2019-2020年九年级数学一元二次方程的解法检测试题3-试卷-试题同步练习-九年级数学试题
九年级数学上册试题一课一练《一元二次方程及其解法》习题1-人教版(含答案)

《一元二次方程及其解法》习题1一、选择题1.方程:①2113x x -=,②22250x xy y -+=,③2710x +=,④202y =中,一元二次方程是( ). A .①和② B .②和③ C .③和④ D .①和③2.一元二次方程23450x x --=的二次项系数、一次项系数、常数项分别是( )A .345,-,-B .3,45-,C .3,4,5D .3,4,5-3.已知x 1=是一元二次方程2x mx 20+-=的一个解,则m 的值是( )A .1B .1-C .2D .2-4.方程x 2﹣x =0的解为( )A .x 1=x 2=1B .x 1=x 2=0C .x 1=0,x 2=1D .x 1=1,x 2=﹣15.已知关于x 的方程(2)30x x m -+=有两个不相等的实数根,则m 的取值范围是( )A .m <13B .m >13-C .m <13且m ≠0D .m >13-且m ≠0 6.用配方法解方程2870,x x ++=配方正确的是( )A .()249x +=B .()2857x +=C .()249x -=D .()2816x -=7.若方程()200++=≠ax bx c a 中,a 、b 、c 满足a+b+c=0和a-b+c=0,则方程的根是( )A .1,0B .-1,0C .1,-1D .无法确定8.关于x 的一元二次方程2x 2x m 0-+=无实数根,则实数m 的取值范围是( )A .1m <B .m 1≥C .1mD .1m9.如果关于x 的方程x 2﹣2x ﹣k =0有实根.那么以下结论正确的是( )A .k >lB .k =﹣1C .k ≥﹣1D .k <﹣110.如果关于x 的方程240x x m -+=有两个不相等的实数根,那么在下列数值中,m 可以取的是( )A .3B .5C .6D .811.已知关于x 的一元二次方程230x x a ++=有一个根是2-,那么a 的值是( )A .2-B .1-C .2D .1012.设a 、b 为x 2+x ﹣2011=0的两个实根,则a 3+a 2+3a+2014b=( )A .2014B .﹣2014C .2011D .﹣201113.已知关于x 的一元二次方程kx 2﹣2x ﹣1=0有实数根,若k 为非正整数,则k 等于( )A .12B .0C .0或﹣1D .﹣114.若(),a b a b <是关于方程()()()10x m x n m n --+=<的两个实数根,则实数,,,a b m n 的大小关系是( )A .a b m n <<<B .m n a b <<<C .a m n b <<<D .m a b n <<< 二、填空题15.一元二次方程290x -=的解是_ _.16.已知关于x 的一元二次方程(m +1)x 2+4x +m 2+m =0的一个根为0,则m 的值是_________.17.关于x 的一元二次方程ax 2+2x +c =0(a ≠0)有两个相等的实数根,写出一组满足条件的实数a ,c 的值:a =_____,c =_____.18.关于x 的方程a(x+m)2+b=0的解是x 1=-2,x 2=1(a ,m ,b 均为常数,a ≠0),则方程a(x+m+2)2+b=0 的解是__________.三、解答题19.如果方程()()22131m m x m x m --+-+-是关于x 的一元二次方程,试确定m 的值,并指出二次项系数、一次项系数及常数项.20.已知方程()22(a x)a x x a 8a 16-=++-+是关于x 的一元二次方程.(1)求a 的取值范围;(2)若该方程的一次项系数为0,求此方程的根.21.用公式法解方程:2420x x -+=.22.先化简,再求值:2a 22a 1a 1a 1a 1--⎛⎫÷-- ⎪-+⎝⎭,其中a 是方程x 2-x=6的根.23.已知方程260ax bx +-=与方程22150ax bx +-=有一个公共解是3,求a 、b 的值.24.已知关于x 的一元二次方程()2320x m x m -+++= (1)求证:无论实数 m 取何值,方程总有两个实数根;(2)若方程有一个根的平方等于 9,求m 的值.25.请你先认真阅读下列材料,再参照例子解答问题:已知(3)(4)10+-++=-x y x y ,求x +y 的值.解:设t =x +y ,则原方程变形为(3)(4)10-+=-t t ,即t 2+t ﹣2=0∴(2)(1)0+-=t t 得t 1=﹣2,t 2=1∴x +y =﹣2或x +y =1已知()()2222427+-++=x y x y ,求x 2+y 2的值.26.在等腰△ABC 中,三边分别为a 、b 、c ,其中a =5,若关于x 的方程x 2+(b+2)x+6﹣b =0有两个相等的实数根,求△ABC 的周长.答案一、选择题1.C .2.A .3.A .4.C .5.A .6.A.7.C.8.D.9.C .10.A .11.C .12.B,13.D .14.D .二、填空题15.x 1=3,x 2=﹣3.16.017.1 1.18.x=-4,x=-1三、解答题19.根据一元二次方程的定义可得20m -≠且22m -=,则4m =,将m 代入()()22131m m x m x m --+-+-可得22311x x ++,则二次项系数为2,一次项系数为3,常数项为11.20.解:()1化简,得()2a 1x 3ax 8a 160-+-+=.方程()22(a x)a x x a 8a 16-=++-+是关于x 的一元二次方程,得a 10-≠,解得a 1≠,当a 1≠时,方程()22(a x)a x x a 8a 16-=++-+是关于x 的一元二次方程;()2由一次项系数为零,得a 0=.则原方程是2x 160-+=,即2x 160-=.因式分解得()()x 4x 40+-=,解得1x 4=-,2x 4=.21.221,4,2,4(4)4128a b c b ac ==-=-=--⨯⨯= ,42221b x a -±∴===⨯,1222x x ∴==22.解:原式=()()()()()()()2222a 12a 1a 2a 2a 2a a 2a 111====a 1a 1a 1a 1a 1a 1a 1a a 2a a 1a a-------+÷÷⋅-++-++----. ∵a 是方程x 2-x=6的根,∴a 2-a=6.∴原式=211=a a 6-.23.∵方程ax 2+bx −6=0与ax 2+2bx −15=0有一个公共根是3,∴ax 2+2bx −15=ax 2+bx −6+bx −9=bx −9=0,∴3b −9=0,得b=3,将x=3代入ax 2+bx −6=0,得a ×32+3×3−6=0,解得,a=−13即a 的值是−13,b 的值是3.24.(1)证明:∵△=[﹣(m +3)]2﹣4(m +2)=(m +1)2≥0,∴无论实数 m 取何值,方程总有两个实数根;(2)解:∵方程有一个根的平方等于 9,∴x =±3,当 x =3 时,m =1;当 x =﹣3时, m =﹣5.综上所述,m 的值为 1 或﹣5.25.设t =x 2+y 2>0∴(t ﹣4)(t +2)=7t 2﹣2t ﹣15=0,解得:t 1=5,t 2=﹣3(舍去)∴x 2+y 2=5.26.∵关于x 的方程2(2)60x b x b +++-=有两个相等的实数根, ∴△=2(2)4(6)0b b +--=,即28200b b +-=;解得2b =,10b =-(舍去);①当a 为底,b 为腰时,则2+2<5,构不成三角形,此种情况不成立; ②当b 为底,a 为腰时,则5﹣2<5<5+2,能够构成三角形; 此时△ABC 的周长为:5+5+2=12;故△ABC 的周长是12.。
人教版2019-2020学年九年级数学第一学期一元二次方程单元测试题( 含答案)

人教版九年级数学一元二次方程单元测试卷(时间:120分钟 满分:120分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列方程是一元二次方程的是( )A .x 2+2x -y =3 B.3x -1x 2=23 C .(3x 2-1)2-3=0 D.5x 2-8=3x2.方程3x 2-x +1=0的二次项系数和一次项系数分别为( )A .3和0B .3和-1C .2和-1D .3和13.已知关于x 的一元二次方程3x 2+4x -5=0,下列说法正确的是( )A .方程有两个不相等的实数根B .方程有两个相等的实数根C .方程没有实数根D .无法确定 4.一元二次方程(x +3)(x -7)=0的两个根是( )A .x 1=3,x 2=-7B .x 1=3,x 2=7C .x 1=-3,x 2=7D .x 1=-3,x 2=-75.已知关于x 的方程x 2-2x +m =0,根的判别式的值为0,则m 的值为( )A .-3B .3C .-1D .16.解方程2(5x -1)2=3(5x -1),最适当的方法是( )A .直接开平方法B .配方法C .公式法D .因式分解法7.在解方程2x 2+4x +1=0时,对方程进行配方,文本框①中是嘉嘉做的,文本框②中是淇淇做的,对于两人的做法,说法正确的是( )A .两人都正确B .嘉嘉正确,淇淇不正确C .嘉嘉不正确,淇淇正确D .两人都不正确8.下列说法不正确的是( )A .方程x 2=x 有一根为0B .方程x 2-1=0的两根互为相反数C .方程(x -1)2-1=0的两根互为相反数D .方程x 2-x +2=0无实数根9.若b(b ≠0)是关于x 的方程x 2+cx +b =0的根,则b +c 的值为( )A .2B .-2C .1D .-110.某QQ 群有若干人,春节期间互发短信问候,已知全群共发短信1 056条,若设该群共有成员x 名,则可列方程为( )A .x(x -1)=1 056 B.x (x -1)2=1 056C .x(x +1)=1 056 D.x (x +1)2=1 05611.我市某楼盘准备以每平方米6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方米4 860元的均价开盘销售,则平均每次下调的百分率是( )A .11%B .10%C .9%D .8%12.若x 1,x 2是方程x 2+x -1=0的两根,则(x 1-2)·(x 2-2)的值为( )A .2B .4C .5D .-213.一个正方形蔬菜园需要修整并用篱笆围住,修整蔬菜园的费用是15元/m 2,而购买篱笆材料的费用是30元/m ,这两项支出共为3 600元,设正方形蔬菜园的边长是x m ,则下列各方程符合题意的是( )A .15x 2+120x =3 600B .x 2+4x =3 600C .4x 2+x =3 600D .120x 2+15x =3 60014.已知(x 2+y 2+1)(x 2+y 2-3)=5,则x 2+y 2的值等于( )A .0B .4C .4或-2D .-215.已知3是关于x 的方程x 2-(m +1)x +2m =0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( )A .7B .10C .11D .10或1116.如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根为另一个根的3倍,则称这样的方程为“3倍根方程”,以下说法不正确的是( )A .方程x 2-4x +3=0是3倍根方程B .若关于x 的方程(x -3)(mx +n)=0是3倍根方程,则m +n =0C .若m +n =0且m ≠0,则关于x 的方程(x -3)(mx +n)=0是3倍根方程D .若3m +n =0且m ≠0,则关于x 的方程x 2+(m -n)x -mn =0是3倍根方程二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.若关于x 的方程(m +1)x |m|+1-2x +3m =0是一元二次方程,则m 的值为 .18.一元二次方程x 2-2x +m =0总有实数根,则m 应满足的条件是 .19.如图,在宽为20 m 、长为30 m 的矩形地面上修建两条宽均为x m 的小路(阴影),余下部分作为草地,草地面积为551 m 2.根据图中数据,可列出方程为 ,整理成一般形式为 .三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)用适当的方法解下列方程:(1)x 2+3x -2=0; 解:(2)(x -1)(x +3)=12; 解:(3)9(x -2)2=4(x +1)2. 解:21.(本小题满分8分)阅读下面的解题过程,请判断其是否正确,若有错误,请写出正确的答案.解方程:x 2+2x =3x +6. 解:x(x +2)=3(x +2).两边同时除以(x +2),得x =3. 解: 22.(本小题满分9分)已知关于x 的一元二次方程(k -1)x 2+(k -1)x +14=0有两个相等的实数根,求k 的值.解:23.(本小题满分9分)某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率.解:24.(本小题满分10分)对于公式h =20t -5t 2.(1)当h =10时,求t ;(2)若存在实数t 1,t 2(t 1≠t 2)满足该公式,当t =t 1或t 2时,求h 的取值范围.25.(本小题满分11分)小红为班级数学课题学习小组的同学每人购买一盒学习用品,商场给出如下优惠条件:如果一次性购买不超过10盒,单价为3.8元;如果一次性购买多于10盒,那么每多一盒,所有的单价都降低0.2元,但不得低于3元.小红一次性购买这种学习用品付了40.8元.请问小红购买了多少盒这种学习用品?解:26.(本小题满分11分)如图,在矩形ABCD中,AB=5 cm,BC=6 cm,点P从点A开始沿边AB向终点B以1 cm/s的速度移动,与此同时,点Q从点B开始沿边BC向终点C以2 cm/s 的速度移动.如果P,Q分别从A,B同时出发,当点Q运动到点C时,两点停止运动.设运动时间为t s(t>0).(1)PB= cm,BQ=;(用含t的代数式表示)(2)当t为何值时,PQ的长度等于5 cm?(3)是否存在t的值,使得五边形APQCD的面积等于26 cm2?若存在,请求出此时t的值;若不存在,请说明理由.解:答案一、选择题二、填空题 三、17.1. 18.m ≤1.19.(30-x)(20-x)=551,x 2-50x +49=0. 三、解答题 20.(1)x 2+3x -2=0;解:b 2-4ac =32-4×1×(-2)=17>0,∴x =-3±172.∴x 1=-3+172,x 2=-3-172.(2)(x -1)(x +3)=12;解:x 2+2x -15=0,(x +1)2=16, ∴x 1=-5,x 2=3.(3)9(x -2)2=4(x +1)2.解:9(x -2)2-4(x +1)2=0, (5x -4)(x -8)=0, ∴x 1=8,x 2=45.21.解:不正确.因为不能判断x +2是否为0,所以方程两边不能同时除以x +2.正确的解题过程为:x(x +2)=3(x +2), x(x +2)-3(x +2)=0, (x -3)(x +2)=0, ∴x 1=3,x 2=-2. 22.解:由题意,得b 2-4ac =(k -1)2-4×(k -1)×14=0.整理,得k 2-3k +2=0.解得k 1=1,k 2=2.∵该方程是一元二次方程,∴k =1不合题意,舍去. ∴k =2.23.解:设这个增长率为x.依题意,得20(1+x)2-20(1+x)=4.8.解得 x 1=0.2=20%,x 2=-1.2(不合题意,舍去). 答:这个增长率是20%. 24.解:(1)当h =10时,20t -5t 2=10,即t 2-4t +2=0.∵b 2-4ac =16-8=8>0,∴t =4±82=2± 2.∴t 1=2+2,t 2=2- 2.(2)由题意,得t 1,t 2是方程20t -5t 2=h 的两个不相等的实数根,∴t 1,t 2是方程5t 2-20t +h =0的两个不相等的实数根. ∴b 2-4ac =202-20h >0.∴h <20. ∴h 的取值范围是h <20. 25.解:设小红购买了x 盒这种学习用品. ∵10×3.8=38<40.8,∴x >10.根据题意,得x[3.8-0.2(x -10)]=40.8.解得x 1=12,x 2=17. 当x =12时,单价为3.8-2×0.2=3.4(元);当x =17时,单价为3.8-7×0.2=2.4(元)<3元(不合题意,舍去). 答:小红购买了12盒这种学习用品. 26.(1) (5-t)cm ,2tcm(2)由题意,得(5-t)2+(2t)2=25. 解得t 1=0(不合题意,舍去),t 2=2. ∴当t =2时,PQ 的长度等于5 cm.(3)存在,当t =1,能够使得五边形APQCD 的面积等于26 cm 2.理由如下:(5-t)×2t ×12=30-26.解得t 1=4(不合题意,舍去),t 2=1.∴当t =1时,五边形APQCD 的面积等于26 cm 2.。
