据题意可得解.(2)w与x之间的函数关系式为:w=20(240−x)+25(x−40)+15x+18(300−x);列不等式组解出40≤x≤240,可由w随x的增大而增大,得出总运费最小的调运方案.(3)根据题意得出w与x之间的函数关系式,然后根据m的取值范围不同分别分析得出总运费最小的调运方案.【详解】解:(1)填表:依题意得:20(240−x)+25(x−40)=15x+18(300−x).解得:x=200.(2)w与x之间的函数关系为:w=20(240−x)+25(x−40)+15x+18(300−x)=2x+9200.依题意得:24004000 3000xxxx-⎧⎪-⎪⎨⎪⎪-⎩…………∴40⩽x⩽240在w=2x+9200中,∵2>0,∴w随x的增大而增大,故当x=40时,总运费最小, 此时调运方案为如表.(3)由题意知w=20(240−x)+25(x−40)+(15-m)x+18(300−x)=(2−m)x+9200∴0<m<2时,(2)中调运方案总运费最小;m=2时,在40⩽x⩽240的前提下调运方案的总运费不变;2<m<15时,x=240总运费最小,其调运方案如表二.【点睛】此题考查一次函数的应用,解题关键在于根据题意列出w与x之间的函数关系式,并注意分类讨论思想的应用.20.y=x﹣5【解析】分析:(1)根据定义,直接变形得到伴生一次函数的解析式;(2)求出顶点,代入伴生函数解析式即可求解;(3)根据题意得到伴生函数解析式,根据P点的坐标,坐标表示出纵坐标,然后通过PQ与x轴的平行关系,求得Q点的坐标,由PQ的长列方程求解即可.详解:(1)∵二次函数y=(x﹣1)2﹣4,∴其伴生一次函数的表达式为y=(x﹣1)﹣4=x﹣5,故答案为y=x﹣5;(2)∵二次函数y=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4),∵二次函数y=(x﹣1)2﹣4,∴其伴生一次函数的表达式为y=x﹣5,∴当x=1时,y=1﹣5=﹣4,∴(1,﹣4)在直线y=x﹣5上,即:二次函数y=(x﹣1)2﹣4的顶点在其伴生一次函数的图象上;(3)∵二次函数y=m(x﹣1)2﹣4m,∴其伴生一次函数为y=m(x﹣1)﹣4m=mx﹣5m,∵P点的横坐标为n,(n>2),∴P的纵坐标为m(n﹣1)2﹣4m,即:P(n,m(n﹣1)2﹣4m),∵PQ∥x轴,∴Q((n﹣1)2+1,m(n﹣1)2﹣4m),∴PQ=(n﹣1)2+1﹣n,∵线段PQ的长为32,∴(n﹣1)2+1﹣n=32,∴n=37.点睛:此题主要考查了新定义下的函数关系式,关键是理解新定义的特点构造伴生函数解析式.21.(1)详见解析;(2)OA=152.【解析】【分析】(1)连接OB,证明∠ABE=∠ADB,可得∠ABE=∠BDC,则∠ADB=∠BDC;(2)证明△AEB∽△CBD,AB=x,则BD=2x,可求出AB,则答案可求出.【详解】(1)证明:连接OB,∵BE为⊙O的切线,∴OB⊥BE,∴∠OBE=90°,∴∠ABE+∠OBA=90°,∵OA=OB,∴∠OBA=∠OAB,∴∠ABE+∠OAB=90°,∵AD是⊙O的直径,∴∠OAB+∠ADB=90°,∴∠ABE=∠ADB,∵四边形ABCD的外接圆为⊙O,∴∠EAB=∠C,∵∠E=∠DBC,∴∠ABE=∠BDC,∴∠ADB=∠BDC,即DB平分∠ADC;(2)解:∵tan∠ABE=12,∴设AB=x,则BD=2x,∴AD=,∵∠BAE=∠C,∠ABE=∠BDC,∴△AEB∽△CBD,∴BE AB BD CD=,∴1029xx=,解得x=∴AB=15,∴OA=152.【点睛】本题考查切线的性质、解直角三角形、勾股定理等知识,解题的关键是学会添加常用辅助线解决问题.22.直角三角形斜边上的中线等于斜边的一半;1.【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半和等边三角形的判定与性质填空即可.【详解】证明:如图,作Rt△ABC的斜边上的中线CD,则CD=12AB=AD (直角三角形斜边上的中线等于斜边的一半), ∵AC=12AB , ∴AC=CD=AD 即△ACD 是等边三角形,∴∠A=1°,∴∠B=90°﹣∠A=30°.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等边三角形的判定与性质,重点在于逻辑思维能力的训练.23.(1)证明见解析;(1)2【解析】分析:(1)根据角平分线的定义可得∠1=∠1,再根据等角的余角相等求出∠BEF=∠AFD ,然后根据对顶角相等可得∠BFE=∠AFD ,等量代换即可得解;(1)根据中点定义求出BC ,利用勾股定理列式求出AB 即可.详解:(1)如图,∵AE 平分∠BAC ,∴∠1=∠1.∵BD ⊥AC ,∠ABC=90°,∴∠1+∠BEF=∠1+∠AFD=90°,∴∠BEF=∠AFD .∵∠BFE=∠AFD (对顶角相等),∴∠BEF=∠BFE ;(1)∵BE=1,∴BC=4,由勾股定理得:AB=22AC BC -=2254-=2.点睛:本题考查了直角三角形的性质,勾股定理的应用,等角的余角相等的性质,熟记各性质并准确识图是解题的关键.24.(1)详见解析;(2)这个圆形截面的半径是5 cm.【解析】【分析】(1)根据尺规作图的步骤和方法做出图即可;(2)先过圆心O 作半径CO AB ⊥,交AB 于点D ,设半径为r ,得出AD 、OD 的长,在Rt AOD △中,根据勾股定理求出这个圆形截面的半径.【详解】(1)如图,作线段AB 的垂直平分线l ,与弧AB 交于点C ,作线段AC 的垂直平分线l′与直线l 交于点O ,点O 即为所求作的圆心.(2)如图,过圆心O作半径CO⊥AB,交AB于点D,设半径为r,则AD=AB=4,OD=r-2,在Rt△AOD中,r2=42+(r-2)2,解得r=5,答:这个圆形截面的半径是5 cm.【点睛】此题考查了垂径定理和勾股定理,关键是根据题意画出图形,再根据勾股定理进行求解.25.(1)见解析;(2);(3).【解析】【分析】(1)连结OD;由AB是⊙O的直径,得到∠ADB=90°,根据等腰三角形的性质得到∠ADO=∠A,∠BDO=∠ABD;得到∠PDO=90°,且D在圆上,于是得到结论;(2)设∠A=x,则∠A=∠P=x,∠DBA=2x,在△ABD中,根据∠A+∠ABD=90o列方程求出x的值,进而可得到∠DOB=60o,然后根据弧长公式计算即可;(3)连结OM,过D作DF⊥AB于点F,然后证明△OMN∽△FDN,根据相似三角形的性质求解即可. 【详解】(1)连结OD,∵AB是⊙O的直径,∴∠ADB=90o,∠A+∠ABD=90o,又∵OA=OB=OD,∴∠BDO=∠ABD,又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,且D在圆上,∴PD是⊙O的切线.(2)设∠A=x,∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,在△ABD中,∠A+∠ABD=90o,x=2x=90o,即x=30o,∴∠DOB=60o,∴弧BD长.(3)连结OM,过D作DF⊥AB于点F,∵点M是的中点,∴OM⊥AB,设BD=x,则AD=2x,AB==2OM,即OM=,在Rt△BDF中,DF=,由△OMN∽△FDN得.【点睛】本题是圆的综合题,考查了切线的判定,圆周角定理及其推论,三角形外角的性质,含30°角的直角三角形的性质,弧长的计算,弧弦圆心角的关系,相似三角形的判定与性质.熟练掌握切线的判定方法是解(1)的关键,求出∠A=30o是解(2)的关键,证明△OMN∽△FDN是解(3)的关键.26.热气球离地面的高度约为1米.【解析】【分析】作AD⊥BC交CB的延长线于D,设AD为x,表示出DB和DC,根据正切的概念求出x的值即可.【详解】解:作AD⊥BC交CB的延长线于D,设AD为x,由题意得,∠ABD=45°,∠ACD=35°,在Rt△ADB中,∠ABD=45°,∴DB=x,在Rt△ADC中,∠ACD=35°,∴tan∠ACD= AD CD,∴ 100x x + = 710, 解得,x≈1.答:热气球离地面的高度约为1米.【点睛】考查的是解直角三角形的应用,理解仰角和俯角的概念、掌握锐角三角函数的概念是解题的关键,解答时,注意正确作出辅助线构造直角三角形.27.(1)DD′=1,A′F= 4;(2)154;(1)754. 【解析】【分析】(1)①如图①中,∵矩形ABCD 绕点C 按顺时针方向旋转α角,得到矩形A'B'C'D',只要证明△CDD′是等边三角形即可解决问题;②如图①中,连接CF ,在Rt △CD′F 中,求出FD′即可解决问题;(2)由△A′DF ∽△A′D′C ,可推出DF 的长,同理可得△CDE ∽△CB ′A′,可求出DE 的长,即可解决问题;(1)如图③中,作FG ⊥CB′于G ,由S △ACF =12•AC•CF=12•AF•CD ,把问题转化为求AF•CD ,只要证明∠ACF=90°,证明△CAD ∽△FAC ,即可解决问题;【详解】解:(1)①如图①中,∵矩形ABCD 绕点C 按顺时针方向旋转α角,得到矩形A'B'C'D',∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=1∠A′D′C=∠ADC=90°.∵α=60°,∴∠DCD′=60°,∴△CDD′是等边三角形,∴DD′=CD=1.②如图①中,连接CF .∵CD=CD′,CF=CF ,∠CDF=∠CD′F=90°,∴△CDF ≌△CD′F ,∴∠DCF=∠D′CF=12∠DCD′=10°. 在Rt △CD′F 中,∵tan ∠D′CF=''D F CD ,∴,∴A′F=A′D′﹣D′F=4(2)如图②中,在Rt △A′CD′中,∵∠D′=90°,∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2.∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,∴△A′DF ∽△A′D′C ,∴''''A D DF A D CD =,∴243DF =, ∴DF=32. 同理可得△CDE ∽△CB′A′,∴'''CD ED CB A B =,∴343ED =,∴ED=94,∴EF=ED+DF=154.(1)如图③中,作FG⊥CB′于G.∵四边形A′B′CD′是矩形,∴GF=CD′=CD=1.∵S△CEF=12•EF•DC=12•CE•FG,∴CE=EF,∵AE=EF,∴AE=EF=CE,∴∠ACF=90°.∵∠ADC=∠ACF,∠CAD=∠FAC,∴△CAD∽△FAC,∴AC AD AF AC,∴AC2=AD•AF,∴AF=254.∵S△ACF=12•AC•CF=12•AF•CD,∴AC•CF=AF•CD=754.。
河北省沧州市2019-2020学年第五次中考模拟考试数学试卷含解析

河北省沧州市2019-2020学年第五次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.山西有着悠久的历史,远在100 多万年前就有古人类生息在这块土地上.春秋时期,山西大部分为晋国领地,故山西简称为“晋”,战国初韩、赵、魏三分晋,山西又有“三晋”之称,下面四个以“晋”字为原型的Logo 图案中,是轴对称图形的共有()A.B.C.D.2.下列运算正确的是()A.5ab﹣ab=4 B.a6÷a2=a4C.112a b ab+=D.(a2b)3=a5b33.下列计算正确的是()A.3a2﹣6a2=﹣3B.(﹣2a)•(﹣a)=2a2C.10a10÷2a2=5a5D.﹣(a3)2=a64.某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在()A.50.5~60.5 分B.60.5~70.5 分C.70.5~80.5 分D.80.5~90.5 分5.下列所给函数中,y随x的增大而减小的是()A.y=﹣x﹣1 B.y=2x2(x≥0)C.2yx=D.y=x+16.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.掷一枚质地均匀的正六面体骰子,向上一面的点数是4C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃D.抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上7.如果关于x的方程220x x c++=没有实数根,那么c在2、1、0、3-中取值是()A.2;B.1;C.0;D.3-.8.对于反比例函数y=kx(k≠0),下列所给的四个结论中,正确的是()A.若点(3,6)在其图象上,则(﹣3,6)也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为kD.反比例函数的图象关于直线y=﹣x成轴对称9.已知二次函数y=x2﹣4x+m的图象与x轴交于A、B两点,且点A的坐标为(1,0),则线段AB的长为()A.1 B.2 C.3 D.410.如图,两个等直径圆柱构成如图所示的T形管道,则其俯视图正确的是()A.B.C.D.11.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,A .310B .103C .9D .92 12.解分式方程12x -﹣3=42x -时,去分母可得( ) A .1﹣3(x ﹣2)=4 B .1﹣3(x ﹣2)=﹣4C .﹣1﹣3(2﹣x )=﹣4D .1﹣3(2﹣x )=4 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC=23,∠AEO=120°,则FC 的长度为_____.14.如图,点D 在ABC ∆的边BC 上,已知点E 、点F 分别为ABD ∆和ADC ∆的重心,如果12BC =,那么两个三角形重心之间的距离EF 的长等于________.15.因式分解:x 2﹣10x+24=_____.16.如图,点E 在正方形ABCD 的外部,∠DCE=∠DEC ,连接AE 交CD 于点F ,∠CDE 的平分线交EF 于点G ,AE=2DG .若BC=8,则AF=_____.17.等腰三角形一边长为8,另一边长为5,则此三角形的周长为_____.18.如图,在矩形ABCD 中,E 、F 分别是AD 、CD 的中点,沿着BE 将△ABE 折叠,点A 刚好落在BF 上,若AB=2,则AD=________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,为了测量建筑物AB的高度,在D处树立标杆CD,标杆的高是2m,在DB上选取观测点E、F,从E测得标杆和建筑物的顶部C、A的仰角分别为58°、45°.从F测得C、A的仰角分别为22°、70°.求建筑物AB的高度(精确到0.1m).(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.1.)20.(6分)某通讯公司推出①,②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分)与费用y(元)之间的函数关系如图所示.有月租的收费方式是________(填“①”或“②”),月租费是________元;分别求出①,②两种收费方式中y与自变量x之间的函数表达式;请你根据用户通讯时间的多少,给出经济实惠的选择建议.21.(6分)嘉淇同学利用业余时间进行射击训练,一共射击7次,经过统计,制成如图12所示的折线统计图.这组成绩的众数是;求这组成绩的方差;若嘉淇再射击一次(成绩为整数环),得到这8次射击成绩的中位数恰好就是原来7次成绩的中位数,求第8次的射击成绩的最大环数.22.(8分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2)求乙组加工零件总量a的值.23.(8分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?24.(10分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:该年级报名参加丙组的人数为;该年级报名参加本次活动的总人数,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?26.(12分)许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分.某校课外兴趣小组想测量位于芙蓉湖两端的A,B两点之间的距离他沿着与直线AB平行的道路EF行走,走到点C处,测得∠ACF=45°,再向前走300米到点D处,测得∠BDF=60°.若直线AB与EF 之间的距离为200米,求A,B两点之间的距离(结果保留一位小数)27.(12分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE 上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.参考答案【分析】根据轴对称图形的概念求解.【详解】A 、不是轴对称图形,故此选项错误;B 、不是轴对称图形,故此选项错误;C 、不是轴对称图形,故此选项错误;D 、是轴对称图形,故此选项正确.故选D .【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 2.B【解析】【分析】由整数指数幂和分式的运算的法则计算可得答案.【详解】A 项, 根据单项式的减法法则可得:5ab-ab=4ab,故A 项错误;B 项, 根据“同底数幂相除,底数不变,指数相减”可得: a 6÷a 2=a 4,故B 项正确;C 项,根据分式的加法法则可得:11a b a b ab++=,故C 项错误; D 项, 根据 “积的乘方等于乘方的积” 可得:2363()a b a b =,故D 项错误;故本题正确答案为B.【点睛】幂的运算法则:(1) 同底数幂的乘法: ·m n m n a a a +=(m 、n 都是正整数)(2)幂的乘方:()m n mn a a =(m 、n 都是正整数)(3)积的乘方:()n n n ab a b = (n 是正整数)(4)同底数幂的除法:m n m n a a a -÷=(a≠0,m 、n 都是正整数,且m>n)(5)零次幂:01a =(a≠0)(6) 负整数次幂: 1p paa -=(a≠0, p 是正整数).根据整式的运算法则分别计算可得出结论.【详解】选项A,由合并同类项法则可得3a2﹣6a2=﹣3a2,不正确;选项B,单项式乘单项式的运算可得(﹣2a)•(﹣a)=2a2,正确;选项C,根据整式的除法可得10a10÷2a2=5a8,不正确;选项D,根据幂的乘方可得﹣(a3)2=﹣a6,不正确.故答案选B.考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式.4.C【解析】分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,据此可得.详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,所以中位数落在70.5~80.5分.故选C.点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.A【解析】【分析】根据二次函数的性质、一次函数的性质及反比例函数的性质判断出函数符合y随x的增大而减小的选项.【详解】解:A.此函数为一次函数,y随x的增大而减小,正确;B.此函数为二次函数,当x<0时,y随x的增大而减小,错误;C.此函数为反比例函数,在每个象限,y随x的增大而减小,错误;D.此函数为一次函数,y随x的增大而增大,错误.故选A.【点睛】本题考查了二次函数、一次函数、反比例函数的性质,掌握函数的增减性是解决问题的关键.根据统计图可知,试验结果在0.17附近波动,即其概率P≈0.17,计算四个选项的概率,约为0.17者即为正确答案.