2019版高考数学一轮复习第十章概率与统计第一节随机

合集下载

高考数学一轮复习第十章计数原理概率随机变量及其分布108离散型随机变量的均值与方差课件理新人教A版

高考数学一轮复习第十章计数原理概率随机变量及其分布108离散型随机变量的均值与方差课件理新人教A版
答案 23,1
5.在一次招聘中,主考官要求应聘者从 6 道备选题中一次性随机抽取 3 道题,并独立完成所抽取的 3 道题。乙能正确完成每道题的概率为32,且 每道题完成与否互不影响。记乙能答对的题数为 Y,则 Y 的数学期望为 ________。
解析
=2。 答案
由题意知 Y 的可能取值为 0,1,2,3,且 Y~B3,32,则 E(Y)=3×32 2
二项分布的期望与方差 1.如果 ξ~B(n,p),则用公式 E(ξ)=np;D(ξ)=np(1-p)求解,可大 大减少计算量。 2.有些随机变量虽不服从二项分布,但与之具有线性关系的另一随机 变量服从二项分布,这时,可以综合应用 E(aξ+b)=aE(ξ)+b 以及 E(ξ)= np 求出 E(aξ+b),同样还可求出 D(aξ+b)。
2.均值与方差的性质
(1)E(aX+b)=
aE(X)+b

(2)D(aX+b)= a2D(X) (a,b 为常数)。
3.两点分布与二项分布的均值、方差
X
X 服从两点分布
X~B(n,p)
E(X)
p(p 为成功概率)
np
D(X)
p(1-p)
np(1-p)
1.均值 E(X)是一个实数,由 X 的分布列唯一确定,即 X 作为随机变量是 可变的,而 E(X)是不变的,它描述 X 值的取值平均状态。
A.37 B.4 C.-1 D.1
解析
选 A。 答案
E(X)=-21+61=-13,E(Y)=E(2X+3)=2E(X)+3=-23+3=73。故 A
2.(选修 2-3P68A 组 T5 改编)甲、乙两工人在一天生产中出现的废品数 分别是两个随机变量 X,Y,其分布列分别为:

第10章 第1节 随机抽样-2023届高三一轮复习数学精品备课(新高考人教A版2019)

第10章 第1节 随机抽样-2023届高三一轮复习数学精品备课(新高考人教A版2019)

[巩固演练] 1.下列抽样试验中,适合用抽签法的有( B ) A.从某厂生产的 5000 件产品中抽取 600 件进行质量检验 B.从某厂生产的两箱(每箱 18 件)产品中抽取 6 件进行质 量检验 C.从甲、乙两厂生产的两箱(每箱 18 件)产品中抽取 6 件 进行质量检验 D.从某厂生产的 5000 件产品中抽取 10 件进行质量检验
解析 (2)该地区中小学生总人数为 3 500+2 000+4 500=10 000, 则样本容量为 10 000×2%=200, 其中抽取的高中生近视人数为 2 000×2%×50%=20.
课时三省
课堂回眸
思维升华
误区防范
1.抽样方法 有哪几种?
1.两种抽样方法的共同点都是等概 率抽样,体现了这两种抽样方法的
►规律方法 应用简单随机抽样应注意以下两点
(1)一个抽样试验能否用抽签法,关键看两点:一是抽 签是否方便;二是号签是否易搅匀.一般地,当总体容量和 样本容量都较小时可用抽签法.
(2)应用随机数表法的两个关键点:一是确定以表中的 哪个数(哪行哪列)为起点,以哪个方向为读数的方向;二是 读数时注意结合编号特点进行读取,若编号为两位数字,则 两位两位地读取,若编号为三位数字,则三位三位地读取.
(2)福利彩票“双色球”中红球的号码可以从 01,02, 03,…,32,33 这 33 个两位号码中选取,小明利用如下所 示的随机数表选取红色球的 6 个号码,选取方法是从第 1 行 第 9 列的数字开始,从左到右依次读取数据,则第四个被选 中的红色球号码为( C )
81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75
[自主解答] 因为高一年级抽取学生的比例为 1224000=15,所以k+5k+3=15,解得 k=2, 故高三年级抽取的人数为 1 200×2+35+3=360.

