Deformation Behavior of Hot Isostatic Pressing FGH96 Superalloy

合集下载

上海软土地区某逆作法地铁深基坑变形

上海软土地区某逆作法地铁深基坑变形

第51卷第8期2017年8月浙江大学学报(工学版)J o u rn a l o f Z h e jia n g U n iv e r s ity(E n g in e e rin g Science)V ol. 51 No. 8Aug. 2017D G1:10. 3785/j. issn. 1008-973X. 2017. 08. 007上海软土地区某逆作法地铁深基坑变形康志军12,黄润秋3,卫彬谭勇15(.同济大学地下建筑与工程系,上海200092;2.保利(成都)实业有限公司,四川成都610000;3.成都理工大学地质灾害防治与地质环境保护国家重点实验室,四川成都610059;.中铁二院华东勘察设计有限责任公司,上海200023;5.同济大学岩土及地下工程教育部重点实验室,上海200092)摘要:以上海软土地区某逆作法地铁车站深基坑项目为工程背景,通过分析现场监测数据,研究逆作法深基坑的变形性状及对周围环境的影响.研究结果发现:该基坑变形表现出显著的空间效应:中间标准段围护结构最大侧移的统计范围为(0.25%〜0. 45%)H,明显大于端头井的(0. 10%〜0.25%)H,中间标准段立柱隆起的上限为0.26%H,明显大于端头井的上限0. 18%H,中间标准段开挖引起的管线沉降明显大于端头井开挖引起的管线沉降;既有地下结构对基坑变形有明显的遮拦效应,导致中间标准段西侧的围护结构侧向变形较小;基坑开挖导致邻近浅基础建筑物发生较大的沉降,甚至破坏建筑物的结构整体性,引发墙体开裂;受软土流变特性的影响,浅基础建筑物和地下管线都产生一定程度的工后沉降.关键词:软土地区;逆作法深基坑;变形性状;空间效应;遮拦效应;土体流变中图分类号:T U447 文献标志码:A文章编号:1008 973X(2017)081527 10Deformation behaviors of deep top-down metro excavationin Shanghai soft clayK A N G Zhi-ju n1'2,H U A N G Run-qiu3,W E I Bin4,TAN Yon g''5(1. Department o f Geotechnical E n g in e e rin g,T o ng ji U niversity,Shanghai200092, C hina; 2. P oly (C H E N G D U)H o ldings Com pany L im ite d,C a e n p d u610000 »C hina t3. N atio nal Professional Laboratory o f GeologicaPrevention and Geological Environment Protection,Chengdu University o f Technology,Chengdu610059» C hina;4. China R a ilw a y Eryuan Engineering Group C o m p an y,East C hina Survey and Design lim ited C o m p a n y,S hanghai 200023,C hina; 5. Key Laboratory o f Geotechnical and U nderground Engineering o f M inistry o fE d ucation,T o ng ji U niversity,S hanghai200092, China)A b stra ct:The measured deform ation behaviors of the excavation and its influences on environm ent wereanalyzed based on fie ld instrum entation data from a top-dow n excavation in Shanghai sott clay.Resultsshowed that excavation behaviors exhibited apparent spatial corner effect.The m axim um lateral w alldeflections at the central standard segm entsw ere (0. 25 %〜0.45 %)H,greater than (0. 10 %〜0. 25 %)Hat end shafts.The upper bound of colum n u p lifts was around 0. 26 %H at the central standard segm ents,greater than0. 18%H at end shafts.The settlem ents of u tility pipelines near the central standard segmentswere greater to o.The existing underground structures adjacent to the west p it side imposed apparentbarrier effect on excavation d efo rm ations,i.e.,relatively sm aller lateral w a ll deflections we along the west p it side.Excavating induced significant settlem ents of adjacent buildings on shallow-收稿日期:2016 - 01 - 28. 浙江大学学报(工学版)网址:w w w. z;j--)u m a ls com/eng基金项目:国家重点研发计划资助项目(2016Y F C0800204)国家“973”重点基础研究发展计划资助项目(2015C B057800)国家自然科学 基金资助项目(1130745).作者简介:康志军(1991 —),男,硕士,主要从事深基坑工程等研究.G R C ID: 0000-0001-5540-2494. E-m a ld em rem g eo@通信联系人:谭勇,男,教授.G R C ID: 0000-0003-3J_07-5454. E-m ail: tan y ong2J_th@tongji. 1528浙江大学学报(工学版)第51卷foundation. The monitored wall cracking indicated that structural integrity of these buildings was damagedto different extents. Noticeable post-excavation settlements were observed at adjacent buildings and utilitypipelines, due to creeping of soft clay.Key words:soft clay; top-down excavation;deformation behavior;spatial corner effect; barrier ef creeping软土地区深基坑开挖引起土体应力状态改变,不可避免造成周围地层的移动,对周围环境产生不同程度的影响.在过去的几十年里,许多学者通过现场监测等 手段建立了一系列的经验法和半经验法评估软土基 坑开挖引起的围护结构变形、地表沉降、建筑物变形[-4].近年来,诸多学者利用各种研究手段对基坑开挖变形进行了各方面的研究.俞建霖等[5]用空间有 限单元法研究了基坑开挖过程中围护结构变形、周 围地表沉降、基坑底部隆起的空间分布;刘国彬等[6]对基坑工程进行了全方位的介绍;W a n g等[7]基于大量的现场监测数据研究了上海地区采用不同施工方案以及不同围护结构基坑的变形性状;T a n等[]发现:软土地区的地铁深基坑开挖至坑底后,及时浇筑混凝土底板能够有效抑制围护结构侧向变形和地表沉降的发展;T a n等9系统研究了上 海软土地层中顺作法基坑的变形性状及基坑几何形状与平面尺寸大小对开挖变形的影响;X u等[1<)]研究了周边超载对基坑变形的影响;郑刚等[11]通过 数值模拟研究了不同围护结构变形形式对周围建筑物变形的影响机理;徐长节等[12]利用有限元软件,分析了非对称开挖条件下基坑的变形性状;应 宏伟等[13]研究了坑外地下水位波动对软土地区基坑水土压力的影响机理.城市建筑密集区域的地铁车站深基坑工程需重点关注开挖对周边环境的影响.逆作法基坑采用 现浇混凝土楼板作为围护结构的水平支撑,能够增 大基坑支护系统的整体刚度,有效控制基坑变形、减少基坑开挖对周围环境的不利影响,逆作法工艺 被应用于城市中心地区的深基坑工程[1-15].本文依 托上海某逆作法地铁车站基坑工程,结合实际施工 过程,对现场监测数据进行分析,研究了软土地层中逆作法地铁车站深基坑的变形特点及对周边建筑物和地下管线的影响.1基坑周边环境本文的研究背景为位于上海商业区的某地铁车 站基坑项目,基坑平面布置如图1所示.基坑由南端 头井、中间标准段、北端头井3部分组成,基坑平面 尺寸为152 m X25 m,最大开挖深度为24〜26 m.基坑周边有大量建筑物:基坑南边有某在建1号楼、某4层砖混2号楼;基坑西边有某新开发项目和某8层钢筋混凝土 3号楼;基坑西北角有某4层砖结 构4号楼;基坑东北角有某4层砖结构的5号楼;基 坑东边有某4层砖结构6号楼、某4层砖结构7号 楼及某5层砖结构8号楼.除1号楼外,其余的邻近 建筑物均有50至1(0年的历史.在基坑开挖之前,在新开发项目和基坑之间施工了厚1m、深30 m的地下连续墙.基坑西边的8层钢筋混凝土结构采用预应力高强度混凝土管桩深基础支撑,其余建筑物 均采用条形基础,属于典型的浅基础建筑物.基坑周 边还有大量地下管线设施:条混凝土雨水管道、2条铸铁供水管道、2条铸铁天然气供应管道、1条铸 铁通讯电缆管道、3条铸铁电力管道及其他电力管道.这些管道的埋置深度为地表以下0. 50〜1m.2地质条件根据地质勘探报告,地表以下2m为填土层、地表以下2〜7 m为粉质黏土层、地表以下7〜18 m 为淤泥质黏土层、地表以下18〜39 m为粉质黏土 层、地表以下39〜43 m为黏土层、地表以下43〜56 m为密实粉砂层、地表以下56〜70 m为密实粉砂 夹砂质黏土层,各土层的物理力学性质参数见图2,其中,^为土层深度、y为土体重度、c’为有效黏聚力为有效内摩擦角、艮为压缩模量、e为孔隙比、为灵敏度、Su为不排水抗剪强度.长期观测的地下水位线为地表以下0.5〜0.7 m .第8期康志军,等.上海软土地区某逆作法地铁深基坑变形[]浙江大学学报:工学版,2017,51(8): 1527 1536.15293围护结构设计方案本基坑采取逆作法施工,支护结构采取“地下连续墙+混凝土支撑+钢支撑”的形式.本工程采用 1 200、1 000、800 m m 这3种规格的地下连续墙,南 端头井地下连续墙深55 m ,北端头井地下连续墙深 46 m ,中间标准段地下连续墙深44 m .南端头井幵 挖深度为26. 1 m ,共设7道支撑,第1、道为混凝 土支撑,其余为钢支撑,下一层板框架逆作法施工; 北端头井幵挖深度为25. 8 m .共设7道支撑,第1、 道为混凝土支撑,其余为钢支撑,下一层板框架逆作法施工;中间标准段幵挖深度为24. 2 m ,共设7道支撑,第1、3、5道为混凝土支撑,其余为钢支撑,下 一层板逆作法施工.车站主体结构基础底部标准段 每隔3 m 抽条加固,加固深度为坑底以下3 m ,其中 封堵墙以北部分标准段第6道支撑底2. 5 m 范围内 及坑底以下3 m 范围内进行旋喷桩加固;南端头井 第3、道支撑底2.5 m 范围内及坑底以下3 m 范围 内旋喷桩加固;北端头井第6道支撑底2. 5 m 范围 内及坑底以下3 m 范围内旋喷桩加固,要求加固土 体28 d 无侧限抗压强度gu >1. 2 M P a .如图3所示为中间标准段支护结构剖面.图1基坑平面及测点布置图F ig. 1S ite p la n o f p ro je c t a lo n g w ith in s tru m e n ta tio n s la y o u t7/(kN • m'3) cVkPa 15 20 25 0 102030405060Su /kPa 0 20 40 60 80(p'Kl EJ MPa e St0 10 20 30 40 0 5 10 15 20 0.00.5 1.01.5 2.0 0 1 2 3 4 5■填土昆粉质勃土层淤泥质勃土层—最小值 —最夫i 直12025 a 3〇 ^ 35 40 45 50606570I-平均值F ig. 2 S o il p ro file s and m a in p h y s ic -m e c h a n ic a l p a ra m e ters1530浙江大学学报(工学版)第51卷图4开挖深度与围护结构最大侧移关系F ig. 4R e la tio n s h ip s b e tw e e n m a x im u m w a ll d e fle c tio n s c ^h m and e xc a v a tio n d e p th H图3中间标准段支护结构剖面F ig. 3P ro file o f s u p p o rtin g s tru c tu re s a t c e n tra l s ta n d ­a rd segm ents4基坑监测方案为全面掌握施工中基坑变形及对周边环境的影响,对该基坑从以下几个方面进行了动态监控:地下 连续墙侧向变形、墙顶位移、支撑轴力、地下水位、立 柱隆起、周边地表沉降、周围建筑物沉降、管线沉降, 测点布置如图1所示.图1中仅列出雨水管线的测 点分布图,其余管线的走向和测点分布与雨水管线 类似,不再单独列出.5 施工工况基于缩短施工周期、减少基坑幵挖对周围环境的影响等因素.本基坑采取分区段幵挖,按南端头井 —北端头井—换乘大厅中间标准段的先后顺序施 工,各部分的施工周期见表1表中z 为持续时间.开挖区段开始开挖开挖结束t/d南端头井2007-11-292008-4-8130北端头井2008-3-22008-7-14137中间标准段2008-8-262008-10-2561本基坑采取逆作法施工,中间标准段的主要施 工工况及持续时间如表2所示.值得注意的是本基 坑采取移动钢支撑的设计方案:即在幵挖至深度5 和深度8时分别将原本安装于深度4和深度7的钢 支撑移至相应深度,具体施工工况参见图3和表2.6监测数据分析6.1围护结构侧移如图4所示为基坑幵挖至不同深度时,各测斜点处围护结构最大侧移C h m 与基坑幵挖深度H 的关 系.从图中可知,中间标准段的围护结构最大侧移普 遍较大:中间标准段C hm 的变化范围为(0. 25%〜 0.45%)H ,明显大于端头井C hm 的变化范围(0. 10%〜 0.25%)H .这是由于端头井的空间角效应显著,在 一定程度上限制了围护结构侧向变形的发展[5,16].如图5所示为幵挖至坑底时Q 9和Q 10测点处围护结构侧向位移曲线,C 为围护结构侧向位移,z 为围护结构深度.从图1可知Q 9与Q 10测点均位 于中间标准段跨中、且对称布置,但Q 9测点的侧向 位移明显大于Q 10测点.这是由于Q 10测点位于基 坑西侧,邻近的已建地下连续墙和两层换乘大厅等 既有地下结构对基坑变形有显著的遮拦作用,从而 限制了 Q 10测点处围护结构的侧向变形,这与T a n表 13个区段的施工持续时间T a b. 1C o n s tru c tio n d u ra tio n o f 3 se ctions第8期康志军,等.上海软土地区某逆作法地铁深基坑变形[]浙江大学学报:工学版,2017,51(8):1527 1536.1531表2中间标准段主要施工工况T a b. 2 M a in stages o f c o n s tru c tio n a t c e n tra l sta n d a rd segm ents工况施工内容起止时间t/d S l(a)施工地下连续墙、粧基施工2006-12-18〜2007-10-4290 S l(b)注浆加固土体2008-7-31〜2008-8-1617 S2(a)开挖至1.50m(深度1)2008-8-261 S2(b)浇筑混凝土支撑(1. 50 m X0.40 m)2008-9-27〜2008-8-282 S2(c)养护混凝土支撑(深度1)2008-8-29〜2008-9-57 S3 (a)开挖至6. 22 m(深度2)2008-9-11〜2008-9-133 S3(b)安装钢支撑(深度2、妁09 m m)2008-9-131 S3(c)浇筑混凝土顶板(0. 80 m厚)2008-9-14〜2008-9-152 S3(d)养护混凝土顶板2008-9-16〜2008-9-238 S4(a)开挖至10. 22 m(深度4)2008-9-24〜2008-9-263 S4(b)安装钢支撑(深度4、彡609 m m)2008-9-261 S4(c)浇筑混凝土支撑(1 m X 0. 80 m)和楼板1(0. 40 m厚)2008-9-27〜2008-9-293 S4(d)养护混凝土支撑和楼板1(深度3)2008-9-30〜2008-10-67 S5 (a)开挖至12.82m(深度5)2008-10-7〜2008-10-93 S5(b)移动深度4的钢支撑至深度52008-10-91 S6(a)开挖至17.17m(深度7)2008-10-10〜2008-10-123 S6(b)安装钢支撑(糾09 m m、深度7)2008-10-121 S6(c)浇筑混凝土支撑(1. 20 m X0.80 m)和楼板2(0. 40 m厚)2008-10-13〜2008-10-142 S6(d)养护混凝土支撑和楼板2(深度6)2008-10-15 〜2008-10-217 S7(a)开挖至18. 97 m(深度8)2008-10-211 S7(b)移动深度7的钢支撑至深度82008-10-211 S8(a)开挖至21.77m(深度9)2008-10-221 S8(b)安装钢支撑(彡609 m m、深度9)2008-10-221 S9开挖至24. 42 m(最终开挖深度)2008-10-23〜2008-10-253 S10(a)浇筑混凝土底板(1. 30 m厚)2008-10-26〜2008-10-294 S10(b)养护混凝土底板2008-10-29〜2008-12-1952图5开挖至坑底时Q9与Q10侧向变形曲线F ig. 5 F in a l la te ra l d e fle c tio n s o f d ia p h ra g m w a lls a t Q9and Q10等[17]和朱炎兵等[18]针对软土地区顺作法基坑的研究结果相似.6. 2墙顶水平位移如图6所示为中间标准段的围护结构墙顶水平 位移I时程曲线,正值表示墙顶向基坑幵挖侧移动,负值表示墙顶向非幵挖侧移动.从图中可以看到:基坑西侧测点(Q8、Q10、Q12、Q14)的墙顶水平 位移值不超过2m m,且在幵挖过程中保持稳定;而 基坑东侧的测点(Q7、Q9、Q11、Q13)向幵挖一侧产生 较大的水平位移,尤其是当幵挖深度大于17. 17 m 时,东侧的墙顶水平位移明显增大,待底板浇筑后墙 顶水平位移保持稳定.这是由于已建2层换乘大厅的 楼板结构与基坑西侧的围护结构联结成一整体,有效 地限制了相应位置处围护结构的墙顶水平位移.如图7所示为中间标准段东侧的围护结构最大 侧移时程曲线.从图中可以看到,始终呈近似1532浙江大学学报(工学版)第51卷图6中间标准段墙顶水平位移时程曲线F ig. 6 D e v e lo p m e n t o f h o riz o n ta l d isp la ce m e n ts a t w a ll to p o f c e n tra l sta n d a rd seg m ents养j 户底板图7中间标准段东侧围护结构最大侧移时程曲线F ig. 7D e v e lo p m e n t o f m a x im u m w a ll d e fle c tio n s ^h m o f e a ste rn c e n tra l sta n d a rd segm ents的线性增长,当幵挖深度大于17. 17 m 时,^m 没有 发生明显的突变,这表明当幵挖深度大于17. 17 m 时,东侧的围护结构并未产生向基坑幵挖侧的整体 水平位移突变,仅有墙顶产生向基坑幵挖侧的水平 位移突变结合图6、分析导致中间标准段东侧墙顶水平 位移在幵挖深度大于17. 17 m 时发生明显突变的 原因可能是运输车辆等临时地面超载所引起.6.3立柱隆起如图8所示为中间标准段的立柱隆起“时程 曲线.从图中可以看到:立柱隆起在基坑幵挖初期呈 线性增长、在养护混凝土楼板1阶段保持相对稳定、 当基坑幵挖至17. 17 m 后保持较高速率的增长、底 板饶筑后略有回洛并保持稳定.总体来说,位于端部图8中间标准段立柱隆起时程曲线F ig. 8D e v e lo p m e n t o f v e rtic a l disp la ce m e n ts o f in te r io r c o lu m n s a t c e n tra l sta n d a rd segm ents的立柱隆起量(L 17、L 18、L 25)小于中部的立柱 (乙19丄20山21丄22),这符合文献[5,9,15]关于坑 底土体回弹呈“中间大、两端小”分布的结论;此外, 两端端头井已建地下结构亦会抑制端部的立柱隆起. 同一监测断面的立柱隆起量有明显的差异,如L 17和L 18测点的最大隆起量相差20 m m ,这可能是立柱与混凝土楼板结构联结强度的差异性导致的.如图9所示为基坑幵挖深度与立柱隆起的关 系.从图中可以看到:中间标准段立柱隆起L v 的变 化范围较比端头井大,这是由于其幵挖跨度较大导 致.中间标准段L v 的上限为0. 2 6 % H ,明显大于端 头井L的上限0. 18%H ,这是由于端头井的空间角效应显著[5],限制了坑底土体回弹,导致立柱的隆 起量较小.60 50 40 ^ 3020 10►中央标准段/、端头井d-(1)L V =0.26%//,(2)L V =0.18%//®4,!十 ^(2)10 1520 25 30Him图9开挖深度与立柱隆起关系F ig. 9 R e la tio n s h ip s b e tw e e n c o lu m n u p lifts L v andca v a tio n d e p th Hs /I I /i z<n/i i /800<nW I/I I /i <N 0I /I I /i<N5/i i /800<n I e /O I i o<N9<n/0i /800<n +i<n /o i /800<n ■::9I /0I /800<N 曰 4I l /O I i s9/0i /800<n i /o i/800<n9<n /6/800<n I r N I l 9i /6/800<n311191-M 4y 800<N 2 -挖开012 3 4C---*00111111 11 11Q QQ Q Q Q Q Q i £/o i/800<n9<n/0i /800<ni<n/o i /800<n9i /0i /800<ni i /o i/800<n9/0i /800<ni /o i/800<nB ffl 9<n/6/800<ni<n/6/800<n 9i /6/800<ni i /6/800<n9/6/800<n>i /6/800<n第8期康志军,等.上海软土地区某逆作法地铁深基坑变形[]浙江大学学报:工学版,2017,51(8):1527 1536.15336.支撑轴力如图10所示为Z3测点的支撑实测轴力F的时程曲线,正值表示压力.Z3-1至Z3-7的设计轴力 值F。