【详解】解:在“石头、剪刀、布”的游戏中,小明随机出剪刀的概率是13,故A选项错误,掷一枚质地均匀的正六面体骰子,向上一面的点数是4的概率是16≈0.17,故B选项正确,一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃得概率是14,故C选项错误,抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上的概率是18,故D选项错误,故选B.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.7.A【解析】分析:由方程根的情况,根据根的判别式可求得c的取值范围,则可求得答案.详解:∵关于x的方程x1+1x+c=0没有实数根,∴△<0,即11﹣4c<0,解得:c>1,∴c在1、1、0、﹣3中取值是1.故选A.点睛:本题主要考查了根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.8.D【解析】分析:根据反比例函数的性质一一判断即可;详解:A.若点(3,6)在其图象上,则(﹣3,6)不在其图象上,故本选项不符合题意;B.当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;C.错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;D.正确,本选项符合题意.故选D.点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.先将点A(1,0)代入y =x 2﹣4x+m ,求出m 的值,将点A(1,0)代入y =x 2﹣4x+m ,得到x 1+x 2=4,x 1•x 2=3,即可解答【详解】将点A(1,0)代入y =x 2﹣4x+m ,得到m =3,所以y =x 2﹣4x+3,与x 轴交于两点,设A(x 1,y 1),b(x 2,y 2)∴x 2﹣4x+3=0有两个不等的实数根,∴x 1+x 2=4,x 1•x 2=3,∴AB =|x 1﹣x 2|=21212)4x x x x ++( =2;故选B .【点睛】此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.10.B【解析】试题分析:三视图就是主视图(正视图)、俯视图、左视图的总称.从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.故选B 考点:三视图11.A【解析】解:如图,连接BE ,设BE 与AC 交于点P′,∵四边形ABCD 是正方形,∴点B 与D 关于AC 对称,∴P′D=P′B ,∴P′D+P′E=P′B+P′E=BE 最小.即P 在AC 与BE 的交点上时,PD+PE 最小,为BE 的长度.∵直角△CBE 中,∠BCE=90°,BC=9,CE=13CD=3,∴BE=2293+=310.故选A .点睛:此题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题.找出P 点【分析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x ﹣2)=﹣4,故选B .【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】先根据矩形的性质,推理得到OF=CF ,再根据Rt △BOF 求得OF 的长,即可得到CF 的长.【详解】解:∵EF ⊥BD ,∠AEO=120°,∴∠EDO=30°,∠DEO=60°,∵四边形ABCD 是矩形,∴∠OBF=∠OCF=30°,∠BFO=60°,∴∠FOC=60°-30°=30°,∴OF=CF ,又∵Rt △BOF 中,BO=12BD=12, ∴OF=tan30°×BO=1,∴CF=1,故答案为:1.【点睛】本题考查矩形的性质以及解直角三角形的运用,解题关键是掌握:矩形的对角线相等且互相平分. 14.4【解析】【分析】连接AE 并延长交BD 于G ,连接AF 并延长交CD 于H ,根据三角形的重心的概念可得12DG BD =,12DH CD =,2AE GE =,2AF HF =,即可求出GH 的长,根据对应边成比例,夹角相等可得EAF GAH ∆∆∽,根据相似三角形的性质即可得答案.如图,连接AE 并延长交BD 于G ,连接AF 并延长交CD 于H ,∵点E 、F 分别是ABD ∆和ACD ∆的重心, ∴12DG BD =,12DH CD =,2AE GE =,2AF HF =, ∵12BC =, ∴111()126222GH DG DH BD CD BC =+=+==⨯=, ∵2AE GE =,2AF HF =,∴23AE AF AG AH ==, ∵EAF GAH ∠=∠,∴EAF GAH ∆∆∽,∴23EF AE GH AG ==, ∴4EF =,故答案为:4【点睛】本题考查了三角形重心的概念和性质及相似三角形的判定与性质,三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍.15.(x ﹣4)(x ﹣6)【解析】【分析】因为(-4)×(-6)=24,(-4)+(-6)=-10,所以利用十字相乘法分解因式即可. 【详解】x 2﹣10x+24= x 2﹣10x+(-4)×(-6)=(x ﹣4)(x ﹣6)【点睛】本题考查的是因式分解,熟练掌握因式分解的方法是解题的关键.16.46【解析】【详解】如图作DH ⊥AE 于H ,连接CG .设DG=x ,∵∠DCE=∠DEC ,∴DC=DE ,∵四边形ABCD 是正方形,∴AD=DC ,∠ADF=90°,∴DA=DE ,∵DH ⊥AE ,∴AH=HE=DG ,在△GDC 与△GDE 中,DG DG GDC GDE DC DE =⎧⎪∠=∠⎨⎪=⎩,∴△GDC ≌△GDE (SAS ),∴GC=GE ,∠DEG=∠DCG=∠DAF ,∵∠AFD=∠CFG ,∴∠ADF=∠CGF=90°,∴2∠GDE+2∠DEG=90°,∴∠GDE+∠DEG=45°,∴∠DGH=45°,在Rt △ADH 中,AD=8,AH=x ,DH=22x , ∴82=x 2+(22x )2, 解得:863∵△ADH ∽△AFD , ∴AD AH AF AD=, ∴AF=648636. 故答案为6.17.18或21【解析】当腰为8时,周长为8+8+5=21;当腰为5时,周长为5+5+8=18.故此三角形的周长为18或21.18.22【解析】如图,连接EF ,∵点E 、点F 是AD 、DC 的中点,∴AE=ED ,CF=DF=12CD=12AB=1, 由折叠的性质可得AE=A′E ,∴A′E=DE ,在Rt △EA′F 和Rt △EDF 中,EA ED EF EF='⎧⎨=⎩ , ∴Rt △EA′F ≌Rt △EDF (HL ),∴A′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3,在Rt △BCF 中, 22223122BF CF -=-=∴2 .点睛:本题考查了翻折变换的知识,解答本题的关键是连接EF ,证明Rt △EA′F ≌Rt △EDF ,得出BF 的长,再利用勾股定理解答即可.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.建筑物AB 的高度约为5.9米【解析】【分析】在△CED 中,得出DE ,在△CFD 中,得出DF ,进而得出EF ,列出方程即可得出建筑物AB 的高度;【详解】在Rt △CED 中,∠CED=58°,∵tan58°=CD DE, ∴DE=2tan 58tan 58o o CD = , 在Rt △CFD 中,∠CFD=22°,∵tan22°=CD DF, ∴DF=2tan 22tan 22o oCD = , ∴EF=DF ﹣DE=2tan 22o -2tan 58o , 同理:EF=BE ﹣BF=tan 4570o o AB AB tam - , ∴tan 4570o o AB AB tam -=2tan 22o -2tan 58o , 解得:AB≈5.9(米),答:建筑物AB 的高度约为5.9米.【点睛】考查解直角三角形的应用,解题的关键是明确题意,利用数形结合的思想解答问题.20. (1)① 30;(2)y 1=0.1x +30,y 2=0.2x ;(3)当通话时间少于300分钟时,选择通话方式②实惠;当通话时间超过300分钟时,选择通话方式①实惠;当通话时间为300分钟时,选择通话方式①,②花费一样.【解析】试题分析:(1)根据当通讯时间为零的时候的函数值可以得到哪种方式有月租,哪种方式没有,有多少;(2)根据图象经过的点的坐标设出函数的解析式,用待定系数法求函数的解析式即可;(3)求出当两种收费方式费用相同的时候自变量的值,以此值为界说明消费方式即可.解:(1)①;30;(2)设y 1=k 1x+30,y 2=k 2x ,由题意得:将(500,80),(500,100)分别代入即可:500k 1+30=80,∴k 1=0.1,500k 2=100,∴k 2=0.2故所求的解析式为y 1=0.1x+30; y 2=0.2x ;(3)当通讯时间相同时y 1=y 2,得0.2x=0.1x+30,解得x=300;当x=300时,y=1.故由图可知当通话时间在300分钟内,选择通话方式②实惠;当通话时间超过300分钟时,选择通话方式①实惠;当通话时间在300分钟时,选择通话方式①、②一样实惠.21.(1)10;(2)87;(3)9环 【解析】【分析】(1)根据众数的定义,一组数据中出现次数最多的数,结合统计图得到答案.(2)先求这组成绩的平均数,再求这组成绩的方差;(3)先求原来7次成绩的中位数,再求第8次的射击成绩的最大环数.【详解】解:(1)在这7次射击中,10环出现的次数最多,故这组成绩的众数是10;(2)嘉淇射击成绩的平均数为:()1107101098997++++++=, 方差为:()()()()22221[109791091097-+-+-+- ()()()2228998999]7+-+-+-=. (3)原来7次成绩为7 8 9 9 10 10 10,原来7次成绩的中位数为9,当第8次射击成绩为10时,得到8次成绩的中位数为9.5,当第8次射击成绩小于10时,得到8次成绩的中位数均为9,因此第8次的射击成绩的最大环数为9环.【点睛】 本题主要考查了折线统计图和众数、中位数、方差等知识.掌握众数、中位数、方差以及平均数的定义是解题的关键.22.(1)y=60x ;(2)300【解析】【详解】(1)由题图可知,甲组的y 是x 的正比例函数.设甲组加工的零件数量y 与时间x 的函数关系式为y=kx.根据题意,得6k=360,解得k=60.所以,甲组加工的零件数量y 与时间x 之间的关系式为y=60x.(2)当x=2时,y=100.因为更换设备后,乙组工作效率是原来的2倍. 所以a-100100=24.8-2.82⨯,解得a=300. 23.(1)117(2)见解析(3)B (4)30【解析】【分析】(1)先根据B 等级人数及其百分比求得总人数,总人数减去其他等级人数求得C 等级人数,继而用360°乘以C 等级人数所占比例即可得;(2)根据以上所求结果即可补全图形;(3)根据中位数的定义求解可得;(4)总人数乘以样本中A 等级人数所占比例可得.【详解】解:(1)∵总人数为18÷45%=40人, ∴C 等级人数为40﹣(4+18+5)=13人,则C 对应的扇形的圆心角是360°×1340=117°, 故答案为117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B 等级, 所以所抽取学生的足球运球测试成绩的中位数会落在B 等级,故答案为B .(4)估计足球运球测试成绩达到A 级的学生有300×440=30人. 【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.证明见解析【解析】试题分析:首先根据AF=DC ,可推得AF ﹣CF=DC ﹣CF ,即AC=DF ;再根据已知AB=DE ,BC=EF ,根据全等三角形全等的判定定理SSS 即可证明△ABC ≌△DEF .试题解析:∵AF=DC ,∴AF ﹣CF=DC ﹣CF ,即AC=DF ;在△ABC 和△DEF 中∴△ABC ≌△DEF (SSS )25.(1)21人;(2)10人,见解析(3)应从甲抽调1名学生到丙组【解析】(1)参加丙组的人数为21人;(2)21÷10%=10人,则乙组人数=10-21-11=10人, 如图:(3)设需从甲组抽调x 名同学到丙组,根据题意得:3(11-x )=21+x解得x=1.答:应从甲抽调1名学生到丙组(1)直接根据条形统计图获得数据;(2)根据丙组的21人占总体的10%,即可计算总体人数,然后计算乙组的人数,补全统计图; (3)设需从甲组抽调x 名同学到丙组,根据丙组人数是甲组人数的3倍列方程求解26.215.6米.【解析】【分析】过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点,根据Rt △ACM 和三角函数tan BDF ∠求出CM 、DN ,然后根据MN MD DN AB =+=即可求出A 、B 两点间的距离.【详解】解:过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点 在Rt △ACM 中,∵45ACF ∠=︒,∴AM=CM=200米,又∵CD=300米,所以100MD CD CM =-=米,在Rt △BDN 中,∠BDF=60°,BN=200米 ∴115.6tan 60BN DN =≈o米, ∴215.6MN MD DN AB =+=≈米即A ,B 两点之间的距离约为215.6米.【点睛】本题主要考查三角函数,正确做辅助线是解题的关键.27.(1)说明见解析;(2)当∠B=30°时,四边形ACEF 是菱形.理由见解析.【解析】试题分析:(1)证明△AEC ≌△EAF ,即可得到EF=CA ,根据两组对边分别相等的四边形是平行四边形即可判断;(2)当∠B=30°时,四边形ACEF 是菱形.根据直角三角形的性质,即可证得AC=EC ,根据菱形的定义即可判断.(1)证明:由题意知∠FDC=∠DCA=90°,∴EF ∥CA ,∴∠FEA=∠CAE ,∵AF=CE=AE ,∴∠F=∠FEA=∠CAE=∠ECA .在△AEC 和△EAF 中,∵∴△EAF ≌△AEC (AAS ),∴EF=CA ,∴四边形ACEF 是平行四边形.(2)解:当∠B=30°时,四边形ACEF 是菱形.理由如下:∵∠B=30°,∠ACB=90°,∴AC=AB ,∵DE 垂直平分BC ,∴∠BDE=90°∴∠BDE=∠ACB∴ED ∥AC又∵BD=DC∴DE 是△ABC 的中位线,∴E是AB的中点,∴BE=CE=AE,又∵AE=CE,∴AE=CE=AB,又∵AC=AB,∴AC=CE,∴四边形ACEF是菱形.考点:菱形的判定;全等三角形的判定与性质;线段垂直平分线的性质;平行四边形的判定.。
河北省沧州市2019-2020学年第四次中考模拟考试数学试卷含解析

河北省沧州市2019-2020学年第四次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.88152.5x x+=B.8184 2.5x x+=C.88152.5x x=+D.8812.54x x=+2.一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.下列叙述错误的是()A.AB两地相距1000千米B.两车出发后3小时相遇C.动车的速度为1000 3D.普通列车行驶t小时后,动车到达终点B地,此时普通列车还需行驶20003千米到达A地3.如图,将△ABC绕点C旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB扫过的图形面积为()A.32πB.83πC.6πD.以上答案都不对4.在如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.5.下列算式的运算结果正确的是( ) A .m 3•m 2=m 6 B .m 5÷m 3=m 2(m≠0)C .(m ﹣2)3=m ﹣5D .m 4﹣m 2=m 26.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆低端D 到大楼前梯砍底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i=1:3,则大楼AB 的高度约为( )(精确到0.1米,参考数据:2 1.413 1.736 2.45≈≈≈,,)A .30.6米B .32.1 米C .37.9米D .39.4米7.如图,将△ABC 绕点C 顺时针旋转,使点B 落在AB 边上点B′处,此时,点A 的对应点 A′恰好落在 BC 边的延长线上,下列结论错误的是( )A .∠BCB′=∠ACA′B .∠ACB=2∠BC .∠B′CA=∠B′ACD .B′C 平分∠BB′A′8.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x (单位:环).下列说法中正确的是( ) A .若这5次成绩的中位数为8,则x =8 B .若这5次成绩的众数是8,则x =8 C .若这5次成绩的方差为8,则x =8 D .若这5次成绩的平均成绩是8,则x =8 9.已知反比例函数,下列结论不正确的是( )A .图象必经过点(﹣1,2)B .y 随x 的增大而增大C .图象在第二、四象限内D .若,则10.正方形ABCD 和正方形BPQR 的面积分别为16、25,它们重叠的情形如图所示,其中R 点在AD 上,CD 与QR 相交于S 点,则四边形RBCS 的面积为( )A .8B .172C .283D .77811.下列计算正确的是( ) A .a²+a²=a 4 B .(-a 2)3=a 6 C .(a+1)2=a 2+1D .8ab 2÷(-2ab )=-4b12.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,下列方程组正确的是( ) A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.二次根式1a + 中的字母a 的取值范围是_____.14.抛物线y =2x 2+4向左平移2个单位长度,得到新抛物线的表达式为_____.15.如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限,若反比例函数ky x=的图象经过点B ,则k 的值是_____.16.二次函数()2y ax bx c a 0=++≠中的自变量x 与函数值y 的部分对应值如下表:x…32- 1-12- 012 132 …y (54)- 2-94-2- 54- 074…则2ax bx c 0++=的解为________.17.如图,无人机在空中C 处测得地面A 、B 两点的俯角分别为60°、45°,如果无人机距地面高度CD 为1003A 、D 、B 在同一水平直线上,则A 、B 两点间的距离是_____米.(结果保留根号)18.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场是_____(请写出盈利或亏损)_____元.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)计算:201()(π7)3---+3〡-2〡+6tan30︒20.(6分)如图所示,在平面直角坐标系xOy 中,正方形OABC 的边长为2cm,点A 、C 分别在y 轴的负半轴和x 轴的正半轴上,抛物线y=ax 2+bx+c 经过点A 、B 和D (4,).(1)求抛物线的表达式.(2)如果点P 由点A 出发沿AB 边以2cm/s 的速度向点B 运动,同时点Q 由点B 出发,沿BC 边以1cm/s 的速度向点C 运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ 2(cm 2). ①试求出S 与运动时间t 之间的函数关系式,并写出t 的取值范围;②当S 取时,在抛物线上是否存在点R,使得以点P 、B 、Q 、R 为顶点的四边形是平行四边形?如果存在,求出R 点的坐标;如果不存在,请说明理由.(3)在抛物线的对称轴上求点M,使得M 到D 、A 的距离之差最大,求出点M 的坐标.21.(6分)如图抛物线y=ax 2+bx ,过点A (4,0)和点B (6,3,四边形OCBA 是平行四边形,点M (t ,0)为x 轴正半轴上的点,点N 为射线AB 上的点,且AN=OM ,点D 为抛物线的顶点. (1)求抛物线的解析式,并直接写出点D 的坐标; (2)当△AMN 的周长最小时,求t 的值;(3)如图②,过点M 作ME ⊥x 轴,交抛物线y=ax 2+bx 于点E ,连接EM ,AE ,当△AME 与△DOC 相似时.请直接写出所有符合条件的点M 坐标.22.(8分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m =162﹣3x .请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.23.(8分)先化简,再求值:22111()211x x x x x --÷-+-,其中x=﹣1. 24.(10分)如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于点()0,3C-,A 点的坐标为()1,0-.(1)求二次函数的解析式;(2)若点P 是抛物线在第四象限上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标,并求出四边形ABPC 的最大面积;(3)若Q 为抛物线对称轴上一动点,直接写出使QBC ∆为直角三角形的点Q 的坐标.25.(10分)(1)问题:如图1,在四边形ABCD 中,点P 为AB 上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP .(2)探究:如图2,在四边形ABCD 中,点P 为AB 上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立.说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD 中,AB=6,AD=BD=1.点P 以每秒1个单位长度的速度,由点A 出发,沿边AB 向点B 运动,且满足∠DPC=∠A .设点P 的运动时间为t (秒),当DC 的长与△ABD 底边上的高相等时,。