一元二次方程的解法(3)-2021-2022学年九年级数学上册一课一练(苏科版)(解析版)

1.2 一元二次方程的解法(3)1.用配方法解方程2210x x --=,变形结果正确的是( ) A .213 ()24x -= B .213 ()44x -=C .2117 ()416x -=D .219 ()416x -=【答案】D【解析】根据配方法的定义,将方程2210x x --=的二次项系数化为1, 得:211022x x --=,配方得21111216216x x -+=+, 即:219()416x -=. 本题正确答案为D.2.用配方法解下列方程,配方正确的是( ) A .2y 2﹣4y ﹣4=0可化为(y ﹣1)2=4 B .x 2﹣2x ﹣9=0可化为(x ﹣1)2=8 C .x 2+8x ﹣9=0可化为(x+4)2=16 D .x 2﹣4x=0可化为(x ﹣2)2=4【答案】D【解析】A. 2y 2−4y−4=0可化为(y−1)2=5,故选项错误; B. x 2−2x−9=0可化为(x−1)2=10,故选项错误; C. x 2+8x−9=0可化为(x+4)2=25,故选项错误; D. x 2−4x=0可化为(x−2)2=4,故选项正确. 故选D.3.下列用配方法解方程21x 2﹣x ﹣2=0的四个步骤中,出现错误的是( )A .①B .②C .③D .④【答案】D 【解析】解方程21x 2﹣x ﹣2=0, 去分母得:x 2﹣2x ﹣4=0,即x 2﹣2x =4,配方得:x 2﹣2x+1=5,即(x ﹣1)2=5, 开方得:x ﹣1=±5,解得:x =1±5, 则四个步骤中出现错误的是④. 故选:D .4.把方程2x 2-4x -1=0化为(x +m)2=n 的形式,则m ,n 的值是( ) A .m =2,n =32 B .m =-1,n =32 C .m =1,n =4 D .m =n =2【答案】B【解析】∵2x 2-4x -1=0,∴2x 2-4x =1,∴x 2-2x =12,∴x 2-2x +1=12+1,∴(x -1)2=32,∴m =-1,n =32.故选B.5.若用配方法解方程24121x x +=,通常要在此方程两边同时加上一个“适当”的数,则下面变形恰当的是( )A .2221212412122x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭B .22241212112x x ++=+C .2412919x x ++=+D .241212112x x ++=+【答案】C【解析】解:方程24121x x +=变形为2(2)621x x +⨯=,2(2)62+91+9x x +⨯=∴2412919x x ++=+故选:C6.用配方法解方程23620x x -+=,将方程变为()213x m -=的形式,则m =_____. 【答案】1【解析】解:3x 2-6x+2=0,2223x x -=-,21213x x -+=21(1)3-=x ,即 m=1. 故填1.7.将23220x x --=配方成2()x m n +=的形式,则n =__________. 【答案】79【解析】解:∵3x 2-2x-2=0,∴222033x x --=,∴221213939x x -+=+, ∴217()39x -=,故答案为:79. 8.把一元二次方程3x 2-2x-3=0化成3(x+m)2=n 的形式是____________;若多项式x 2-ax+2a-3是一个完全平方式,则a=_________.【答案】2110333x ⎛⎫-= ⎪⎝⎭; 2或6. 【解析】根据题意,一元二次方程3x 2-2x-3=0化成3(x 2-23x-1)=0, 括号里面配方得,3(x-13)2-109×3=0,即3(x-13)2=103; ∵多项式x 2-ax+2a-3是一个完全平方式,∴2a-3=(2a)2,∴解得a=2或6. 9.用配方法解方程:(1)2x 2-7x +6=0; (2)-16x 2-13=12x ;(3)2x(x -3)=1; (4)2x 2+4x +6=0. 【答案】(1)x 1=2,x 2=32. (2)x 1=-1,x 2=-2.(3)x 1=3+112,x 2=3-112. (4)原方程无解.【解析】解:(1)两边都除以2,得x 2-72x +3=0.移项并配方,得x 2-72x +4916=-3+4916,即2)47(-x =116.两边开平方,得x -74=±14.所以x 1=2,x 2=32.(2)移项,得-16x 2-12x -13=0.两边都乘-6,得x 2+3x +2=0.移项并配方,得x 2+3x +94=-2+94,即2)23(+x =14.两边开平方,得x +32=±12.所以x 1=-1,x 2=-2.(3)整理,得2x 2-6x -1=0. 两边都除以2,得x 2-3x -12=0.移项并配方,得x 2-3x +94=12+94.即2)23(-x =114.两边开平方,得x -32=±112.所以x 1=3+112,x 2=3-112.(4)2x 2+4x +6=0,x 2+2x +3=0,x 2+2x =-3, x 2+2x +1=-3+1,(x +1)2=-2, 所以原方程无解.10.试确定当x 取何值时,2x 2+4x+1有最小值?最小值是多少? 【答案】x=-1时有最小值,最小值为-1.【解析】由题意先应用完全平方公式对2x 2+4x+1配方后,进而根据偶次方的非负性质进行分析即可. 解:2x 2+4x+1=2222(2)12(1)212(1)1x x x x ++=+-+=+-, ∵2(1)0x +≥, ∴22(1)11x +-≥-,则有x=-1时有最小值,最小值为-1.11.用配方法解方程2x 2﹣4x+1=0时,配方后所得的方程为( ) A .(x ﹣2)2=3 B .2(x ﹣2)2=3 C .2(x ﹣1)2=1 D .2(x ﹣1)2=12【答案】C【解析】解:2x 2﹣4x=-1,x 2﹣2x=12-,x 2﹣2x+1=12-+1,∴21(1)2x -=,即22(1)1x -=.故选C .12.若方程290x mx -+=的左边是一个完全平方式,则m 等于( ) A .3 B .6 C .3± D .6±【答案】D【解析】∵方程290x mx -+=的左边是一个完全平方式, ∴()22293x mx x mx -+=-+±,∴()236m =⨯±=±, 故答案选D .13.若代数式221078M a b a =+-+,2251N a b a =+++,则M N -的值( ) A 、一定是负数 B 、一定是正数 C 、一定不是负数 D 、一定不是正数【答案】B ;【解析】(作差法)22221078(51)M N a b a a b a -=+-+-+++2222107851a b a a b a =+-+----29127a a =-+291243a a =-++2(32)30a =-+>.故选B.14.将方程2x 2-4x -5=0化成(x +h)2=k 的形式为________________. 【答案】 (x -1)2=72【解析】方程两边同除以2,得x 2-2x -52=0,移项,得x 2-2x =52,两边同时加上1可进行配方.15.方程22430x x +-=,用配方法可把原方程化为2(1)x k +=,其中k=___________. 【答案】25【解析】解:方程两边同时除以2,得:23202x x +-=, 移项得:2322x x +=, 两边同时加1得:232+1+12x x +=, 即:25+12x =(), 故:52k =. 故答案为:52.16.若将方程x 2+2x ﹣1=0配方成(x+a )2=h 的形式,则a+h 的值是_____. 【答案】3【解析】x 2+2x=1,x 2+2x+1=1+1,(x+1)2=2,所以a=1,h=2, 所以a+h=1+2=3. 故答案是:3.17.、当x =________时,代数式4x 2+2x -1的值与代数式3x 2-2的值相等. 【答案】-1【解析】依题意,得4x 2+2x -1=3x 2-2.整理,得x 2+2x +1=0,即(x +1)2=0,解得x 1=x 2=-1, 即x =-1时,代数式4x 2+2x -1的值与代数式3x 2-2的值相等,所以应填-1.18.小明设计了一个魔术盒,当任意实数对(a ,b)进入其中,会得到一个新的实数3a 2-4b +6. 若将实数(x ,-2x)放入其中,得到1,则x =________. 【答案】-53或-1.【解析】 根据题意,得3x 2-4(-2x)+6=1. 整理,得3x 2+8x =-5. 化简、配方,得(x +43)2=19.解得x 1=-53,x 2=-1.故答案为-53或-1.19.用配方法解下列方程:(1)2x 2+7x -4=0; (2)3x 2-6x =8;(3)6x 2-x -12=0; (4)3(x -1)(x +2)=x +4.【答案】(1) x 1=12,x 2=-4. (2)x 1=333+1,x 2=1-333.(3)x 1=32,x 2=-43. (4)x 1=-1+313,x 2=31-13.【解析】解:(1)移项、方程两边除以2,得x 2+72x =2,配方,得x 2+72x +(74)2=2+(74)2,即(x +74)2=32+4916,开方,得x +74=±94,解得x 1=12,x 2=-4.(2)方程两边除以3,得x 2-2x =83,配方,得x 2-2x +1=83+1,即(x -1)2=113,开方,得x -1=±333, 解得x 1=333+1,x 2=1-333.(3)移项、方程两边除以6,得x 2-16x =2,配方,得x 2-16x +1144=2+1144,即(x -112)2=289144,解得x 1=32,x 2=-43.(4)原方程变形为3x 2+2x =10, 两边除以3,得x 2+23x =103,配方,得x 2+23x +(13)2=103+2)31(,即(x +13)2=319,开方,得x +13=±313,解得x 1=-1+313,x 2=31-13.20.当x 为何值时,代数式2x 2+7x -1的值与代数式x 2-19的值互为相反数? 【答案】-4或53.【解析】解:由题意,得2x 2+7x -1=-(x 2-19), 整理,得3x 2+7x =20. 两边都除以3,得x 2+73x =203.配方,得x 2+73x +2)67(=203+2)67(,即2)67( x =28936.两边开平方,得x +76=±176.所以x 1=-4,x 2=53.即当x 的值为-4或53时,代数式2x 2+7x -1的值与代数式x 2-19的值互为相反数.21.《代数学》中记载,形如x 2+10x =39的方程,求正数解的几何方法是:“如图1,先构造一个面积为x 2的正方形,再以正方形的边长为一边向外构造四个面积为25x 的矩形,得到大正方形的面积为39+25=64,则该方程的正数解为8﹣5=3.”小聪按此方法解关于x 的方程x 2+6x+m =0时,构造出如图2所示的图形,已知阴影部分的面积为36,则该方程的正数解为( )A .6B .3-5 3C .3-5 2D .3-523 【答案】B【解析】x 2+6x+m =0, x 2+6x =﹣m ,∵阴影部分的面积为36, ∴x 2+6x =36, 设4a =6, 则a=23, 同理:先构造一个面积为x 2的正方形,再以正方形的边长为一边向外构造四个面积为23x 的矩形,得到大正方形的面积为36+(23)2×4=36+9=45,则该方程的正数解为 453=3-53. 故选:B .22.阅读理解配方法不仅可以用来解一元二次方程,还可以用来解决很多问题.因为3a 2≥0,所以3a 2+1就有最小值1,即3a 2+1≥1,只有当a =0时,才能得到这个式子的最小值1.同样,因为-3a 2≤0,所以-3a 2+1有最大值1,即-3a 2+1≤1,只有当a =0时,才能得到这个式子的最大值1. (1)当x =________时,代数式-2(x -1)2+3有最________(填“大”或“小”)值为________. (2)当x =________时,代数式-2x 2+4x +3有最________(填“大”或“小”)值为________. 分析:-2x 2+4x +3=-2(x 2-2x +________)+________=-2(x -1)2+________.(3)如图,已知矩形花园的一边靠墙,另外三边栅栏的总长度是16 m ,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?(假设墙足够长)【答案】见解析。
苏科版九年级数学上册1-2一元二次方程的解法 同步练习题【含答案】

两边开平方,得 .
所以 , .
19.(1) x1=5, x2=﹣15;(2) x1=3+ ,x2=﹣2+
(1)(x+2)2+6(x+2)﹣91=0;
设y=x+2,则原方程可变形为:
y2+6y﹣91=0,
解得:y1=7,y2=﹣13,
当y1=7时,x+2=7,
x1=5;
当y2=﹣13时,x+2=﹣13,
A.x=2B.x=0C.x1=﹣2,x2=0D.x1=2,x2=0
二、填空题
9.若 ,则代数式 的值为_____
10.已知x为实数,且满足(x2+3x)2+2(x2+3x)﹣3=0,那么x2+3x=.
11.等腰△ABC中,AC=8,AB、BC的长是关于x的方程x2﹣9x+m=0的两根,则m的值是.
12.已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0的两根x1和x2,且x12﹣2x1+2x2=x1x2,则k的值是.