Part 3- Effect of Hot Deformation Variables on Static Recrystallization

Part 3- Effect of Hot Deformation Variables on Static Recrystallization

ISIJ International, Vol. 45 (2005), No. 11, pp. 1686–1695©2005ISIJ1686reheated for 40min prior to rolling. The muffle reheatingfurnace was resistance heated to the required temperature before the slabs were inserted. A protective exothermic gas atmosphere was provided in the muffle to prevent oxidation.The same atmosphere was used in the annealing furnace,and resulted in progressive decarburization with time of reheating and annealing.The rolling conditions applied to the slabs of different initial microstructure are summarised in Table 2. For the thicker slabs of coarse initial grain size, the total equivalent true strains, e , were generally applied in 2 or 3 passes. The rolling temperature, T R , relates to the temperature at entry to the first pass, which was applied 10s after withdrawal of the slab from the reheat furnace. In the time interval of 15s between passes, the temperature fell as a result of air cool-ing. After rolling, slabs were water quenched within about 2s. For the thinner slabs of finer grain size, most of the strains were applied in a single pass, with only limited two pass rolling. Because the rolling speed was constant, the mean strain rate of rolling only varied from about 2.5 to about 5s Ϫ1, depending on the initial slab thickness and reduction. In order to investigate the effect of strain rate of deformation on subsequent static recrystallization, plane strain compression tests were carried out on specimens of single phase material of initial grain size 180m m at constant strain rates of 5, 0.5 and 0.05s Ϫ1, at 900°C.1)Specimens were water quenched and small samples were subsequently annealed at 900°CSpecimens were quenched after annealing, sectioned on the through-thickness/longitudinal plane, mechanically polished and electrolytically etched in Morris’ reagent.1)Microstructures were examined optically and the fraction recrystallized was determined by point counting using a grid attached to the screen of the projection microscope and traverses close to 1/4 slab thickness and/or close to the cen-tre-line. Recrystallized grains were nearly equiaxed, so grain sizes were measured as linear intercepts along the same traverses. In specimens without microstructural gradi-ents before rolling, they were also measured on perpendicu-lar traverses. Sufficient points or boundaries were counted to give less than 5% relative error in the values of volume fraction recystallized and grain size. In a few cases, the mi-grating boundary area per unit volume separating recrystal-lized grains from unrecrystallized regions was also mea-sured in order to obtain growth rates using the Cahn–Hagel 3)equation. Because the unrecrystallized regions are heavily elongated, the number of boundaries per unit length must be measured in both the longitudinal and through-thickness directions.4,5)In order to observe sufficient boundaries,these measurements could only be made on the finer grained materials of uniform initial microstructures.3.ResultsThe effect of rolling strain on the kinetics of recrystal-lization is illustrated in Fig. 1for material of initial grain size, 180m m, and in Fig. 2for material of coarse initial grain size, 850m m. It can be seen, as discussed elsewhere,2)that the curves in Fig. 1 are of typical sigmoidal form,whereas those in Fig. 2 show a plateau in recrystallization,except at the highest strain, when 16% austenite is present,Fig. 2(a). In all cases, increase in strain systematically ac-celerates recrystallization, and in the case of the coarse1687©2005ISIJTable 2.Experimental rolling conditions.Fig.1.Effect of rolling strain on the kinetics of recrystallization in single phase material of initial grain size 180m m,rolled and annealed at (a) 900°C (b) 1000°C and (c)1100°C.grained materials it also raises the level of the plateau. In fact, although the strain ranges in Figs. 1 and 2 are similar,most of the strains in Fig. 1 (except 0.82 at 1100°C) were attained in a single rolling pass, whereas those in Fig. 2 in-volved two rolling passes (or three for a strain of 1.24).More smaller passes change the constraints in rolling and result in more spread in the slab width and lower tempera-tures in the later passes. A comparison was therefore made of the effect of a single pass to high strains with the two and three passes of Fig. 2, giving the results shown in Fig.3. Clearly, single pass rolling leads to more rapid recrystal-lization, despite the fall in temperature between the second and third passes leading to higher flow stresses in multi-pass rolling.The overall effects of variables on kinetics are sum-marised in terms of the time to 0.3 fraction of recrystalliza-tion, t 0.3, as a function of strain in Fig. 4. Results from Sakai and Ohashi 6)are also shown in this figure for compar-ison. All the curves show a similar trend of a marked de-crease in t 0.3with increase in strain, with a decrease in slope as the level of rolling strain increases. The recrystallized grain sizes measured for the same range of initial mi-crostructure and processing conditions are shown in Fig. 5.Again, it is clear that the grain size decreases with increas-ing strain, but with a decrease in slope as the strain level in-creases. As discussed previously,2)the size of recrystalliz-ing grains in coarse grained materials becomes constant when the plateau of recrystallization is reached. The recrys-tallized grain size reported in Fig. 5 is the value at the plateau in these cases.The kinetics of recrystallization reported in Fig. 1 are for temperatures of annealing the same as for rolling, so the de-formed microstructure changes with temperature. In order to determine the effect of temperature when the deformed microstructure is identical, slabs deformed at 1100°C were quenched and then annealed at 900, 1000 and 1100°C,with the resulting kinetics of recrystallization shown in Fig.6. It is apparent that the effect of temperature is now some-what larger, as indicated by comparison with the curves in©2005ISIJ1688Fig.2.Effect of rolling strain on the kinetics of recrystallization at 1/4 thickness in slabs of initial grain size 850m m at 1100°C (a) with 16% austenite present and (b) single phase ferrite.Fig.3.Effect of rolling strain applied in a single pass compared with two or three passes on the kinetics of recrystalliza-tion at 1/4 thickness in slabs of initial grain size 850m m and 16% austenite rolled with first pass entry tempera-ture of 1100°C and annealed at 1100°C.Fig.5.Dependence of recrystallized grain size on rolling strain for a range of original microstructures and temperatures of rolling and annealing.Fig.4.Dependence of time for 0.3 fraction of recrystallization on rolling strain for a range of original microstructures and temperatures of rolling and annealing.Figs. 1(a) 1(b) and 1(c). The temperature dependence isshown more clearly in Fig. 7(a) in which the time for 0.3fraction of recrystallization is plotted against the reciprocal of the absolute annealing temperature. The data for 0%g and 16%g fall on parallel straight lines of slope leading to an apparent activation energy for recrystallization of 230kJ/mol. Figure 7(b) shows that the resulting recrystal-lized grain sizes decrease slightly as the annealing tempera-ture decreases. If the results of rolling and annealing at the same temperature from Figs 4 and 5 are plotted in the same way against the reciprocal of the annealing temperature, as shown in Fig. 8, it can be seen by comparing the slopes with the slopes of the lines from Fig. 7 that there is a sur-prisingly small effect of deforming at different tempera-tures, with the only major deviation being to longer values of t 0.3at 1100°CAs discussed previously for rolling and annealing at900°C,2)the migrating boundary area per unit volume, S v mig,was determined for some of the slabs rolled and annealed at 900, 1000 and 1100°C Results for a strain of 0.25, shownin Fig. 9, indicate that there is a small trend for S v migto in-crease with decrease in temperature, as expected from the decrease in recrystallized grain size, d rex , with decrease in temperature, Fig. 8. The growth rate, G , derived from thevalues of S v migusing the Cahn–Hagel equation, as describedearlier,2)are shown as a function of annealing time for de-1689©2005ISIJFig.6.Effect of annealing temperature on the kinetics of recrys-tallization in slabs of Mat(A1) of initial grain size 235m m rolled to a strain of 0.82 at 1100°C (a) at the centreline, g %ϭ16, and (b) at one quarter thickness,g %ϭ0.Fig.7.Effect of annealing temperature on (a) time to 0.3 frac-tion of recrystallization and (b) recrystallized grain size in slabs of Mat(A1) of initial grain size 235m m rolled to a strain of 0.82 at 1100°C.Fig.8.Effect of annealing temperature on (a) time to 0.3 frac-tion of recrystallization and (b) recrystallized grain size in slabs of single phase material (Mat(A3)) of initial grain size of 180m m rolled at the same temperature as the annealing temperature to strains of 0.25 and 0.52.formation and annealing at 1100°C and 1000°C in Fig. 10 It can be seen that most of the data fall close to a line of slope Ϫ1. The points in brackets are for fractions recrystal-lized of Ն0.90, when the experimental uncertainty in G creases significantly. However, the results for a strain of 0.25 all appear to follow the simple power relationship, whereas at the higher strains the values of G fall systemati-cally below the power law as annealing time increases. This trend is identical to the one observed at 900°C and dis-cussed previously.2)The line for the power law at 1100°C is identical to the one reported previously for 900°C, within experimental accuracy, whereas the line for 1000°C appears to be consistently slightly higher.In order to investigate the effects of the as-deformed structure on the recrystallization behaviour at a constant an-nealing temperature of 900°C, two types of experiment were carried out. In the first, the deformation was applied plane strain compression testing at three different con-stant strain rates to an equivalent strain of 0.41, with the re-sults shown in Fig. 11(a). Clearly, decreasing the strain rate, which leads to a reduction in the flow stress,1)significantly retards recrystallization. In the second type of experiment, two pass rolling was applied at 1100°C and 900°C to an equivalent strain of 0.82, the slabs were quenched and sub-sequently annealed at 900°C, with the results shown in Fig.11(b). In this case, there is a surprisingly small effect of the rolling temperature on the recrystallization kinetics. In order to compare the results of the two types of experiment, the Zener–Hollomon parameter (1)was calculated from the equivalent strain rates, e˙, sϪ1, and the rolling or plane strain deformation temperature, TR, the experimentally determined value of activation energy fordeformation,1)Qdefϭ315kJ/mol, and the gas constant Rϭ8.31J/mol K. The results are shown in Fig. 12(a). It can beZQRTϭ˙expεdeFR©2005ISIJ1690Fig.11.Effect of (a) strain rate in plane strain compression tests to a strain of 0.41 at 900°C on single phase material ofinitial grain size 180m m and (b) rolling temperature fortwo-pass rolling to a total strain of 0.82 on the kineticsof recrystallization during annealing at 900°C of a sin-gle phase material of initial grain size 233m m.Fig.9.Dependence of migrating boundary area per unit volume on fraction recrystallized after rolling single phase mater-ial of initial grain size 180m m to a strain of 0.25 at 900,1000 and 1100°C and annealing at the rolling tempera-ture.Fig.10.Dependence of growth rate on the time of