河北省沧州市2019-2020学年中考三诊数学试题含解析

河北省沧州市2019-2020学年中考三诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.估计5介于()A.0与1之间B.1与2之间C.2与3之间D.3与4之间2.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为12,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)3.不等式组325521xx+>⎧⎨-≥⎩的解在数轴上表示为()A.B.C.D.4.下列计算正确的是()A.B.C.D.5.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()A.25πcm B.210πcm C.215πcm D.220πcm6.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185 180 185 180方差 3.6 3.6 7.4 8.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择()A.甲B.乙C.丙D.丁7.一元二次方程x2﹣5x﹣6=0的根是()A.x1=1,x2=6 B.x1=2,x2=3 C.x1=1,x2=﹣6 D.x1=﹣1,x2=68.下列运算中正确的是( )A.x2÷x8=x−6B.a·a2=a2C.(a2)3=a5D.(3a)3=9a39.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是()A.①B.②C.③D.④10.如图,长度为10m的木条,从两边各截取长度为xm的木条,若得到的三根木条能组成三角形,则x 可以取的值为()A.2m B.52m C.3m D.6m11.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( )A.8×1012B.8×1013C.8×1014D.0.8×101312.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为点E,DE=1,则BC= ()A.3B.2 C.3 D.3+2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.方程242x-=的根是__________.14.如图,在△OAB中,C是AB的中点,反比例函数y=kx(k>0)在第一象限的图象经过A,C两点,若△OAB面积为6,则k的值为_____.15.如图,矩形OABC 的两边落在坐标轴上,反比例函数y=kx的图象在第一象限的分支过AB 的中点D 交OB 于点E ,连接EC ,若△OEC 的面积为12,则k=_____.16.如图,点D 是线段AB 的中点,点C 是线段AD 的中点,若CD=1,则AB=________________.17.如图,Rt △ABC 中,∠ABC =90°,AB =BC ,直线l 1、l 2、l 1分别通过A 、B 、C 三点,且l 1∥l 2∥l 1.若l 1与l 2的距离为5,l 2与l 1的距离为7,则Rt △ABC 的面积为___________18.二次函数()2y ax bx c a 0=++≠中的自变量x 与函数值y 的部分对应值如下表:x…32- 1-12- 012 132 …y (54)- 2-94-2- 54- 074…则2ax bx c 0++=的解为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y 轴的抛物线与网格对角线OM 的两个交点为A ,B ,其顶点为C ,如果△ABC 是该抛物线的内接格点三角形,2,且点A ,B ,C 的横坐标x A ,x B ,x C 满足x A <x C <x B ,那么符合上述条件的抛物线条数是( )A .7B .8C .14D .1620.(6分)某经销商从市场得知如下信息:A 品牌手表B 品牌手表 进价(元/块) 700 100 售价(元/块)900160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A 品牌手表x 块,这两种品牌手表全部销售完后获得利润为y 元.试写出y 与x 之间的函数关系式;若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;选择哪种进货方案,该经销商可获利最大;最大利润是多少元.21.(6分)关于x 的一元二次方程230x x k -+=有实数根.求k 的取值范围;如果k 是符合条件的最大整数,且一元二次方程()2130m x x m -++-=与方程230x x k -+=有一个相同的根,求此时m 的值.22.(8分)先化简,再求值:13a -﹣219-a ÷126-a ,其中a =1.23.(8分)如图,在Rt △ABC 中,∠C =90°,以BC 为直径的⊙O 交AB 于点D ,DE 交AC 于点E ,且∠A =∠ADE .求证:DE 是⊙O 的切线;若AD =16,DE =10,求BC 的长.24.(10分)现有一次函数y =mx+n 和二次函数y =mx 2+nx+1,其中m≠0,若二次函数y =mx 2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.若一次函数y =mx+n 经过点(2,0),且图象经过第一、三象限.二次函数y =mx 2+nx+1经过点(a ,y 1)和(a+1,y 2),且y 1>y 2,请求出a 的取值范围.若二次函数y =mx 2+nx+1的顶点坐标为A (h ,k )(h≠0),同时二次函数y =x 2+x+1也经过A 点,已知﹣1<h <1,请求出m 的取值范围.25.(10分)已知反比例函数的图象过点A (3,2).(1)试求该反比例函数的表达式;(2)M (m ,n )是反比例函数图象上的一动点,其中0<m <3,过点M 作直线MB ∥x 轴,交y 轴于点B ;过点A 作直线AC ∥y 轴,交x 轴于点C ,交直线MB 于点D .当四边形OADM 的面积为6时,请判断线段BM 与DM 的大小关系,并说明理由.26.(12分)已知抛物线23y ax bx =++的开口向上顶点为P(1)若P 点坐标为(4,一1),求抛物线的解析式;(2)若此抛物线经过(4,一1),当-1≤x≤2时,求y 的取值范围(用含a 的代数式表示) (3)若a =1,且当0≤x≤1时,抛物线上的点到x 轴距离的最大值为6,求b 的值27.(12分)如图,已知△ABC ,请用尺规作图,使得圆心到△ABC 各边距离相等(保留作图痕迹,不写作法).参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】 【详解】解:∵459<<, 459<<,即253<<2~3之间故选C.【点睛】本题考查估计无理数的大小.2.D【解析】【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案.【详解】∵点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为12,把△ABO缩小,∴点A的对应点A′的坐标是:(-2,1)或(2,-1).故选D.【点睛】此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.3.C【解析】【分析】先解每一个不等式,再根据结果判断数轴表示的正确方法.【详解】解:由不等式①,得3x>5-2,解得x>1,由不等式②,得-2x≥1-5,解得x≤2,∴数轴表示的正确方法为C.故选C.【点睛】考核知识点:解不等式组.4.D【解析】分析:根据合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法的运算法则计算即可.解答:解:A、x+x=2x,选项错误;B、x?x=x2,选项错误;C、(x2)3=x6,选项错误;D、正确.故选D.5.B【解析】试题解析:∵AC=10,∴AO=BO=5,∵∠BAC=36°,∴∠BOC=72°,∵矩形的对角线把矩形分成了四个面积相等的三角形,∴阴影部分的面积=扇形AOD的面积+扇形BOC的面积=2扇形BOC的面积=27252360π⨯⨯=10π .故选B.6.A【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵x甲=x丙>x乙=x丁,∴从甲和丙中选择一人参加比赛,∵2S甲=2S乙<2S丙<2S丁,∴选择甲参赛,故选A.【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定. 7.D【解析】【分析】本题应对原方程进行因式分解,得出(x-6)(x+1)=1,然后根据“两式相乘值为1,这两式中至少有一式值为1.”来解题.【详解】x2-5x-6=1(x-6)(x+1)=1x1=-1,x2=6故选D.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法.根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.【详解】解:A、x2÷x8=x-6,故该选项正确;B、a•a2=a3,故该选项错误;C、(a2)3=a6,故该选项错误;D、(3a)3=27a3,故该选项错误;故选A.【点睛】此题主要考查了同底数幂的乘除法、幂的乘方和积的乘方,关键是掌握相关运算法则.9.B【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。
河北省沧州市2019-2020学年中考数学三月模拟试卷含解析

河北省沧州市2019-2020学年中考数学三月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知关于x的不等式ax<b的解为x>-2,则下列关于x的不等式中,解为x<2的是()A.ax+2<-b+2 B.–ax-1<b-1 C.ax>b D.1 xa b <-2.已知一元二次方程x2-8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为()A.13 B.11或13 C.11 D.123.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形外,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B逆时针旋转,使ON边与BC边重合,完成第一次旋转;再绕点C逆时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,O间的距离不可能是()A.0 B.0.8 C.2.5 D.3.44.如图,在△ABC中,AD是BC边的中线,∠ADC=30°,将△ADC沿AD折叠,使C点落在C′的位置,若BC=4,则BC′的长为()A.3B.2 C.4 D.35.下列实数为无理数的是()A.-5 B.72C.0 D.π6.已知a,b为两个连续的整数,且11则a+b的值为()A.7 B.8 C.9 D.10 716)A.±4 B.4 C.2 D.±2于( )A .3.5B .4C .7D .149.PM2.5是指大气中直径小于或等于2.5μm (0.0000025m )的颗粒物,含有大量有毒、有害物质,也称为可入肺颗粒物,将25微米用科学记数法可表示为( )米. A .25×10﹣7 B .2.5×10﹣6 C .0.25×10﹣5 D .2.5×10﹣510.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲 乙 丙 丁 平均数(cm ) 185 180 185 180 方差3.63.67.48.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择( ) A .甲B .乙C .丙D .丁11.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( ) A .154B .14C .1515D .4171712.河堤横断面如图所示,堤高BC=6米,迎水坡AB 的坡比为1:3,则AB 的长为A .12米B .43米C .53米D .63米二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.方程6x x -=+的解是_________.14.将一副三角板如图放置,若20AOD ∠=o ,则BOC ∠的大小为______.15.如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在边AC 上,与点B′重合,AE 为折痕,则EB′= _______.16.已知正比例函数的图像经过点M( )、、,如果,那么________.(填“>”、“=”、“<”)17.化简11-(1)1m m ⎛⎫⋅-= ⎪-⎝⎭__________.18.二次根式x 3-中,x 的取值范围是 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,在平面直角坐标系xOy 中,直线16y k x =+与函数()20k y x x=>的图象的两个交点分别为A (1,5),B . (1)求1k ,2k 的值;(2)过点P (n ,0)作x 轴的垂线,与直线16y k x =+和函数()20k y x x=>的图象的交点分别为点M ,N ,当点M 在点N 下方时,写出n 的取值范围.20.(6分)在下列的网格图中.每个小正方形的边长均为1个单位,在Rt △ABC 中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC 以A 为旋转中心,沿顺时针方向旋转90°后的图形△AB 1C 1; (2)若点B 的坐标为(-3,5),试在图中画出直角坐标系,并标出A 、C 两点的坐标;(3)根据(2)中的坐标系作出与△ABC 关于原点对称的图形△A 2B 2C 2,并标出B 2、C 2两点的坐标.21.(6分)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.求证:AB=DC;试判断△OEF的形状,并说明理由.22.(8分)为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.求购买A型和B型公交车每辆各需多少万元?预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?23.(8分)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,求ADAB的值.24.(10分)在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如图所示的两幅不完整的统计图:求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.25.(10分)如图,已知矩形 OABC 的顶点A 、C 分别在 x 轴的正半轴上与y 轴的负半轴上,二次函数228255y x x =--的图像经过点B 和点C .(1)求点 A 的坐标;(2)结合函数的图象,求当 y<0 时,x 的取值范围.26.(12分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:补全条形统计图;求扇形统计图扇形D 的圆心角的度数;若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?27.(12分)如图,直角△ABC 内接于⊙O ,点D 是直角△ABC 斜边AB 上的一点,过点D 作AB 的垂线交AC 于E ,过点C 作∠ECP=∠AED ,CP 交DE 的延长线于点P ,连结PO 交⊙O 于点F .(1)求证:PC 是⊙O 的切线;参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】∵关于x 的不等式ax <b 的解为x >-2, ∴a<0,且2ba=-,即2b a =-, ∴(1)解不等式ax+2<-b+2可得:ax<-b ,2bx a>-=,即x>2; (2)解不等式–ax-1<b-1可得:-ax<b ,2bx a<-=,即x<2; (3)解不等式ax>b 可得:2bx a<=-,即x<-2; (4)解不等式1x a b <-可得:12a x b >-=,即12x >;∴解集为x<2的是B 选项中的不等式. 故选B. 2.B 【解析】试题解析:x 2-8x+15=0, 分解因式得:(x-3)(x-5)=0, 可得x-3=0或x-5=0, 解得:x 1=3,x 2=5,若3为底边,5为腰时,三边长分别为3,5,5,周长为3+5+5=1; 若3为腰,5为底边时,三边长分别为3,3,5,周长为3+3+5=11, 综上,△ABC 的周长为11或1. 故选B.