1.2一元二次方程的解法
一、单选题
1.用配方法解方程 时,应在方程两边同时加上( )
A.3B.9C.6D.36
2.已知 ,则 的值是()
A.3或 B. 或2C.3D.
3. 的根是()
A. B. 或 C. D. 或
4.如果关于x的方程 只有一个实数根,那么方程 的根的情况是()
A.没有实数根B.有两个不相等的实数根
x= ,
x1= ,x2= ;
(4)(x+1)2=2x+2,
(x+1)2﹣2(x+1)=0,
人教版初中数学九年级上册第二十一章《实际问题与一元二次方程》同步练习题(解析版)

当 BP=2 时,AP=
=;
当 BP=8 时,AP=
=.
故答案为: 或 . 【点睛】 本题主要考查了矩形的性质和勾股定理及一元二次方程,学会利用方程的思想求线段的长是 关键. 10.25% 【解析】 【分析】 设运动商城的自行车销量的月平均增长率为 x,根据该商城一月份、三月份销售自行车的数 量,即可列出关于 x 的一元二次方程,解之取其正值即可得出结论. 【详解】 解:设运动商城的自行车销量的月平均增长率为 x, 根据题意得:64(1+x)2=100, 解得:x1=0.25=25%,x2=-2.25(舍去). 故答案为:25%. 3;CD, ∴CD=5-x, ∵AC 2+AD 2= DC 2, ∴(2+x)2+32=(5-x) 2,
∴x= ,
AC=2+ =2 m. 故选 B. 【点睛】 本题考查了一元二次方程的应用,勾股定理及数形结合的思想,通过图形找到等量关系然后 列方程求解. 6.C 【解析】 分析:设平均每次下调的百分率为 x,则两次降价后的价格为 6000(1-x)2,根据降低率问 题的数量关系建立方程求出其解即可. 详解:设平均每次下调的百分率为 x,由题意,得 6000(1-x)2=4860, 解得:x1=0.1,x2=1.9(舍去). 答:平均每次下调的百分率为 10%. 故选:C. 点睛:本题考查了一元二次方程的应用,降低率问题的数量关系的运用,一元二次方程的解 法的运用,解答时根据降低率问题的数量关系建立方程是关键. 7.C 【解析】 【分析】 设参加酒会的人数为 x 人,根据每两人都只碰一次杯,如果一共碰杯 55 次,列出一元二次 方程,解之即可得出答案. 【详解】 设参加酒会的人数为 x 人,依题可得:
3 / 13
人教版九年级数学上同步练习卷:214 一元二次方程解法-直接开平方法(知识讲解)(人教版)

专题21.4 一元二次方程解法-直接开平方法(知识讲解)【学习目标】1. 掌握直接开平方法解方程,会应用此判定方法解决有关问题;2.理解解法中的降次思想,直接开平方法中的分类讨论与换元思想.【要点梳理】直接开平方法解一元二次方程(1) 如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。
一般地,对于形如x 2=a(a ≥0)的方程,根据平方根的定义可解得x 1=a ,x 2=a -.(2) 直接开平方法适用于解形如x 2 = p 或(mx+a)2= p(m ≠0)形式的方程,如果p ≥0,就可以利用直接开平方法。
(3) 用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。
(4) 直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。
【典型例题】【知识点一】用直接开平方法解一元二次方程1.一元二次方程()2116x +=可转化为两个一元一次方程,其中一个一元一次方程是14x +=,则另一个一元一次方程是( )A .14x -=-B .14x -=C .14x +=D .14x +=- 【答案】D【分析】根据直接开平方法可以解答本题.解:∵(x +1)2=16,∵x +1=±4,∵x +1=4或x +1=-4,故选:D .【点拨】本题考查解一元二次方程,解答本题的关键是明确解方程的方法. 举一反三:【变式1】若(a 2+b 2﹣3)2=25,则a 2+b 2=( )A .8或﹣2B .﹣2C .8D .2或﹣8【答案】C【分析】先直接开平方求得a 2+b 2﹣3=±5,然后再整体求出a 2+b 2即可.解:∵(a 2+b 2﹣3)2=25,∵a 2+b 2﹣3=±5,∵a 2+b 2=3±5,∵ a 2+b 2=8或a 2+b 2=﹣2∵a 2+b 2≥0∵a 2+b 2=8.故选:C .【点拨】本题主要考查了一元二次方程的解法和代数式求值,掌握运用直接开平方法解一元二次方程和整体思想是解答本题的关键.【变式2】方程()23250x --=的根是( )A .5和5-B .2和8-C .8和2-D .3和3-【答案】C【分析】利用直接开平方法解方程即可得答案.解:()23250x --=(x -3)2=25,∵x -3=±5,∵x=8或x=-2,故选:C .【点拨】本题考查解一元二次方程,解一元二次方程的常用方法有:直接开平方法、配方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.2.已知方程(x 2+y 2﹣1)2=16,则x 2+y 2的值为______.【答案】5【分析】根据直接开平方解得2214x y +-=±,再根据220≥+x y 计算即可; 解:∵(x 2+y 2﹣1)2=16,∵2214x y +-=±,∵225x y +=或223x y +=-,∵220≥+x y ,∵225x y +=;故答案是5.【点拨】本题主要考查了直接开平方法解方程,准确计算是解题的关键.举一反三:【变式1】方程42=x -320的实数解为__________.【答案】1=2x ;2=2x -【分析】通过移项、系数化为1、开平方先求出2x ,舍去负值后进一步开平方即可. 解:移项后可得:4232,x =416x ∴=24x ∴=或24x =-(舍)122,2x x ∴==-故答案为: 122,2x x ∴==-.【点拨】本题考查了高次方程的求解问题,解题步骤参照解一元二次方程的步骤,将方程逐步转化为n x a =(n 为偶数,a 为常数)的形式,再通过逐步开平方降次即可求解,注意解题过程中不符合条件的值舍去即可.【变式2】已知()222181x y ++=,则22x y +=_________. 【答案】8【分析】将等号两边同时开平方,解出22xy +的值,再根据22x y +的非负性进行取舍即可.解:()222181x y ++=,221x y ++= 22x y +=8或-10,22x y +≥0,∴22x y +=8.故答案为:8.【点拨】本题主要考查直接开平方法解一元二次方程的步骤,方程若能化为形如2()(0)ax b p p +=≥的形式,那么可得ax b +=3.解下列方程:(1)(x -1)2=9; (2)32160x -=.【答案】(1)x 1=4,x 2=-2; (2)x = 2【分析】(1)根据直接开平方法求解一元二次方程,即可得到答案;(2)根据立方根的性质求解,即可得到答案.解:(1)∵(x -1)2=9∵x -1=±3∵x 1=4,x 2=-2.(2)移项,得3216x =∵38x = ∵x = 2.【点拨】本题考查了一元二次方程、立方根的知识;解题的关键是熟练掌握直接开平方法求解一元二次方程、立方根的性质,从而完成求解.举一反三:【变式1】解方程:2(1)40x 【答案】x =1或x = -3【分析】移项,利用直接开平方法,求解即可.解:∵2(1)40x ,∵2(1)4x +=,∵x +1=2或x +1=-2,解得x =1或x = -3.【点拨】本题考查了直接开平方法解一元二次方程,熟练掌握解方程的基本步骤是解题的关键.【变式2】解方程:()22240x --=.【答案】12x =22x =【分析】方程整理后,用开平方法进行解方程.解:()22240x --=整理得:()222x -=两边开平方得:2x -=即2x -=2x -=所以12x =22x =【点拨】本题考查了解一元二次方程的方法,根据方程的特点选择合适的方法是提高解题效率的关键.【知识点二】用直接开平方法解一元二次方程的应用4.给出一种运算:对于函数n y x =,规定1n y nx -'=.例如:若函数41y x =,则有314y x '=.若函数32y x =,求方程212y '=的解. 【答案】12x =,22x =-【分析】根据题中新定义的运算,先求出2y ',代入已知条件,然后求解一元二次方程即可.解:∵32y x =,∵223y x '=,∵2=12y '∵2 312x =∵24x =∵12x =,22x =-,∵2y '的解为:12x =,22x =-.【点拨】题目主要考查求一元二次方程的解,理解新运算的计算方法,并结合一元二次方程是解题关键.举一反三:【变式1】定义:等号两边都是整式,只含有一个未知数,且未知数的最高次数是2的方程,叫做一元二次方程.如()222924,3210x x x x =-=+-=,...都是一元二次方程.根据平方根的特征,可以将形如()20x a a =≥的一元二次方程转化为一元一次方程求解.如:解方程29x =的思路是:由x =123,3x x ==-.解决问题:()1解方程2(2)4x -=解:2x -=22,x ∴-=,或2x -=124,x x ∴==()2解方程:()231250x --=【答案】(1)2,0-;(2)1242,3==-x x 【分析】(1 (2)根据例题的解答方法求解即可.解:(1)2x -=22,x ∴-=,或2x -=-2,124,x x ∴==0,故答案为:-2,0;(2)()231250x --=,315x ∴-=±,315x ∴-=或315,x -=-1242,3x x ∴==-. 【点拨】此题考查解一元二次方程的方法,运用平方根的特征将一元二次方程直接开方化为一元一次方程,正确理解题目中解方程的方法是解题的关键.【变式2】如图,用两个边长为cm 的小正方形拼成一个大的正方形.(1)求大正方形的边长?(2)若沿此大正方形边的方向剪出一个长方形,能否使剪出的长方形纸片的长宽之比为3:2且面积为60cm 2若能,试求出剪出的长方形纸片的长与宽;若不能,试说明理由.【答案】(1)10cm (2)能,理由见分析【分析】(1)根据已知正方形的边长即可求出大正方形的边长;(2)先求出长方形的边长,再判断即可.解:(1)大正方形的边长10=;(2)设长方形纸片的长为3xcm ,宽为2xcm ,则3260x x ⋅=,解得:x =,331010x =,所以沿此大正方形边的方向剪出一个长方形,能使剪出的长方形纸片的长宽之比为3:2,且面积为260cm .【点拨】本题考查了算术平方根、勾股定理,解一元二次方程,能根据题意列出算式是解此题的关键.祝福语祝你考试成功!。
-一元二次方程的解法(全)
2
此方程无解。
方程
ax c 0 a 0 一定有解吗?
2
2
c a0 x a ;
1当
c a
0时,方程的根是 x ;
c a
2当
c a
0时,原方程无实数根。
2 2
提问:下列方程有解吗?
(1) x 4 3; (2) 3x 1 3;
2
可见,上面的 2 x 4 实际 上就是求4的平 方根。
x 4 x 2 x1 2 ; x2 2
以上解某些一元二次方程的方法叫 做直接开平方法。
初试锋芒
用直接开平方法解下列方程:
(1) y 121 0 ;
2
将方程化成
(2) x 2 0 (3)
2
x b
2
(b≥0)的形 式,再求解
归纳 小结
用直接开平方法可解下列类型 的一元二次方程:
x b b 0 或
2
x a
2
b b 0 .