2019版高考数学一轮复习第10章概率10.1随机事件的概率课件文

2019版高考数学一轮复习第10章概率10.1随机事件的概率课件文

解析
x=40, 解得 所以黑球的个数为 100-40-35=25. y=35,
3.小题热身 (1)(2015· 广东高考)已知 5 件产品中有 2 件次品, 其余为 合格品. 现从这 5 件产品中任取 2 件,恰有一件次品的概率 为( ) A.0.4 B.0.6 C.0.8 D.1
解析 记 3 件合格品分别为 A1,A2,A3,2 件次品分别 为 B1,B2,从 5 件产品中任取 2 件,有(A1,A2),(A1,A3), (A1, B1),(A1,B2),(A2, A3),(A2,B1),(A2, B2),(A3, B1),(A3,B2),(B1,B2),共 10 种可能.其中恰有一件次品 6 有 6 种可能,由古典概型概率公式得所求事件概率为10= 0.6.故选 B.
(5)对立事件的概率 若 事 件 A 与 事 件 B 互 为 对 立 事 件 , 则 P(A) = 1-P(B). ____________
[诊断自测] 1.概念思辨 (1)若事件 A,B,C 两两互斥,则 P(A)+P(B)+P(C)= 1.( × ) (2)在大量重复试验中,概率是频率的稳定值.( √ ) (3)由各个事件所含的结果组成的集合彼此的交集为空 集,则事件互斥.( √ ) - (4)事件 A 的对立事件 A 所含的结果组成的集合,是全 集中由事件 A 所含结果组成集合的补集.( √ )
(2)(2017· 浙江瑞安中学高三月考)一颗正方体骰子, 其六 个面上的点数分别为 1,2,3,4,5,6,现将这颗骰子抛掷三次, 观 察 向 上 的 点 数 , 则 三 次 点 数 之 和 等 于 15 的 概 率 为
5 108 ________ .
解析 将这颗骰子抛掷三次,共 63=216(种)情况.而 三次点数之和等于 15 的有 10 个(555 共 1 个,456 共 6 个, 10 366 共 3 个).所以三次点数之和等于 15 的概率 P=216= 5 108.

核按钮(新课标)高考数学一轮复习第十章计数原理、概率、随机变量及其分布10.1分类加法计数原理与分步

核按钮(新课标)高考数学一轮复习第十章计数原理、概率、随机变量及其分布10.1分类加法计数原理与分步
第五页,共25页。
3.两个计数原理的区别 分类加法计数原理和分步乘法计数原理解决的都是有关做一件事的不 同方法的种数问题,区别在于:分类加法计数原理针对的是“分类”问题, 其中各种方法______________,用其中______________都可以做完这件事; 分步乘法计数原理针对的是“分步”问题,各个步骤中的方法 ______________,只有______________才算做完这件事. 4.两个计数原理解决计数问题时的方法 最重要的是在开始计算之前要进行仔细分析——是需要分类还是需要 分步. (1)分类要做到“______________”.分类后再分别对每一类进行计数, 最后用分类加法计数原理求和,得到总数. (2)分步要做到“______________”,即完成了所有步骤,恰好完成任务, 当然步与步之间要______________,分步后再计算每一步的方法数,最后 根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.
(2)分两步:先选教师,共 3 种选法,再选学生,共 6+8=14 种选法.由分步乘法计数原理知总选法数为 3×14=42(种).
(3)老师、男同学、女同学各一人可分三步,每步方法数依次为 3、6、8 种.由分步乘法计数原理知选法数为 3×6×8=144(种).
第十六页,共25页。
类型二 两个原理的综合应用
第十五页,共25页。
有一项活动需在 3 名老师,6 名男同学和 8 名女同学中选 人参加.
(1)若只需一人参加,有多少种不同选法? (2)若需一名老师,一名学生参加,有多少种不同选法? (3)若需老师、男同学、女同学各一人参加,有多少种不同选法?
解:(1)只需一人参加,可按老师、男同学、女同学分三类,各 自有 3、6、8 种选法,总选法数为 3+6+8=17(种).