考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质. 3.D 【解析】 【分析】可得0≤d≤32+,即0≤d≤3.1,由此即可判断;【详解】如图,点O的运动轨迹是图在黄线,作CH⊥BD于点H,∵六边形ABCDE是正六边形,∴∠BCD=120º,∴∠CBH=30º,∴BH=cos30 º·33=∴3∵22112+=∴32点B,O间的距离d的最小值为0,最大值为线段32∴320≤d≤3.1,故点B,O间的距离不可能是3.4,故选:D.【点睛】本题考查正多边形与圆、旋转变换等知识,解题的关键是正确作出点O的运动轨迹,求出点B,O间的距离的最小值以及最大值是解答本题的关键.4.A【解析】连接CC′,∴∠ADC′=∠ADC=30°,CD=C′D,∴∠CDC′=∠ADC+∠ADC′=60°,∴△DCC′是等边三角形,∴∠DC′C=60°,∵在△ABC中,AD是BC边的中线,即BD=CD,∴C′D=BD,∴∠DBC′=∠DC′B=12∠CDC′=30°,∴∠BC′C=∠DC′B+∠DC′C=90°,∵BC=4,∴BC′=BC•cos∠DBC′=4×32=23,故选A.【点睛】本题考查了折叠的性质、等边三角形的判定与性质、等腰三角形的性质、直角三角形的性质以及三角函数等知识,准确添加辅助线,掌握折叠前后图形的对应关系是解题的关键.5.D【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A、﹣5是整数,是有理数,选项错误;B、72是分数,是有理数,选项错误;C、0是整数,是有理数,选项错误;D、π是无理数,选项正确.故选D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.【解析】∵9<11<16,<<,即34<<,∵a,b为两个连续的整数,且a b<<,∴a=3,b=4,∴a+b=7,故选A.7.B【解析】【分析】根据算术平方根的意义求解即可.【详解】=4,故选:B.【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a 的算术平方根,正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.8.A【解析】【分析】根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD 的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.【详解】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵E为AD边中点,∴OE是△ABD的中位线,∴OE=12AB=12×7=3.1.故选:A.本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键. 9.B 【解析】 【分析】由科学计数法的概念表示出0.0000025即可. 【详解】0.0000025=2.5×10﹣6. 故选B. 【点睛】本题主要考查科学计数法,熟记相关概念是解题关键. 10.A 【解析】 【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】∵x 甲=x 丙>x 乙=x 丁,∴从甲和丙中选择一人参加比赛, ∵2S 甲=2S 乙<2S 丙<2S 丁, ∴选择甲参赛, 故选A . 【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定. 11.A 【解析】∵在Rt △ABC 中,∠C=90°,AB=4,AC=1,∴,则cosB=BC AB =4, 故选A 12.A【分析】试题分析:在Rt △ABC 中,BC=6米,BCAC =,∴(米).∴AB 12===(米).故选A.【详解】 请在此输入详解!二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x=-2【解析】方程x -=26x x =+,解得:1232x x ==-,,检验:(1)当x=3时,方程左边=-3,右边=3,左边≠右边,因此3不是原方程的解;(2)当x=-2时,方程左边=2,右边=2,左边=右边,因此-2是方程的解.∴原方程的解为:x=-2.故答案为:-2.点睛:(1)根号下含有未知数的方程叫无理方程,解无理方程的基本思想是化“无理方程”为“有理方程”;(2)解无理方程和解分式方程相似,求得未知数的值之后要检验,看所得结果是原方程的解还是增根. 14.160°【解析】试题分析:先求出∠COA 和∠BOD 的度数,代入∠BOC=∠COA+∠AOD+∠BOD 求出即可. 解:∵∠AOD=20°,∠COD=∠AOB=90°,∴∠COA=∠BOD=90°﹣20°=70°,∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°,故答案为160°.考点:余角和补角.15.1.5【解析】在Rt △ABC 中,5AC =,∵将△ABC 折叠得△AB′E ,∴AB′=AB ,B′E =BE ,∴B′C =5-3=1.设B ′E =BE =x ,则CE =4-x .在Rt △B′CE 中,CE 1=B′E 1+B′C 1,∴(4-x )1=x 1+11.解之得32x =. 16.>【解析】分析:根据正比例函数的图象经过点M (﹣1,1)可以求得该函数的解析式,然后根据正比例函数的性质即可解答本题.详解:设该正比例函数的解析式为y=kx ,则1=﹣1k ,得:k=﹣0.5,∴y=﹣0.5x .∵正比例函数的图象经过点A (x 1,y 1)、B (x 1,y 1),x 1<x 1,∴y 1>y 1.故答案为>.点睛:本题考查了正比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用正比例函数的性质解答.17.2-m【解析】【分析】根据分式的运算法则先算括号里面,再作乘法亦可利用乘法对加法的分配律求解.【详解】 解:法一、()11-11m m ⎛⎫⋅- ⎪-⎝⎭=(11m m --- 11m -) ()1m ⋅- =21m m -- ()1m ⋅- = 2-m .故答案为:2-m .法二、原式=()1111m m ⎛⎫+⋅- ⎪-⎝⎭= =1-m+1=2-m .故答案为:2-m .【点睛】本题考查分式的加减和乘法,解决本题的关键是熟练运用运算法则或运算律.18.x 3≥.【解析】x 30x 3-≥⇒≥.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)11k =-,25k =;(2)0<n <1或者n >1.【解析】【分析】(1)利用待定系数法即可解决问题;(2)利用图象法即可解决问题;【详解】解:(1)∵A (1,1)在直线16y k x =+上,∴11k =-,∵A (1,1)在()20k y x x=>的图象上, ∴25k =.(2)观察图象可知,满足条件的n 的值为:0<n <1或者n >1.【点睛】此题考查待定系数法求反比例函数与一次函数的解析式,解题关键在于利用数形结合的思想求解. 20.(1)作图见解析;(2)如图所示,点A 的坐标为(0,1),点C 的坐标为(-3,1);(3)如图所示,点B 2的坐标为(3,-5),点C 2的坐标为(3,-1).【解析】【分析】(1)分别作出点B 个点C 旋转后的点,然后顺次连接可以得到;(2)根据点B 的坐标画出平面直角坐标系;(3)分别作出点A 、点B 、点C 关于原点对称的点,然后顺次连接可以得到.【详解】(1)△A 11B C 如图所示;(2)如图所示,A (0,1),C (﹣3,1);(3)△222A B C 如图所示,2B (3,﹣5),(3,﹣1).21.(1)证明略(2)等腰三角形,理由略【解析】【详解】证明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵∠A=∠D,∠B=∠C,∴△ABF≌△DCE(AAS),∴AB=DC.(2)△OEF为等腰三角形理由如下:∵△ABF≌△DCE,∴∠AFB=∠DEC.∴OE=OF.∴△OEF为等腰三角形.22.(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.【解析】【详解】详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得,解得:6≤a≤8,因为a是整数,所以a=6,7,8;则(10-a)=4,3,2;三种方案:①购买A型公交车6辆,B型公交车4辆;②购买A型公交车7辆,B型公交车3辆;③购买A型公交车8辆,B型公交车2辆.(3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.23.1 2【解析】【分析】根据翻折的性质可得∠BAC=∠EAC,再根据矩形的对边平行可得AB∥CD,根据两直线平行,内错角相等可得∠DCA=∠BAC,从而得到∠EAC=∠DCA,设AE与CD相交于F,根据等角对等边的性质可得AF=CF,再求出DF=EF,从而得到△ACF和△EDF相似,根据相似三角形得出对应边成比,设DF=3x,FC=5x,在Rt△ADF中,利用勾股定理列式求出AD,再根据矩形的对边相等求出AB,然后代入进行计算即可得解.【详解】解:∵矩形沿直线AC折叠,点B落在点E处,∴CE=BC,∠BAC=∠CAE,∵矩形对边AD=BC,∴AD=CE,设AE、CD相交于点F,在△ADF和△CEF中,90ADF CEF AFD CFEAD CE ∠∠︒⎧⎪∠∠⎨⎪⎩====, ∴△ADF ≌△CEF (AAS ),∴EF =DF ,∵AB ∥CD ,∴∠BAC =∠ACF ,又∵∠BAC =∠CAE ,∴∠ACF =∠CAE ,∴AF =CF ,∴AC ∥DE ,∴△ACF ∽△DEF , ∴35EF DE CF AC ==, 设EF =3k ,CF =5k ,由勾股定理得CE =()()22534k k k -=,∴AD =BC =CE =4k ,又∵CD =DF +CF =3k +5k =8k ,∴AB =CD =8k ,∴AD :AB =(4k ):(8k )=12.【点睛】本题考查了翻折变换的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,综合题难度较大,求出△ACF 和△DEF 相似是解题的关键,也是本题的难点.24.(1)3,补图详见解析;(2)712【解析】【分析】(1)总人数=3÷它所占全体团员的百分比;发4条的人数=总人数-其余人数(2)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可【详解】由扇形图可以看到发箴言三条的有3名学生且占25%,故该班团员人数为:325%12÷=(人), 则发4条箴言的人数为:1222314----=(人),所以本月该班团员所发的箴言共212233441536⨯+⨯+⨯+⨯+⨯=(条),则平均所发箴言的条数是:36123÷=(条).(2)画树形图如下:由树形图可得,所选两位同学恰好是一位男同学和一位女同学的概率为712P =. 【点睛】 此题考查扇形统计图,条形统计图,列表法与树状图法和扇形统计图,看懂图中数据是解题关键25.(1)(40),;(2)15x -<<【解析】【分析】(1)当0x =时,求出点C 的坐标,根据四边形OABC 为矩形,得出点B 的坐标,进而求出点A 即可;(2)先求出抛物线图象与x 轴的两个交点,结合图象即可得出.【详解】解:(1)当0x =时,函数228255y x x =--的值为-2, ∴点C 的坐标为(0,2)-∵四边形OABC 为矩形, ,2OA CB AB CO ∴=== 解方程2282255x x --=-,得120,4x x ==. ∴点B 的坐标为(4)2-,.∴点A 的坐标为(40),. (2)解方程2282055x x --=,得121,5x x =-=. 由图象可知,当0y <时,x 的取值范围是15x -<<.【点睛】本题考查了二次函数与几何问题,以及二次函数与不等式问题,解题的关键是灵活运用几何知识,并熟悉二次函数的图象与性质.26.(1)补图见解析;(2)27°;(3)1800名【解析】【分析】(1)根据A 类的人数是10,所占的百分比是25%即可求得总人数,然后根据百分比的意义求得B 类的人数;(2)用360°乘以对应的比例即可求解;(3)用总人数乘以对应的百分比即可求解.【详解】(1)抽取的总人数是:10÷25%=40(人),在B 类的人数是:40×30%=12(人). ;(2)扇形统计图扇形D 的圆心角的度数是:360×340=27°; (3)能在1.5小时内完成家庭作业的人数是:2000×(25%+30%+35%)=1800(人).考点:条形统计图、扇形统计图.27.(1)证明见解析;(2)1.【解析】试题分析:(1)连接OC ,欲证明PC 是⊙O 的切线,只要证明PC ⊥OC 即可;(2)延长PO 交圆于G 点,由切割线定理求出PG 即可解决问题.试题解析:(1)如图,连接OC ,∵PD ⊥AB ,∴∠ADE=90°,∵∠ECP=∠AED ,又∵∠EAD=∠ACO ,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC ⊥OC ,∴PC 是⊙O 切线;(2)延长PO 交圆于G 点,∵PF×PG=,PC=3,PF=1,∴PG=9,∴FG=9﹣1=1,∴AB=FG=1.考点:切线的判定;切割线定理.。
河北省沧州市2019-2020学年第三次中考模拟考试数学试卷含解析
河北省沧州市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.2cm2B.3cm2C.4cm2D.5cm22.如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE的长为( )A.6 B.8 C.10 D.123.如图,在△ABC中,∠C=90°,∠B=10°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:1.A.1 B.2 C.1 D.44.已知x2-2x-3=0,则2x2-4x的值为()A.-6 B.6 C.-2或6 D.-2或305.如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=23cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是()A.B.C.D.6.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个B.5个C.6个D.7个7.下列运算正确的是()A.5ab﹣ab=4 B.a6÷a2=a4C.112a b ab+=D.(a2b)3=a5b38.6的相反数为()A.-6 B.6 C.16-D.169.点A(m﹣4,1﹣2m)在第四象限,则m的取值范围是()A.m>12B.m>4C.m<4 D.12<m<410.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°11.如图,水平的讲台上放置的圆柱体笔筒和正方体粉笔盒,其左视图是()A.B.C.D.12.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是( )A.8374y xy x-=⎧⎨-=⎩B.8374y xx y-=⎧⎨-=⎩C.8374x yy x-=⎧⎨-=⎩D.8374x yx y-=⎧⎨-=⎩二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:9x3﹣18x2+9x= .14.已知点(﹣1,m)、(2,n )在二次函数y=ax2﹣2ax﹣1的图象上,如果m>n,那么a____0(用“>”或“<”连接).15.已知,直接y=kx+b(k>0,b>0)与x轴、y轴交A、B两点,与双曲线y=16x(x>0)交于第一象限点C,若BC=2AB,则S△AOB=________.16.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是________________17.若一次函数y=﹣2(x+1)+4的值是正数,则x的取值范围是_______.18.不等式组的解是________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某经销商经销的冰箱二月份的售价比一月份每台降价500元,已知卖出相同数量的冰箱一月份的销售额为9万元,二月份的销售额只有8万元.(1)二月份冰箱每台售价为多少元?(2)为了提高利润,该经销商计划三月份再购进洗衣机进行销售,已知洗衣机每台进价为4000元,冰箱每台进价为3500元,预计用不多于7.6万元的资金购进这两种家电共20台,设冰箱为y台(y≤12),请问有几种进货方案?(3)三月份为了促销,该经销商决定在二月份售价的基础上,每售出一台冰箱再返还顾客现金a元,而洗衣机按每台4400元销售,这种情况下,若(2)中各方案获得的利润相同,则a应取何值?20.(6分)为了奖励优秀班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的单价各是多少元?若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元?21.(6分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,然后沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:3,(斜坡的铅直高度与水平宽度的比),经过测量AB=10米,AE=15米,求点B到地面的距离;求这块宣传牌CD的高度.(测角器的高度忽略不计,结果保留根号)22.(8分)计算:2sin30°﹣|1﹣3|+(12)﹣123.(8分)(1)如图1,正方形ABCD中,点E,F分别在边CD,AD上,AE⊥BF于点G,求证:AE=BF;(2)如图2,矩形ABCD中,AB=2,BC=3,点E,F分别在边CD,AD上,AE⊥BF于点M,探究AE 与BF的数量关系,并证明你的结论;(3)在(2)的基础上,若AB=m,BC=n,其他条件不变,请直接写出AE与BF的数量关系;.24.(10分)如图,已知某水库大坝的横断面是梯形ABCD,坝顶宽AD是6米,坝高14米,背水坡AB 的坡度为1:3,迎水坡CD的坡度为1:1.求:(1)背水坡AB的长度.(1)坝底BC的长度.25.(10分)如图,以△ABC的边AB为直径的⊙O分别交BC、AC于F、G,且G是»AF的中点,过点G作DE⊥BC,垂足为E,交BA的延长线于点D(1)求证:DE是的⊙O切线;(2)若AB=6,BG=4,求BE的长;(3)若AB=6,CE=1.2,请直接写出AD的长.26.(12分)已知反比例函数的图象经过三个点A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>1.(1)当y1﹣y2=4时,求m的值;(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程).27.(12分)先化简222211(1)11x x xxx x-+-÷-+--,5x3为x的值代入求值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE 等底同高,可以证明两三角形面积相等,即可求得△PBC的面积.【详解】延长AP交BC于E.∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE S△ABC=4cm1.故选C.【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S△PBC=S△PBE+S△PCE S△ABC.2.C【解析】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,又∵∠ADE=∠EFC,∴∠B=∠EFC,△ADE∽△EFC,∴BD∥EF,DE AD FC EF=,∴四边形BFED是平行四边形,∴BD=EF,∴563DE ADBD==,解得:DE=10.