annealing at 1100°C and 1000°C, after rolling to various strains at1100°C and to 0.25 at 1000°C.was found that the microstructural variables have a major effect on the nucleation density, i.e . on recrystallized grain size, but only a second order effect on the growth rate. The growth rate, G , decreased with time, t , of isothermal an-nealing according to the relationship (2)and the overall kinetics of recrystallization, quantified interms of the time for 0.3 fraction of recrystallization, t 0.3could therefore be summarised by the relationship (3)where C 2, C 4and C 5are constants, b is Burgers vector (con-sidered to depend on temperature as b ϭ(2·478ϩ3·51Ϫ5T )ϫ10Ϫ10m), T is absolute temperature, D s is the self diffusion coefficient, which with the density, c j , of jogs in dislocations, controls the rate of static recovery by climb, is the mobility of the migrating boundaries between recrys-tallized and unrecrystallized regions, d *rex is the fully recrys-tallized grain size, and G 0is the initial growth rate of the recrystallizing regions.G 0ϭMP r 0 (4)G G C b T c D M G t j ϭϩϪ02011s⋅1691©2005ISIJFig.12.Effects of Zener–Hollomon parameter using differentstrain rates or different rolling temperatures on (a) time for 0.3 fraction of recrystallization at 900°C and (b) re-crystallized grain size.considered to arise when recovery reduces the driving pres-sure for growth to a level at which it is balanced by the en-ergy to create new grain boundary area. For all the recrys-tallization curves, the Avrami exponent for small fractions recrystallized is 1Ϯ0.3, and the appearance of a plateau,and the level at which it occurs, depend systematically on the kinetics of recrystallization, i.e . the time available for recovery. This is shown in Fig. 14, in which the fraction re-crystallized at the plateau, X p , is plotted against the time for 0.3 fraction recrystallized, t 0.3, for all the experimental con-ditions studied. It can be seen that at 1100°C X p starts to decrease from 1.0 at a lower value of t 0.3when 16%g is present during rolling than in the single phase, g ϭ0%, ma-terial. This is consistent with the finer recrystallized grain size, when austenite is present during rolling, producing a larger dragging pressure. The intermediate values of %g show intermediate values of X p , consistent with the effects on recrystallized grain size. It is also apparent in Fig. 14that X p only starts to decrease from 1.0 at longer times on annealing at 900°C than at 1100°C, because both recovery and recrystallization are slower than at 1100°C It is there-fore concluded that the plateaux in recrystallization are a direct result of the competition between static recovery rate and recrystallization rate arising from the combination of internal variables (original grain size and austenite content)and processing variables (rolling temperature, rolling strain,strain rate, and annealing temperature).4.2.Effect of StrainThe results for t 0.3and d rex in Figs. 4 and 5 are all pre-sented in terms of equivalent strains, e , but the data for the finer grained materials in the strain range 0.25 to 0.59 were obtained by increasing the reduction in a single rolling pass carried out at the start rolling temperatures indicated,whereas the data for the coarser grained material in the strain range 0.52 to 0.82 were obtained by two pass rolling for the start rolling temperature of 1100°C, and the strain of 1.24 by rolling in three passes, each with a reduction of 30%. The temperature between each pass drops by ϳ40°C in the 15s between passes, so the final pass has taken place at a higher Z than in single pass rolling, and the changing value of Z in each pass represents a complex strain history.Interpretation of the results therefore requires consideration of the effects of e and the effects of Z together. Considering first the effects of strain in a single rolling pass, it can be seen from Eqs. (A1), (A2) and (A3) in Ref. 2) that a direct effect should arise from the increase in grain boundary edge length (L v ) and in grain boundary area (S v ) with in-creasing strain. The effect of this increase on recrystallized grain size is illustrated for S v by the line for (S v /S v0)Ϫ1/3at the top of Fig. 15(a). It is clear that this line has the wrong form to account for the experimental data, shown as points in Fig. 15. It is therefore apparent that the effect of strain is dominated by the probability terms in Eq. (A1)2)for nucle-©2005ISIJ1692Fig.14.Dependence of the fraction recrystallized at the plateauon the time for 0.3 fraction of recrystallization.Fig.13.Avrami plots of fraction recrystallized versus annealingtime at 1100°C for the experimental conditions exam-ined following rolling of single phase material.Fig.15.Effect of rolling strain on recrystallized grain size afterannealing at the rolling temperature (a) after single pass rolling at 900°C, 1000°C and 1100°C and (b) after two or three pass rolling from 1100°C1693©2005ISIJtoo high, as indicated by the points with upward arrows.Clearly in these cases, and for the lower strain rates in plane strain compression tests, one or more of the simplifying as-sumptions is no longer valid. Observations on aluminium alloys 9)indicate that site saturation may not be applicable at lower strains. It is also probable that the heterogeneity in distribution of stored energy, shown previously to be impor-tant to account for the observed dependence of growth rates on time,2,13)changes with strain. This and changes in distri-bution of recrystallized grain size with other experimental variables may account for the scatter of some of the other points from the ideal line in Fig. 16. In this context, it is of interest to note that the first term in Eq. (11) changes the re-crystallization rate at a given annealing temperature by three orders of magnitude, whereas the second term only changes it by less than a factor of five over the range of ex-perimental conditions studied. This indicates that changes in the distribution of dislocations, which determines the nu-cleation density, are much more significant than changes in mean density, which determines the driving pressure for growth. The broad assumptions used to estimate driving pressure therefore have a relatively small effect, particularly as the same assumptions were used to estimate the value of C 7 in Eq. (11). However, there is some evidence that the change in misorientation across subgrain boundaries, q ,may change with strain in such a way that the in-grain lat-tice curvature, i.e . q /d , develops at a constant rate at differ-ent temperatures rather than q itself increasing at a constant rate.13,14)Thus, while the simple model based on the physical met-allurgy of recrystallization, but with empirically fitted con-stants, captures the effects of many of the microstructural and process variables on the recrystallization kinetics of 3% Si steel, there is clearly a need for further systematic study, particularly to understand the complex effects of two or three pass rolling, when a change in strain path and static recovery take place between passes. Such systematic study is now possible using a combination of 3D finite element modelling to characterise the local deformation conditions,and electron back scattered diffraction (EBSD) rather than optical microscopy to quantify the microstructures in terms of distributions as well as mean values. 5.Conclusions(1)Rapid static recovery during annealing reduces the driving pressure for growth of recrystallizing regions, lead-ing to the mean growth rate, G , being proportional to the inverse of annealing time, i.e . G çt Ϫ1.(2)The absolute values of G within the power law range of dependence on time of annealing are almost inde-pendent of the temperature of annealing, indicating that the difference in activation energy for recovery, Q r , and for mi-gration of recrystallizing boundaries, Q m , is small. Analysis of the data leads to (Q r ϪQ m )ϭ10.5kJ/mol.(3)The competition between static recovery and boundary migration rate during recrystallization leads to in-complete recrystallization when the initial microstructural variables of grain size or austenite content, or the process variables of strain and temperature of rolling, or tempera-ture of annealing, retard recrystallization with respect to re-covery. The plateau level of recrystallization, X p , decreases systematically as recrystallization slows down, i.e ., the time for 0.3 fraction of recrystallization, t 0.3, increases at a given annealing temperature.(4)For site saturated nucleation, the nucleation density is related to the recrystallized grain size after complete re-crystallization, d *rex , so when a plateau occurs, the measured recrystalli\ed grain size, d rex , must be modified to obtaind *rex ϭd rex X pϪ1/3.(5)The observed values of d rex for a given deformed microstructure increase with increase in annealing tempera-ture. For single pass rolling, d rex decreases with increasing strain and becomes more sensitive to the deformation tem-perature (Zener–Hollomon parameter) as the strain increas-es and steady state deformed microstructures are achieved.(6)The values of d rex observed after two or three pass rolling indicate that recovery (in 15s) and a change in strain path result in the effective strain, in terms of mi-crostructure, being much less than the sum of the equiva-lent strains in the two passes.(7) A simple model based on site saturated nucleation and the effect of static recovery on growth rate of recrystal-lizing regions captures the effects of most of the initial mi-crostructural variables and the process variables on the ki-netics of recrystallization with reasonable accuracy, but in-dicates that changes in spacial distributions of stored ener-gy and of recrystallized grain size, lead to significant devia-tions.(8)Results for low strains imposed in a single rolling pass and for reductions of less than 30% in the final pass of two pass rolling indicate that the assumption of site saturat-ed nucleation is probably invalid, but further systematic re-search is required to understand the observed effects.REFERENCES1)S. Akta, G. J. Richardson and C. M. Sellars: ISIJ Int , 45(2005),1666.2)S. Akta, G. J. Richardson and C. M. Sellars: ISIJ Int , 45(2005),1676.3)J. W . Cahn and W . Hagel: Decomposition of Austenite by DiffusionalProcesses, ed. by V . F . Zackay and H. I. Aaronson, Interscience Publ,New Y ork (1962), 131.4) E. E. Underwood: Quantitative Stereology, Addison-Wesley Pub-lishing Co Inc, Philippines, (1970).©2005ISIJ1694Fig.16.Calculated values of time for 0.3 fraction of recrystal-lization compared with the measured values for all the experimental conditions studied.5)R. L. Higginson and C. M. Sellars: Worked Examples in Quan-titative Metallography, Maney Publications, London, (2003), 45.6)T. Sakai and M. Ohashi: Tetsu-to-Hagané, 70(1984), 2160.7)P. L. Orsetti-Rossi and C. M. Sellars, Symp. on Aluminum Alloysfor Packaging II, ed. by J. G. Morris, S. K. Das and H. S. Goodrich, TMS, Warrendale, PA, (1996), 85.8) D. Duly, G. J. Baxter, H. R. Shercliff, J. A. Whiteman, C. M. Sellarsand M. F. Ashby: Acta Mater., 44(1996), 2947.9)P. L. Orsetti-Rossi and C. M. Sellars: Acta Mater., 45(1997), 137.10)G. Glover and C. M. Sellars: Metall. Trans., 3(1972), 2271.11)H. J. Whittake and C. M. Sellars: 7th Riso Int. Symp. on AnnealingProcesses—Recovery, Recrystallisation and Grain Growth, ed. by N.Hansen et al, Riso National Laboratory, Roskilde, Denmark, (1986),167.12)S. Akta, G. J. Richardson and C. M. Sellars: ISIJ Int., 45(2005),1696.13)T. Furu, K. Marthinsen and E. Nes: Mater Sci. Techno l., 6(1990),1093.14)G. H. Akbari, C. M. Sellars and J. A. Whiteman: Mater Sci.Technol., 16(2000), 47.1695©2005ISIJ。