高考数学一轮总复习第十章统计与成对数据的统计分析第一节统计课件

高考数学一轮总复习第十章统计与成对数据的统计分析第一节统计课件
势.( √ )
(4)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.( √ )
2.(多选)某高中为了了解本校学生考入大学一年后的学习情况,对本校上
一年考入大学的同学进行了调查,根据学生所属的专业类型,制成扇形图.
现从这些同学中抽出100人进一步调查,已知小张为理学专业,小李为工学
专业,则下列说法正确的是(
2.平均数、方差的推广
(1)若数据x1,x2,…,xn的平均数为 ,则mx1+a,mx2+a,mx3+a,…,mxn+a的平
均数是m +a.
(2)若数据x1,x2,…,xn的方差为s2,则数据ax1+b,ax2+b,…,axn+b的方差为a2s2.

1
(3)s2= ∑ xi2
=1
2
−x .
典例突破
例2.某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟
确定一个合理的月用水量标准x(单位:吨),一位居民的月用水量不超过x的
部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽
样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照
[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.
人数为
.
答案 (1) AB
(2)B
(3)28
解析(1)根据抽样结果,此次抽样可能采用的是抽签法,A正确;
若按分层随机抽样,则抽得男生4人,女生3人,所以这次抽样不可能是按性
别分层随机抽样,B正确;
在随机抽样中,每个男生和每个女生被抽到的概率是相等的,C,D错误.故选
AB.

【课堂新坐标】(安徽专用)高考数学(理)一轮总复习课件第十章计数原理、概率、随机变量及其分布 第

【课堂新坐标】(安徽专用)高考数学(理)一轮总复习课件第十章计数原理、概率、随机变量及其分布 第
【解析】
)
B. 8 种 D.16 种
如下图,甲第一次传给乙时有 5 种方法,同
理,甲传给丙也可以推出 5 种情况,综上有 10 种传法.
【答案】
C
4. 在某种信息传输过程中, 用 4 个数字的一个排列(数字 允许重复)表示一个信息,不同排列表示不同信息.若所用数 字只有 0 和 1,则与信息 0110 至多有两个对应位置上的数字 相同的信息个数为( A.10 C.12 ) B.11 D.15
【尝试解答】
根据 a,b 的限制范围分类讨论,利用
分类加法计数原理计算.
【尝试解答】
a,b∈{-1,0,1,2}.
b (1)当 a=0 时,有 x=- ,b=-1,0,1,2 有 4 种可能. 2 (2)当 a≠0 时,则 Δ=4-4ab≥0,ab≤1, ①若 a=-1 时,b=-1,0,1,2 有 4 种不同的选法. ②若 a=1 时,b=-1,0,1,有 3 种可能; ③若 a=2 时,b=-1,0,有 2 种可能. ∴有序数对(a,b)共有 4+4+3+2=13(个).
变式训练 1 某同学有同样的画册 2 本,同样的集邮册 3 本,从中取出 4 本赠送给 4 位朋友,每位朋友一本,则不同 的赠送方法共有( A.4 种 C.18 种 ) B.10 种 D.20 种
【解析】 赠送一本画册,3 本集邮册.需从 4 人中选取 一人赠送画册,其余送邮册,有 C1 4种方法. 赠送 2 本画册,2 本集邮册,只需从 4 人中选出 2 人送画
【答案】 (1)× (2)√ (3)√ (4)×
)
根据两个计数原理的含义, (1)(4)不正确,
2.(人教 A 版教材习题改编)某班新年联欢会原定的 6 个 节目已排成节目单,开演前又增加了 3 个新节目,如果将这 3 个新节目插入节目单中,那么不同的插法种数为( A.504 C.336

高考数学一轮总复习课件:随机抽样、用样本估计总体


6.(2020·天津)从一批零件中抽取 80 个,测量其直径(单位: mm),将所得数据分为 9 组:[5.31,5.33),[5.33,5.35),…,[5.45, 5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽 取的零件中,直径落在区间[5.43,5.47)内的个数为( B )
n 的样本进行调查,其中从丙车间的产品中抽取了 3 件,则 n=
(D ) A.9
B.10
C.12
D.13
【解析】 由分层抽样可得630=2n60,解得 n=13.
【讲评】 进行分层抽样的相关计算时,常利用以下关系式 巧解:
①总样体本的容个量数nN=该层该抽层取的的个个体体数数; ②总体中某两层的个体数之比等于样本中这两层抽取的个 体数之比.
5.对某商店一个月内每天的顾客人数进行了统计,得到样本 的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( A )
A.46,45,56 B.46,45,53 C.47,45,56 D.45,47,53
解析 从茎叶图中可以看出样本数据的中位数为中间两个数的 平均数,即45+2 47=46,众数是 45,极差为 68-12=56,故选择 A.
状元笔记
(1)一个抽样试验能否用抽签法,关键看两点:一是制签是否 方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都 较小时可用抽签法.
(2)在使用随机数表时,如遇到取两位数或三位数,可从选择 的随机数表中的某行某列的数字计起,每两个或每三个作为一个 单位,自左向右选取,有超过总体号码或出现重复号码的数字舍 去.
个最高分、1 个最低分,得到 7 个有效评分.7 个有效评分与 9 个
原始评分相比,不变的数字特征是( A )