故选C.3.D【解析】【分析】【详解】①根据作图的过程可知,AD是∠BAC的平分线.故①正确.②如图,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=10°,∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正确.③∵∠1=∠B=10°,∴AD=BD.∴点D在AB的中垂线上.故③正确.④∵如图,在直角△ACD中,∠2=10°,∴CD=12 AD.∴BC=CD+BD=12AD+AD=32AD,S△DAC=12AC•CD=14AC•AD.∴S△ABC=12AC•BC=12AC•A32D=34AC•AD.∴S△DAC:S△ABC13AC AD?AC AD1344::⎛⎫⎛⎫=⋅⋅=⎪ ⎪⎝⎭⎝⎭.故④正确.综上所述,正确的结论是:①②③④,,共有4个.故选D. 4.B【解析】方程两边同时乘以2,再化出2x2-4x求值.解:x2-2x-3=02×(x2-2x-3)=02×(x2-2x)-6=02x2-4x=6故选B.5.A【解析】∵∠C=90°,BC=2cm,∠A=30°,∴AB=4,由勾股定理得:3∵四边形DEFG为矩形,∠C=90,∴3C=∠DEF=90°,∴AC∥DE,此题有三种情况:(1)当0<x <2时,AB 交DE 于H ,如图∵DE ∥AC , ∴EH BE AC BC =, 即223EH x =, 解得:EH=3x ,所以y=12•3x•x=32x 2, ∵x 、y 之间是二次函数,所以所选答案C 错误,答案D 错误,∵a=32>0,开口向上; (2)当2≤x≤6时,如图,此时y=12×2×23=23, (3)当6<x≤8时,如图,设△ABC 的面积是s 1,△FNB 的面积是s 2,BF=x ﹣6,与(1)类同,同法可求3﹣3∴y=s 1﹣s 2,=12×2×312×(x ﹣6)×3﹣3, =323﹣3, 30,∴开口向下,所以答案A 正确,答案B 错误,故选A .点睛:本题考查函数的图象.在运动的过程中正确区分函数图象是解题的关键.6.B【解析】【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B .【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.【详解】请在此输入详解!【点睛】请在此输入点睛!7.B【解析】【分析】由整数指数幂和分式的运算的法则计算可得答案.【详解】A 项, 根据单项式的减法法则可得:5ab-ab=4ab,故A 项错误;B 项, 根据“同底数幂相除,底数不变,指数相减”可得: a 6÷a 2=a 4,故B 项正确;C 项,根据分式的加法法则可得:11a b a b ab++=,故C 项错误; D 项, 根据 “积的乘方等于乘方的积” 可得:2363()a b a b =,故D 项错误;故本题正确答案为B.【点睛】幂的运算法则:(1) 同底数幂的乘法: ·m n m n a a a +=(m 、n 都是正整数)(2)幂的乘方:()m n mn a a =(m 、n 都是正整数)(3)积的乘方:()n n n ab a b = (n 是正整数)(4)同底数幂的除法:m n m n a a a -÷=(a≠0,m 、n 都是正整数,且m>n)(5)零次幂:01a =(a≠0)(6) 负整数次幂: 1p paa -=(a≠0, p 是正整数). 8.A【解析】【分析】根据相反数的定义进行求解.【详解】1的相反数为:﹣1.故选A.【点睛】本题主要考查相反数的定义,熟练掌握相反数的定义是解答的关键,绝对值相等,符号相反的两个数互为相反数.9.B【解析】【分析】根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.【详解】解:∵点A (m-1,1-2m )在第四象限, ∴40120m m -⎧⎨-⎩>①,<②解不等式①得,m >1,解不等式②得,m >12所以,不等式组的解集是m >1,即m 的取值范围是m >1.故选B .【点睛】本题考查各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 10.C【解析】试题分析:过点D 作DE ∥a ,∵四边形ABCD 是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a ∥b ,∴DE ∥a ∥b ,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C .考点:1矩形;2平行线的性质.11.C【解析】【分析】根据左视图是从物体的左面看得到的视图解答即可.【详解】解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其左视图是一个含虚线的长方形,故选C .【点睛】本题考查的是几何体的三视图,左视图是从物体的左面看得到的视图.12.C【解析】【分析】分析题意,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱,”可分别列出方程.【详解】设合伙人数为x 人,物价为y 钱,根据题意得8x-y 3y 7x 4=⎧⎨-=⎩故选C【点睛】本题考核知识点:列方程组解应用题.解题关键点:找出相等关系,列出方程.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.9x 2(1)x -【解析】试题分析:首先提取公因式9x ,然后利用完全平方公式进行因式分解.原式=9x (2x -2x+1)=9x 2(1)x -.考点:因式分解14.>;【解析】【详解】∵2y ax 2ax 1=--=a(x-1)2-a-1,∴抛物线对称轴为:x=1,由抛物线的对称性,点(-1,m )、(2,n )在二次函数2y ax 2ax 1=--的图像上,∵|−1−1|>|2−1|,且m >n ,∴a>0.故答案为>15.43【解析】【分析】根据题意可设出点C 的坐标,从而得到OA 和OB 的长,进而得到△AOB 的面积即可.【详解】∵直接y=kx+b 与x 轴、y 轴交A 、B 两点,与双曲线y=16x 交于第一象限点C ,若BC=2AB ,设点C 的坐标为(c,16c) ∴OA=0.5c,OB=1163c ⨯=163c, ∴S △AOB =1·2OA OB =1160.523c c ⨯⨯=43 【点睛】此题主要考查反比例函数的图像,解题的关键是根据题意设出C 点坐标进行求解.16.222()2a b a ab b +=++【解析】由图形可得:()2222a b a ab b +=++17.x <1【解析】【分析】根据一次函数的性质得出不等式解答即可.【详解】因为一次函数y=﹣2(x+1)+4的值是正数,可得:﹣2(x+1)+4>0,解得:x<1,故答案为x<1.【点睛】本题考查了一次函数与一元一次不等式,根据题意正确列出不等式是解题的关键.18.x>4【解析】【分析】分别解出不等式组中的每一个不等式,然后根据同大取大得出不等式组的解集.【详解】由①得:x>2;由②得:x>4;∴此不等式组的解集为x>4;故答案为x>4.【点睛】考查了解一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)二月份冰箱每台售价为4000元;(2)有五种购货方案;(3)a的值为1.【解析】【分析】(1)设二月份冰箱每台售价为x元,则一月份冰箱每台售价为(x+500)元,根据数量=总价÷单价结合卖出相同数量的冰箱一月份的销售额为9万元而二月份的销售额只有3万元,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据总价=单价×数量结合预计用不多于7.6万元的资金购进这两种家电共20台,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,结合y≤2及y为正整数,即可得出各进货方案;(3)设总获利为w,购进冰箱为m台,洗衣机为(20﹣m)台,根据总利润=单台利润×购进数量,即可得出w关于m的函数关系式,由w为定值即可求出a的值.【详解】(1)设二月份冰箱每台售价为x元,则一月份冰箱每台售价为(x+500)元,根据题意,得:90000500x=80000x,解得:x=4000,经检验,x=4000是原方程的根.答:二月份冰箱每台售价为4000元.(2)根据题意,得:3500y+4000(20﹣y)≤76000,解得:y≥3,∵y≤2且y为整数,∴y=3,9,10,11,2.∴洗衣机的台数为:2,11,10,9,3.∴有五种购货方案.(3)设总获利为w,购进冰箱为m台,洗衣机为(20﹣m)台,根据题意,得:w=(4000﹣3500﹣a)m+(4400﹣4000)(20﹣m)=(1﹣a)m+3000,∵(2)中的各方案利润相同,∴1﹣a=0,∴a=1.答:a的值为1.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式;(3)利用总利润=单台利润×购进数量,找出w关于m的函数关系式.20.(1)一副乒乓球拍28 元,一副羽毛球拍60元(2)共320 元.【解析】整体分析:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,根据“购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元”列方程组求解;(2)由(1)中求出的乒乓球拍和羽毛球拍的单价求解.解:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,由题意得,2116 32204x yx y+=⎧⎨+=⎩,解得:2860 xy=⎧⎨=⎩答:购买一副乒乓球拍28元,一副羽毛球拍60元. (2)5×28+3×60=320元答:购买5副乒乓球拍和3副羽毛球拍共320元.21.(1)2;(2)宣传牌CD高(20﹣3m.【解析】试题分析:(1)在Rt △ABH 中,由tan ∠BAH=BH AH =i=3=33.得到∠BAH=30°,于是得到结果BH=ABsin ∠BAH=1sin30°=1×12=2;(2)在Rt △ABH 中,AH=AB .cos ∠BAH=1.cos30°=23.在Rt △ADE 中,tan ∠DAE=DE AE ,即tan60°=15DE ,得到DE=123,如图,过点B 作BF ⊥CE ,垂足为F ,求出BF=AH+AE=23+12,于是得到DF=DE ﹣EF=DE ﹣BH=123﹣2.在Rt △BCF 中,∠C=90°﹣∠CBF=90°﹣42°=42°,求得∠C=∠CBF=42°,得出CF=BF=23+12,即可求得结果.试题解析:解:(1)在Rt △ABH 中,∵tan ∠BAH=BH AH=i=3=3,∴∠BAH=30°,∴BH=ABsin ∠BAH=1sin30°=1×12=2.答:点B 距水平面AE 的高度BH 是2米;(2)在Rt △ABH 中,AH=AB .cos ∠BAH=1.cos30°=23.在Rt △ADE 中,tan ∠DAE=DE AE ,即tan60°=15DE ,∴DE=123,如图,过点B 作BF ⊥CE ,垂足为F ,∴BF=AH+AE=23+12,DF=DE ﹣EF=DE ﹣BH=123﹣2.在Rt △BCF 中,∠C=90°﹣∠CBF=90°﹣42°=42°,∴∠C=∠CBF=42°,∴CF=BF=23+12,∴CD=CF ﹣DF=23+12﹣(123﹣2)=20﹣13(米).答:广告牌CD 的高度约为(20﹣13)米.22.43【解析】【分析】原式利用绝对值的代数意义,特殊角的三角函数值,负整数指数幂的法则计算即可.【详解】原式=2×123 ﹣1)+2=13=4﹣3.【点睛】本题考查了实数的运算,熟练掌握运算法则是解本题的关键.23.(1)证明见解析;(2)AE=BF,(3)AE=BF;【解析】【分析】(1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB 的度数,根据直角三角形锐角的关系,可得∠ABM与∠BAM的关系,根据同角的余角相等,可得∠BAM 与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论;(3)结论:AE=BF.证明方法类似(2);【详解】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:如图2中,结论:AE=BF,理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴,∴AE=BF.(3)结论:AE=BF.理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴,∴AE=BF.【点睛】本题考查了四边形综合题、相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,矩形的性质,熟练掌握全等三角形或相似三角形的判定和性质是解题的关键.24.(1)背水坡AB的长度为10(1)坝底BC的长度为116米.【解析】【分析】(1)分别过点A 、D 作AM BC ⊥,DN BC ⊥垂足分别为点M 、N ,结合题意求得AM ,MN ,在Rt ΔABM 中,得BM ,再利用勾股定理即可.(1)在Rt ΔDNC 中,求得CN 即可得到BC.【详解】(1)分别过点A 、D 作AM BC ⊥,DN BC ⊥垂足分别为点M 、N ,根据题意,可知24AM DN ==(米),6MN AD ==(米)在Rt ABM ∆中∵13AM BM =,∴72BM =(米), ∵222AB AM BM =+,∴2224722410AB =+=.答:背水坡AB 的长度为10(1)在Rt DNC ∆中,12DN CN =, ∴48CN =(米),∴72648126BC =++=(米)答:坝底BC 的长度为116米.【点睛】本题考查的知识点是解直角三角形的应用-坡度坡角问题,解题的关键是熟练的掌握解直角三角形的应用-坡度坡角问题.25.(1)证明见解析;(1)83;(3)1. 【解析】【分析】(1)要证明DE 是的⊙O 切线,证明OG ⊥DE 即可;(1)先证明△GBA ∽△EBG ,即可得出AB BG =BG BE,根据已知条件即可求出BE ; (3)先证明△AGB ≌△CGB ,得出BC=AB=6,BE=4.8再根据OG ∥BE 得出OG BE =DO DB,即可计算出AD.【详解】证明:(1)如图,连接OG ,GB ,∵G是弧AF的中点,∴∠GBF=∠GBA,∵OB=OG,∴∠OBG=∠OGB,∴∠GBF=∠OGB,∴OG∥BC,∴∠OGD=∠GEB,∵DE⊥CB,∴∠GEB=90°,∴∠OGD=90°,即OG⊥DE且G为半径外端,∴DE为⊙O切线;(1)∵AB为⊙O直径,∴∠AGB=90°,∴∠AGB=∠GEB,且∠GBA=∠GBE,∴△GBA∽△EBG,∴AB BG BG BE=,∴224863BGBEAB===;(3)AD=1,根据SAS可知△AGB≌△CGB,则BC=AB=6,∴BE=4.8,∵OG∥BE,∴OG DOBE DB=,即334.86DADA+=+,解得:AD=1.【点睛】本题考查了相似三角形与全等三角形的判定与性质与切线的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质与切线的性质.26.(1)m=1;(2)点P坐标为(﹣2m,1)或(6m,1).【解析】【分析】(1)先根据反比例函数的图象经过点A(﹣4,﹣3),利用待定系数法求出反比例函数的解析式为y=,再由反比例函数图象上点的坐标特征得出y1==,y2==,然后根据y1﹣y2=4列出方程﹣=4,解方程即可求出m的值;(2)设BD与x轴交于点E.根据三角形PBD的面积是8列出方程••PE=8,求出PE=4m,再由E (2m,1),点P在x轴上,即可求出点P的坐标.【详解】解:(1)设反比例函数的解析式为y=,∵反比例函数的图象经过点A(﹣4,﹣3),∴k=﹣4×(﹣3)=12,∴反比例函数的解析式为y=,∵反比例函数的图象经过点B(2m,y1),C(6m,y2),∴y1==,y2==,∵y1﹣y2=4,∴﹣=4,∴m=1,经检验,m=1是原方程的解,故m的值是1;(2)设BD与x轴交于点E,∵点B(2m,),C(6m,),过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,∴D(2m,),BD=﹣=,∵三角形PBD的面积是8,∴BD•PE=8,∴••PE=8,∴PE=4m,∵E(2m,1),点P在x轴上,∴点P坐标为(﹣2m,1)或(6m,1).【点睛】本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征以及三角形的面积,正确求出双曲线的解析式是解题的关键.27.1 2【解析】【分析】根据分式的减法和除法可以化简题目中的式子,然后从﹣5<x<3的范围内选取一个使得原分式有意义的整数作为x的值代入即可解答本题.【详解】解:÷(﹣x+1)====,当x=﹣2时,原式=1122-=-.【点睛】本题考查分式的化简求值、估算无理数的大小,解答本题的关键是明确分式化简求值的方法.。
河北省沧州市2019-2020学年中考数学第三次押题试卷含解析