焊接专业英语词汇(焊接及相关工艺英文缩写)

焊接专业英语词汇(焊接及相关工艺英文缩写)

焊接专业英语词汇(焊接及相关工艺英文缩写)AW——ARC WELDING——电弧焊AHW——atomic hydrogen welding——原子氢焊BMAW——bare metal arc welding——无保护金属丝电弧焊CAW——carbon arc welding——碳弧焊CAW-G——gas carbon arc welding——气保护碳弧焊CAW-S——shielded carbon arc welding——有保护碳弧焊CAW-T——twin carbon arc welding——双碳极间电弧焊EGW——electrogas welding——气电立焊FCAW——flux cored arc welding——药芯焊丝电弧焊FCW-G——gas-shielded flux cored arc welding——气保护药芯焊丝电弧焊FCW-S——self-shielded flux cored arc welding——自保护药芯焊丝电弧焊GMAW——gas metal arc welding——熔化极气体保护电弧焊GMAW-P——pulsed arc——熔化极气体保护脉冲电弧焊GMAW-S——short circuiting arc——熔化极气体保护短路过度电弧焊GTAW——gas tungsten arc welding——钨极气体保护电弧焊GTAW-P——pulsed arc——钨极气体保护脉冲电弧焊MIAW——magnetically impelled arc welding——磁推力电弧焊PAW——plasma arc welding——等离子弧焊SMAW——shielded metal arc welding——焊条电弧焊SW——stud arc welding——螺栓电弧焊SAW——submerged arc welding——埋弧焊SAW-S——series——横列双丝埋弧焊RW——RWSISTANCE WELDING——电阻焊FW——flash welding——闪光焊RW-PC——pressure controlled resistance welding——压力控制电阻焊PW——projection welding——凸焊RSEW——resistance seam welding——电阻缝焊RSEW-HF——high-frequency seam welding——高频电阻缝焊RSEW-I——induction seam welding——感应电阻缝焊RSEW-MS——mash seam welding——压平缝焊RSW——resistance spot welding——点焊UW——upset welding——电阻对焊UW-HF——high-frequency ——高频电阻对焊UW-I——induction——感应电阻对焊SSW——SOLID STATE WELDING——固态焊CEW——co-extrusion welding——CW——cold welding——冷压焊DFW——diffusion welding——扩散焊HIPW——hot isostatic pressure diffusion welding——热等静压扩散焊EXW——explosion welding——爆炸焊FOW——forge welding——锻焊FRW——friction welding——摩擦焊FRW-DD——direct drive friction welding——径向摩擦焊FSW——friction stir welding——搅拌摩擦焊FRW-I——inertia friction welding——惯性摩擦焊HPW——hot pressure welding——热压焊ROW——roll welding——热轧焊USW——ultrasonic welding——超声波焊S——SOLDERING——软钎焊DS——dip soldering——浸沾钎焊FS——furnace soldering——炉中钎焊IS——induction soldering——感应钎焊IRS——infrared soldering——红外钎焊INS——iron soldering——烙铁钎焊RS——resistance soldering——电阻钎焊TS——torch soldering——火焰钎焊UUS——ultrasonic soldering——超声波钎焊WS——wave soldering——波峰钎焊B——BRAZING——软钎焊BB——block brazing——块钎焊DFB——diffusion brazing——扩散焊DB——dip brazing——浸沾钎焊EXB——exothermic brazing——反应钎焊FB——furnace brazing——炉中钎焊IB——induction brazing——感应钎焊IRB——infrared brazing——红外钎焊RB——resistance brazing——电阻钎焊TB——torch brazing——火焰钎焊TCAB——twin carbon arc brazing——双碳弧钎焊OFW——OXYFUEL GAS WELDING——气焊AAW——air-acetylene welding——空气乙炔焊OAW——oxy-acetylene welding——氧乙炔焊OHW——oxy-hydrogen welding——氢氧焊PGW——pressure gas welding——气压焊OTHER WELDING AND JOINING——其他焊接与连接方法AB——adhesive bonding——粘接BW——braze welding——钎接焊ABW——arc braze welding——电弧钎焊CABW——carbon arc braze welding——碳弧钎焊EBBW——electron beam braze welding——电子束钎焊EXBW——exothermic braze welding——热反应钎焊FLB——flow brazing——波峰钎焊FLOW——flow welding——波峰焊LBBW——laser beam braze welding——激光钎焊EBW——electron beam welding——电子束焊EBW-HV——high vacuum——高真空电子束焊EBW-MV——medium vacuum——中真空电子束焊EBW-NV——non vacuum——非真空电子束焊ESW——electroslag welding——电渣焊ESW-CG——consumable guide eletroslag welding——熔嘴电渣焊IW——induction welding——感应焊LBW——laser beam welding——激光焊PEW——percussion welding——冲击电阻焊TW——thermit welding——热剂焊THSP——THERMAL SPRAYING——热喷涂ASP——arc spraying——电弧喷涂FLSP——flame spraying——火焰喷涂FLSP-W——wire flame spraying——丝材火焰喷涂HVOF——high velocity oxyfuel spraying——高速氧燃气喷涂PSP——plasma spraying——等离子喷涂VPSP-W——vacuum plasma spraying——真空等离子喷涂TC——THERMAL CUTTING——热切割OC——OXYGEN CUTTING——气割OC-F——flux cutting——熔剂切割OC-P——metal powder cutting——金属熔剂切割OFC——oxyfuel gas cutting——氧燃气切割CFC-A——oxyacetylene cutting——氧乙炔切割CFC-H——oxyhydrogen cutting——氢氧切割CFC-N——oxynatural gas cutting——氧天然气切割CFC-P——oxypropanne cutting——氧丙酮切割OAC——oxygen arc cutting——氧气电弧切割OG——oxygen gouging——气刨OLC——oxygen lance cutting——氧矛切割AC——ARC CUTTING——电弧切割CAC——carbon arc cutting——碳弧切割CAC-A——air carbon arc cutting——空气碳弧切割GMAC——gas metal arc cutting——熔化极气体保护电弧切割GTAC——gas tungsten arc cutting——钨极气体保护电弧切割PAC——plasma arc cutting——等离子弧切割SMAC——shielded metal arc cutting——焊条电弧切割HIGH ENERGY BEAM CUTTING——高能束切割EBC——electron beam cutting——电子束切割LBC——laser beam cutting——激光切割LBC-A——air——空气激光切割LBC-EV——evaporative——蒸气激光切割LBC-IG——inert gas——惰性气体激光切割LBC-O——oxygen——氧气激光切割激光切割laser cutting(LC); laser beam cutting电子束切割electron beam cutting喷气激光切割gas jet laser cutting碳弧切割carbon arc cutting水下切割underwater cutting喷水式水下电弧切割waterjet method underwater arc cutting氧矛切割oxygen lancing; oxygen lance cutting溶剂氧切割powder lancing手工气割manual oxygen cutting自动气割automatic oxygen cutting仿形切割shape cutting数控切割NC (numerical-control) cutting快速切割high-speed cutting垂直切割square cut叠板切割stack cutting坡口切割beveling; bevel cutting碳弧气割carbon arc air gouging火焰气刨flame gouging火焰表面清理scarfing氧熔剂表面修整powder washing预热火焰preheat flame预热氧preheat oxygen切割氧cutting oxygen/ cutting stream切割速度cutting speed切割线line of cut/ cut line切割面face of cut/ cut face切口kerf切口上缘cutting shoulder切口宽度kerf width后拖量drag切割面平面度evenness of cutting surface/ planeness of cutting surface 割纹深度depth of cutting veins/ stria depth切割面质量quality of cut face上缘熔化度shoulder meltability/ melting degree of shoulder切口角kerf angle缺口notch挂渣adhering slag结瘤dross割炬cutting torch/ cutting blowpipe/ oxygen-fuel gas cutting torch割枪cutting gun割嘴cutting nozzle/ cutting tip快速割嘴divergent nozzle/ high-speed nozzle表面割炬gouging blowpipe水下割炬under-water cutting blowpipe水下割条electrode for under-water cutting粉剂罐powder dispenser数控切割机NC cutting machine门式切割机flame planer光电跟踪切割机photo-electric tracing cutting火焰切管机pipe flame cutting machine磁轮式气割机gas cutting machine with magnetic wheels 焊接结构welded structure/ welded construction焊件weldment焊接部件weld assembly组装件built-up member接头设计joint design焊接应力welding stress焊接瞬时应力transient welding stress焊接残余应力welding residual stress热应力thermal stress收缩应力contraction stress局部应力local stress拘束应力constraint stress固有应力inherent stress固有应变区inherent strain zone残余应力测定residual stress analysis逐层切割法Sach’s methodX射线衍射法X-ray stress analysis小孔释放法Mathar method固有应变法inherent strain method消除应力stress relieving局部消除应力local stress relieving应力重分布stress redistribution退火消除应力stress relieving by annealing温差拉伸消除应力low temperature stress relieving机械拉伸消除应力mechanical stress relieving应力松弛stress relaxation焊接变形welding deformation焊接残余变形welding residual deformation局部变形local deformation角变形angular distortion自由变形free deformation收缩变形contraction deformation错边变形mismatching deformation挠曲变形deflection deformation波浪变形wave-like deformation火焰矫正flame straightening反变形backward deformation焊接力学welding mechanics断裂力学fracture mechanics弹塑性断裂变形elasto-plastic fracture mechanics线弹性断裂力学linear elastic fracture mechanics延性断裂ductile fracture脆性断裂brittle fracture应力腐蚀开裂stress corrosion cracking热应变脆化hot straining embrittlement临界裂纹尺寸critical crack size裂纹扩展速率crack propagation rate裂纹张开位移(COD)crack opening displacement拘束度restraint intensity拘束系数restraint coefficient应变速率strain rate断裂韧度fracture toughness应力强度因子stress intensity factor临界应力强度因子critical stress intensity factors应力腐蚀临界应力强度因子critical stress intensity factor of stress corrosion cracking J积分J-integration罗伯逊止裂试验Robertson crack arrest testESSO试验ESSO test双重拉伸试验doucle tension test韦尔斯宽板拉伸试验Well’s wide plate test帕瑞斯公式Paris formula断裂分析图fracture analysis diagram焊接车间welding shop焊接工作间welding booth焊接工位welding post/ welding station焊接环境welding surroundings焊工welder电焊工manual arc welder气焊工gas welder焊接检验员weld inspector焊工培训welders training焊工模拟训练器trainer of synthetic weld焊工考试welder qualification test焊工合格证welder qualification/ welder qualified certification钢板预处理steel plate pretreatment喷沙sand blast喷丸shot blast矫正straighten开坡口bevelling (of the edge)/ chanfering装配assembly/ fitting安装erect刚性固定rigid fixing装配焊接顺序sequence of fitting and welding焊接工艺评定welding procedure qualification(转载自第一范文网,请保留此标记。