根据平方根的定义,要特别注意: 由于负数没有平方根, 所以,当b<0时,原方程无解。
(第2课时)
知识回顾
用直接开平方法可解下列类型的一元二次方程:
x b b 0 或
共同回顾:一元二次方程
只含有一个未知数,并且未知数的最 高次数是2的整式方程叫做一元二次方程。
苏教版九年级数学上册1.2 一元二次方程的解法 练习题(含答案)
1.2一元二次方程的解法注意事项:本试卷满分100分,考试时间45分钟,试题共21题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共6小题,每小题3分,共18分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020春•崇川区期末)一元二次方程x2﹣3x=0的两个根是()A.0和﹣3 B.0和3 C.1和3 D.1和﹣32.(2020春•如皋市期末)下列所给方程中,有两个不相等的实数根的是()A.x2﹣6x+9=0 B.2x2﹣3x+5=0 C.x2+3x+5=0 D.2x2+9x+5=03.(2020•吴中区二模)一元二次方程2x2﹣2x0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断4.(2020•海安市模拟)把方程x2﹣x﹣5=0,化成(x+m)2=n的形式得()A.B.C.D.5.(2020春•邗江区校级期中)关于代数式﹣x2+4x﹣2的取值,下列说法正确的是()A.有最小值﹣2 B.有最大值2 C.有最大值﹣6 D.恒小于零6.(2019秋•宿豫区期末)某同学在解关于x的方程ax2+bx+c=0时,只抄对了a=1,b=﹣8,解出其中一个根是x=﹣1.他核对时发现所抄的c是原方程的c的相反数,则原方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个根是x=1 D.不存在实数根二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)7.(2020•无锡二模)方程x2+x﹣2=0的解是.8.(2020春•如皋市期末)已知方程x2﹣6x﹣2=0,用配方法化为a(x+b)2=c的形式为.9.(2020•仪征市模拟)如表是学生小明探究关于x的一元二次方程x2+ax+b=0的根的情况,则4a+b的值是.x﹣2 ﹣1 0 1 2 3x2+ax+b 5 0 ﹣3 ﹣4 ﹣3 010.(2020春•广陵区校级期中)当x=时,代数式x2﹣x与x﹣1的值相等.11.(2020•海门市一模)若关于x的一元二次方程x2﹣(2m+2)x+m2=0有两个不相等的实数根,则实数m的取值范围是.12.(2020•宝应县一模)关于x的一元二次方程x2x﹣1=0有两个不相等的实数根,则k的取值范围为.13.(2019春•太仓市期末)对任意的两实数a,b,用min(a,b)表示其中较小的数,如min(2,﹣4)=﹣4,则方程x•min(2,2x﹣1)=x+1的解是.14.(2019秋•邗江区校级期末)关于x的方程a(x+m)2+b=0的根是x1=5,x2=﹣6,(a,b,m均为常数,a≠0)则关于x的方程a(x﹣m+2)2+b=0的根是.三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)15.(2017秋•卢龙县期末)解方程:(1)(y+2)2=(3y﹣1)2(2)x2+4x+2=0(配方法)16.(2020春•如皋市期末)解下列方程:(1)x(2x﹣1)=2x﹣1;(2)x2﹣4x﹣3=0.17.(2019秋•海州区校级期末)若关于x的方程x2+(b+2)x+6﹣b=0有两个相等的实数根.(1)求b的值;(2)当b取正数时,求此时方程的根.18.(2019秋•宜兴市期末)已知关于x的一元二次方程2x2+(2k+1)x+k=0.(1)求证:方程总有两个实数根;(2)若该方程有一个根是正数,求k的取值范围.19.(2020春•张家港市期末)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是直角三角形时,求k的值.20.(2019春•灌云县期末)已知A=a+2,B=a2﹣3a+7,C=a2+2a﹣18,其中a>2.(1)求证:B﹣A>0,并指出A与B的大小关系;(2)指出A与C哪个大?说明理由.21.(2019春•江都区期末)某数学实验小组在探究“关于x的二次三项式ax2+bx+3的性质(a、b为常数)”时,进行了如下活动.【实验操作】取不同的x的值,计算代数式ax2+bx+3的值.x…﹣1 0 1 2 3 …ax2+bx+3 …0 3 4 …(1)根据上表,计算出a、b的值,并补充完整表格.【观察猜想】实验小组组员,观察表格,提出以下猜想.同学甲说:“代数式ax2+bx+3的值随着x的增大而增大”.同学乙说:“不论x取何值,代数式ax2+bx+3的值一定不大于4”.…(2)请你也提出一个合理的猜想:【验证猜想】我们知道,猜想有可能是正确的,也可能是错误的.(3)请你分别判断甲、乙两位同学的猜想是否正确,若不正确,请举出反例;若正确,请加以说理.答案解析一、选择题(本大题共6小题,每小题3分,共18分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020春•崇川区期末)一元二次方程x2﹣3x=0的两个根是()A.0和﹣3 B.0和3 C.1和3 D.1和﹣3【分析】利用因式分解法求解可得.【解析】∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得x=0或x=3,故选:B.2.(2020春•如皋市期末)下列所给方程中,有两个不相等的实数根的是()A.x2﹣6x+9=0 B.2x2﹣3x+5=0 C.x2+3x+5=0 D.2x2+9x+5=0【分析】若方程有两个不相等的实数根,则△=b2﹣4ac>0,可据此判断出正确的选项.【解析】A、△=36﹣4×9=0,原方程有两个相等的实数根,故A错误;B、△=9﹣4×2×5=﹣31<0,原方程没有实数根,故B错误;C、△=9﹣4×5=﹣11<0,原方程没有实数根,故C错误;D、△=81﹣4×2×5=41>0,原方程有两个不相等的实数根,故D正确.故选:D.3.(2020•吴中区二模)一元二次方程2x2﹣2x0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断【分析】根据根的判别式公式,求该方程的判别式,根据结果的正负情况即可得到答案.【解析】根据题意得:△=(﹣2)2﹣4×20,即该方程有两个相等的实数根,故选:B.4.(2020•海安市模拟)把方程x2﹣x﹣5=0,化成(x+m)2=n的形式得()A.B.C.D.【分析】直接利用配方法将原式变形进而得出答案.【解析】x2﹣x﹣5=0,x2﹣3x=15,x2﹣3x15,(x)2.故选:C.5.(2020春•邗江区校级期中)关于代数式﹣x2+4x﹣2的取值,下列说法正确的是()A.有最小值﹣2 B.有最大值2 C.有最大值﹣6 D.恒小于零【分析】先利用配方法将代数式﹣x2+4x﹣2转化为完全平方与常数的和的形式,然后根据非负数的性质进行解答.【解析】∵﹣x2+4x﹣2=﹣(x2﹣4x+4)+4﹣2=﹣(x﹣2)2+2,又∵(x﹣2)2≥0,∴(x﹣2)2≤0,∴﹣(x﹣2)2+2≤2,∴代数式﹣x2+4x﹣2有最大值2.故选:B.6.(2019秋•宿豫区期末)某同学在解关于x的方程ax2+bx+c=0时,只抄对了a=1,b=﹣8,解出其中一个根是x=﹣1.他核对时发现所抄的c是原方程的c的相反数,则原方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个根是x=1 D.不存在实数根【分析】利用题意得x=﹣1为方程x2﹣8x﹣c=0的根,则可求出c=9,所以原方程为x2﹣8x+9=0,然后计算判别式的值判断方程根的情况.【解析】x=﹣1为方程x2﹣8x﹣c=0的根,1+8﹣c=0,解得c=9,所以原方程为x2﹣8x+9=0,因为△=(﹣8)2﹣4×9>0,所以方程有两个不相等的实数根.故选:A.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)7.(2020•无锡二模)方程x2+x﹣2=0的解是x1=﹣2,x2=1.【分析】利用因式分解法解方程.【解析】(x+2)(x﹣1)=0,x+2=0或x﹣1=0,所以x1=﹣2,x2=1.故答案为x1=﹣2,x2=1.8.(2020春•如皋市期末)已知方程x2﹣6x﹣2=0,用配方法化为a(x+b)2=c的形式为(x﹣3)2=11.【分析】方程移项后,两边加上一次项系数一半的平方,变形得到结果,即可作出判断.【解析】方程x2﹣6x﹣2=0,移项得:x2﹣6x=2,配方得:x2﹣6x+9=11,即(x﹣3)2=11.故答案为:(x﹣3)2=11.9.(2020•仪征市模拟)如表是学生小明探究关于x的一元二次方程x2+ax+b=0的根的情况,则4a+b的值是2.x﹣2 ﹣1 0 1 2 3x2+ax+b 5 0 ﹣3 ﹣4 ﹣3 0【分析】把表中的两组值代入x2+ax+b得到关于a、b的方程组,解方程组求出b、c,然后计算4a+b的值.【解析】根据题意得,解得,所以方程为x2﹣2x﹣3=0,所以4a+b=4×1﹣2=2.故答案为2.10.(2020春•广陵区校级期中)当x=1时,代数式x2﹣x与x﹣1的值相等.【分析】根据题意列出一元二次方程,解方程即可得解.【解析】依题意得:x2﹣x=x﹣1,∴x2﹣2x+1=0,即(x﹣1)2=0,解得:x=1.故答案为:1.11.(2020•海门市一模)若关于x的一元二次方程x2﹣(2m+2)x+m2=0有两个不相等的实数根,则实数m的取值范围是m.【分析】利用判别式的意义得到△=(2m+2)2﹣4m2>0,然后解不等式即可.【解析】根据题意得△=(2m+2)2﹣4m2>0,解得m.故答案为m.12.(2020•宝应县一模)关于x的一元二次方程x2x﹣1=0有两个不相等的实数根,则k的取值范围为k≥2.【分析】根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k的方程,求出方程的解即可得到k的范围.注意二次根式是非负数.【解析】∵关于x的一元二次方程x2x﹣1=0有两个不相等的实数根,∴△=()2﹣4×1×(﹣1)>0且k﹣2≥0,解得:k≥2.故答案为:k≥2.13.(2019春•太仓市期末)对任意的两实数a,b,用min(a,b)表示其中较小的数,如min(2,﹣4)=﹣4,则方程x•min(2,2x﹣1)=x+1的解是x或x.【分析】分2<2x﹣1和2x﹣1≤2两种情况,分别列出方程,解之可得.【解析】①若2<2x﹣1,即x>1.5时,x+1=2x,解得x=1(舍);②若2x﹣1≤2,即x≤1.5时,x(2x﹣1)=x+1,解得x或x,故答案为:x或x.14.(2019秋•邗江区校级期末)关于x的方程a(x+m)2+b=0的根是x1=5,x2=﹣6,(a,b,m均为常数,a≠0)则关于x的方程a(x﹣m+2)2+b=0的根是x=﹣7或x=4.【分析】将方程变形为a(﹣x﹣2+m)2+b=0,将﹣x﹣2看做原方程中的x可得答案.【解析】∵方程a(x+m)2+b=0的根是x1=5,x2=﹣6,∴方程a(x﹣m+2)2+b=0的根满足﹣x﹣2=5或﹣x﹣2=﹣6,解得x=﹣7或x=4,故答案为:x=﹣7或x=4.三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)15.(2017秋•卢龙县期末)解方程:(1)(y+2)2=(3y﹣1)2(2)x2+4x+2=0(配方法)【分析】(1)利用直接开平方法解方程;(2)利用配方法解方程.【解析】(1)y+2=±(3y﹣1)y+2=3y﹣1,y+2=﹣(3y﹣1)y1,y2;(2)x2+4x+4=2(x+2)2=2x+2x1=﹣2,x2=﹣2.16.(2020春•如皋市期末)解下列方程:(1)x(2x﹣1)=2x﹣1;(2)x2﹣4x﹣3=0.【分析】(1)利用因式分解法求解可得;(2)利用配方法求解可得.【解析】(1)∵x(2x﹣1)﹣(2x﹣1)=0,∴(2x﹣1)(x﹣1)=0,则2x﹣1=0或x﹣1=0,解得x=0.5或x=1;(2)∵x2﹣4x=3,∴x2﹣4x+4=3+4,即(x﹣2)2=7,∴x﹣2,∴x=2.17.(2019秋•海州区校级期末)若关于x的方程x2+(b+2)x+6﹣b=0有两个相等的实数根.(1)求b的值;(2)当b取正数时,求此时方程的根.【分析】(1)根据根的判别式即可求出答案.(2)由(1)可知b=2,根据一元二次方程的解法即可求出答案.【解析】(1)由题意可知:△=(b+2)2﹣4(6﹣b)=0,解得:b=2或b=﹣10.(2)当b=2时,此时x2﹣4x+4=0,∴x1=x2=218.(2019秋•宜兴市期末)已知关于x的一元二次方程2x2+(2k+1)x+k=0.(1)求证:方程总有两个实数根;(2)若该方程有一个根是正数,求k的取值范围.【分析】(1)根据根的判别式即可求出答案.(2)根据因式分解法求出方程的两根,然后列出不等式即可求出答案.【解析】(1)由题意,得△=(2k+1)2﹣8k=(2k﹣1)2∵(2k﹣1)2≥0,∴方程总有两个实数根.(2)由求根公式,得,x2=﹣k.∵方程有一个根是正数,∴﹣k>0.∴k<019.(2020春•张家港市期末)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是直角三角形时,求k的值.【分析】(1)根据方程的系数结合根的判别式,可得出△=1>0,进而可证出方程有两个不相等的实数根;(2)利用因式分解法可求出AB,AC的长,分BC为直角边及BC为斜边两种情况,利用勾股定理可得出关于k的一元一次方程或一元二次方程,解之即可得出k值,取其正值(利用三角形的三边关系判定其是否构成三角形)即可得出结论.【解答】(1)证明:∵△=[﹣(2k+1)]2﹣4×(k2+k)=1>0,∴方程有两个不相等的实数根.(2)解:∵x2﹣(2k+1)x+k2+k=0,即(x﹣k)[x﹣(k+1)]=0,解得:x1=k,x2=k+1.当BC为直角边时,k2+52=(k+1)2,解得:k=12;当BC为斜边时,k2+(k+1)2=52,解得:k1=3,k2=﹣4(不合题意,舍去).答:k的值为12或3.20.(2019春•灌云县期末)已知A=a+2,B=a2﹣3a+7,C=a2+2a﹣18,其中a>2.(1)求证:B﹣A>0,并指出A与B的大小关系;(2)指出A与C哪个大?说明理由.【分析】(1)根据完全平方公式把原式变形,根据非负数的性质解答;(2)把C﹣A的结果进行因式分解,根据有理数的乘法法则解答.【解答】(1)证明:B﹣A=(a2﹣3a+7)﹣(a+2)=a2﹣3a+7﹣a﹣2=a2﹣4a+5=(a2﹣4a+4)+1=(a﹣2)2+1,∵(a﹣2)2≥0,∴(a﹣2)2+1≥1,∴B﹣A>0,∴B>A;(2)解:C﹣A=(a2+2a﹣18)﹣(a+2)=a2+2a﹣18﹣a﹣2=a2+a﹣20=(a+5)(a﹣4)∵a>2,∴a+5>0,当2<a<4时,a﹣4<0,∴C﹣A<0,即A>C,当a>4时,a﹣4>0,∴C﹣A>0,即A<C当a=4时,C﹣A=0,即A=C.21.(2019春•江都区期末)某数学实验小组在探究“关于x的二次三项式ax2+bx+3的性质(a、b为常数)”时,进行了如下活动.【实验操作】取不同的x的值,计算代数式ax2+bx+3的值.x…﹣1 0 1 2 3 …ax2+bx+3 …0 3 4 …(1)根据上表,计算出a、b的值,并补充完整表格.【观察猜想】实验小组组员,观察表格,提出以下猜想.同学甲说:“代数式ax2+bx+3的值随着x的增大而增大”.同学乙说:“不论x取何值,代数式ax2+bx+3的值一定不大于4”.…(2)请你也提出一个合理的猜想:当x=﹣2和x=4时,代数式(ax2+bx+3)的值是相等的(答案不唯一)【验证猜想】我们知道,猜想有可能是正确的,也可能是错误的.(3)请你分别判断甲、乙两位同学的猜想是否正确,若不正确,请举出反例;若正确,请加以说理.【分析】(1)通过解方程组求得a、b的值.(2)可以根据二次函数y=ax2+bx+3的图象性质进行猜想;(3)举出反例.【解析】(1)当x=﹣1时,a﹣b+3=0;当x=1时,a+b+3=4.可得方程组.解得:.当x=2时,ax2+bx+3=3;当x=3时,ax2+bx+3=0.故答案是:3;0;(2)言之有理即可,比如当x<1时,(ax2+bx+3)随x的增大而增大;当x=﹣2和x=4时,代数式(ax2+bx+3)的值是相等的;故答案是:当x=﹣2和x=4时,代数式(ax2+bx+3)的值是相等的(答案不唯一);(3)甲的说法不正确.举反例:当x=1时,y=4;但当x=2时,y=3,所以y随x的增大而增大,这个说法不正确.乙的说法正确.证明:﹣x2+2x+3=﹣(x﹣1)2+4.∵(x﹣1)2≥0.∴﹣(x﹣1)2+4≤4.∴不论x取何值,代数式ax2+bx+3的值一定不大于4.。