2019届高考数学一轮复习第十章概率10-1随机事件的概率课件文

nA 数,称事件 A 出现的比例 fn(A)= n 为事件 A 出现的频率.
(2)概率:对于给定的随机事件 A,由于事件 A 发生的频率 fn(A) 随着试验次数的增加稳定于概率 P(A),因此可以用 频率 fn(A) 来 估计概率 P(A).
(3)频率和概率的区别:频率反映了一个随机事件出现的频繁 程度,但是频率是随机的,而 概率 是一个确定的值,通常人 们用 概率 来反映随机事件发生的可能性的大小,有时也用
考点一 随机事件的关系——基础考点 (1)某小组有 5 名男生和 4 名女生,从中任选 4 名同学 参加“教师节”演讲比赛,则下列每对事件是对立事件的是
() A.恰有 2 名男生与恰有 4 名男生 B.至少有 3 名男生与全是男生 C.至少有 1 名男生与全是女生 D.至少有 1 名男生与至少有 1 名女生
5.某产品分甲、乙、丙三级,其中乙、丙两级均属次品.若 生产中出现乙级产品的概率为 0.03,丙级产品的概率为 0.01,则 对成品抽查一件抽得正品的概率为________.
[解析] 记“生产中出现甲级产品、乙级产品、丙级产品” 分别为事件 A,B,C.又事件 A,B,C 彼此互斥.由题意可得, P(B)=0.03,P(C)=0.01.
果如表:
满意情况 不满意 比较满意 满意 非常满意
人数
200
n
2100
1000
根据表中数据,估计在网上购物的消费者群体中对网上购物
“比较满意”或“满意”的概率是( )
7 2 11 13 A.15 B.5 C.15 200-2100-1000=1200,所以 对网上购物“比较满意”或“满意”的人数为 1200+2100= 3300,所以所求概率为34350000=1115.