工业设计常用的英文

工业设计常用的英文

设计师常用英语词之(一)——工业设计1 设计 Design2 现代设计 Modern Design3 工艺美术设计 Craft Design4 工业设计 Industrial Design5 广义工业设计 Genealized Industrial Design6 狭义工业设计 Narrow Industrial Design7 产品设计 Product Design8 传播设计 Communication Design8 环境设计 Environmental Design9 商业设计 Comercial Design10 建筑设计 Architectural11 一维设计 One-dimension Design12 二维设计 Tow-dimension Design13 三维设计 Three-dimension Design14 四维设计 Four-dimension Design15 装饰、装潢 Decoration16 家具设计 Furniture Design17 玩具设计 Toy Design18 室内设计 Interior Design19 服装设计 Costume Design20 包装设计 ackaging Design21 展示设计 Display Design22 城市规划 Urban Desgin23 生活环境 Living Environment24 都市景观 Townscape25 田园都市 Gardon City26 办公室风致 Office Landscape27 设计方法论 Design Methodology28 设计语言 Design Language29 设计条件 Design Condition30 结构设计 Structure Design31 形式设计 Form Design32 设计过程 Design Process33 构思设计 Concept Design34 量产设计,工艺设计 Technological Design35 改型设计 Model Change36 设计调查 Design Survey37 事前调查 Prior Survey38 动态调查 Dynamic Survey39 超小型设计 Compact type40 袖珍型设计 Pocktable Type41 便携型设计 Protable type42 收纳型设计 Selfcontainning Design43 装配式设计 Knock Down Type44 集约化设计 Stacking Type45 成套化设计 Set (Design)46 家族化设计 Family (Design)47 系列化设计 Series (Design)48 组合式设计 Unit Design49 仿生设计 Bionics Design50 功能 Function51 独创性 Originality52 创造力 Creative Power53 外装 Facing54 创造性思维 Creating Thinking55 等价变换思维 Equivalent Transformationn Thought56 KJ法 Method of K.J57 戈顿法 Synectice58 集体创造性思维法 Brain Storming59 设计决策 (Design) Decision Making60 T-W-M体系 T-W-M system61 O-R-M体系 O-R-M system62 印象战略 Image Stralegy63 AIDMA原则 Law of AIDMA64 功能分化 Functional Differentiation65 功能分析 Functional Analysis66 生命周期 Life Cycle67 照明设计 Illumination Design材料与加工成型技术(英)1 材料 Material2 材料规划 Material Planning3 材料评价 Material Appraisal4 金属材料 Metal Materials5 无机材料 Inorganic Materials6 有机材料 Organic Materials7 复合材料 Composite Materials8 天然材料 Natural Materials9 加工材料 Processing Materials10 人造材料 Artificial Materials11 黑色金属 Ferrous Metal12 有色金属 Nonferrous Metal13 轻金属材料 Light Metal Materials14 辅助非铁金属材料 Byplayer Nonferrous Metal Materials15 高熔点金属材料 High Melting Point Metal Materials16 贵金属材料 Precions Metal Materials17 辅助非铁金属材料 Byplayer Nonferrous Metal Materials18 高熔点金属材料 High Melting Point Metal Materials19 贵金属材料 Precions Metal Materials20 陶瓷 Ceramics21 水泥 Cement22 搪瓷、珐琅 Enamel23 玻璃 Glass24 微晶玻璃 Glass Ceramics25 钢化玻璃 Tuflite Glass26 感光玻璃 Photosensitive Glass27 纤维玻璃 Glass Fiber28 耐热玻璃 Hear Resisting Glass29 塑料 Plastics30 通用塑料 Wide Plastics31 工程塑料 Engineering Plastics32 热塑性树脂 Thermoplastic Resin33 热固性树脂 Thermosetting Resin34 橡胶 Rubber35 粘接剂 Adhesives36 涂料 Paints37 树脂 Resin38 聚合物 Polymer39 聚丙烯树脂 Polypropylene40 聚乙烯树脂 Polyethylene Resin41 聚苯乙烯树脂 Polystyrene Resin42 聚氯乙烯树脂Polyvinyl Chloride Resin43 丙烯酸树脂 Methyl Methacrylate Resin44 聚烯胺树脂,尼龙 Polyamide Resin45 氟化乙烯树脂 Polyfurol Resin46 聚缩醛树脂 Polyacetal Resin47 聚碳酸脂树脂 Polycarbonate Resin48 聚偏二氯乙烯树脂 Polyvinylidene Resin49 聚醋酸乙烯脂树脂 Polyvinyl Acetate Resin50 聚烯亚胺树脂 Polyimide Resin51 酚醛树脂 Phenolic Formaldehyde Resin52 尿素树脂 Urea Formaldehyde Resin53 聚酯树脂 Polyester Resin54 环痒树脂 Epoxy Resin55 烯丙基树脂 Allyl Resin56 硅树脂 Silicone Resin57 聚氨酯树脂 Polyurethane Resin58 密胺 Melamine Formaldehyde Resin59 ABS树脂 Acrylonitrile Butadiene Styrene Redin60 感光树脂 Photosensition Plastics61 纤维强化树脂 Fiber Reinforced Plastic62 印刷油墨 Printing Ink63 印刷用纸 Printing Paper64 铜板纸 Art Paper65 木材 Wood66 竹材 Bamboo67 树脂装饰板 Decorative Sheet68 蜂窝机制板 Honey Comb Core Panel69 胶合板 Veneer70 曲木 Bent Wood71 浸蜡纸 Waxed Paper72 青铜 Bronge73 薄壳结构 Shell Construction74 技术 Technic75 工具 Tool76 金工 Metal Work77 铸造 Casting78 切削加工 Cutting79 压力加工 Plastic Working80 压力加工 Plastic Working81 焊接 Welding82 板金工 Sheetmetal Woek83 马赛克 Mosaic84 塑性成型 Plastic Working85 灌浆成型 Slip Casting86 挤出成型 Sqeezing87 注压成型 Injection Molding88 加压成型 Pressing89 水压成型 Cold Isostatic Pressing90 加压烧结法 Hot Pressing91 HIP成型 Hot Isostatic Pressing92 压缩成型 Compression Molding Pressing93 气压成型 Blow Molding94 压延成型 Calendering95 转送成型 Transfer Molding96 雌雄成型 Slash Molding97 铸塑成型 Casting98 喷涂成型 Spray Up99 层积成型 Laminating100 FW法 Fillament Winding101 粘接与剥离 Adhesion and Excoriation 102 木材工艺 Woodcraft103 竹材工艺 Bamboo Work104 表面技术 Surface Technology105 镀饰 Plating106 涂饰 Coating107 电化铝 Alumite108 烫金 Hot Stamping109 预制作 Prefabrication110 预制住宅 Prefabricated House111 悬臂梁 Cantilever112 金属模具 Mold113 型板造型 Modeling of Teplate114 染料 Dyestuff115 颜料 Artist Color设计美学与设计实验(英)1 美 Beauty2 现实美 Acture Beauty3 自然美 Natural Beauty4 社会美 Social Beauty5 艺术美 Artisitc Beauty6 内容与形式 Content and Form7 形式美 Formal Beauty8 形式原理 Principles and Form9 技术美 Beauty of Technology10 机械美 Beauty of Machine11 功能美 Functional Beauty12 材料美 Beauty of Material13 美学 Aesthetics14 技术美学 Technology Aesthetics15 设计美学 Design Aesthetics16 生产美学 PAroduction Aesthetics17 商品美学 Commodity Aedthetics18 艺术 Art19 造型艺术 Plastic Arts20 表演艺术 Performance Art21 语言艺术 Linguistic Art22 综合艺术 Synthetic Arts23 实用艺术 Practical Art24 时间艺术 Time Art25 空间艺术 Spatial Art26 时空艺术 Time and Spatial Art27 一维艺术 One Dimantional28 二维艺术 two Dimantional29 三维艺术 Three Dimantional30 四维艺术 Four Dimantional31 舞台艺术 Stagecraft32 影视艺术 Arts of Mmovie and Television33 环境艺术 Environmental Art34 美术 Fine Arts35 戏剧 Drama36 文学 Literature37 意匠 Idea38 图案 Pattern39 构思 Conception40 构图 Composition41 造型 Formation42 再现 Representation43 表现 Expression44 构成 Composition45 平面构成 Tow Dimentional Composition46 立体构成 Three Dimentional Composition47 色彩构成 Color Composition48 空间构成 Composition of Space49 音响构成 Composition and Sound50 多样与统一 Unity of Multiplicity51 平衡 Balance52 对称 Symmetry53 调和、和声 Harmony54 对比 Contrast55 类似 Similarity56 比例 Proportion57 黄金分割 Golden Section58 节奏 Rhythm59 旋律 Melody60 调子 Tone61 变奏 Variation62 纹样 Pattern63 形态 Form64 有机形态 Organic Form65 抽象形态 Abstract Form66 简化形态 Simptified Form67 变形 Deformation68 图学 Graphics69 透视画法 Perspective70 线透视 Linear Perspective71 视点 Eye on Picture Plane72 灭点 Vanishing Point73 平行透视 Parallel Persective74 成角透视 Angular Perspective75 斜透视 Obligue Perspective76 单点透视 Single Paint Perdpective77 两点透视 Tow-Point Perdpective78 三点透视 Three-Point Perdpective79 鸟瞰图 Bird's Eye View80 平面视图 Ground Plain81 轴侧投影 Axonometric Projection82 设计素描 Design Sketch83 预想图 Rendering84 模型 Model85 粘土模型 Clay Model86 石膏模型 Plaster Model87 木制模型 Wooden Model88 缩尺模型 Scale Model89 原大模型 Mock Up90 仿真模型 Finished Model91 制造原形 Prototype92 计算机图形学 Computer Graphics93 框架模型 Frame Model94 实体模型 Solid Model95 计算机辅助设计 COMPUTER AIDED DESIGN96 计算机辅助制造 Computer Aided Manufacture97 计算机三维动画 Computer Three Dimentional Animation98 计算机艺术 Computer Arts99 计算机书法 Computer Calligraphy100 计算机图象处理 Computer Image Processing101 计算机音响构成 Computer Sound Composition实验心理学与人机工程学1 人类工程学 Human Engineering2 人机工程学 Man-Machine Engineering3 工效学 Ergonomice4 人因工程学 Human Factors Engineering5 人因要素 Human Factors6 人机系统 Man-Machine System7 人体工程学 Human Engineering8 人本位设计 Human Sstandard Design9 实验心理学 Experimental Psychology10 物理心理学 Psychophysics11 感觉 Sensation12 知觉 Perception13 感觉阙限 Threshold of Senssation14 心理量表 Psychological Scaling15 视觉 Visual Perception16 视觉通道 Visual Pathway17 听觉 Hearing Perception18 肤觉 Skin Sensation19 视觉心理学 Visual Psychology20 听觉心理学 Hearing Psychology21 感光元 Photoreceptor Cell22 明视、暗视、间视 Phootopic Vision ,Scotopic Vision , Mesopic Vision23 光适应与暗适应 Photopic Adaptation and Sscotopic Adaptation24 格式塔,完形 Gestalt25 形状知觉 Shape Perception26 轮廓 Conotour27 主观轮廓 Subjictive Contour28 图形与背景 Figure and Ground29 图形与背景逆转 Reversible Figure30 良好形状法则 Prinzip der Guten Gestalt31 群化 Grouping32 等质性法则 Fsctor of Similarity33 伪装 Camouflage34 形状的恒常性 Shape Constancy35 大小的恒常性 Size Constancy36 空间知觉 Space Perception37 立体视 Stereopsis38 运动知觉 Movement Perception39 视错觉 Optical Illusion40 残像 After Image41 似动 Apparent Movement42 视觉后效 Aftereffects in Visuvl43 瀑布效应 Waterfall Effect44 视线记录仪 Eye Camera45 听觉刺激 Auditory Stimulus46 声压 Sound Pressure47 声压水平 Sound Pressure Level48 频谱 Spectrum49 乐音与非乐音 Tone and Nontone50 噪声 Noise51 听觉阙限 Auditory Threshold52 响度 Loudness53 听觉掩蔽 Auditory Masking54 音乐心理学 Psychology of Music55 音响心理学 Psychology of Sound56 音的四属性 Four Attribute Sound57 音高 Pitch58 音色 Timbre59 力度 Loudness60 频率辨别阙限 Difference Threshold of Frequency61 强度辨别阙限 Difference Threshold of Loudness62 混响 Reverberation63 音源距离感 Distance Perception of Sound64 音源方位感 Orientation Perception of Sound65 立体声 Stereophony66 语言心理学 Psycholinguistics67 语言声谱 Language Spectrum68 语言清晰度 Articulation69 人体尺寸 Humanlady