一元二次方程的解法(直接开平方法、配方法3种题型)-2023年新九年级数学精品课(苏科版)(解析版)
一元二次方程的解法(直接开平方法、配方法3种题型)1.会把一元二次方程降次转化为两个一元一次方程.2.运用开平方法解形如x 2=p 或(x+n) 2=p (p≥0)的方程.3.理解配方的基本过程,会运用配方法解一元二次方程.4.经历探索利用配方法解一元二次方程的过程,体会转化的数学思想.知识点1:直接开平方法形如x 2=p 或(nx +m )2=p (p ≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成x 2=p 的形式,那么可得x =±;如果方程能化成(nx +m )2=p (p ≥0)的形式,那么nx +m =±. 注意:①等号左边是一个数的平方的形式而等号右边是一个非负数.②降次的实质是由一个二次方程转化为两个一元一次方程.知识点2:配方法(1)将一元二次方程配成(x +m )2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)用配方法解一元二次方程的步骤:①把原方程化为ax 2+bx +c =0(a ≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式2222()a ab b a b ±+=±. 知识点3:配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常题型1:用直接开平方法解一元二次方程例1.(2022秋•江都区校级期末)方程x 2=4的解是( )A .x 1=x 2=2B .x 1=x 2=﹣2C .x 1=2,x 2=﹣2D .x 1=4,x 2=﹣4【分析】根据直接开平方解方程即可.【解答】解:直接开平方得:x =±2,∴方程的解为:x1=2,x2=﹣2,故选:C .【点评】本题考查了用直接开平方法解一元二次方程,特别注意:一个正数的平方根有两个,它们互为相反数.例2.(2022秋•江都区期中)解方程:(1)4x 2=49; (2)(2x ﹣1)2﹣25=0.【分析】(1)首先将方程整理为x 2=,再利用平方根的意义直接开方求解即可;(2)首先将方程整理为(2x ﹣1)2=25的形式,再利用平方根的意义直接开方求解即可.【解答】解:(1)4x 2=49,x 2=, ∴,∴x 1=,x 2=﹣;(2)(2x ﹣1)2﹣25=0,(2x ﹣1)2=25,∴2x ﹣1=±5,∴x 1=3,x 2=﹣2.【点评】本题考查了解一元二次方程﹣﹣直接开平方法.用直接开方法求一元二次方程的解的类型有:x 2=a (a ≥0);ax 2=b (a ,b 同号且a ≠0);(x +a )2=b (b ≥0);a (x +b )2=c (a ,c 同号且a ≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”. 例3.解关于x 的方程:251250x −=.【答案】15x =,25x =−.【解析】整理方程,即得225x =,直接开平方法解方程,得:x = 即方程两根为15x =,25x =−.【总结】直接开平方法解形如()20x a a =≥方程两根即为x =例4.解关于x 的方程:290x =. 【答案】153x =,253x =−.【解析】整理方程,即得2259x ==,直接开平方法解方程,得:x =, 即方程两根为153x =,253x =−.【总结】直接开平方法解形如()20x a a =≥方程两根即为x =例5.解关于x )225x −=【答案】14x =,21x =.【解析】整理方程,即得()2259x −==,直接开平方法解方程,得:253x −==±, 得253x −=或253x −=−,即方程两根为14x =,21x =.【总结】直接开平方法解形如()()20ax b h h +=≥的方程,将()ax b +当作一个整体,可得ax b +=或ax b +=例6.解关于x 的方程:()()222332x x +=+.【答案】11x =,21x =−.【解析】直接开平方法解方程,即得()2332x x +=±+,得2332x x +=+或()2332x x +=−+, 即得方程两根为11x =,21x =−.【总结】直接开平方法解形如()()221122a x b a x b +=+的方程,将两边表示底数的式子当作一个整体,可得1122a x b a x b +=+或()1122a x b a x b +=−+.例7.解关于x 的方程: ()()22425931x x −=−. 【答案】1135x =,2713x =−. 【解析】整理方程,即为()()22225331x x −=−⎡⎤⎡⎤⎣⎦⎣⎦,直接开平方法解方程,即得()()225331x x +=±−,得()()225331x x +=−或()()225331x x +=−−,解得方程两根 分为1135x =,2713x =−. 【总结】直接开平方法解形如()()221122a x b a x b +=+的方程,将两边表示底数的式子当作一个整体,可得1122a x b a x b +=+或()1122a x b a x b +=−+.例8.解关于x 的方程:()2222x a a ab b −=++.【答案】12x a b =+,2x b =−.【解析】整理方程,即为()()22x a a b −=+,直接开平方法解方程,即得()x a a b −=±+, 得:x a a b −=+或()x a a b −=−+,解得方程两根分为12x a b =+,2x b =−.【总结】直接开平方法解形如()22ax b c +=的方程,将两边表示底数的式子当作一个整体,可得ax b c +=±. 题型2:用配方法解一元二次方程例9.(2022秋•秦淮区期末)解方程:x 2﹣6x +4=0(用配方法)【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:由原方程移项,得x 2﹣6x =﹣4,等式的两边同时加上一次项系数的一半的平方,得x 2﹣6x +9=﹣4+9,即(x ﹣3)2=5,∴x =±+3, ∴x 1=+3,x 2=﹣+3.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.例10.用配方法解方程:22330x x −−=.【答案与解析】解:∵22330x x −−=, ∴233022x x −−= ∴23993216162x x −+=+, ∴2333416x ⎛⎫−= ⎪⎝⎭∴12x x ==. 【总结升华】原方程的二次项系数不为1,必须先化成1,才能配方.配方时,方程左右两边同时加上一次项系数一半的平方,配成()()20x m n n +=≥的形式,然后用直接开平方法求解即可.例11.用配方法解方程:220130y −−=.【答案】145y =,245y =.【解析】由220130y −−=,得2122025y −+=,即2(2025y −=,所以45y −=±, 所以原方程的解为:145y =,245y =−. 【总结】本题主要考查用配方法求解一元二次方程的根.例12.用配方法解方程:225200x x −−+=.【答案】154x =−+,254x =−. 【解析】由225200x x −−+=,得225200x x +−=,即251002x x +−=,配方,得:2525251021616x x ++=+,即25185()416x +=,解得:54x =−±所以原方程的解为:154x =−+,254x =−. 【总结】本题主要考查用配方法求解一元二次方程的根,注意先将二次项系数化为1,然后再配方. 例13.用配方法解方程:210.30.2030x x −+=. 【答案】1213x x ==. 【解析】由210.30.2030x x −+=,得213203x x −+=,即221039x x −+=, 所以21()03x −=,所以原方程的解为:1213x x ==.【总结】本题主要考查用配方法求解一元二次方程的根,注意先将二次项系数化为1,然后再配方. 题型3:配方法的应用例14.(2023春•梁溪区校级期中)在求解代数式2a 2﹣12a +22的最值(最大值或最小值)时,老师给出以下解法:解:原式=2(a 2﹣6a )+22=2(a 2﹣6a +9)﹣18+22=2(a ﹣3)2+4,∵无论a 取何值,2(a ﹣3)2≥0,∴代数式2(a ﹣3)2+4≥4,即当a =3时,代数式2a 2﹣12a +22有最小值为4.仿照上述思路,则代数式﹣3a 2+6a ﹣8的最值为( )A .最大值﹣5B .最小值﹣8C .最大值﹣11D .最小值﹣5【分析】根据题意把代数式﹣3a 2+6a ﹣8配成﹣3(a ﹣1)2﹣5的形式,再利用偶次方的非负性即可得出最值.【解答】解:由题意可得:原式=﹣3(a2﹣2a)﹣8=﹣3(a2﹣2a+1)+3﹣8=﹣3(a﹣1)2﹣5,∵无论a取何值,3(a﹣1)2≥0,即﹣3(a﹣1)2≤0,∴代数式﹣3(a﹣1)2﹣5≤﹣5,即当a=1时,代数式﹣3a2+6a﹣8有最大值﹣5,故选:A.【点评】本题主要是考查了配方法的应用以及偶次方的非负性,解题关键是把代数式配成﹣3(a﹣1)2﹣5的形式.例15.(2023春•吴江区期中)我们可以将一些形如ax2+bx+c(a≠0)的多项式变形为a(x+m)2+n的形式,例如x2+4x﹣5=x2+4x+22﹣22﹣5=(x+2)2﹣9,我们把这样的变形叫做多项式ax2+bx+c(a≠0)的配方法.已知关于a,b的代数式满足a2+b2+2a﹣4b+5=0,请你利用配方法求a+b的值.【分析】已知等式变形后,利用完全平方公式化简,再利用非负数的性质求出即可.【解答】解:已知等式变形得:(a2+2a+1)+(b2﹣4b+4)=0,即(a+1)2+(b﹣2)2=0,∵(a+1)2≥0,(b﹣2)2≥0,∴a+1=0,b﹣2=0,解得:a=﹣1,b=2,则a+b=﹣1+2=1.【点评】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.例16.(2023春•吴中区期中)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴m﹣n=0,n﹣4=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2+4xy+5y2+6y+9=0,求x﹣y的值.(2)已知△ABC的三边长a、b、c都是正整数,且满足a2﹣4a+2b2﹣4b+6=0,求边c的值.【分析】(1)根据x2+4xy+5y2+6y+9=0,应用因式分解的方法,判断出(x+2y)2+(y+3)2=0,求出x、y的值,代入x﹣y计算即可;(2)根据a2﹣4a+2b2﹣4b+6=0,应用因式分解的方法,判断出(a﹣2)2+2(b﹣41)2=0,求出a、b 的值,然后根据三角形的三条边的关系,求出c的值即可.【解答】解:(1)∵x 2+4xy +5y 2+6y +9=0,∴(x 2+4xy +4y 2)+(y 2+6y +9)=0,∴(x +2y )2+(y +3)2=0,∴x +2y =0,y +3=0,∴x =6,y =﹣3,∴x ﹣y =6﹣(﹣3)=9.(2)∵a 2﹣4a +2b 2﹣4b +6=0,∴(a 2﹣4a +4)+(2b 2﹣4b +2)=0,∴(a ﹣2)2+2(b ﹣1)2=0,∴a ﹣2=0,b ﹣1=0,∴a =2,b =1,∵2﹣1<c <2+1,∴1<c <3,∵c 为正整数,∴c =2.【点评】本题考查配方法的应用,以及三角形三条边的关系,解答本题的关键是明确配方法、会用配方法解答问题.例17.已知△ABC 的一边长为4,另外两边长是关于x 的方程22320x kx k −+=的两根,当k 为何值时,△ABC 是等腰三角形?【答案】2k =.【解析】由22320x kx k −+=,得(2)()0x k x k −−=,所以x k =或者2x k =.当2k =时,2x =和4x =,满足三角形三边关系,当4k =时,4x =和8x =,不满足三角形三边关系. 所以2k =时,△ABC 是等腰三角形【总结】先配方然后用分类讨论的方法解决问题.一、单选题【答案】D【分析】根据直接开方法求解即可.【详解】解:290x -=, 29x =直接开方得:13x =,23x =−,故选:D .【点睛】题目主要考查利用直接开方法解一元二次方程,熟练掌握此方法是解题关键.2.(2022秋·江苏盐城·九年级统考期中)一元二次方程2680x x −−=,经过配方可变形为( ) A .2(3)17x −=B .2(3)1x −=C .2(3)17x +=D .2(6)44x −=【答案】A【详解】解:方程移项得:268x x −=, 配方得:26989x x −+=+,即2(3)17x −=.故选:A .【点睛】此题考查了解一元二次方程——配方法,熟练掌握完全平方公式是解本题的关键.3.(2022秋·江苏镇江·九年级统考期中)已知实数a b ,满足21a b +=,则代数式22241a b a +−−的最小值等于( )A .1B .4−C .8−D .无法确定【答案】C【分析】由已知得21b a =−,代入代数式即得22241a b a +−−变形为()22141a a a +−−−,再配方,即可求解.【详解】解:∵21a b +=,∴21b a =−,代入代数式即得22241a b a +−−,得()22141a a a +−−−,261a a =−+, ()238a =−−,∵()230a −≥,∴()2388a −−≥−, ∴22241ab a +−−的最小值等于8−,故选:C【点睛】本题考查配方法的应用,通过变形将代数式化成()238a −−是解题的关键. 4.(2023·江苏苏州·一模)已知关于x 的一元二次方程()20m x h k −−=(m ,h ,k 均为常数且0m ≠)的解是12x =,25x =,则关于x 的一元二次方程()21m x h k −+=的解是( )A .12x =−,25x =−B .14x =−,21x =−C .11x =,24x =D .13x =−,26x =− 【答案】C【分析】把()21m x h k −+=看作关于(1)x +的一元二次方程,则12x +=或15x +=,然后解两个一次方程即可.【详解】解:方程2()0(m x h k m −−=、h ,k 均为常数且0)m ≠的解是12x =,25x =, ∴对于关于(1)x +的一元二次方程()21m x h k −+=的解,即12x +=或15x +=,即11x =,24x =,∴关于x 的一元二次方程2(3)m x h k −+=的解是11x =,24x =.故选:C .【点睛】本题考查了解一元二次方程−直接开平方法:形如2x p =或2()(0)nx m p p +=≥的一元二次方程可采用直接开平方的方法解一元二次方程.【答案】A【分析】勾股定理可得:()2222OP x x =++ ,再利用配方法求解2OP 的最小值,再求解OP 的最小值,从而可得答案.