2024年高考数学一轮复习课件(新高考版) 第10章 事件的相互独立性与条件概率、全概率公式

§10.5 事件的相互独立性与条件概率、全概率公式第十章 计数原理、概率、随机变量及其分布2024年高考数学一轮复习课件(新高考版)考试要求1.了解两个事件相互独立的含义.2.理解随机事件的独立性和条件概率的关系,会利用全概率公式计算概率.内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练第一部分1.相互独立事件(1)概念:对任意两个事件A 与B ,如果P (AB )=__________成立,则称事件A 与事件B 相互独立,简称为独立.P (A )·P (B)B2.条件概率(1)概念:一般地,设A,B为两个随机事件,且P(A)>0,我们称P(B|A)=______为在事件A发生的条件下,事件B发生的条件概率,简称条件概率.(2)两个公式①利用古典概型:P(B|A)=_______;P(A)P(B|A)②概率的乘法公式:P(AB)=___________.3.全概率公式一般地,设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i=1,2,…,n,则对任意的事件B⊆Ω,有P(B)=______________.常用结论1.如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2…A n)=P(A1)P(A2)…P(A n).2.贝叶斯公式:设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i=1,2,…,n,则对任意的事件判断下列结论是否正确(请在括号中打“√”或“×”)(1)对于任意两个事件,公式P (AB )=P (A )P (B )都成立.( )(2)若事件A ,B 相互独立,则P (B |A )=P (B ).( )(3)抛掷2枚质地均匀的硬币,设“第一枚正面朝上”为事件A ,“第2枚正面朝上”为事件B ,则A ,B 相互独立.( )(4)若事件A 1与A 2是对立事件,则对任意的事件B ⊆Ω,都有P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2).( )√×√√1.甲、乙两人独立地破解同一个谜题,破解出谜题的概率分别为则谜题没被破解出的概率为√设“甲独立地破解出谜题”为事件A,“乙独立地破解出谜题”为事件B,2.在8件同一型号的产品中,有3件次品,5件合格品,现不放回地从中依次抽取2件,在第一次抽到次品的条件下,第二次抽到次品的概率是√当第一次抽到次品后,还剩余2件次品,5件合格品,由题意得,居民甲第二天去A 食堂用餐的概率P =0.5×0.6+0.5×0.5=0.55.3.智能化的社区食堂悄然出现,某社区有智能食堂A ,人工食堂B,居民甲第一天随机地选择一食堂用餐,如果第一天去A 食堂,那么第二天去A 食堂的概率为0.6;如果第一天去B 食堂,那么第二天去A 食堂的概率为0.5,则居民甲第二天去A 食堂用餐的概率为_____.0.55第二部分例1 (1)(2021·新高考全国Ⅰ)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则√A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立事件甲与事件丙同时发生的概率为0,P(甲丙)≠P(甲)P(丙),故A错误;事件丙与事件丁是互斥事件,不是相互独立事件,故D错误.(2)(2023·临沂模拟)“11分制”乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,若甲先发球,两人又打了2个球后该局比赛结束的概率为______;若乙先发球,两人又打了4个球后该局比赛结束,则甲获胜的概率为 _____.0.50.1记两人又打了X个球后结束比赛,设双方10∶10平后的第k个球甲获胜为事件A k(k=1,2,3…),=0.5×0.4+0.5×0.6=0.5.思维升华求相互独立事件同时发生的概率的方法(1)相互独立事件同时发生的概率等于他们各自发生的概率之积.(2)当正面计算较复杂或难以入手时,可从其对立事件入手计算.跟踪训练1 小王某天乘火车从重庆到上海,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列火车正点到达的概率;由题意得A,B,C之间相互独立,所以恰好有两列火车正点到达的概率为=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.(2)这三列火车恰好有一列火车正点到达的概率;恰好有一列火车正点到达的概率为=0.8×0.3×0.1+0.2×0.7×0.1+0.2×0.3×0.9=0.092.(3)这三列火车至少有一列火车正点到达的概率.三列火车至少有一列火车正点到达的概率为=1-0.2×0.3×0.1=0.994.例2 (1)(2022·哈尔滨模拟)七巧板是中国民间流传的智力玩具.据清代陆以湉《冷庐杂识》记载,七巧板是由宋代黄伯思设计的宴几图演变而来的,原为文人的一种室内游戏,后在民间逐步演变为拼图版玩具.到明代,七巧板已基本定型为由如图所示的七块板组成:五块等腰直角三角形(其中两块小型三角形、一块中型三角形和两块大型三角形)、一块正方形和一块平行四边形,可以拼成人物、动物、植物、房亭、楼阁等1 600种以上图案.现从七巧板中取出两块,已知取出的是三角形,则两块板恰好是全等三角形的概率为√设事件A为“从七巧板中取出两块,取出的是三角形”,事件B为“两块板恰好是全等三角形”,(2)逢年过节走亲访友,成年人喝酒是经常的事,但是饮酒过度会影响健康,某调查机构进行了针对性的调查研究.据统计,一次性饮酒4.8两,诱发某种疾病的频率为0.04,一次性饮酒7.2两,诱发这种疾病的频率为0.16.