Size70 作业空间 Work Space71 模数 Module72 心理尺度 Psychological Measure73 动作分析 Motion Analysis74 时间研究 Time Study75 动作时间研究 Motion and Time Study76 时间动作轨迹摄影 Chronocyclegragh77 动迹 Traffic Line78 光迹摄影 Luminogram79 脑波 Brain Wave80 生物钟 Bio-o'clock81 睡眠 Sleep82 疲劳 Fatigue83 姿态 Body Posture84 皮肤电反应 Galranic Skin Response85 临界闪烁频率 Critical Flicker Frequence86 肌肉运动学 Kinesiology87 肌电图 Electromyography88 形态学 Morphology89 仿生学 Bionics90 人、环境系统 Man-Environment System91 照明 Hlumination92 振动 Oscillate93 气候 Climate94 空气调节 Air Conditioning95 功能分配 Functional Allocation设计生产经营与评价1 工业工程学 Industrial Engineering2 工业心理学 Industrial Psychology3 科学管理法 Scientific Management4 生产管理 Production Control5 质量管理 Quality Control6 系统工程 System Engineering7 批量生产 Mass Production8 流水作业 Conveyer System9 互换式生产方式 Interchangeable Produsction Method10 标准化 Standardization11 自动化 Automation12 市场调查 Market Research13 商品化计划 Merchandising14 产品开发 Product Developement15 产品改型 Model Change16 产品测试 Product Testing17 产品成本 Product Cost18 营销学 Marketing19 买方市场 Buyer's Market20 卖方市场 Seller's Marker21 促销 Sales Promotion22 适销 Marketability23 消费者 Consumer24 购买动机调查 Motivation Research25 深层面接法 Depth Interview26 销售热点 Selling Point27 卡通测试法 Cartoon Test28 产品形象 Product Image29 形象策略 Image Strategy30 公共关系 Public Relations31 运筹学 Operations Research32 设计策略 Design Policy33 艺术总监 Art Director(更多工业设计的信息请登录IDKAOYAN主页:/idkaoyan)设计色彩方法(英)1 色 Color2 光谱 Spectrum3 物体色 Object Color4 固有色 Propor Color5 色料 Coloring Material6 色觉三色学说 Three-Component Theary7 心理纯色 Unique Color8 拮抗色学说 Opponent Color Theory9 色觉的阶段模型 Stage Model of the Color Perception10 色彩混合 Color Mixing11 基本感觉曲线 Trisimulus Valus Curves12 牛顿色环 Newton's Color Cycle13 色矢量 Color Vector14 三原色 Three Primary Colors15 色空间 Color Space16 色三角形 Color Triangle17 测色 Colourimetry18 色度 Chromaticity19 XYZ表色系 XYZ Color System20 实色与虚色 Real Color and Imaginary Color21 色等式 Color Equation22 等色实验 Color Matching Experiment23 色温 Color Temperature24 色问轨迹 Color Temperature Locus25 色彩三属性 Three Attribtes and Color26 色相 Hue27 色相环 Color Cycle28 明度 Valve29 彩度 Chroma30 环境色 Environmetal Color31 有彩色 Chromatic Color32 无彩色 Achromatic Colors33 明色 Light Color34 暗色 Dark Color35 中明色 Middle Light Color36 清色 Clear Color37 浊色 Dull Color38 补色 Complementary Color39 类似色 Analogous Color40 一次色 Primary Color41 二次色 Secondary Color42 色立体 Color Solid43 色票 Color Sample44 孟塞尔表色系 Munsell's Color System45 奥斯特瓦德表色系 Ostwald's Color System46 日本色研色体系 Practical Color Co-ordinate System47 色彩工程 Color Engineering48 色彩管理 Color Control49 色彩再现 Color Reproduction50 等色操作 Color Matching51 色彩的可视度 Visibility Color52 色彩恒常性 Color Constancy53 色彩的对比 Color Contrast54 色彩的同化 Color Assimilation55 色彩的共感性 Color Synesthesia56 暖色与冷色 Warm Color and Cold Color57 前进色与后退色 Advancing Color Receding Color58 膨胀色与收缩色 Expansive Color and Contractile Color59 重色与轻色 Heavy Color and Light Color60 色价 Valeur61 色调 Color Tone62 暗调 Shade63 明调 Tint64 中间调 Halftone65 表面色 Surface Color66 平面色 Film Color67 色彩调和 Color Harmony68 配色 Color Combination69 孟塞尔色彩调和 Munsell's Color Harmony70 奥斯特瓦德色彩调和 Ostwald's Color Harmony71 孟.斯本瑟色彩调和 Moon.Spencer's Color Harmony72 色彩的感情 Feeling of Color73 色彩的象征性 Color Symbolism74 色彩的嗜好 Color Preference75 流行色 Fashion Color76 色彩的功能性 Color Functionalism77 色彩规划 Color Planning78 色彩调节 Color Conditioning79 色彩调整 Color Coordinetion80 色彩设计 Color Design传播与传媒设计(英)1 传播 Communication2 大众传播 Mass Communication3 媒体 Media4 大众传播媒体 Mass Media5 视觉传播 Visual Communication6 听觉传播 Hearing Communication7 信息 Information8 符号 Sign9 视觉符号 Visual Sign10 图形符号 Graphic Symbol11 符号论 Semiotic12 象征 Symbol13 象征标志 Symbol Mark14 音响设计 Acoustic Design15 听觉设计 Auditory Design16 听觉传播设计 Auditory Communication Design17 图象设计 Visual Communication Design18 视觉设计 Visual Design19 视觉传播设计 Visual Communication Design20 图形设计 Graphic Design21 编辑设计 Editorial Design22 版面设计 Layout23 字体设计 Lettering24 CI设计 Corporate Identity Design25 宣传 Propaganda26 广告 Advertising27 广告委托人 Adveertiser28 广告代理业 Advertising Agency29 广告媒体 Advertising Media30 广告目的 Avertising Objectives31 广告伦理 Morality of Advertising32 广告法规 Law of Advertising33 广告计划 Advertising Planing34 广告效果 Advertising Effect35 广告文案 Advertising Copy36 广告摄影 Advertising Photography37 说明广告 Informative Advertising38 招贴画海报 Poster39 招牌 Sign-board40 小型宣传册 Pamphlet41 大型宣传册 Portfolio42 商品目录 Catalogue43 企业商报 House Organ44 户外广告 Outdoor Advertising45 POP广告 Point of Purchase Advertising46 展示 Display47 橱窗展示 Window Display48 展示柜 Cabinet49 博览会 Exposition50 万国博览会 World Exposition51 包装 Packaging52 工业包装 Industrial Packing53 标签 Label54 企业形象 Corporate Image55 企业色 Company Color56 动画 Animation57 插图 Illustration58 书法 Calligraphy59 印刷 Initial60 设计费 design fee61 标准 standard62 注册商标 registered trade mark设计团体与部分人物(英)1 维也纳工厂 Wiener Werksttate2 德意志制造联盟 Der Deutsche Werkbund3 克兰布鲁克学院 The Cranbrook Academy4 国际现代建筑会议 Congres Internationaux D'Architecture Moderne5 现代艺术馆 Museum Of Modern Art6 芝加哥设计学院 Chicago Institute of Design7 英国工业设计委员会 Council of Industrial Design8 设计委员会 The Desgin Council9 国际建筑师协会 Union Internationale des Architects10 设计研究组织 Design Research Unit11 日本工业设计师协会 Japan Industrial Desginers Association12 日本设计学会 Japanese Society for Science of Design13 乌尔姆造型学院 Ulm Hochschule fur Gestallung14 国际设计协会联合会 International Council of Societies Industrial Desgin15 国际工业设计会议 International Design Congress ,ICSID Congress16 国际设计师联盟 Allied International Designers17 国际室内设计师联合会 International Federation of Interior Designers18 国际图形设计协会 International Graphic Desgin Associations19 国际流行色协会 International Commission for color in fashion and Textiles20 工业产品设计中心 The Centre de Creation Industrielle21 中国工业设计协会 China Industrial Design Association22 阿尔齐米亚集团 Alchymia Studio23 中国流行色协会 China Fashion Color Association24 中国技术美学委员会 China Technological Aesthetics Association25 莫里斯 Willian Morris (1834-1896E)26 奥斯特瓦德 Wilhelm Friedrich Ostwald(1853-1932G)27 孟赛尔 Albert F.Munsell (1858-1918A)28 凡.德.维尔德 Henry Vande Velde (1863-1957)29 莱特 Lloyd Wright (1867-1959A)30 贝伦斯 Peter Behrens(1868-1940G)31 霍夫曼 Joseph Hoffmann(1870-1956)32 皮克 Frank Pick(1878-1941)33 维斯宁兄弟 Alexander Leonid and Victor Vesnin34 格罗皮乌斯 Walter Gropius(1883-1969)35 蒂格 Walter Dorwin Teague36 利奇 Bernard Leach37 勒.柯不西埃 Le Corbusier(法)38 伊顿 Johennes Itten39 里特维尔德 Gerrit Thomas Rietvela40 庞蒂 Gio Ponti41 拉塞尔 Gordon Russel42 格迪斯 Norman Bel Geddes43 洛伊 Raymond Fermam44 里德 Herbert Read45 莫荷利.纳吉 Laszlo Moholy Nagy46 凡.多伦 Harold Van Doren47 阿尔托 Alvar Aalto48 拜耶 Herbert Bayer49 卡桑德拉 A.M.Cassandre50 佩夫斯纳 Nikolans51 布劳耶尔 Marcel Breuer52 佩里安 Charlotte Perriand53 德雷夫斯 Henry Dreyfuss54 迪奥 Christian Dior55 鲍登 Edward Bawden56 贾戈萨 Dante Giacosa57 伊姆斯 Charles Eames58 伊娃齐塞尔 Eva Zeiesl59 比尔MaxBill设计法规与标准(英)1 知识产权Intellectual Property2 著作权 Copyright3 工业产权 Industrial Property4 专利 Patent5 发明专利 Patent for Invention6 实用新型 Utility Modle7 外观设计专利 Registation of Design8 注册商标 Registered Trade Mark9 广告法 Advertising Law10 反不正当竞争 Repression of Untair Competition11 设计费 Design Fee12 标准 Standard13 德国工业标准 Deutsche Industrie Normen设计思潮与流派(英)1 学院派 Academicism2 理性主义 Rationalism3 非理性主义 Irrationalism4 古典主义 Classicism5 浪漫主义 Romanticism6 现实主义 Realism7 印象主义 Impressionism8 后印象主义 Postimpressionism9 新印象主义 Neo-Impressionisme(法)10 那比派 The Nabject11 表现主义 Expressionism12 象征主义 Symbolism13 野兽主义 Fauvism14 立体主义 Cubism15 未来主义 Futurism16 奥弗斯主义 Orphism17 达达主义 Dadaisme(法)18 超现实主义 Surrealism19 纯粹主义 Purism20 抽象艺术 Abstract Art21 绝对主义,至上主义 Suprematism22 新造型主义 Neo-plasticisme(法)23 风格派 De Stiji24 青骑士 Der Blaus Reiter25 抒情抽象主义 Lyric Abstractionism26 抽象表现主义 Abstract Expressionism27 行动绘画 Action Painting28 塔希主义 Tachisme(法)29 视幻艺术 Op Art30 活动艺术、机动艺术 Kinetic Art31 极少主义 Minimalism32 概念主义 Conceptualism33 波普艺术 Pop Art34 芬克艺术、恐怖艺术 Funk Art35 超级写实主义 Super Realism36 人体艺术 Body Art37 芝加哥学派 Chicago School38 艺术与手工艺运动 The Arts &Crafts Movement39 新艺术运动 Art Nouveau40 分离派 Secession41 构成主义 Constructivism42 现代主义 Modernism43 包豪斯 Bauhaus44 阿姆斯特丹学派 Amsterdam School45 功能主义 Functionalism46 装饰艺术风格 Art Deco(法)47 国际风格 International Style48 流线型风格 Streamlined Forms49 雅典宪章 Athens Charter50 马丘比丘宪章 Charter of Machupicchu51 斯堪的纳维亚风格 Scandinavia Style52 新巴洛克风格 New Baroque53 后现代主义 Postmodernism54 曼菲斯 Memphis55 高技风格 High Tech56 解构主义 Deconstructivism57 手工艺复兴 Crafts Revival58 准高技风格 Trans High Tech59 建筑风格 Architecture60 微建筑风格 Micro-Architecture61 微电子风格 Micro-Electronics62 晚期现代主义 Late Moddernism。