【详解】由勾股定理可得: ()()222222244212OP x x x x x =++=++=++当1x =−时, 2OP 有最小值2∴OP 的最小值为 1>所以A 不符合题意,B ,C ,D 都有可能,符合题意故选A【点睛】本题考查的是配方法的应用,利用平方根解方程,掌握“配方法的应用”是解本题的关键.【答案】D【分析】将方程常数项移到等号右边,两边加上一次项系数一半的平方,再利用完全平方公式变形即可得到结果【详解】解:方程整理得:285x x −=−,配方得:281611x x −+=,即2411x −=(). 故选:D .【点睛】此题考查了用配方法解一元二次方程,解题关键是熟练掌握完全平方公式.二、填空题7.(2022秋·江苏扬州·九年级统考期末)一元二次方程2430x x −+=配方为()22x k −=,则k 的值是______.【答案】1【分析】将原方程2430x x −+=变形成与()22x k −=相同的形式,即可求解.【详解】解:2430x x −+=243101x x −++=+2441x x −+=()221x −=∴1k =故答案为:1.【点睛】本题主要考查解一元二次方程中的配方法,掌握配方法的解题步骤是解本题的关键. 8.(2022秋·江苏南京·九年级南京市科利华中学校考期中)用配方法解方程21070x x +−=,方程可变形为()2x m n +=,则m =_________,n =__________.【答案】 5 34【分析】利用配方法解答,即可求解.【详解】解:21070x x +−=,∴2107x x +=,∴2102534x x ++=,即()2534x +=,∴5m =,34n =.故答案为:5,34【点睛】本题主要考查了解一元二次方程——配方法,熟练掌握利用配方法解一元二次方程的方法是解题的关键. 9.(2022秋·江苏扬州·九年级统考期中)新定义,若关于x 的一元二次方程:2()0m x a b −+=与2()0n x a b −+=,称为“同类方程”.如22(1)30x −+=与26(1)30x −+=是“同类方程”.现有关于x 的一元二次方程:22(1)10x −+=与2(6)(8)60a x b x +−++=是“同类方程”.那么代数式22022ax bx ++能取的最大值是_________.【答案】2023【分析】根据“同类方程”的定义,可得出a ,b 的值,从而解得代数式的最大值.【详解】∵22(1)10x −+=与2(6)(8)60a x b x +−++=是“同类方程”,∴22(6)(8)6(6)(1)1a x b x a x +−++=+−+,∴22(6)(8)6(6)(6)72a x b x a x a x a +−++=++−++, ∴()82667b a a ⎧+=+⎨=+⎩,解得:12a b =−⎧⎨=⎩,∴22022ax bx ++222022x x =−++()212023x =−−+∴当1x =时,22022ax bx ++取得最大值为2023.故答案为:2023.【点睛】此题主要考查了配方法的应用,解二元一次方程组,理解“同类方程”的定义是解答本题的关键. 10.(2022秋·江苏苏州·九年级校考期中)已知实数x 、y 、z 满足224422018x x y y xy z −++−+=,则实数z 的最大值为 __.【答案】2022【分析】仔细观察等式左侧,先将多项式进行分组,再利用配方法化简其形式,最后根据平方的非负性确定z 的最大值.【详解】解:224422018x x y y xy z −++−+=,222442018x xy y x y z ∴−+−++=,2()4()2018x y x y z ∴−−−+=,2()4()442018x y x y z −−−+−+=,2(2)42018x y z −−+−=,2(2)0x y −−…,∴当2(2)0x y −−=时,4z −的值最大,42018z ∴−=,2022z ∴=,∴实数z 的最大值为2022,故答案为:2022.【点睛】本题考查了配方法与平方的非负性,能够识别多种情况下的配方条件,正确的配方是解题关键.三、解答题 11.(2023·江苏常州·统考一模)解方程:(1)2(1)40x +-=;(2)2260x x −−=.【答案】(1)121,3x x ==(2)1211x x ==【分析】(1)直接开方法解方程即可.(2)配方法即解方程即可.【详解】(1)2(1)40x +-= 2(1)4x +=12x +=±121,3x x ∴==(2)2260x x −−=22161x x −+=+()217x −=1x −=1211x x ∴==【点睛】此题考查一元二次方程的解法,有直接开方法,配方法,因式分解法,公式法等,解题关键是根据方程的特点挑选合适的解法.12.(2023秋·江苏宿迁·九年级统考期末)解方程:210110x x +-=.【答案】11x =,211x =−【分析】利用配方法解方程即可.【详解】解:210110x x +-=21011x x +=,210251125x x ++=+,()2536x +=,56x +=±,11x =,211x =−【点睛】本题考查利用配方法解一元二次方程,熟悉相关性质是解题的关键. 13.(2023秋·江苏无锡·九年级校联考期末)解方程:(1)()21250x −−=;(2)2410x x −−=.【答案】(1)16x =,24x =−(2)12x =12x =【分析】(1)利用直接开平方法解此方程,即可求解;(2)利用配方法解此方程,即可求解. 【详解】(1)解:由原方程得:()2125x −= 得15x −=±,解得16x =,24x =−,所以,原方程的解为16x =,24x =−;(2)解:由原方程得:241x x −=,得24414x x −+=+,()225x −=,得2x −=12x =12x =所以,原方程的解为12x =12x =【点睛】本题考查了一元二次方程的解法,熟练掌握和运用一元二次方程的解法是解决本题的关键.,AOB 、COD 的面积分别为【答案】(1)①0x ≠;②一、三;③当0x <时,x x +的最大值为2−;(2)最小值为11;(3)25【分析】(1)①根据分母不为0即可求解;②根据当0x >时,0y >;当0x <时,0y <即可判断;③模仿求解过程,利用配方法即可求解;(2)将2316x x y x ++=的分子分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;(3)设BOC S x =△,已知4AOB S =△,9COD S =△,则由等高三角形可知:::BOC COD AOB AOD S S S S =△△△△,用含x 的式子表示出AOD S ,四边形ABCD 的面积用含x 的代数式表示出来,再按照题中所给公式求得最小值,加上常数即可.【详解】解:(1)①函数1y x x =+的自变量x 的取值范围为:0x ≠;②容易发现,当0x >时,0y >;当0x <时,0y <.由此可见,图像在第一、三象限;③当0x >时,112x x x x +≥=; 当0x <时,11()x x x x +=−−−12x x −−≥=1()2x x ∴−−−≤−∴当0x >时,1x x +的最小值为2;当0x <时,1x x +的最大值为2−.故答案为:①0x ≠;②一、三;③当0x <时,1x x +的最大值为2−;(2)由2316163x x y x x x ++==++, 0x >,∴163311y x x =++≥=, 当16x x =时,最小值为11.(3)设BOC S x =△,已知4AOB S =△,9COD S =△则由等高三角形可知:::BOC AOB AOD S S S S =△△△△ :94:AOD x S ∴=36:AOD S x ∴=∴四边形ABCD 面积36491325x x =+++≥+=当且仅当6x =时取等号,即四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用,同时本题还考查了分式化简和等高三角形的性质,本题难度中等略大,属于中档题.一、单选题 1.(2022秋·江苏苏州·九年级校考阶段练习)把方程2430x x +−=化为2x m n =+()的形式后,m 的值是( ) A .2B .﹣2C .﹣1D .1【答案】B 【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.【详解】解:∵2430x x +−=,∴243x x −=-,则24434x x ++−=-,即221x −()=, ∴2m =﹣,n =1,故B 正确. 故选:B .【点睛】本题主要考查解一元二次方程的能力,熟练掌握一元二次方程配方法,是解题的关键. 【分析】利用配方法将29x mx −+进行配方,即可得出答案.. 【详解】解:原式22924m m x ⎛⎫=−+− ⎪⎝⎭, 当x-2m =0,即x=2m 时,原式取得最小值9-24m =8,整理得:24m =, 解得:m=±2,则m 的值可能为2,故选:B .【点睛】本题考查了配方法的运用,掌握配方法是解题的关键.3.(2022秋·江苏苏州·九年级星海实验中学校考阶段练习)若226A x xy +=﹣,2411B y x +=﹣﹣,则A 、B 的大小关系为( )A .A >BB .A <BC .A ≥BD .A =B 【答案】A【分析】利用做差法求出A B −=()()22131x y −+−+,然后利用偶数次幂的非负性即可得出()()2213110x y −+−+≥>,即可得出0A B −>,从而得出正确选项. 【详解】解:()2226411A B x x y y x −+−−+−=﹣ 2222264112611x x y y x x x y y =+−+−+=−+−+()()()()222221691131x x y y x y =−++−++=−+−+∵()210x −≥,()230y −≥,∴()()2213110x y −+−+≥>, ∴0A B −>,即A B >,故选:A .【点睛】本题考查了配方法的应用,考查了通过做差法判断式子的大小,熟练掌握配方法是本题的关键所在.二、填空题【答案】2k ≤【分析】根据配方法可进行求解.【详解】解:∵A =x2﹣x+(32k −)=x2﹣x 1144+−+(32k −)=(x 12−)214−+(32k −), 若x 取任何实数,A 的值都不是负数,∴14−+(32k −)≥0,解得:112k ≤; 故答案为:112k ≤. 【点睛】本题主要考查配方法的应用,熟练掌握配方法是解题的关键.5.(2022秋·江苏南京·九年级校考阶段练习)方程()219x +=的根是_____.【答案】1224x x ==−,【分析】两边开方,然后解关于x 的一元一次方程.【详解】解:由原方程,得13x +=±.解得122,4x x ==−.故答案是:122,4x x ==−.【点睛】本题考查了解一元二次方程−直接开平方法.用直接开方法求一元二次方程的解的类型有:2(0)x a a =≥;2(ax b a =,b 同号且0)a ≠;2()(0)x a b b +=≥;2()(a x b c a +=,c 同号且0)a ≠.法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.6.(2022·江苏·九年级专题练习)已知代数式A =3x 2﹣x +1,B =4x 2+3x +7,则A ____B (填>,<或=).【答案】<【分析】先求A-B 的差,再将差用配方法变形为A ﹣B =﹣(x+2)2﹣2,然后利用非负数性质求解.【详解】解:A ﹣B =3x2﹣x+1﹣(4x2+3x+7)=﹣x2﹣4x ﹣6=﹣(x+2)2﹣2,∵﹣(x+2)2≤0,∴﹣(x+2)2﹣2<0,∴A ﹣B<0,∴A<B ,故答案为:<.【点睛】本题考查了配方法的综合应用,配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方.7.(2022秋·江苏·九年级阶段练习)若实数x ,y 满足条件2x 2﹣6x +y 2=0,则x 2+y 2+2x 的最大值是____.【答案】15【分析】先将2x2﹣6x+y2=0,变形为y2=﹣2x2+6x ,代入所求代数式并化简为x2+y2+2x =﹣(x ﹣4)2+16,利用非负数性质可得x2+y2+2x≤16,再因为y2=﹣2x2+6x≥0,求得0≤x≤3,即可求解.【详解】解:∵2x2﹣6x+y2=0,∴y2=﹣2x2+6x ,∴x2+y2+2x =x2﹣2x2+6x+2x =﹣x2+8x =﹣(x2﹣8x+16)+16=﹣(x ﹣4)2+16,∵(x ﹣4)2≥0,∴x2+y2+2x≤16,∵y2=﹣2x2+6x≥0,解得0≤x≤3,当x =3时,x2+y2+2x 取得最大值为15,故答案为:15.【点睛】本题考查了配方法,熟练掌握配方法以及完全平方式的非负性是解决本题的关键. 8.(2022秋·江苏扬州·九年级校联考阶段练习)如果一元二次方程的两根相差1,那么该方程成为“差1方程”.例如20x x +=是“差1方程”.若关于x 的方程210ax bx ++=(a ,b 是常数,0a >)是“差1方程”设210t a b =−,t 的最大值为__________.【答案】9【分析】根据新定义得方程的大根与小根的差为1,列出a 与b 的关系式,再由210t a b =−,得t 与a 的关系,从而得出最后结果.【详解】解:由题可得:224140b a b a ∆=−⨯=−≥∴解方程得x =,关于x 的方程210(ax bx a ++=、b 是常数,0)a >是“差1方程”,∴1=,224b a a ∴=+,210t a b =−,226(3)9t a a a ∴=−=−−+,()30a −≥,3a ∴=时,t 的最大值为9.故答案为:9【点睛】本题考查了一元二次方程,解题的关键是熟练运用一元二次方程的解法以及正确理解“差1方程”的定义.9.(2022秋·江苏南京·九年级统考阶段练习)已知实数a 、b ,满足1b a −=,则代数式2267a b a +−+的最小值等于______.【答案】5【分析】由题意得1b a =+,代入代数式2267a b a +−+可得2(2)5a −+,故此题的最小值是5. 【详解】1b a −=,1b a ∴=+,2267a b a ∴+−+22(1)67a a a =++−+22267a a a =++−+2445a a =−++2(2)5a =−+,∴代数式2267a b a +−+的最小值等于5,故答案为:5.【点睛】此题考查了代数式的变形及配方法的应用,关键是掌握完全平方公式并正确变形、计算.三、解答题(2)求代数式226410a b a b −−−+−的最大值.【答案】(1)﹣3(2)当a =﹣3,b =2时,代数式226410a b a b −−−+−的最大值是3【分析】(1)通过配方可求出完全平方形式,根据平方式的非负性可得结果;(2)把226410a b a b −−−+−配方成完全平方的形式可得结果.(1)解:2x ﹣4x+1=2(44)3x x −+−=2(2)3x −−, ∵2(2)0x −≥,∴2241(2)33x x x −+=−−≥−,∴当x =2时,这个代数式2x ﹣4x+1的最小值为﹣3.故答案为:﹣3;(2)226410a b a b −−−+− =﹣2a ﹣6a ﹣9﹣2b +4b ﹣4+3=﹣2(3)a +﹣2(2)b −+3, ∵2(3)a +≥0,2(2)b −≥0, ∴﹣2(3)a +0≤,﹣2(2)b −0≤, ∴226410a b a b −−−+−=﹣2(3)a +﹣2(2)b −+33≤, ∴当a =﹣3,b =2时,代数式226410a b a b −−−+−的最大值是3.【点睛】本题考查了配方法的应用,用到的知识点是完全平方公式,非负数的性质,解题的关键是把给出的式子化成完全平方的形式进行解答. 11.(2022秋·江苏无锡·九年级校考阶段练习)王老师提出问题:求代数式245x x ++的最小值.要求同学们运用所学知识进行解答.同学们经过探索、交流和讨论,最后总结出如下解答方法;2(2)x +≥【答案】(1)3(2)7(3)有最大值,最大值为8(4)2【分析】(1)根据偶次方的非负性可求得;(2)根据题意用配方法和偶次方的非负性可直接求得;(3)根据题意用配方法和偶次方的非负性可直接求得;(4)根据27110x x y −+−=,用x 表示出y ,写出x y +,先根据题意用配方法和偶次方的非负性可求.