河北省沧州市2019-2020学年中考数学第三次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.解分式方程2236111x x x +=+-- ,分以下四步,其中,错误的一步是( ) A .方程两边分式的最简公分母是(x ﹣1)(x+1)B .方程两边都乘以(x ﹣1)(x+1),得整式方程2(x ﹣1)+3(x+1)=6C .解这个整式方程,得x =1D .原方程的解为x =12.如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,D ,E ,F 分别为AB ,AC ,AD 的中点,若BC=2,则EF 的长度为( )A .B .1C .D .3.在0,-2,5,14,-0.3中,负数的个数是( ). A .1B .2C .3D .44.对于点A (x 1,y 1),B (x 2,y 2),定义一种运算:()()1212A B x x y y ⊕=+++.例如,A (-5,4),B (2,﹣3),()()A B 52432⊕=-++-=-.若互不重合的四点C ,D ,E ,F ,满足C D D E E F F D ⊕=⊕=⊕=⊕,则C ,D ,E ,F 四点【 】A .在同一条直线上B .在同一条抛物线上C .在同一反比例函数图象上D .是同一个正方形的四个顶点5.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .606030(125%)x x-=+ B .606030(125%)x x-=+C .60(125%)6030x x⨯+-=D .6060(125%)30x x⨯+-= 6.如图,在Rt △ABC 中,∠ACB=90°,BC=12,AC=5,分别以点A ,B 为圆心,大于线段AB 长度的一半为半径作弧,相交于点E ,F ,过点E ,F 作直线EF ,交AB 于点D ,连接CD ,则△ACD 的周长为( )A .13B .17C .18D .257.下列四个命题,正确的有( )个. ①有理数与无理数之和是有理数 ②有理数与无理数之和是无理数 ③无理数与无理数之和是无理数 ④无理数与无理数之积是无理数. A .1B .2C .3D .48.若一个圆锥的底面半径为3cm ,母线长为5cm ,则这个圆锥的全面积为( ) A .15πcm 2B .24πcm 2C .39πcm 2D .48πcm 29.将抛物线2 21y x =-+向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为( ) A .()2212y x =--- B .()2212y x =-+- C .()2214y x =--+D .()2214y x =-++10.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示: 鞋的尺码/cm 23 23.5 24 24.5 25 销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( ) A .24.5,24.5 B .24.5,24C .24,24D .23.5,2411.已知二次函数(m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程2x 3x m 0-+=的两实数根是 A .x 1=1,x 2=-1 B .x 1=1,x 2=2 C .x 1=1,x 2=0D .x 1=1,x 2=312.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围是( )A .94m <B .94m …C .94m >D .94m …二、填空题:(本大题共6个小题,每小题4分,共24分.)13.可燃冰是一种新型能源,它的密度很小,31cm 可燃冰的质量仅为0.00092kg .数字0.00092用科学记数法表示是__________.14.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,有下列结论:abc 0<①,2a b 0+=②,a b c 0-+=③;24ac b 0->④,4a 2b c 0++>⑤,其中正确的结论序号是______15.若点(a ,b )在一次函数y=2x-3的图象上,则代数式4a-2b-3的值是__________16.已知直线m ∥n ,将一块含有30°角的直角三角板ABC 按如图方式放置,其中A 、B 两点分别落在直线m 、n 上,若∠1=20°,则∠2=_____度.17.如图,AB 是⊙O 的直径,C 是⊙O 上的点,过点C 作⊙O 的切线交AB 的延长线于点D .若∠A=32°,则∠D=_____度.18.在Rt △ABC 中,∠C =90°,AB =6,cosB =23,则BC 的长为_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在△ABC 中,AB=BC=2,∠ABC=120°,将△ABC 绕着点B 顺时针旋转角a (0°<a <90°)得到△A 1BC ;A 1B 交AC 于点E ,A 1C 1分别交AC 、BC 于D 、F 两点.(1)如图1,观察并猜想,在旋转过程中,线段BE 与BF 有怎样的数量关系?并证明你的结论. (2)如图2,当a=30°时,试判断四边形BC 1DA 的形状,并证明. (3)在(2)的条件下,求线段DE 的长度.20.(6分)如图1,在平面直角坐标系中,O 是坐标原点,长方形OACB 的顶点A、B 分别在x 轴与y 轴上,已知OA=6,OB=1.点 D 为y 轴上一点,其坐标为(0,2),点P 从点 A 出发以每秒 2 个单位的速度沿线段AC﹣CB 的方向运动,当点P 与点 B 重合时停止运动,运动时间为t 秒.(1)当点P 经过点C 时,求直线DP 的函数解析式;(2)如图②,把长方形沿着OP 折叠,点B 的对应点B′恰好落在AC 边上,求点P 的坐标.(3)点P 在运动过程中是否存在使△BDP 为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.21.(6分)某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:本次调查的学生有多少人?补全上面的条形统计图;扇形统计图中C对应的中心角度数是;若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?22.(8分)如图,分别以线段AB两端点A,B为圆心,以大于12AB长为半径画弧,两弧交于C,D两点,作直线CD交AB于点M,DE∥AB,BE∥CD.(1)判断四边形ACBD的形状,并说明理由;(2)求证:ME=AD.23.(8分)已知关于x的分式方程11mx+-=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m为常数,方程①的根为非负数.(1)求m的取值范围;(2)若方程②有两个整数根x1、x2,且m为整数,求方程②的整数根.24.(10分)在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,连接PM、PB,设A、P两点间的距离为xcm,PM+PB长度为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如表:x/cm 0 1 2 3 4 5y/cm 6.0 4.8 4.5 6.0 7.4(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:PM+PB的长度最小值约为______cm.25.(10分)如图,直线y=12x+2与双曲线y=kx相交于点A(m,3),与x轴交于点C.求双曲线的解析式;点P在x轴上,如果△ACP的面积为3,求点P的坐标.26.(12分)已知m 是关于x 的方程2450x x -=+的一个根,则228m m +=__27.(12分)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y (本)与每本纪念册的售价x (元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.求出y 与x 的函数关系式;当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?设该文具店每周销售这种纪念册所获得的利润为w 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】 【分析】先去分母解方程,再检验即可得出. 【详解】方程无解,虽然化简求得1x =,但是将1x =代入原方程中,可发现31x -和261x -的分母都为零,即无意义,所以1x ≠,即方程无解 【点睛】本题考查了分式方程的求解与检验,在分式方程中,一般求得的x 值都需要进行检验 2.B 【解析】 【分析】根据题意求出AB 的值,由D 是AB 中点求出CD 的值,再由题意可得出EF 是△ACD 的中位线即可求出. 【详解】∠ACB=90°,∠A=30°,BC=AB.BC=2,AB=2BC=22=4, D 是AB 的中点,CD=AB= 4=2.E,F 分别为AC,AD 的中点, EF 是△ACD 的中位线.EF=CD= 2=1. 故答案选B. 【点睛】本题考查的知识点是三角形中位线定理,解题的关键是熟练的掌握三角形中位线定理. 3.B 【解析】 【分析】根据负数的定义判断即可 【详解】解:根据负数的定义可知,这一组数中,负数有两个,即-2和-0.1. 故选B . 4.A 。
2019-2020学年河北省中考数学模拟试卷试题(三)含详细标准答案
河北省中考数学模拟试题(三)一、选择题(本大题共16小题,共42分。
1~10小题各3分,11~16小题各2分,小题给出的四个选项中,只有一项是符合题目要求的)1.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最小的是( )A .aB .bC .cD .d2.用激光测距仪测量,从一座山峰发出的激光经过4×10–5秒到达另一座山峰,已知光速为3×108米/秒,则两座山峰之间的距离用科学记数法表示为( ) A .1.2×103米B .12×103米C .1.2×104米D .1.2×105米3.下列图形中,∠2>∠1的是( )A .B .C .D .4.如果a ﹣b=21,那么代数式(a ﹣a b 2)•ba a 的值是( )A .﹣2B .2C .﹣21 D .215.某区开展了“恰同学少年,品诗词美韵”中华传统诗词大赛活动. 小江统计了班级30名同学四月份的诗词背诵数量,具体数据如下表所示: 诗词数量(首)4 5 6 7 8 9 10 11 人数34457511A .11,7B .7,5C .8,8D . 8,7 6. 在由相同的小正方形组成的3×4的网格中,有3个小正方形已经涂黑,请你再涂黑一个小正方形,使涂黑的四个小正方形构成的图形为轴对称图形,则还需要涂黑的小正方形序号是( )A .①或②B .③或⑥C .④或⑤D .③或⑨7. 小聪按如图所示的程序输入一个正数x ,最后输出的结果为853,则满足条件的x 的不同值最多有( )A .4个B .5个C .6个D .6个以上8. 甲、乙两位同学在一次用频率估计概率的实验中统计了某一结果出现的频率给出的统计图如图所示,则符合这一结果的实验平行四边形可能是()A.掷一枚正六面体的骰子,出现5点的概率B.掷一枚硬币,出现正面朝上的概率C.任意写出一个整数,能被2整除的概率D.一个袋子中装着只有颜色不同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率9.如图,小明从A处出发沿北偏西30°方向行走至B处,又沿南偏西50°方向行走至C处,此时再沿与出发时一致的方向行走至D处,则∠BCD的度数为()A.100°B.80°C.50°D.20°10.如图,在平面直角坐标系xOy中,点A从(3,4)出发,绕点O顺时针旋转一周,则点A不.经过()A.点M B.点N C.点P D.点Q《孙11.鸡兔同笼问题是我国古代著名趣题之一.大约在1500年前,子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?经计算可得()A.鸡23只,兔12只 B.鸡12只,兔23只C.鸡15只,兔20只 D.鸡20只,兔15只12.我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.它是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,其直观图如图丙,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的正视图和俯视图分别可能是()A.a,b B.a,d C.c,b D.c,d13.已知,菱形ABCD中,AD=1,记∠ABC为∠α(),菱形的面积记作S,菱形的周长记作C.则下列说法中,不正确的是()A.菱形的周长C与∠α的大小无关 B.菱形的面积S是α的函数C .当=45°时,菱形的面积是21D .菱形的面积S 随α的增大而增大14.如图,点A 在观测点的北偏东方向30 °,且与观测点的距离为8千米,将点A 的位置记作A (8,30°),用同样的方法将点B ,点C 的位置分别记作B (8,60°),C (4,60°),则观测点的位置应在( ) A.O 1 B.O 2 C.O 3 D.O 415.如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能够得到两个等腰三角形纸片的是( )A .B .C .D .16. 两个少年在绿茵场上游戏.小红从点A 出发沿线段AB 运动到点B ,小兰从点C 出发,以相同的速度沿⊙O 逆时针运动一周回到点C ,两人的运动路线如图1所示,其中AC=DB .两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C 的距离y 与时间x (单位:秒)的对应关系如图2所示.则下列说法正确的是( )A .小红的运动路程比小兰的长B .两人分别在1.09秒和7.49秒的时刻相遇C .当小红运动到点D 的时候,小兰已经经过了点D D .在4.84秒时,两人的距离正好等于⊙O 的半径二、填空题(本大题共3小题,共10分。
河北省沧州市2019-2020学年中考数学第三次调研试卷含解析
河北省沧州市2019-2020学年中考数学第三次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列博物院的标识中不是轴对称图形的是( )A .B .C .D .2.二次函数y=ax 2+bx ﹣2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a ﹣b ﹣2,则t 值的变化范围是( )A .﹣2<t <0B .﹣3<t <0C .﹣4<t <﹣2D .﹣4<t <03.如图,扇形AOB 中,OA=2,C 为弧AB 上的一点,连接AC ,BC ,如果四边形AOBC 为菱形,则图中阴影部分的面积为( )A .233π-B .2233π-C .433π-D .4233π- 4.如图,已知BD 是ABC △的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .335.不等式4-2x >0的解集在数轴上表示为( )A .B .C .D . 6.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为象是( )A .B .C .D .7.某种计算器标价240元,若以8折优惠销售,仍可获利20%,那么这种计算器的进价为( ) A .152元 B .156元 C .160元 D .190元8.如图,PA 、PB 是O e 的切线,点D 在»AB 上运动,且不与A ,B 重合,AC 是O e 直径.62P ∠=︒,当//BD AC 时,C ∠的度数是( )A .30°B .31︒C .32︒D .33︒9.﹣18的倒数是( )A .18B .﹣18C .-118D .11810.小明和小亮按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列说法中正确的是( )A .小明不是胜就是输,所以小明胜的概率为12 B .小明胜的概率是13,所以输的概率是23 C .两人出相同手势的概率为12 D .小明胜的概率和小亮胜的概率一样11.如图,等边△ABC 的边长为4,点D ,E 分别是BC ,AC 的中点,动点M 从点A 向点B 匀速运动,同时动点N 沿B ﹣D ﹣E 匀速运动,点M ,N 同时出发且运动速度相同,点M 到点B 时两点同时停止运动,设点M 走过的路程为x ,△AMN 的面积为y ,能大致刻画y 与x 的函数关系的图象是( )A.B.C.D.12.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查二、填空题:(本大题共6个小题,每小题4分,共24分.)13.点A(a,b)与点B(﹣3,4)关于y轴对称,则a+b的值为_____.14.如图,在Rt△ABC中,∠BAC=90°,AB=AC=4,D是BC的中点,点E在BA的延长线上,连接ED,若AE=2,则DE的长为_____.15.2017年端午小长假的第一天,永州市共接待旅客约275 000人次,请将275 000用科学记数法表示为___________________.16.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为2s________2s乙.(填“>”或“<”)甲17.若实数m、n在数轴上的位置如图所示,则(m+n)(m-n)________ 0,(填“>”、“<”或“=”)18.方程组538389x yx y-=⎧⎨+=⎩的解一定是方程_____与_____的公共解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)20.(6分)如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)21.(6分)石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.设每件童装降价x元时,每天可销售______ 件,每件盈利______ 元;(用x的代数式表示)每件童装降价多少元时,平均每天赢利1200元.要想平均每天赢利2000元,可能吗?请说明理由.22.(8分)如图,四边形ABCD的外接圆为⊙O,AD是⊙O的直径,过点B作⊙O的切线,交DA的延长线于点E,连接BD,且∠E=∠DBC.(1)求证:DB平分∠ADC;(2)若EB=10,CD=9,tan∠ABE=12,求⊙O的半径.24.(10分)解不等式组:426113x xxx>-⎧⎪+⎨-≤⎪⎩,并写出它的所有整数解.25.(10分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:请补全条形统计图和扇形统计图;在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?26.(12分)已知抛物线y=﹣x2﹣4x+c经过点A(2,0).(1)求抛物线的解析式和顶点坐标;(2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C.①若B、C都在抛物线上,求m的值;②若点C在第四象限,当AC2的值最小时,求m的值.27.(12分)当a3b=2时,求代数式22222a b b ab+--的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对题中选项进行分析即可.【详解】A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【点睛】此题考查轴对称图形的概念,解题的关键在于利用轴对称图形的概念判断选项正误2.D【解析】【分析】由二次函数的解析式可知,当x=1时,所对应的函数值y=a+b-2,把点(1,0)代入y=ax2+bx-2,a+b-2=0,然后根据顶点在第三象限,可以判断出a与b的符号,进而求出t=a-b-2的变化范围.【详解】解:∵二次函数y=ax2+bx-2的顶点在第三象限,且经过点(1,0)∴该函数是开口向上的,a>0∵y=ax2+bx﹣2过点(1,0),∴a+b-2=0.∵a>0,∴2-b>0.∵顶点在第三象限,∴-2b a <0. ∴b>0. ∴2-a>0.∴0<b<2.∴0<a<2.∴t=a-b-2.∴﹣4<t <0.【点睛】本题考查大小二次函数的图像,熟练掌握图像的性质是解题的关键.3.D【解析】连接OC ,过点A 作AD ⊥CD 于点D ,四边形AOBC 是菱形可知OA=AC=2,再由OA=OC 可知△AOC 是等边三角形,可得∠AOC=∠BOC=60°,故△ACO 与△BOC 为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×3=3,因此可求得S 阴影=S 扇形AOB ﹣2S △AOC =21202360π⨯﹣2×12×2×3=43π﹣23. 故选D .点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键. 4.D【解析】【分析】根据ED 是BC 的垂直平分线、BD 是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】∵ED 是BC 的垂直平分线,∴DB=DC ,∴∠C=∠DBC ,∵BD 是△ABC 的角平分线,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴故选D.【点睛】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.5.D【解析】【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【详解】移项,得:-2x>-4,系数化为1,得:x<2,故选D.【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.6.B【解析】分析:根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案.