合金的动态再结晶与晶粒细化研究

合金的动态再结晶与晶粒细化研究

FGH4096合金的动态再结晶与晶粒细化研究摘要:使用Gleeble-1500D热模拟试验机对热等静压态FGH4096合金进行变形温度1080~1140℃,应变速率0.02~1s–1,变形量15%,35%和50%的等温压缩实验。

通过观察微观组织,分析了粉末高温合金动态再结晶的组织演化规律,并通过透射电镜研究了再结晶的形核位置。

当变形量在35%及以下时,得到不完全再结晶组织,即“项链“组织;当变形量大于50%时,得到完全的动态再结晶组织。

动态再结晶晶粒尺寸随变形温度的升高和应变速率的降低而增大。

再结晶形核主要在以下三个位置,即原始颗粒边界,再结晶晶粒边界以及孪晶源。

最后利用多方向热变形对晶粒的破碎和细化,得到平均晶粒尺寸为4μm的细晶坯料。

关键词:FGH4096粉末高温合金;动态再结晶;形核;细晶化锻造粉末高温合金由于具有组织均匀、无宏观偏析、合金化程度高等优点,成为制造先进航空发动机涡轮盘的首选材料[1]。

30多年中,粉末高温合金发展已经历了三代。

FGH4096粉末高温合金属于我国第二代粉末高温合金材料,以其优秀的高温强度和抗裂纹扩展能力受到航空发动机研究人员的极大重视[3]。

但由粉末冶金工艺所带来的原始颗粒边界(PPB)、热诱导孔洞(TIP)等组织缺陷极大的损害了高温合金的力学性能和热加工性能。

美国普惠公司使用以大挤压比的热挤压来粉碎PPB、焊合TIP,并诱导高温合金发生充分的动态再结晶以得到组织均匀细小、热加工性能优秀的高温合金坯料的制坯工艺[3]。

国内受多方面条件限制,尚无法实施该类工艺,但可通过塑性变形诱发动态再结晶得到细晶、无缺陷坯料[3]。

本文研究了FGH4096高温合金热变形中的动态再结晶的形核、发展规律和组织演化过程,并研究了合金的细晶化锻造工艺。

1 实验材料与方法FGH4096合金名义化学成分(Wt%)为:Cr 15.5, Co 12.5, Mo 3.8, W 3.8, Nb 0.6, Ti 3.9, Al 2.0, B 0.006, Zr 0.025, Ni Bal。