将频率视为概率,已知某人一次性饮酒4.8两未诱发这种疾病,则他还能继续饮酒2.4两,不诱发这种疾病的概率为√记事件A:这人一次性饮酒4.8两未诱发这种疾病,事件B:这人一次性饮酒7.2两未诱发这种疾病,则事件B|A:这人一次性饮酒4.8两未诱发这种疾病,继续饮酒2.4两不诱发这种疾病,则B⊆A,AB=A∩B=B,P(A)=1-0.04=0.96,P(B)=1-0.16=0.84,思维升华求条件概率的常用方法(3)缩样法:去掉第一次抽到的情况,只研究剩下的情况,用古典概型求解.跟踪训练2 (1)(2023·六盘山模拟)已知5道试题中有3道代数题和2道几何题,每次从中抽取一道题,抽出的题不再放回.在第1次抽到代数题的条件下,第2次抽到几何题的概率为√设事件A=“第1次抽到代数题”,事件B=“第2次抽到几何题”,由题意知,第一次击中与否对第二次没有影响,②在仅击中一次的条件下,第二次击中的概率是_____.例3 (1)一份新高考数学试卷中有8道单选题,小胡对其中5道题有思路,3道题完全没有思路.有思路的题做对的概率是0.9,没有思路的题只能猜一个答案,猜对答案的概率为0.25,则小胡从这8道题目中随机抽取1道做对的概率为√设事件A表示“小胡答对”,事件B表示“小胡选到有思路的题”.则小胡从这8道题目中随机抽取1道做对的概率(2)在数字通信中,信号是由数字0和1组成的序列.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.已知当发送信号0时,被接收为0和1的概率分别为0.93和0.07;当发送信号1时,被接收为1和0的概率分别为0.95和0.05.假设发送信号0和1是等可能的,则接收的信号为1的概率为√A.0.48B.0.49C.0.52D.0.51设事件A=“发送的信号为0”,事件B=“接收的信号为1”,思维升华利用全概率公式解题的思路(1)按照确定的标准,将一个复杂事件分解为若干个互斥事件A i(i=1,2,…,n).(2)求P(A i)和所求事件B在各个互斥事件A i发生条件下的概率P(A i)P(B|A i).(3)代入全概率公式计算.跟踪训练3 (1)设甲乘汽车、动车前往某目的地的概率分别为0.4,0.6,汽车和动车正点到达目的地的概率分别为0.7,0.9,则甲正点到达目的地的概率为√A.0.78B.0.8C.0.82D.0.84设事件A表示“甲正点到达目的地”,事件B表示“甲乘动车到达目的地”,事件C表示“甲乘汽车到达目的地”,由题意知P(B)=0.6,P(C)=0.4,P(A|B)=0.9,P(A|C)=0.7.由全概率公式得P(A)=P(B)P(A|B)+P(C)P(A|C)=0.6×0.9+0.4×0.7=0.54+0.28=0.82.(2)(2022·郑州模拟)第24届冬奥会于2022年2月4日至20日在北京和张家口举行,中国邮政陆续发行了多款纪念邮票,其图案包括“冬梦”“冰墩墩”和“雪容融”等.小王有3张“冬梦”、2张“冰墩墩”和2张“雪容融”邮票;小李有“冬梦”“冰墩墩”和“雪容融”邮票各1张.小王现随机取出一张邮票送给小李,分别以A1,A2,A3表示小王取出的是“冬梦”“冰墩墩”和“雪容融”的事件;小李再随机取出一张邮票,以B表示他取出的邮票是“冰墩墩”的事件,则P(B|A2)=_____,P(B)=_____.第三部分A.事件A与B互斥B.事件A与B对立√C.事件A与B相互独立D.事件A与B既互斥又相互独立∴P(AB)=P(A)P(B)≠0,∴事件A与B相互独立,事件A与B不互斥也不对立.4个都不能正常照明的概率为(1-0.8)4=0.001 6,只有1个能正常照明的概率为4×0.8×(1-0.8)3=0.025 6,所以至少有两个能正常照明的概率是1-0.001 6-0.025 6=0.972 8.2.(2023·开封模拟)某盏吊灯上并联着4个灯泡,如果在某段时间内每个灯泡能正常照明的概率都是0.8,那么在这段时间内该吊灯上的灯泡至少有两个能正常照明的概率是A.0.819 2B.0.972 8C.0.974 4D.0.998 4√3.根据历年的气象数据可知,某市5月份发生中度雾霾的概率为0.25,刮四级以上大风的概率为0.4,既发生中度雾霾又刮四级以上大风的概率为0.2.则在发生中度雾霾的情况下,刮四级以上大风的概率为√A.0.8B.0.625C.0.5D.0.1设“发生中度雾霾”为事件A,“刮四级以上大风”为事件B,所以P(A)=0.25,P(B)=0.4,P(AB)=0.2,4.(2022·青岛模拟)甲、乙两名选手进行象棋比赛,已知每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4,若采用三局二胜制,则甲最终获胜的概率为√A.0.36B.0.352C.0.288D.0.648由题意可得甲最终获胜有两种情况:一是前两局甲获胜,概率为0.6×0.6=0.36,二是前两局甲一胜一负,第三局甲胜,概率为×0.6×0.4×0.6=0.288,这两种情况互斥,∴甲最终获胜的概率P=0.36+0.288=0.648.记事件A 为“该考生答对题目”,事件B 1为“该考生知道正确答案”,事件B 2为“该考生不知道正确答案”,则P (A )=P (A |B 1)·P (B 1)+P (A |B 2)·P (B 2)=1×0.5+0.25×0.5=0.625.5.某考生回答一道四选一的考题,假设他知道正确答案的概率为0.5,知道正确答案时,答对的概率为100%,而不知道正确答案时猜对的概率为25%,那么他答对题目的概率为A.0.625B.0.75C.0.5D.0.25√6.将甲、乙、丙、丁4名医生随机派往①,②,③三个村庄进行义诊活动,每个村庄至少派1名医生,A表示事件“医生甲派往①村庄”; B表示事件“医生乙派往①村庄”; C表示事件“医生乙派往②村庄”,则A.事件A与B相互独立B.事件A与C相互独立√。