【详解】(1)解:2(1)3x −+的最小值为3.故答案为:3;(2)21032x x ++222105532x x =++−+2(5)7x =++,2(5)0x +≥,2(5)77x ∴++≥,∴当2(5)0x +=时,2(5)7x ++的值最小,最小值为7,21032x x ∴++的最小值为7;(3)22211125(69)8(3)8333x x x x x −++=−−++=−−+,21(3)03x −−≤,21(3)883x ∴−−+≤,∴代数式21253x x −++有最大值,最大值为8;(4)27110x x y −+−=,2711y x x ∴=−+,22222271161163311(3)2x y x x x x x x x x ∴+=−++=−+=−+−+=−+,2(3)0x −≥,2(3)22x ∴−+≥,当2(3)0x −=时,2(3)2x −+的值最小,最小值为2,x y ∴+的最小值为2.【点睛】本题考查了配方法的应用和偶次方为非负数,解题的关键是能够将代数式配成完全平方式的形式.【问题解决】利用配方法解决下列问题:(1)当x =___________时,代数式221x x −−有最小值,最小值为 ___________.(2)当x 取何值时,代数式22812x x ++有最小值?最小值是多少?【拓展提高】(3)当x ,y 何值时,代数式2254625x xy y x −+++取得最小值,最小值为多少?(4)如图所示的第一个长方形边长分别是25a +、32a +,面积为1S ;如图所示的第二个长方形边长分别是5a 、5a +,面积为2S ,试比较1S 与2S 的大小,并说明理由.【答案】(1)1,2− ;(2)2x =−时,4;(3)3x =−,y =−6,16;(4)12S S >,见解析.【分析】(1)仿照文中所给的配方法的思路解答即可;(2)先提取公因数2,再利用文中所给的配方法的思路解答即可;(3)将2254625x xy y x −+++配方成()()222316x y x −+++,即可解答; (4)求出()22212610=691=31S S a a a a a −=−+−++−+,利用()230a −≥,得到1210>S S −≥,即12S S >. 【详解】(1)解: ()22221=2111=12x x x x x −−−+−−−− 因为()210x −≥,所以2221x x −−≥−,因此,当=1x 时,代数式221x x −−有最小值,最小值是2−.故答案为:1;2−(2)解:()()()22222812=246=24442=22x x x x x x x +++++++++, 因为()220x +≥,所以212428x x ++≥,因此,当=2x −时,代数式22812x x ++有最小值,最小值是4.(3)解:()()222222254625=446916=2316x xy y x x xy y x x y x x −+++−++++−++++因为()220x y −≥,()230x +≥,所以225462516x xy y x −+++≥,因此,当2=x y ,3x =−时,即3x =−,y =−6时,代数式2254625x xy y x −+++有最小值,最小值是16.(4)解:()()21253261910S a a a a =++=++,()2255525S a a a a =+=+, ∴()22212610=691=31S S a a a a a −=−+−++−+, ∵()230a −≥,∴1210>S S −≥,即12S S >.【点睛】本题考查配方法,解题的关键是理解题意,掌握配方法的原则.【答案】(1)见解析(2)()6y x −=(3)当3x =−,y =−6时,2254625x xy y x −+++取得最小值,最小值为16【分析】(1)根据配方的定义,分别选取二次项、一次项、常数项中的两项,进行配方即可得出三种形式;(2)首先根据配方法把2246130x y x y ++−+=变形为()()22230x y ++−=,再根据偶次方的非负性,得出20x +=,30y −=,解出x 、y 的值,然后将x 、y 的值代入代数式()y x −,计算即可得出结果;(3)首先根据配方法把代数式2254625x xy y x −+++变形为()()222316x y x −+++,再根据偶次方的非负性,得出()()22231616x y x −+++≥,进而得出当20x y −=,30x +=时,2254625x xy y x −+++取得最小值,再进行计算即可得出结果.【详解】(1)解:第一种形式:选取二次项和一次项配方,249x x −+24449x x =−+−+()225x =−+;第二种形式:选取二次项和常数项配方,249x x −+26964x x x x =++−−()2310x x=+−;或249x x −+ 26964x x x x =−++−()232x x =−+;第三种形式:选取一次项和常数项配方,249x x −+222444999x x x x =−+−+2225339x x ⎛⎫=−+ ⎪⎝⎭;(2)解:2246130x y x y ++−+=,配方,得:22446949130x x y y +++−+−−+=, 即()()22230x y ++−=, ∵()220x +≥,()230y −≥,∴20x +=,30y −=,解得:2x =−,3y =,∴()()()326y x −=−⨯−=;(3)解:2254625x xy y x −+++222446916x xy y x x =−+++++()()222316x y x =−+++,∵()()22230x y x −++≥,∴()()22231616x y x −+++≥, 当20x y −=,30x +=时,2254625x xy y x −+++取得最小值,即当3x =−,y =−6时,2254625x xy y x −+++取得最小值,最小值为16. 【点睛】本题考查了配方法的应用,根据配方法的步骤和完全平方公式进行配方是解本题的关键.。
2121 一元二次方程的解法(一)配方法-2021-2022学年九年级数学上练(人教版)(解析版)
21.2.1 一元二次方程的解法(一)配方法瞄准目标,牢记要点夯实双基,稳中求进直接开方法解一元二次方程原理:题型一:直接开方法解一元二次方程原理:【例题1】下列方程不能用直接开平方法求解的是( ) A .240x -= B .2(1)90x --= C .230x x += D .22(1)(21)x x -=+【答案】C【分析】根据直接开方法求一元二次方程的解的类型客直接得出答案.【详解】能用直接开平方法求解的是:240x -=、2(1)90x --=和22(1)(21)x x -=+; 故选C .【点睛】此题考查了解一元二次方程-公式法,用直接开方法求一元二次方程的解的类型有:x 2=a (a≥0);ax 2=b (a ,b 同号且a≠0);(x+a )2=b (b≥0);a (x+b )2=c (a ,c 同号且a≠0). 变式训练【变式1-1】关于x 的方程()2x a b +=能直接开平方求解的条件是( ) A .0,0a b ≥≥B .0,0a ≥≤知识点管理 归类探究 1 (1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义. 特别说明:用直接开方法求一元二次方程的解的类型有:x 2=a (a≥0);ax 2=b (a ,b 同号且a≠0);(x+a )2=b (b≥0);a (x+b )2=c (a ,c 同号且a≠0).C .a b ,为任意数D .a 为任意数且0b ≥【答案】D【分析】根据一个数的平方是非负数,可得0b ≥. 【详解】∵()20x a +≥,∵0b ≥,a 为任意数,故选:D .【点睛】本题考查了用直接开方法求一元二次方程的解,基本形式有:2x a =(a≥0).形如关于x 的一元二次方程2x a ,可直接开平方求解题型二:形如关于x 的一元二次方程2x a ,可直接开平方求解【例题2】一元二次方程290x 的解是( )A .3x =B .3x =-C .123,3x x ==-D .12=3,3x x =-【答案】C【分析】先变形得到x 2=9,然后利用直接开平方法解方程. 【详解】解:x 2=9,x =±3,所以x 1=3,x 2=-3. 故选:C .【点睛】本题考查了直接开平方法:形如x 2=p 或(nx +m )2=p (p ≥0)的一元二次方程可采用直接开平方的方法解一元二次方程. 变式训练【变式2-1】方程280x -=的解为( ) A .14x =,24x =-B .122x =,222x =-2 若0a则x a =±;表示为1,2x a x a ==- 方程有两个不等实数根 若=0a 则x=O 表示为120x x == 方程有两个相等的实数根 若0a则方程无实数根特别说明:(1)先移项,再开方;(2)形如2x a =的方程不一定有解,需要分情况讨论.C .10x =,222x =D .22x =【答案】B【分析】移项得x 2=8,然后利用直接开平方法解方程即可.【详解】解:移项得28x =,两边开方的:22x =±,即1222,22x x ==-,故选:B . 【点睛】本题考查了一元二次方程的解法:直接开平方法,熟练掌握运算方法是解题的关键. 【变式2-2】方程x 2=0的解为( ) A .0x = B .120x x ==C .无解D .以上都不对【答案】B【分析】直接运用直接开平方法求解即可. 【详解】解:∵x 2=0,∵x 1=x 2=0.故选:B.【点睛】此题考查了解一元二次方程-直接开平方法,熟练掌握直接开平方的方法是解本题的关键. 【变式2-3】一元二次方程224x =-的解是( ) A .2x =- B .2x =C .无解D .12x =,22x =-【答案】C形如关于x 的一元二次方程2()(0,0)ax n m a m +=≠≥,可直接开平方求解题型三:形如关于x 的一元二次方程2()(0,0)ax n m a m +=≠≥,可直接开平方求解 【例题5】方程2(1)4x +=的解为( )A .121,1x x ==-B .121,3x x =-=C .122,2x x ==-D .121,3x x ==-【答案】D【分析】根据直接开平方法即可求解.3 形如关于x 的一元二次方程2()(0,0)ax n m a m +=≠≥,可直接开平方求解,两根是12,n m n mx x a a-+--==. 特别说明:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.【详解】解2(1)4x +=x+1=±2∵x+1=2或x+1=-2 解得121,3x x ==- 故选D .【点睛】此题主要考查解一元二次方程,解题的关键是熟知直接开平方法的运用. 变式训练【变式5-1】2(31)9x -= 【答案】(1)x 1=43,x 2=23-;【分析】两边开方,即可得出两个一元一次方程,求出方程的解即可; 【详解】解:(1)2(31)9x -=, 两边开方得:313x -=±, 解得:x 1=43,x 2=23-;【变式5-2】解方程:(1)22(2)180x +-= (2)229(2)4(25)x x -=+ (1)解:22(2)180x +-=, ∵22(2)18x +=, ∵2(2)9x +=, ∵23x +=或23x,解得:x 1=1,x 2=-5;(2)解:∵9(x -2)2=4 (2x +5)2.∵3(x -2)=2(2x +5)或3(x -2)=-2(2x +5), 解得x 1=-16,x 2=47-配方法解一元二次方程题型四:用配方法给方程变形【例题3】(2021·浙江杭州市·八年级期中)用配方法解方程241x x -=时,原方程应变形为( ) A .2(2)1x -= B .2(2)5x +=C .2(2)1x +=D .2(2)5x -=【答案】D【分析】移项,配方,变形后即可得出选项. 【详解】解:x 2-4x =1, x 2-4x +4=1+4, ∵(x -2)2=5,4 1.配方法的定义通过配成完全平方式的形式解一元二次方程的方法,叫做配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程.2.用配方法解一元二次方程的一般步骤①通过去分母、去括号、移项、合并同类项等步骤,把原方程化为20(0)ax bx c a ++=≠的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数,形如;⑤一般地,如果一个一元二次方程通过配方转化成的形式,那么就有:(1)当p >0时,原方程有两个不相等的实数根;(2)当p =0时,原方程有两个相等的实数根;(3)当p <0时,因为对任意实数x ,都有,所以原方程无实数根. . 特别说明:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式.2()x n p +=2()x n p +=12x n p x n p =--=-+,12x x n ==-2()0x n +≥故选:D .【点睛】本题考查了解一元二次方程,能够正确配方是解此题的关键. 变式训练【变式4-1】(2021·浙江杭州市·八年级期中)方程26100x x --=变形时,下列变形正确的为( ) A .2(3)1x += B .2(3)1x -=C .2(3)19x +=D .2(3)19x -=【答案】D【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断. 【详解】解:方程移项得:x 2-6x =10,配方得:x 2-6x +9=19,即(x -3)2=19,故选:D .【变式4-2】(2021·浙江杭州市·八年级期中)一元二次方程2660x x --=经配方可变形为( ) A .2(3)10x -= B .()2642x -=C .2(6)6x -=D .2(3)15x -=【答案】D【分析】把方程左边化为完全平方式的形式即可.【详解】解:原方程可化为x 2-6x +32-32=6,即(x -3)2=15.故选:D .【变式4-3】(2021·浙江杭州市·八年级期中)若方程280x x m -+=可通过配方写成2() =6x n -的形式,则285++=x x m 可配方成( ) A .2(5)1x n -+= B .2()1x n +=C .2(5)11x n -+=D .2()11x n +=【答案】D【分析】已知方程x 2-8x +m =0可以配方成(x -n )2=6的形式,把x 2-8x +m =0配方即可得到一个关于m 的方程,求得m 的值,再利用配方法即可确定x 2+8x +m =5配方后的形式. 【详解】解:∵x 2-8x +m =0, ∵x 2-8x =-m , ∵x 2-8x +16=-m +16,∵(x -4)2=-m +16, 依题意有n =4,-m +16=6, ∵n =4,m =10,∵x 2+8x +m =5是x 2+8x +5=0, ∵x 2+8x +16=-5+16, ∵(x +4)2=11, 即(x +n )2=11. 故选:D【点睛】本题考查了解一元二次方程-配方法,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 题型五:配方法解一元二次方程【例题5】(2019·湖北黄冈市·九年级期中)解方程:2x 2﹣4x ﹣1=0.【答案】x 1x 2 【分析】用配方法解一元二次方程即可. 【详解】解:∵2x 2﹣4x ﹣1=0, ∵2x 2﹣4x=1,则x 2﹣2x=12, ∵x 2﹣2x+1=32,即(x ﹣1)2=32,则x ﹣∵x 1=22+x 2=22. 【点睛】此题考查了配方法解一元二次方程, 解题时要注意解题步骤的准确使用, 把左边配成完全平方式, 右边化为常数.变式训练【变式5-1】(2018·芜湖市繁昌区第三中学)解方程: 22310x x --=(用配方法)【答案】14x =,24x =;【分析】先两边同时除以2,再将原方程配方即可得出答案.