详解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;故选B.点睛:本题考查了函数图象,根据距离的变化描述函数是解题关键.7.C【解析】【分析】设进价为x元,依题意得240×0.8-x=20x℅,解方程可得.【详解】设进价为x元,依题意得240×0.8-x=20x℅所以,进价为160元.故选C【点睛】本题考核知识点:列方程解应用题. 解题关键点:找出相等关系.8.B【解析】【分析】连接OB ,由切线的性质可得90∠=∠=︒PAO PBO ,由邻补角相等和四边形的内角和可得62∠=∠=︒BOC P ,再由圆周角定理求得D ∠,然后由平行线的性质即可求得C ∠.【详解】解,连结OB ,∵PA 、PB 是O e 的切线,∴PA OA ⊥,PB OB ⊥,则90∠=∠=︒PAO PBO ,∵四边形APBO 的内角和为360°,即++360∠∠∠+∠=︒PAO PBO P AOB ,∴180∠+∠=︒P AOB ,又∵62P ∠=︒,180∠+∠=︒BOC AOB ,∴62∠=∠=︒BOC P ,∵»»BCBC =, ∴1312∠=∠=︒D BOC , ∵//BD AC ,∴31∠=∠=︒C D ,故选:B .【点睛】本题主要考查了切线的性质、圆周角定理、平行线的性质和四边形的内角和,解题的关键是灵活运用有关定理和性质来分析解答.9.C【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【详解】∵-181()18⨯-=1, ∴﹣18的倒数是118-, 故选C.【点睛】 本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.10.D【解析】【分析】利用概率公式,一一判断即可解决问题.【详解】A 、错误.小明还有可能是平;B 、错误、小明胜的概率是13,所以输的概率是也是13; C 、错误.两人出相同手势的概率为13; D 、正确.小明胜的概率和小亮胜的概率一样,概率都是13; 故选D .【点睛】本题考查列表法、树状图等知识.用到的知识点为:概率=所求情况数与总情况数之比. 11.A【解析】【分析】根据题意,将运动过程分成两段.分段讨论求出解析式即可.【详解】∵BD=2,∠B=60°,∴点D 到AB当0≤x≤2时,y=21•224x x x ⨯;当2≤x≤4时,y=122x x . 根据函数解析式,A 符合条件.故选A .【点睛】本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式.12.D【解析】【分析】【详解】A 、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A 错误;B 、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B 错误;C 、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C 错误;D 、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D 正确;故选D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】根据“关于y 轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【详解】解:∵点(,)A a b 与点()3,4B - 关于y 轴对称,∴3,4a b ==7a b +=故答案为1.【点睛】考查关于y 轴对称的点的坐标特征,纵坐标不变,横坐标互为相反数.14.【解析】【分析】过点E 作EF ⊥BC 于F ,根据已知条件得到△BEF 是等腰直角三角形,求得BE =AB +AE =6,根据勾股定理得到BF =EF =32,求得DF =BF−BD =2,根据勾股定理即可得到结论.【详解】解:过点E 作EF ⊥BC 于F ,∴∠BFE =90°,∵∠BAC =90°,AB =AC =4,∴∠B =∠C =45°,BC =2,∴△BEF 是等腰直角三角形,∵BE =AB +AE =6,∴BF =EF =2∵D 是BC 的中点,∴BD =2,∴DF =2,∴DE 22DF EF +22(32)(2)+5故答案为5【点睛】本题考查了等腰直角三角形的性质,勾股定理,正确的作出辅助线构造等腰直角三角形是解题的关键. 15.1.75×2【解析】试题解析:175 000=1.75×2.考点:科学计数法----表示较大的数16.>【解析】【分析】观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;波动越小越稳定.【详解】解:观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;则乙地的日平均气温的方差小,故S2甲>S2乙.故答案为:>.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.>【解析】【分析】根据数轴可以确定m、n的大小关系,根据加法以及减法的法则确定m+n以及m−n的符号,可得结果.【详解】解:根据题意得:m<1<n,且|m|>|n|,∴m+n<1,m−n<1,∴(m+n)(m−n)>1.故答案为>.【点睛】本题考查了整式的加减和数轴,熟练掌握运算法则是解题的关键.18.5x﹣3y=8 3x+8y=9【解析】【详解】方程组538389x yx y-=⎧⎨+=⎩的解一定是方程5x﹣3y=8与3x+8y=9的公共解.故答案为5x﹣3y=8;3x+8y=9.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.观景亭D到南滨河路AC的距离约为248米.【解析】【分析】过点D作DE⊥AC,垂足为E,设BE=x,根据AE=DE,列出方程即可解决问题.【详解】过点D作DE⊥AC,垂足为E,设BE=x,在Rt△DEB中,tan∠DBE=DE BE,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴观景亭D到南滨河路AC的距离约为248米.20.见解析.【解析】试题分析:先做出∠AOB的角平分线,再求出线段MN的垂直平分线就得到点P.试题解析:考点:尺规作图角平分线和线段的垂直平分线、圆的性质.21.(1)(20+2x),(40﹣x);(2)每件童装降价20元或10元,平均每天赢利1200元;(3)不可能做到平均每天盈利2000元.【解析】【分析】(1)、根据销售量=原销售量+因价格下降而增加的数量;每件利润=原售价-进价-降价,列式即可;(2)、根据总利润=单件利润×数量,列出方程即可;(3)、根据(2)中的相关关系方程,判断方程是否有实数根即可.【详解】(1)、设每件童装降价x元时,每天可销售20+2x件,每件盈利40-x元,故答案为(20+2x),(40-x);(2)、根据题意可得:(20+2x)(40-x)=1200,解得:121020x x ==,,即每件童装降价10元或20元时,平均每天盈利1200元;(3)、(20+2x)(40-x)=2000, 230x 6000x -+=,∵此方程无解,∴不可能盈利2000元.【点睛】本题主要考查的是一元二次方程的实际应用问题,属于中等难度题型.解决这个问题的关键就是要根据题意列出方程.22.(1)详见解析;(2)OA =152. 【解析】【分析】(1)连接OB ,证明∠ABE=∠ADB ,可得∠ABE=∠BDC ,则∠ADB=∠BDC ;(2)证明△AEB ∽△CBD ,AB=x ,则BD=2x ,可求出AB ,则答案可求出.【详解】(1)证明:连接OB ,∵BE 为⊙O 的切线,∴OB ⊥BE ,∴∠OBE =90°,∴∠ABE+∠OBA =90°,∵OA =OB ,∴∠OBA =∠OAB ,∴∠ABE+∠OAB =90°,∵AD 是⊙O 的直径,∴∠OAB+∠ADB =90°,∴∠ABE =∠ADB ,∵四边形ABCD 的外接圆为⊙O ,∴∠EAB=∠C,∵∠E=∠DBC,∴∠ABE=∠BDC,∴∠ADB=∠BDC,即DB平分∠ADC;(2)解:∵tan∠ABE=12,∴设AB=x,则BD=2x,∴225AD AB BD x=+=,∵∠BAE=∠C,∠ABE=∠BDC,∴△AEB∽△CBD,∴BE AB BD CD=,∴1029xx=,解得x=35,∴AB=5x=15,∴OA=152.【点睛】本题考查切线的性质、解直角三角形、勾股定理等知识,解题的关键是学会添加常用辅助线解决问题.23.见解析【解析】试题分析:首先根据旋转的性质,找到两组对应点,连接这两组对应点;然后作连接成的两条线段的垂直平分线,两垂直平分线的交点即为旋转中心,据此解答即可.解:如图所示,点P即为所求作的旋转中心.24.﹣2,﹣1,0,1,2;【解析】【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可.【详解】解:解不等式(1),得x3>-解不等式(2),得x≤2所以不等式组的解集:-3<x≤2它的整数解为:-2,-1,0,1,225.(1)详见解析;(2)40%;(3)105;(4)5 16.【解析】【分析】(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;(3)根据样本估计总体的方法计算即可;(4)利用概率公式即可得出结论.【详解】(1)由条形图知,男生共有:10+20+13+9=52人,∴女生人数为100-52=48人,∴参加武术的女生为48-15-8-15=10人,∴参加武术的人数为20+10=30人,∴30÷100=30%,参加器乐的人数为9+15=24人,∴24÷100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是1010+15100%=40%.答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.(3)500×21%=105(人).答:估计其中参加“书法”项目活动的有105人.(4)15155 151******** +++==.答:正好抽到参加“器乐”活动项目的女生的概率为5 16.【点睛】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.(1)抛物线解析式为y=﹣x2﹣4x+12,顶点坐标为(﹣2,16);(2)①m=23或m=﹣23;②m的值为4622--.【解析】分析:(1)把点A(2,0)代入抛物线y=﹣x2﹣4x+c中求得c的值,即可得抛物线的解析式,根据抛物线的解析式求得抛物线的顶点坐标即可;(2)①由B(m,n)在抛物线上可得﹣m2﹣4m+12=n,再由点B关于原点的对称点为C,可得点C的坐标为(﹣m,﹣n),又因C落在抛物线上,可得﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,所以﹣m2+4m+12=m2﹣4m﹣12,解方程求得m的值即可;②已知点C(﹣m,﹣n)在第四象限,可得﹣m>0,﹣n<0,即m<0,n>0,再由抛物线顶点坐标为(﹣2,16),即可得0<n≤16,因为点B在抛物线上,所以﹣m2﹣4m+12=n,可得m2+4m=﹣n+12,由A(2,0),C(﹣m,﹣n),可得AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,所以当n=时,AC2有最小值,即﹣m2﹣4m+12=,解方程求得m的值,再由m<0即可确定m的值.详解:(1)∵抛物线y=﹣x2﹣4x+c经过点A(2,0),∴﹣4﹣8+c=0,即c=12,∴抛物线解析式为y=﹣x2﹣4x+12=﹣(x+2)2+16,则顶点坐标为(﹣2,16);(2)①由B(m,n)在抛物线上可得:﹣m2﹣4m+12=n,∵点B关于原点的对称点为C,∴C(﹣m,﹣n),∵C落在抛物线上,∴﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,解得:﹣m2+4m+12=m2﹣4m﹣12,解得:m=2或m=﹣2;②∵点C (﹣m ,﹣n )在第四象限,∴﹣m >0,﹣n <0,即m <0,n >0,∵抛物线顶点坐标为(﹣2,16),∴0<n≤16,∵点B 在抛物线上,∴﹣m 2﹣4m+12=n ,∴m 2+4m=﹣n+12,∵A (2,0),C (﹣m ,﹣n ),∴AC 2=(﹣m ﹣2)2+(﹣n )2=m 2+4m+4+n 2=n 2﹣n+16=(n ﹣)2+,当n=时,AC 2有最小值,∴﹣m 2﹣4m+12=,解得:m=, ∵m <0,∴m=不合题意,舍去, 则m 的值为. 点睛:本题是二次函数综合题,第(1)问较为简单,第(2)问根据点B (m ,n )关于原点的对称点C (-m ,-n )均在二次函数的图象上,代入后即可求出m 的值即可;(3)确定出AC 2与n 之间的函数关系式,利用二次函数的性质求得当n=12时,AC 2有最小值,在解方程求得m 的值即可. 27.1b a b++,6﹣3. 【解析】原式=()()()()2b a b a b a b a b a b -+++-+ =11b b a b a b a b++=+++, 当3b=2时, 3336633343+2(3+2)(32)==---.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北省沧州市2019-2020学年中考数学模拟试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为( )A .64×105B .6.4×105C .6.4×106D .6.4×1072.如图图形中,是中心对称图形的是( )A .B .C .D .3.若分式11x - 有意义,则x 的取值范围是 A .x >1 B .x <1 C .x≠1 D .x≠04.下列计算错误的是( )A .4x 3•2x 2=8x 5B .a 4﹣a 3=aC .(﹣x 2)5=﹣x 10D .(a ﹣b )2=a 2﹣2ab+b 25.二次函数y=﹣12(x+2)2﹣1的图象的对称轴是( ) A .直线x=1 B .直线x=﹣1 C .直线x=2 D .直线x=﹣26.如图,小颖为测量学校旗杆AB 的高度,她在E 处放置一块镜子,然后退到C 处站立,刚好从镜子中看到旗杆的顶部B .已知小颖的眼睛D 离地面的高度CD =1.5m ,她离镜子的水平距离CE =0.5m ,镜子E 离旗杆的底部A 处的距离AE =2m ,且A 、C 、E 三点在同一水平直线上,则旗杆AB 的高度为( )A .4.5mB .4.8mC .5.5mD .6 m7.若二次函数()20y ax bx c a =++≠的图象与x 轴有两个交点,坐标分别是(x 1,0),(x 2,0),且12x x <.图象上有一点()00M x y ,在x 轴下方,则下列判断正确的是( )A .0a >B .240b ac -≥C .102x x x <<D .()()01020a x x x x --< 8.方程23x 1x =-的解是 A .3 B .2 C .1 D .09.已知线段AB=8cm ,点C 是直线AB 上一点,BC=2cm ,若M 是AB 的中点,N 是BC 的中点,则线段MN 的长度为( )A.5cm B.5cm或3cm C.7cm或3cm D.7cm10.不等式的最小整数解是()A.-3 B.-2 C.-1 D.211.已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30°B.60°C.30°或150°D.60°或120°12.下列各式计算正确的是()A.(b+2a)(2a﹣b)=b2﹣4a2B.2a3+a3=3a6C.a3•a=a4D.(﹣a2b)3=a6b3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知关于x的方程有两个不相等的实数根,则m的取值范围是______.14.如图,点A为函数y=9x(x>0)图象上一点,连接OA,交函数y=1x(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为______.15.若一次函数y=-2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是_________.(写出一个即可)16.若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为_____.17.如图所示,在平面直角坐标系中,已知反比例函数y=kx(x>0)的图象和菱形OABC,且OB=4,tan∠BOC=12,若将菱形向右平移,菱形的两个顶点B、C恰好同时落在反比例函数的图象上,则反比例函数的解析式是______________.18.如图,▱ABCD中,M、N是BD的三等分点,连接CM并延长交AB于点E,连接EN并延长交CD 于点F,以下结论:①E为AB的中点;②FC=4DF;③S△ECF=92EMNSV;④当CE⊥BD时,△DFN是等腰三角形.其中一定正确的是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知AB是⊙O的弦,C是»AB的中点,AB=8,AC= 25,求⊙O半径的长.20.(6分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.求证:CD是⊙O的切线;若∠D=30°,BD=2,求图中阴影部分的面积.21.(6分)如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,(1)求证:△ACE≌△BCD;(2)若DE=13,BD=12,求线段AB的长.22.(8分)中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x 的取值范围.23.(8分)一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地的距离为y 1(km ),快车离乙地的距离为y 2(km ),慢车行驶时间为x (h ),两车之间的距离为S (km ),y 1,y2与x 的函数关系图象如图①所示,S 与x 的函数关系图象如图②所示:(1)图中的a=______,b=______.(2)求快车在行驶的过程中S 关于x 的函数关系式.(3)直接写出两车出发多长时间相距200km?24.(10分)如图,矩形OABC 摆放在平面直角坐标系xOy 中,点A 在x 轴上,点C 在y 轴上,8 ,6OA OC ==.(1)求直线AC 的表达式;(2)若直线y x b =+与矩形OABC 有公共点,求b 的取值范围;(3)直线: 10l y kx =+与矩形OABC 没有公共点,直接写出k 的取值范围.25.(10分)探究:在一次聚会上,规定每两个人见面必须握手,且只握手1次若参加聚会的人数为3,则共握手 次:;若参加聚会的人数为5,则共握手 次;若参加聚会的人数为n (n 为正整数),则共握手 次;若参加聚会的人共握手28次,请求出参加聚会的人数.拓展:嘉嘉给琪琪出题:“若线段AB 上共有m 个点(含端点A ,B ),线段总数为30,求m 的值.”琪琪的思考:“在这个问题上,线段总数不可能为30”琪琪的思考对吗?为什么?26.(12分)如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.求证:∠1=∠2;连结BE、DE,判断四边形BCDE的形状,并说明理由.27.(12分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.若苗圃园的面积为72平方米,求x;若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】由科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:6400000=6.4×106,故选C.