高考数学一轮总复习 第10章 概率与统计 第一节 随机事件及其概率课件 文 新人教A版


若某事件发生当且仅当事件A发生 交事件
且事件B发生,则称此事件为事件A (积事件) 与事件B的 交事件 (或积事件)
A∩B(或AB)
互斥 若A∩B为不可能事件,那么称事件 事件 A与事件B 互斥
A∩B=∅
对立 事件
若A∩B为不可能事件,A∪B为必 A∩B=∅,
然事件,那么称事件A与事件B互为 P(A∪B)=P(A)
对立事件的概率
(1)解决此类问题,首先应结合互斥事件和对立事件的定义分 析出是不是互斥事件和对立事件,再决定使用哪一公式,不 要乱套公式而导致出错. (2)要注意分类讨论和等价转化数学思想的运用. (3)在解决至多、至少的有关问题时,通常考虑利用对立事件 的概率公式.
【例2】 (2016·山西太原五中4月检测)某商区停车场临时停车
解析 事件“抽到的不是一等品”与事件A是对立事件,由于 P(A)=0.65,所以由对立事件的概率公式得“抽到的不是一等 品”的概率为P=1-P(A)=1-0.65=0.35. 答案 0.35
►一个易错点:互斥事件与对立事件混淆致误.
(3)[ 如 果 事 件 A 与 事 件 B 互 斥 , 则 P(A + B) = P(A) + P(B) ; 且 P(A∩B)=0,如果事件A与事件B对立,则P(A)=1-P(B)]抛 掷一粒骰子,观察掷出的点数,设事件A为出现奇数点,事件 B为出现2点,已知P(A)=,P(B)=,则出现奇数点或2点的概 率为________.
7,P(C)=110+110+110+110=140=25.
[点评] 解决本题的关键是判断出事件为互斥事件,再用互斥 事件概率公式求解.
对立事件的概率
(1)解决此类问题,首先应结合互斥事件和对立事件的定义分 析出是不是互斥事件和对立事件,再决定使用哪一公式,不 要乱套公式而导致出错. (2)要注意分类讨论和等价转化数学思想的运用. (3)在解决至多、至少的有关问题时,通常考虑利用对立事件 的概率公式.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.给出下面三个命题:
①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是 次品; ②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是 ; ③随机事件发生的频率就是这个随机事件发生的概率. 其中真命题的个数为 ( A ) A.0 B.1 C.2 D.3
3 7
答案 A ①,从中任取100件,可能有10件次品,并不是必有10件次品,故
第一节
随机事件的概率
总纲目录
教材研读
1.事件的分类 2.频率和概率
3.事件的关系与运算 4.概率的几个基本性质
考点突破
考点一 考点二 随机事件的频率与概率 互斥事件与对立事件的概率
教材研读
1.事件的分类
确定事件 必然事件 在条件S下,① 一定会 发生的事件叫做相对于条件S的必然事件
不可能事件 在条件S下,② 一定不会 发生的事件叫做相对于条件S的不可能事件 随机事件 在条件S下,③ 可能发生也可能不 发生的事件叫做相对于条件S的随机事件
所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.
100 1 000
规律总结
频率是个不确定的数,在一定程度上频率可以反映事件发生的可能性的 大小,但无法从根本上刻画事件发生的可能性的大小.而从大量重复试 验中发现,随着试验次数的增多,事件发生的频率就会稳定于某一固定 的值,该值就是概率.
1-1 (2016课标全国Ⅱ,18,12分)某险种的基本保费为a(单位:元),继续购
①是假命题. ②,抛硬币时出现正面的概率是 ,不是 ,故②是假命题.
1 2 3 7
③,频率和概率不是一回事,故③是假命题,故选A.
4.从某班学生中任意找出一人,如果该同学的身高小于160 cm的概率为
0.2,该同学的身高在[160,175](单位:cm)的概率为0.5,那么该同学的身高 超过175 cm的概率为 ( B ) A.0.2 B.0.3 C.0.7 D.0.8
100 200 所以估计顾客在甲、乙、丙、丁中同时购买3种商品的概率为 1 000
200 1 000
=0.3. (3)与(1)同理,可得:
200 =0.2, 顾客同时购买甲和乙的概率为 1 000 100 200 300 =0.6, 顾客同时购买甲和丙的概率为 1 000
顾客同时购买甲和丁的概率为 =0.1,
1.下列事件中,随机事件的个数为 ( B ) ①物体在只受重力的作用下会自由下落;
②方程x2+2x+8=0有两个实根;
③某信息台每天的某段时间收到信息咨询的请求次数超过10次; ④下周六会下雨. A.1 B.2 C.3 D.4
答案 B ①为必然事件,②为不可能事件,③④为随机事件.
2.某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,事件
答案 B 由对立事件的概率公式可求得该同学的身高超过175 cm的 概率为1-(0.2+0.5)=0.3.
5.甲、乙两人下棋,两人和棋的概率是 ,乙获胜的概率是 ,则乙不输的
概率是 答案
5 6 1 1 5 2 3 6 5 6
1 2
,因此乙不输的概率为 + = .
“至少有一名女生”与事件“全是男生” ( C ) A.是互斥事件,不是对立事件 B.是对立事件,不是互斥事件 C.既是互斥事件,也是对立事件 D.既不是互斥事件也不是对立事件 答案 C “至少有一名女生”包括“一男一女”和“两个女生”两 种情况,这两种情况再加上“全是男生”构成全集,且不能同时发生,故 “至少有一名女生”与“全是男生”既是互斥事件,也是对立事件,故 选C.
2
∪…∪An)=P(A1)+P(A2)+…+P(An).
(2)P( A1 A2 An )=1-P(A1∪A2∪…∪An)=1-P(A1)-P(A2)-…-P(An).
注意 涉及的各事件要彼此互斥. (5)对立事件的概率 若事件A与事件B互为对立事件,则A∪B为必然事件,P(A∪B)= P(A)= 1-P(B) . 1 ,
2.频率和概率
(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验 中事件A出现的④ 次数 nA为事件A出现的频数,称事件A出现的比例 fn(A)=⑤
为事件A出现的频率.
nA n
(2)对于给定的随机事件A,随着试验次数的增加,事件A发生的⑥ 频率fn(A) 稳 定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称 为A的概率.
3.事件的关系与运算
4.概率的几个基本性质
(1)概率的范围为 [0,1] . 1 . 0 . (2)必然事件的概率为 (3)不可能事件的概率为 (4)概率的加法公式 如果事件A与事件B互斥,则P(A∪B)= P(A)+P(B) .
概率加法公式的推广 (1)当一个事件包含多个结果时,要用到概率加法公式的推广,即P(A1∪A
(1)估计顾客同时购买乙和丙的概率; (2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率; (3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可 能性最大?
解析 (1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买 了乙和丙,所以估计顾客同时购买乙和丙的概率为 =0.2. (2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了 甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买 了2种商品.
买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次 数的关联如下:
上年度出险 次数 保费 0.85a a 1.25a 1.5a 1.75a 2a 0 1 2 3 4 ≥5
考点突破
考点一 随机事件的频率与概率
典例1 (2015北京,17,13分)某超市随机选取1 000位顾客,记录了他们购
买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表
示购买,“×”表示未购买.
商品种类 顾客人数 100 217 200 300 85 98 √ × √ √ √ × × √ √ × × √ √ × √ √ × × √ √ × × × × 甲 乙 丙 丁
相关文档
最新文档