【详解】解:231x 022x --= 2223331x 02442x ⎛⎫⎛⎫-+--= ⎪ ⎪⎝⎭⎝⎭2317x 416⎛⎫-= ⎪⎝⎭∵1x =2x = 【变式5-2】(2018·全国九年级单元测试)x 2-4x +2=0(配方法);【答案】x 1=2x 2=2【分析】方程的常数项移到方程右边,两边都加上4,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解;【详解】解方程变形得: x 2-4x=-2 配方得: x 2-4x+4=2,即(x -2) 2=2,开方得:x -2=±解得:12x =22x =【变式5-3】(2019·江苏期中)解方程:x 2+6x ﹣2=0.【答案】x=﹣.【分析】利用配方法可求出一元二次方程的解. 【详解】∵x 2+6x ﹣2=0,∵x 2+6x=2,则x 2+6x+9=2+9,即(x+3)2=11, ∵x+3=±11, ∵x=﹣3±11.配方法的应用题型六:配方法用于比较大小【例题6】(2020·福建省永春第五中学九年级期中)已知7115P m =-,2815Q m m =-,(m 为任意实数),则P 、Q 的大小关系为( ) A .P >Q B .P=QC .P <QD .不能确定【答案】C【分析】由题意表示出,再根据化简后的代数式的特征即可作出判断.【详解】解:∵∵P Q <故选C.【点睛】用不等式比较代数式的大小是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握. 变式训练【变式6-1】(2020·四川遂宁市·八年级期中)已知22862M x y x =-+-,29413N x y =++,则M N-5 1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 特别说明:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.的值 ( ) A .为正数 B .为负数C .为非正数D .不能确定【答案】B【分析】将M -N 整理成-(x -3)2-(y+2)2-2,从而说明M -N 的值为负数. 【详解】∵M -N=8x 2-y 2+6x -2-(9x 2+4y+13) =-x 2+6x -y 2-4y -15=-[(x 2-6x+9)+(y 2+4y+4)+2]=-(x -3)2-(y+2)2-2, ∵M -N 的值为负数,故选:B .【点睛】本题考查了配方法的应用、非负数的性质--偶次方.解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.【变式6-2】(2019·浙江杭州市·九年级其他模拟)若代数式238M x =+,224N x x =+,则M 与N 的大小关系是( ) A .M N ≥ B .M N ≤C .M N >D .M N <【答案】C【解析】∵223824M x N x x =+=+,,∵222238(24)48(2)40M N x x x x x x -=+-+=-+=-+>, ∵M N >.故选C.【变式6-3】(2021·河北九年级专题练习)已知M=29a ﹣1,N=a 2﹣79a (a 为任意实数),则M 、N 的大小关系为( ) A .M <N B .M=NC .M >ND .不能确定【答案】A【详解】∵M =219a -,N =279a a -(a 为任意实数),∵N -M =21a a -+=21324a ⎛⎫-+ ⎪⎝⎭,∵N >M ,即M <N ,故选A . 题型七:配方法用于求待定字母的值【例题7】(2018·全国九年级单元测试)已知2a 4b 18-=-,2b 10c 7+=,2c 6a 27-=-.则a b c ++的值是( ) A .5-B .10C .0D .5【答案】C【分析】将已知三个式子相加后,配方即可得到a 、b 、c 的值,从而得出结论. 【详解】由a 2﹣4b =﹣18,b 2+10c =7,c 2﹣6a =﹣27得:a 2﹣4b +b 2+10c +c 2﹣6a +38=0,∵(a ﹣3)2+(b ﹣2)2+(c +5)2=0,∵a =3,b =2,c =﹣5,∵a +b +c =0. 故选C .【点睛】本题考查了配方法的应用,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值. 变式训练【变式7-1】(2020·江苏南通市·八年级期中)若x 2+y 2+4x ﹣6y+13=0,则式子x ﹣y 的值等于( ) A .﹣1 B .1C .﹣5D .5【答案】C【分析】把给出的式子进行配方,根据非负数的性质求出x ,y 的值,再代入要求的式子即可得出答案. 【详解】∵x 2+y 2+4x−6y +13=0, ∵x 2+4x +4+y 2−6y +9=0, ∵(x +2)2+(y−3)2=0,∵x =−2,y =3, ∵x−y =−2−3=−5; 故选C .【点睛】此题考查了配方法的应用,用到的知识点是非负数的性质,通过配方求出x ,y 的值是解题的关键. 【变式7-2】(2021·黑龙江大庆市·八年级期末)已知三角形三边长为a 、b 、c ,且满足247a b -=,246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定【解析】∵a 2﹣4b =7,b 2﹣4c =﹣6,c 2﹣6a =﹣18,∵a 2﹣4b +b 2﹣4c +c 2﹣6a =7﹣6﹣18,整理得:a 2﹣6a +9+b 2﹣4b +4+c 2﹣4c +4=0,即(a ﹣3)2+(b ﹣2)2+(c ﹣2)2=0,∵a =3,b =2,c =2,∵此三角形为等腰三角形. 故选A .【变式7-3】若22228160m mn n n -+-+=,求m 、n 的值. 解:22228160m mn n n -+-+=,222(2)(816)0m mn n n n ∴-++-+= 22()(4)0m n n ∴-+-=,4,4n m ∴==.题型八:配方法用于求最值【例题8】(2020·湖南湘西土家族苗族自治州·八年级期末)阅读下面的解题过程,求21030y y -+的最小值.解:∵21030y y -+=()()222102551025555y y y y y -++=-++=-+,而()250y -≥,即()25y -最小值是0; ∵21030y y -+的最小值是5 依照上面解答过程,(1)求222020m m ++的最小值; (2)求242x x -+的最大值. 【答案】(1)2019;(2)5.【分析】(1)利用完全平方公式把原式变形,根据偶次方的非负性解答即可; (2)利用完全平方公式把原式变形,利用非负数的性质解答即可; 【详解】(1)2222020212019m m m m ++=+++ ()212019m =++∵()210m +≥,∵()2120192019m ++≥,∵222020m m ++的最小值为2019;(2)()2242215x x x x -+=--++()215x =--+,∵()210x -≥, ∵()210x --≤, ∵()2155x --+≤, ∵242x x -+的最大值是5.变式训练【变式8-1】(2019·辽宁大连市·八年级期末)已知关于x 的多项式24x mx -++的最大值为5,则m 的值可能为( ) A .1 B .2C .4D .5【答案】B【分析】利用配方法将24x mx -++进行配方,即可得出答案.【详解】解:22244,24m m x mx x ⎛⎫-++=--++ ⎪⎝⎭故245,4m += 解得: 2.m =± 故选B.【变式8-2】(2020·全国八年级课时练习)不论,a b 为任何实数,2261035a b a b +-++的值都是( ) A .非负数 B .正数 C .负数 D .非正数【答案】B【分析】利用完全平方公式配方,进而利用偶次方的性质得出答案. 【详解】2261035a b a b +-++22(3)(5)10a b =-+++>, ∵a 2+b 2−6a +10b +35的值恒为正数.故选:B .【点睛】此题主要考查了完全平方公式的应用以及偶次方的性质,正确配方得出是解题关键. 【变式8-3】(2020·山东威海市·八年级期中)若2245a a x -+-=,则不论取何值,一定有( )A .5x >B .5x <-C .3x ≥-D .3x ≤-【答案】D【分析】由﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3可得:x ≤﹣3.【详解】∵x =﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3≤﹣3,∵不论a 取何值,x ≤﹣3. 故选D .【真题1】(2016·湖北荆州市·中考真题)将二次三项式x 2+4x +5化成(x +p)2+q 的形式应为____. 【答案】(x +2)2+1 【详解】试题分析:原式=2x +4x+4+1=()221x ++ 故答案为:()221x ++【真题2】(2010·河北中考真题)已知实数的最大值为______.【答案】4【解析】变形的配方试题,2230x x x y +++-=223x y x x +=--+ 2(211)3x y x x +=-++-+ 2(1)3x y x +=-+++1链接中考2(1)4x y x +=-++ 所以当1x =-时x y +的最大值为4【真题3】(2010·江苏镇江市·中考真题)已知实数的最大值为______.【答案】4 【解析】变形的配方试题,2230x x x y +++-=223x y x x +=--+ 2(211)3x y x x +=-++-+ 2(1)3x y x +=-+++12(1)4x y x +=-++ 所以当1x =-时x y +的最大值为4【拓展1】(2020·全国九年级课时练习)解方程:2232mx x -=+()1m ≠【答案】当1m 时,原方程的解是x =1m <时,原方程无实数解【分析】先移项,再合并同类项可得()215m x -=,根据1m ≠求出251x m =-,再讨论10m -<时,10m ->,分别计算出方程的解.【详解】解:移项得:2223mx x -=+, 化简得:()215m x -=,1m ≠,251x m ∴=-, 当10m -<时,2501x m =<-, ∴原方程无实数解,当10m ->时,2501x m =>-, 满分冲刺1x ∴==2x ==∴当1m 时,原方程的解是x ==当1m <时,原方程无实数解.【点睛】此题考查解一元二次方程,根据每个方程的特点选择适合的解法是解题的关键.【拓展2】(2020·渠县崇德实验学校七年级期中)“a 2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:x 2+4x +5=x 2+4x +4+1=(x +2)2+1,∵(x +2)2≥0,∵(x +2)2+1≥1,∵x 2+4x +5≥1.试利用“配方法”解决下列问题:(1)填空:x 2﹣4x +5=(x )2+ ; (2)已知x 2﹣4x +y 2+2y +5=0,求x +y 的值; (3)比较代数式:x 2﹣1与2x ﹣3的大小. 【答案】(1)﹣2,1;(2)1;(3)x 2﹣1>2x ﹣3 【分析】(1)直接配方即可;(2)先配方得到非负数和的形式,再根据非负数的性质得到x 、y 的值,再求x +y 的值; (3)将两式相减,再配方即可作出判断. 【详解】解:(1)x 2﹣4x+5=(x ﹣2)2+1; (2)x 2﹣4x+y 2+2y+5=0, (x ﹣2)2+(y+1)2=0, 则x ﹣2=0,y+1=0, 解得x =2,y =﹣1, 则x+y =2﹣1=1; (3)x 2﹣1﹣(2x ﹣3) =x 2﹣2x+2 =(x ﹣1)2+1, ∵(x ﹣1)2≥0,∵(x﹣1)2+1>0,∵x2﹣1>2x﹣3.【点睛】本题考查了配方法的综合应用,配方的关键步骤是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方.【拓展3】(2019·全国九年级单元测试)阅读下面的解答过程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4,∵(y+2)2≥0,∵(y+2)2+4≥4,∵y2+4y+8的最小值为4.仿照上面的解答过程,求x2-x+4的最小值和6-2x-x2的最大值.【答案】154;7.【分析】(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值.【详解】解:(1)x2-x+4=(x-12)2+154,∵(x-12)2≥0,∵(x-12)2+154≥154.则x2-x+4的最小值是154;(2)6-2x-x2=-(x+1)2+7,∵-(x+1)2≤0,∵-(x+1)2+7≤7,则6-2x-x2的最大值为7.【点睛】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.配方法:先加上一次项系数一半的平方,使式中出现完全平方式,再减去一次项系数一半的平方,使整个式子的值不变,这种变形的方法称为“配方法”.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年九年级数学一元二次方程的解法检测试题3-试卷-试题同步练习-
九年级数学试题
◆随堂检测
1.将一元二次方程2650xx化成2()xab的形式,则b等于_____.
A.-4 B. 4 C.-14 D. 14
2. 22_____(___)nxxxm.
3. 二次三项式271xx的最小值为______.
4. 若方程20xpxq可化为213()24x,则p=_____,q=______.
5. 方程2237yy配方后得272()4y=_________.
◆典例分析
说明不论m为何值时,关于x的方程22(817)210mmxmx都是一元
二次方程。
解析:因为2228178161617(4)11mmmmm>0,
所以不论m为何值,该方程都是一元二次方程。
点评:关键是看二次项系数是否有可能为0。
◆课下作业
●拓展提高
7. 当x=______时,2362xx有最大值,这个最大值是_______.
8. 如果a、b、c是△ABC的三边,且满足式子222222abcabbc,
请指出△ABC的形状,并给出论证过程.
9. 说明代数式2241xx总大于224xx.
10. 用配方法解下列方程
(1)2312210xx
(2)(2)(3)1xx
(3)2(1)(1)12xx
●体验中考
1.(2009年山西太原)用配方法解方程2250xx时,原方程应变
形为( )
A.216x B.216x
C.229x D.229x
2.(2009年湖北仙桃)解方程:2420xx.
3.(2008杭州)已知方程260xxq可以配成2()7xp的形式,那
么262xxq可以配成下列的_____
A.2()5xp B. 2()9xp
C. 2(2)9xp D. (2)5xp
参考答案:
随堂检测:
1. D
2. 224nm,2nm
3. 454
4. 1,12
5. 258
拓展提高:
1.1,1
解:2222213(2)3(211)3(1)333xxxxx
当1x时,该式有最大值1。
2.解:222222abcabbc
222
2220abcabbc
22
()()0abbc
abc
所以该三角形为等边三角形。
3. 解:
22
241xxx
>0
所以代数式2241xx总大于224xx。
4.(1)2312210xx
解:244470xx
2
(2)110x
2
(2)11x
12
112,211xx
(2)(2)(3)1xx
解:260xx
2
11
6044xx
2
125
()024x
2
125
()24x
15
()22x
12
2,3xx
(3)2(1)(1)12xx
解:23100xx
2
99
310044xx
2
349
()24x
37
22
x
12
5,2xx
体验中考:
1. B.分析:本题考查配方,2250xx,22151xx,216x,
故选B.
2.解:
2
42xx
∴1222,22.xx
3. B