点睛:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.D【解析】【分析】根据中心对称图形的概念和识别.【详解】根据中心对称图形的概念和识别,可知D 是中心对称图形,A 、C 是轴对称图形,D 既不是中心对称图形,也不是轴对称图形.故选D .【点睛】本题考查中心对称图形,掌握中心对称图形的概念,会判断一个图形是否是中心对称图形.3.C【解析】【分析】【详解】分式分母不为0,所以10x -≠,解得1x ≠.故选:C.4.B【解析】【分析】根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b )1=a 1±1ab+b 1.可巧记为:“首平方,末平方,首末两倍中间放”可得答案.【详解】A 选项:4x 3•1x 1=8x 5,故原题计算正确;B 选项:a 4和a 3不是同类项,不能合并,故原题计算错误;C 选项:(-x 1)5=-x 10,故原题计算正确;D 选项:(a-b )1=a 1-1ab+b 1,故原题计算正确;故选:B .【点睛】考查了整式的乘法,关键是掌握整式的乘法各计算法则.5.D【解析】【分析】根据二次函数顶点式的性质解答即可. 【详解】∵y=﹣12(x+2)2﹣1是顶点式,∴对称轴是:x=-2,故选D.【点睛】本题考查二次函数顶点式y=a(x-h)2+k的性质,对称轴为x=h,顶点坐标为(h,k)熟练掌握顶点式的性质是解题关键.6.D【解析】【分析】根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.【详解】解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABC∽△EDC,∴,即,解得:AB=6,故选:D.【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.7.D【解析】【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对C、D选项讨论即可得解.【详解】A、二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;B、∵x1<x2,∴△=b2-4ac>0,故本选项错误;C、若a>0,则x1<x0<x2,若a<0,则x0<x1<x2或x1<x2<x0,故本选项错误;D、若a>0,则x0-x1>0,x0-x2<0,所以,(x0-x1)(x0-x2)<0,∴a(x0-x1)(x0-x2)<0,若a<0,则(x0-x1)与(x0-x2)同号,∴a(x0-x1)(x0-x2)<0,综上所述,a(x0-x1)(x0-x2)<0正确,故本选项正确.8.A【解析】试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解:去分母得:2x=3x﹣3,解得:x=3,经检验x=3是分式方程的解.故选A.9.B【解析】(1)如图1,当点C在点A和点B之间时,∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,∴MB=12AB=4cm,BN=12BC=1cm,∴MN=MB-BN=3cm;(2)如图2,当点C在点B的右侧时,∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,∴MB=12AB=4cm,BN=12BC=1cm,∴MN=MB+BN=5cm.综上所述,线段MN的长度为5cm或3cm.故选B.点睛:解本题时,由于题目中告诉的是点C在直线AB上,因此根据题目中所告诉的AB和BC的大小关系要分点C在线段AB上和点C在线段AB的延长线上两种情况分析解答,不要忽略了其中任何一种. 10.B【解析】【分析】先求出不等式的解集,然后从解集中找出最小整数即可.【详解】 ∵, ∴, ∴, ∴不等式的最小整数解是x=-2.故选B.【点睛】 本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.最后一步系数化为1时,如果未知数的系数是负数,则不等号的方向要改变,如果系数是正数,则不等号的方不变. 11.D【解析】【分析】由图可知,OA=10,OD=1.根据特殊角的三角函数值求出∠AOB 的度数,再根据圆周定理求出∠C 的度数,再根据圆内接四边形的性质求出∠E 的度数即可.【详解】由图可知,OA=10,OD=1,在Rt △OAD 中,∵OA=10,OD=1,AD=22OA OD -=53,∴tan ∠1=3AD OD=,∴∠1=60°, 同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴∠C=60°,∴∠E=180°-60°=120°,即弦AB 所对的圆周角的度数是60°或120°,故选D .【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键.12.C【解析】各项计算得到结果,即可作出判断.解:A、原式=4a2﹣b2,不符合题意;B、原式=3a3,不符合题意;C、原式=a4,符合题意;D、原式=﹣a6b3,不符合题意,故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.【解析】试题分析:若一元二次方程有两个不相等的实数根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,解不等式即可求出m的取值范围.∵关于x的方程x2﹣6x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣6)2﹣4m=36﹣4m>0,解得:m<1.考点:根的判别式.14.6.【解析】【分析】作辅助线,根据反比例函数关系式得:S△AOD=92, S△BOE=12,再证明△BOE∽△AOD,由性质得OB与OA的比,由同高两三角形面积的比等于对应底边的比可以得出结论.【详解】如图,分别作BE⊥x轴,AD⊥x轴,垂足分别为点E、D,∴BE∥AD,∴△BOE∽△AOD,∴22BOEAODS OBS OAVV,∵OA=AC,∴OD=DC,∴S△AOD=S△ADC=12S△AOC,∵点A为函数y=9x(x>0)的图象上一点,∴S△AOD=92,同理得:S△BOE=12,∴112992BOEAODSS==VV,∴13 OBOA=,∴23 ABOA=,∴23ABCAOCSS=VV,∴2963ABCS⨯==V,故答案为6.15.-1【解析】试题分析:根据一次函数的图象经过第二、三、四象限,可以得出k<1,b<1,随便写出一个小于1的b 值即可.∵一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,∴k<1,b<1.考点:一次函数图象与系数的关系16.1【解析】根据题意得x1+x2=2,x1x2=﹣1,所以x1+x2﹣x1x2=2﹣(﹣1)=1.故答案为1.17.4 yx =【解析】解:连接AC,交y轴于D.∵四边形形OABC是菱形,∴AC⊥OB,OD=BD,AD=CD.∵OB=4,tan∠BOC=12,∴OD=2,CD=1,∴A(﹣1,2),B(0,4),C(1,2).设菱形平移后B的坐标是(x,4),C的坐标是(1+x,2).∵B、C落在反比例函数的图象上,∴k=4x=2(1+x),解得:x=1,即菱形平移后B的坐标是(1,4),代入反比例函数的解析式得:k=1×4=4,即B、C落在反比例函数的图象上,菱形的平移距离是1,反比例函数的解析式是y=4x.故答案为y=4x.点睛:本题考查了菱形的性质,用待定系数法求反比例函数的解析式,平移的性质的应用,主要考查学生的计算能力.18.①③④【解析】【分析】由M、N是BD的三等分点,得到DN=NM=BM,根据平行四边形的性质得到AB=CD,AB∥CD,推出△BEM∽△CDM,根据相似三角形的性质得到,于是得到BE=AB,故①正确;根据相似三角形的性质得到=,求得DF=BE,于是得到DF=AB=CD,求得CF=3DF,故②错误;根据已知条件得到S△BEM=S△EMN=S△CBE,求得=,于是得到S△ECF=,故③正确;根据线段垂直平分线的性质得到EB=EN,根据等腰三角形的性质得到∠ENB=∠EBN,等量代换得到∠CDN=∠DNF,求得△DFN是等腰三角形,故④正确.【详解】解:∵•ƒM、N是BD的三等分点,∴DN=NM=BM,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴△BEM∽△CDM,∴,∴BE=CD,∴BE=AB,故①正确;∵AB∥CD,∴△DFN∽△BEN,∴=,∴DF=BE,∴DF=AB=CD,∴CF=3DF,故②错误;∵BM=MN,CM=2EM,∴△BEM=S△EMN=S△CBE,∵BE=CD,CF=CD,∴=,∴S△EFC=S△CBE=S△MNE,∴S△ECF=,故③正确;∵BM=NM,EM⊥BD,∴EB=EN,∴∠ENB=∠EBN,∵CD∥AB,∴∠ABN=∠CDB,∵∠DNF=∠BNE,∴∠CDN=∠DNF,∴△DFN是等腰三角形,故④正确;故答案为①③④.【点睛】考点:相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.5【解析】试题分析:连接OC交AB于D,连接OA,由垂径定理得OD垂直平分AB,设⊙O的半径为r,在△ACD中,利用勾股定理求得CD=2,在△OAD中,由OA2=OD2+AD2,代入相关数量求解即可得. 试题解析:连接OC交AB于D,连接OA,由垂径定理得OD垂直平分AB,设⊙O的半径为r,在△ACD中,CD2+AD2=AC2,CD=2,在△OAD中,OA2=OD2+AD2,r2=(r-2)2+16,解得r=5,∴☉O的半径为5.20.(1)证明见解析;(2)阴影部分面积为43 3π【解析】【分析】(1)连接OC,易证∠BCD=∠OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切线;(2)设⊙O的半径为r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:3△OAC的面积以及扇形OAC的面积即可求出阴影部分面积.【详解】(1)如图,连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半径,∴CD是⊙O的切线(2)设⊙O的半径为r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=23,易求S△AOC=12×23×1=3S扇形OAC=12044 3603ππ⨯=,∴阴影部分面积为43 3π-.【点睛】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,熟练掌握和灵活运用相关知识是解题的关键.21.(3)证明见解析; (3)AB=3.【解析】【分析】(3)由等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,得出∠BCD=∠ACE,根据SAS 推出△ACE≌△BCD即可;(3)求出AD=5,根据全等得出AE=BD=33,在Rt△AED中,由勾股定理求出DE即可.【详解】证明:(3)如图,∵△ACB与△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠BCD=∠ACE,在△BCD和△ACE中,∵BC=AC,∠BCD=∠ACE,CD=CE,∴△BCD≌△ACE(SAS);(3)由(3)知△BCD≌△ACE,则∠DBC=∠EAC,AE=BD=33,∵∠CAD+∠DBC=90°,∴∠EAC+∠CAD=90°,即∠EAD=90°,∵AE=33,ED=33,∴AD=221312=5,∴AB=AD+BD=33+5=3.【点睛】本题考查了全等三角形的判定与性质,也考查了等腰直角三角形的性质和勾股定理的应用.考点:3.全等三角形的判定与性质;3.等腰直角三角形.22.(1) x=2;(2)苗圃园的面积最大为12.5平方米,最小为5平方米;(3) 6≤x≤4.【解析】【分析】(1)根据题意得方程求解即可;(2)设苗圃园的面积为y,根据题意得到二次函数解析式y=x(31-2x)=-2x2+31x,根据二次函数的性质求解即可;(3)由题意得不等式,即可得到结论.【详解】解:(1)苗圃园与墙平行的一边长为(31-2x)米.依题意可列方程x(31-2x)=72,即x2-15x+36=1.解得x1=3,x2=2.又∵31-2x≤3,即x≥6,∴x=2(2)依题意,得8≤31-2x≤3.解得6≤x≤4.面积S=x(31-2x)=-2(x-152)2+2252(6≤x≤4).①当x=152时,S有最大值,S最大=2252;②当x=4时,S有最小值,S最小=4×(31-22)=5.(3)令x(31-2x)=41,得x2-15x+51=1.解得x 1=5,x 2=1∴x 的取值范围是5≤x≤4.23.(1)a=6, b=154;(2)1516060004151606006460(610)x x S x x x x ⎧⎛⎫-+< ⎪⎪⎝⎭⎪⎪⎛⎫=-<⎨ ⎪⎝⎭⎪⎪⎪⎩……剟 ;(3)52h 或5h 【解析】【分析】(1)根据S 与x 之间的函数关系式可以得到当位于C 点时,两人之间的距离增加变缓,此时快车到站,指出此时a 的值即可,求得a 的值后求出两车相遇时的时间即为b 的值;(2)根据函数的图像可以得到A 、B 、C 、D 的点的坐标,利用待定系数法求得函数的解析式即可. (3)分两车相遇前和两车相遇后两种情况讨论,当相遇前令s=200即可求得x 的值.【详解】解:(1)由s 与x 之间的函数的图像可知:当位于C 点时,两车之间的距离增加变缓,由此可以得到a=6,∵快车每小时行驶100千米,慢车每小时行驶60千米,两地之间的距离为600, ∴15600(10060)4b =÷+=; (2)∵从函数的图象上可以得到A 、B 、C 、D 点的坐标分别为:(0,600)、(154,0)、(6,360)、(10,600),∴设线段AB 所在直线解析式为:S=kx+b , ∴6001504b k b =⎧⎪⎨+=⎪⎩ 解得:k=-160,b=600,设线段BC 所在的直线的解析式为:S=kx+b , ∴15046360k b k b ⎧+=⎪⎨⎪+=⎩解得:k=160,b=-600,设直线CD 的解析式为:S=kx+b ,636010600k b k b +=⎧⎨+=⎩ 解得:k=60,b=0∴1516060004151606006460(610)x x S x x x x ⎧⎛⎫-+< ⎪⎪⎝⎭⎪⎪⎛⎫=-<⎨ ⎪⎝⎭⎪⎪⎪⎩……剟 (3)当两车相遇前相距200km ,此时:S=-160x+600=200,解得:52x =, 当两车相遇后相距200km ,此时:S=160x-600=200,解得:x=5, ∴52x =或5时两车相距200千米 【点睛】本题考查了一次函数的综合知识,特别是本题中涉及到了分段函数的知识,解题时主要自变量的取值范围. 24.(1)364y x =-+;(2)86b -≤≤;(3)12k >- 【解析】【分析】(1)由条件可求得A 、C 的坐标,利用待定系数法可求得直线AC 的表达式;(2)结合图形,当直线平移到过C 、A 时与矩形有一个公共点,则可求得b 的取值范围;(3)由题意可知直线l 过(0,10),结合图象可知当直线过B 点时与矩形有一个公共点,结合图象可求得k 的取值范围.【详解】解:(1) 8 , 6OA OC ==Q ()()8,0 , 0,6A C ∴,设直线AC 表达式为y kx b =+,806k b b +=⎧∴⎨=⎩,解得346k b ⎧=-⎪⎨⎪=⎩ ∴直线AC 表达式为364y x =-+; (2) Q 直线 y x b =+可以看到是由直线y x =平移得到,∴当直线 y x b =+过A C 、时,直线与矩形OABC 有一个公共点,如图1,当过点A 时,代入可得08b =+,解得8b =-.当过点C 时,可得6b =∴直线 y x b =+与矩形OABC 有公共点时,b 的取值范围为86b -≤≤;(3) 10y kx =+Q ,∴直线l 过()0, 10D ,且()8, 6B ,如图2,直线l 绕点D 旋转,当直线过点B 时,与矩形OABC 有一个公共点,逆时针旋转到与y 轴重合时与矩形OABC 有公共点,当过点B 时,代入可得6810k =+,解得12k =- ∴直线l :10y kx =+与矩形OABC 没有公共点时k 的取值范围为12k >-【点睛】本题为一次函数的综合应用,涉及待定系数法、直线的平移、旋转及数形结合思想等知识.在(1)中利用待定系数法是解题的关键,在(2)、(3)中确定出直线与矩形OABC 有一个公共点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.25.探究:(1)3,1;(2)(1)2n n -;(3)参加聚会的人数为8人;拓展:琪琪的思考对,见解析. 【解析】【分析】探究:(1)根据握手次数=参会人数×(参会人数-1)÷2,即可求出结论; (2)由(1)的结论结合参会人数为n ,即可得出结论;(3)由(2)的结论结合共握手28次,即可得出关于n 的一元二次方程,解之取其正值即可得出结论; 拓展:将线段数当成握手数,顶点数看成参会人数,由(2)的结论结合线段总数为2,即可得出关于m 的一元二次方程,解之由该方程的解均不为整数可得出琪琪的思考对.【详解】探究:(1)3×(3-1)÷2=3,5×(5-1)÷2=1. 故答案为3;1.(2)∵参加聚会的人数为n (n 为正整数),∴每人需跟(n-1)人握手,∴握手总数为()12n n -. 故答案为()12n n -. (3)依题意,得:()12n n -=28,整理,得:n 2-n-56=0,解得:n 1=8,n 2=-7(舍去).答:参加聚会的人数为8人.拓展:琪琪的思考对,理由如下:如果线段数为2,则由题意,得:()12m m -=2, 整理,得:m 2-m-60=0,解得m 1=12+,m 2=2(舍去). ∵m 为正整数,∴没有符合题意的解,∴线段总数不可能为2.【点睛】本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,用含n 的代数式表示出握手总数;(3)(拓展)找准等量关系,正确列出一元二次方程.26.(1)证明见解析;(2)四边形BCDE 是菱形,理由见解析.【解析】【分析】(1)证明△ADC≌△ABC后利用全等三角形的对应角相等证得结论.(2)首先判定四边形BCDE是平行四边形,然后利用对角线垂直的平行四边形是菱形判定菱形即可.【详解】解:(1)证明:∵在△ADC和△ABC中,∴△ADC≌△ABC(SSS).∴∠1=∠2.(2)四边形BCDE是菱形,理由如下:如答图,∵∠1=∠2,DC=BC,∴AC垂直平分BD.∵OE=OC,∴四边形DEBC是平行四边形.∵AC⊥BD,∴四边形DEBC是菱形.【点睛】考点:1.全等三角形的判定和性质;2. 线段垂直平分线的性质;3.菱形的判定.27.(1)2(2)当x=4时,y最小=88平方米【解析】(1)根据题意得方程解即可;(2)设苗圃园的面积为y,根据题意得到二次函数的解析式y=x(31-2x)=-2x2+31x,根据二次函数的性质求解即可.解:(1)苗圃园与墙平行的一边长为(31-2x)米.依题意可列方程x(31-2x)=72,即x2-15x+36=1.解得x1=3(舍去),x2=2.(2)依题意,得8≤31-2x≤3.解得6≤x≤4.面积S=x(31-2x)=-2(x-152)2+2252(6≤x≤4).①当x=152时,S有最大值,S最大=2252;②当x=4时,S有最小值,S最小=4×(31-22)=88“点睛”此题考查了二次函数、一元二次不等式的实际应用问题,解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.。