纳米叠层金属基复合材料的力学行为

纳米叠层金属基复合材料的力学行为

㊀第41卷㊀第5期2022年5月中国材料进展MATERIALS CHINAVol.41㊀No.5May 2022收稿日期:2020-11-17㊀㊀修回日期:2021-01-16基金项目:国家自然科学基金项目(52001204,51771111);中国博士后创新人才支持计划项目(BX20190196);中国博士后科学基金资助项目(2020M671114)第一作者:郑思婷,女,1997年生,硕士研究生通讯作者:赵㊀蕾,女,1988年生,讲师,硕士生导师,Email:lzhao39@郭㊀强,男,1982年生,教授,博士生导师,Email:guoq@DOI :10.7502/j.issn.1674-3962.202011021纳米叠层金属基复合材料的力学行为郑思婷,赵㊀蕾,郭㊀强(上海交通大学金属基复合材料国家重点实验室,上海200240)摘㊀要:纳米叠层金属基复合材料(nano-laminated metal matrix composites,NLMMCs)由金属和增强材料(陶瓷㊁非晶以及纳米碳材料)以层状形式交替叠加组成,是构型化金属基复合材料的一种典型代表㊂由于组分相的纳米尺度㊁叠层构型以及大量的异质界面,NLMMCs 表现出优异的综合力学和功能性能,成为近年来材料科学的研究热点㊂以金属-陶瓷型㊁金属-非晶型和金属-纳米碳型NLMMCs 为主要对象,重点综述了NLMMCs 的常见制备工艺及相应的特点,并聚焦于采用微纳力学方法探究内在和外在特征尺度㊁叠层取向以及界面特性等对其强韧化和变形机制影响的研究新进展㊂最后展望了NLMMCs 的发展趋势,指出了NLMMCs 在特定服役条件下的力学响应机制有待进一步研究,提出了需要开发适用于在多物理场下工作的微纳尺度材料表征和测试系统,以便更精准地探究NLMMCs 的使役行为㊂关键词:金属基复合材料;纳米叠层构型;微纳力学测试;强韧化机制;变形机制中图分类号:TB331㊀㊀文献标识码:A㊀㊀文章编号:1674-3962(2022)05-0371-12引用格式:郑思婷,赵蕾,郭强.纳米叠层金属基复合材料的力学行为[J].中国材料进展,2022,41(5):371-382.ZHENG S T,ZHAO L,GUO Q.Mechanical Behavior of Nano-Laminated Metal Matrix Composites[J].Materials China,2022,41(5):371-382.Mechanical Behavior of Nano-LaminatedMetal Matrix CompositesZHENG Siting,ZHAO Lei,GUO Qiang(State Key Laboratory of Metal Matrix Composites,Shanghai Jiao Tong University,Shanghai 200240,China)Abstract :Nano-laminated metal matrix composites (NLMMCs)are composed of metal and reinforcement (such as ceram-ic,amorphous and nanocarbon materials)alternately stacked in layers,which is a typical representative of architectured metal matrix composites.Due to the presence of the nano-scale of component phases,laminated configuration and abundant heterogeneous interfaces,NLMMCs are widely reported to have excellent mechanical and functional properties.Taking met-al-ceramic,metal-amorphous and metal-nanocarbon NLMMCs as the objects,this article reviews the recent development on the common fabrication processing and the corresponding features of the composites.Particular emphasis is given to the effect of internal and external dimensions,nanolaminate orientation and interface feature on the strengthening,toughening and de-formation mechanisms.To meet the requirements of engineering application,the study on the mechanical behavior under special service conditions is to be carried out and a micro-/nano-scale material characterization and testing system suitable for working in multiple physical fields should be developed.Key words :metal matrix composites;nano-laminated structure;micro-/nano-mechanical tests;strengthening and tough-ening mechanism;deformation mechanism1㊀前㊀言向超细晶/纳米晶金属基体中引入纳米颗粒(陶瓷㊁非晶)或纳米碳材料(碳纳米管㊁石墨烯及其衍生物)形成的金属基纳米复合材料(metal matrix nanocomposites,MMNCs)由于具有优异的综合力学和功能特性,受到了研究者的广泛关注[1-5]㊂然而,与传统金属基复合材料(metal matrix composites,MMCs)的发展瓶颈相似,超细晶/纳米晶基体有限的加工硬化能力,以及界面附近的应All Rights Reserved.中国材料进展第41卷变局域化导致了MMNCs强度的提高通常伴随着均匀延伸率的下降,即存在强度-塑(韧)性倒置关系,很大程度上制约了其进一步的发展与应用[6-8]㊂复合构型化(即不改变基体和增强体成分,仅仅改变基体和增强体的尺寸和空间分布)是解决MMNCs强韧化矛盾㊁提升其综合性能的有效途径[9-12]㊂纳米叠层结构是自然界硬质生物材料广泛采用的复合构型㊂通过组分相的纳米尺度,叠层构型提供的几何约束效应,以及各种内在和外在韧化机制,能够破解强韧性倒置的难题[13,14]㊂受此启发,研究者们开发了具有优异力学性能的金属-陶瓷[15]㊁金属-非晶[16]㊁金属-纳米碳[17]等纳米叠层金属基复合材料(nano-laminated metal matrix composites,NLMMCs)㊂对于传统单一均匀的MMCs,研究者通常采用宏观的单轴拉伸[18]㊁压缩[19]和三点弯曲[20]等测试方法表征复合材料的力学性能,并结合断口的形貌来推测复合材料的强韧化机制[21]㊂然而,相比于传统的MMCs,NLM-MCs中复合界面占比显著增加,界面在其强化㊁变形和断裂过程中发挥了极为重要的作用,上述宏观力学测试方法很难准确地评价界面对NLMMCs强韧化机制的影响㊂另外,部分NLMMCs以薄膜的形式存在,宏观的力学测试方法难以对其性能开展研究㊂近年来发展起来的微纳力学测试方法(如纳米压痕[22]㊁微柱压缩与拉伸[23-25]㊁微悬臂梁弯曲[26])结合精确 定点 (site-specif-ic)的透射电子显微镜(transmission electron microscope, TEM)分析[27],为研究NLMMCs的力学性能㊁探索其强韧化机制提供了新思路和新方法,尤其是其满足了纳米叠层金属基复合薄膜材料力学行为研究的需求[28,29]㊂特别地,扫描电子显微镜(scanning electron microscope, SEM)和TEM中的原位微纳力学测试方法可以实时获得材料变形过程中的力学性能数据和显微结构变化,更加准确地阐释界面-结构-性能关系,为NLMMCs性能优化设计提供了强有力的支撑㊂因此,本文重点综述近年来NLMMCs的制备工艺,并聚焦于微纳力学方法探究NLMMCs的强韧化和变形机制的研究新进展,最后展望NLMMCs的发展趋势和其面临的挑战㊂2㊀纳米叠层金属基复合材料的制备方法2.1㊀磁控溅射法磁控溅射法是目前金属-陶瓷㊁金属-非晶型NLMMCs 最常使用的制备方法,其制备原理如图1a所示[29]:在电场作用下,工作气体氩气(Ar)发生电离,离子化气体进入暗空间鞘层(靠近靶材的较薄区域)时会因电压降而强烈加速,之后以很高的速度撞击目标靶材,使原子㊁分子或原子团簇从靶材表面溅射出来㊂这些溅射出的靶材粒子沉积在基板表面,形成薄膜㊂在制备过程中,通过调节电源功率㊁沉积速率和挡板闭合时间等工艺参数交替溅射2种不同材料,可以获得所需层厚和层厚比的金属-陶瓷和金属-非晶纳米叠层复合薄膜,如图1b和1c 中的Cu-非晶CuZr[30]和Al-SiC[31]纳米叠层复合薄膜所示㊂磁控溅射法具有沉积温度低㊁组元成分和厚度易控制㊁成膜质量好等优点,但溅射速率低的缺点限制了其在宏量化制备方面的应用,故常用于制备薄膜和模型材料㊂图1㊀磁控溅射法制备叠层薄膜的示意图(a)[29],Cu-非晶CuZr 纳米叠层薄膜(插图为Cu的选区电子衍射图谱)(b)[30]和Al-SiC纳米叠层薄膜(c)的TEM照片[31]Fig.1㊀Schematic diagram of the fabrication of one layer film using mag-netron sputtering(a)[29],TEM image of Cu-amorphous CuZrnanolaminates(the inset is selective area electron diffraction im-age of Cu)(b)[30]and Al-SiC nanolaminates(c)[31]2.2㊀逐层累积法Kim等[32]采用纳米级金属层和单层石墨烯逐层累积组装的方法制备了具有纳米叠层结构的石墨烯增强铜基和镍基复合材料薄膜,制备过程如图2所示㊂首先,采用化学气相沉积(CVD)方法在铜箔上生长出高质量的单层石墨烯,并通过湿法转移过程(聚甲基丙烯酸甲酯(PMMA)旋涂以及铜箔刻蚀等)将石墨烯转移到通过真空273All Rights Reserved.㊀第5期郑思婷等:纳米叠层金属基复合材料的力学行为蒸镀法沉积的金属(铜或镍)薄膜上;然后,通过多次循环金属纳米层沉积和石墨烯转移过程,制备出金属-石墨烯纳米叠层复合材料薄膜㊂在薄膜制备过程中,石墨烯的CVD生长和转移过程需要严格控制工艺参数,以免产生表面缺陷和残留有机污染物,降低复合材料的力学和物理性能㊂该制备方法通用性强,适合制备模型材料以研究石墨烯增强金属基复合材料中的界面效应㊁强化和变形机制㊁内外尺寸效应等基础性科学问题㊂图2㊀逐层累积法制备纳米叠层石墨烯增强铜基和镍基复合材料的制备路线图[32]Fig.2㊀Fabrication process of graphene reinforced Cu-and Ni-matrix nanolaminated composites based on the layer-by-layer approach[32]㊀㊀在此基础上,Yang等[33]采用辊间(roll-to-roll,R2R)CVD法累积多层Cu-石墨烯复合薄膜,并结合热等静压(hot isostatic pressing,HIP)技术(图3)制备了石墨烯层数可控且平行分布的石墨烯增强Cu基复合材料㊂这种方法的优点是易于实现NLMMCs中石墨烯大面积㊁高覆盖率和高度平行取向分布㊂同时,通过调整石墨烯生长参数可精确控制石墨烯的结晶度和层数㊂图3㊀辊间累积化学气相沉积法结合热等静压法制备石墨烯-Cu纳米叠层复合材料块体的示意图[33]Fig.3㊀Schematic diagram of the fabrication process of graphene-Cunano-laminated bulk composites via Roll-to-Roll CVD combinedwith hot isostatic pressing(HIP)[33]2.3㊀片状粉末冶金法启迪于自然界中贝壳珍珠层的 砖砌 结构,作者课题组开发了片状粉末冶金(flake powder metallurgy,FPM)工艺,制备了多壁碳纳米管(multi-walled carbon nano-tubes,MWCNTs)-Al砖砌结构纳米叠层复合材料块体,获得了优异的强韧性[34,35]㊂典型的片状粉末冶金工艺如图4所示:首先,通过球磨获得纳米厚度的片状Al粉末,并对其表面进行聚乙烯醇(PVA)溶液包覆,同时在分散剂的辅助下对MWCNTs团簇进行超声分散形成均匀的MWCNTs分散液;然后,将片状Al粉与MWCNTs分散液均匀混合,使得MWCNTs均匀吸附到Al片表面;最后通过冷压㊁烧结和热挤压等致密化过程,获得MWC-NTs-Al纳米叠层复合材料块体㊂在此基础上,作者课题组进一步改进了FPM工艺,制备了具有纳米叠层结构的石墨烯-Al[17,36-39]㊁石墨烯-Cu[40-42]㊁单壁碳纳米管(single-walled carbon nanotubes,SWCNTs)-Al复合材料[43]㊂该制备工艺过程中,纳米碳材料没有经过高能球磨,因此制备的复合材料可以保持纳米碳材料结构的完整性㊂另外,此方法通用性强,适合于大规模制备复合材料块体㊂2.4㊀共沉积法共沉积法是将纳米碳材料分散到金属材料中的有效方法,主要包括物理喷涂沉积法和电化学沉积法㊂例如,Meng等[44]通过把均匀分散的石墨烯溶液以一定的压力喷涂到酸洗的Mg箔片表面获得复合单元,然后将复合单元层层堆叠,通过后续的热压和热轧工艺制备了石墨373All Rights Reserved.中国材料进展第41卷图4㊀片状粉末冶金(FPM)法制备MWCNTs-Al纳米叠层复合材料示意图[34]Fig.4㊀Fabrication process for MWCNTs-Al nanolaminated composites by the flake powder metallurgy(FPM)method[34]烯-Mg叠层复合材料㊂该方法通过控制喷涂时间可以控制石墨烯的体积分数㊂电化学沉积工艺中,在阴极与阳极之间施加的电流(直流㊁脉冲或脉冲反向电流)作用下,通过电解液中金属离子(Cu2+㊁Ni2+等)的还原作用,将金属膜沉积在阴极(镀有纳米碳的金属箔)表面上,并形成叠层结构[45]㊂该方法操作简单,但纳米碳与金属是非共价键结合,界面结合强度较弱㊂此外,未经处理的CNTs具有疏水性,使得金属盐很难穿透CNTs之间的缝隙,从而会在沉积层内形成缺陷[12]㊂另外,Kang等[46]将选择性浸涂(selec-tive dip-coating)和电沉积技术相结合,制备了MWCNTs-Cu叠层复合材料㊂首先,采用阴离子表面活性剂(SDS)对MWCNTs进行表面官能团化,获得带负电的MWCNTs 溶液;然后把基体浸入MWCNTs溶液中后以3mm/min 的速度取出;最后,在酸性电解液中电沉积Cu层㊂由于电解液中的Cu2+与带负电荷的官能团化MWCNTs层之间的电荷吸引作用,Cu层电沉积在MWCNTs层表面,并填充了MWCNTs层的间隙;多次循环浸涂和电沉积过程,最终形成叠层结构Cu-MWCNTs复合材料㊂2.5㊀累积叠轧法累积叠轧(accumulative roll-bonding,ARB)法是将表面经过处理㊁尺寸相等的2块薄板材料在一定温度下叠轧并使其自动焊合,然后反复叠片㊁轧制获得叠层复合材料的工艺㊂ARB后材料微观结构细化,力学性能得到大幅度提升㊂例如,Yao等[47]以铜和石墨为原料,在室温下通过ARB工艺循环30次(每次循环厚度减少50%)制备Cu-石墨烯叠层复合材料,如图5所示㊂该研究表明,ARB能把原始的石墨转化为仅有5层的石墨烯,且在Cu基体中良好分散,从而获得了高的硬度和电导率㊂图5㊀累积叠轧法制备石墨烯-铜纳米叠层复合材料的示意图[47] Fig.5㊀Schematic diagram of the fabrication process for graphene-Cu nanolaminated composites via accumulative roll-bonding(ARB)process[47]3㊀纳米叠层金属基复合材料的强韧化机制3.1㊀纳米叠层金属基复合材料的强化机制3.1.1㊀界面结构特性及其对NLMMCs强化机制的影响纳米叠层结构的金属及其复合材料含有高密度的异质界面,这些界面通常作为位错形核源㊁位错湮灭阱㊁位错运动的障碍和位错存储和反应的择优位点[48],进而显著影响材料的力学行为㊂对于金属-金属纳米叠层材料,其界面结构包括共格界面㊁半共格界面和非共格界面[49],如图6所示㊂共格界面中界面上下的2种材料具有相同的晶体学结构和较小的晶格失配(通常为百分之几的量级)㊂由于较小的晶格失配导致界面具有高的共格应力,阻碍了位错穿过界面转移至相邻层,从而提高了材料强度㊂对于半共格界面,相邻两层之间存在较大的晶格失配,从而导致界面具有相对较低的抗剪强度㊂为了减少晶格畸变,在半共格界面上通常会产生失配位错[50]㊂界面通过剪切以响应失配位错的应力场,并吸引图6㊀金属-金属纳米叠层材料的3种界面结构示意图[49] Fig.6㊀Schematic illustration of the three kinds of interface structures in metal-metal nanolaminates[49]473All Rights Reserved.㊀第5期郑思婷等:纳米叠层金属基复合材料的力学行为位错至界面处㊂半共格界面成为位错滑移传输的障碍,从而实现材料的强化㊂而非共格界面是指相邻两层的界面由不同的晶体结构组成,其具有相对较大的晶格失配㊂在这种界面上,相邻层的滑移系统之间没有连续性,其具有较低的抗剪强度,使得位错核沿界面扩展,被界面吸收,阻碍了滑移传递至相邻层,从而使材料获得了高强度[51,52]㊂金属-金属纳米叠层材料界面结构对强化机制的影响详见综述论文[48,50,53,54]㊂金属-陶瓷(主要指晶体陶瓷)型NLMMCs的界面结构类似于金属-金属非共格界面,其界面强化机制也与之相似㊂对于金属-非晶(包括金属玻璃㊁非晶陶瓷和C或Si族元素玻璃)型NLMMCs,其金属-非晶界面(crystal-line-amorphous interfaces,CAIs)由基于位错调控塑性变形的金属层和基于剪切过渡区(shear transition zones,STZs)或剪切带(shear bands,SBs)调节塑性变形的非晶层组成[48]㊂CAIs中很容易形成剪切滑移,导致材料的屈服强度降低;此外,CAIs也是加载过程中位错形核和位错发射的择优位点[55]㊂对于金属-纳米碳型NLMMCs,其界面结构也类似于非共格界面,该类复合材料强度的提高主要来自于载荷从基体到纳米碳的跨界面传递㊁纳米碳抑制基体晶粒生长引起的细晶强化,以及纳米碳通过界面阻碍位错运动引起的位错强化和背应力强化[56,57]㊂结合强度大小合适的界面才能有效传递载荷并抑制材料发生破坏性变形[58]㊂然而,通常由于大的表面能差异和低润湿性,纳米碳材料与金属基体之间形成弱的范德华力或机械结合[59],使纳米碳层的承载强化未能充分发挥㊂研究者们通过形成强共价键[60,61]㊁表面金属化[62]和界面反应[63]等方法,解决界面不相容和润湿性差的问题,形成具有高结合强度的界面,从而显著提高界面强度,进一步提高材料强度㊂3.1.2㊀内在特征尺寸对NLMMCs强化机制的影响随着微纳力学测试方法的快速发展,纳米叠层金属及其复合材料的力学行为得以深入研究㊂除了各组分材料的本征强度以外,各组分的内在特征尺度也显著地影响纳米叠层金属及其复合材料的强度[64-68]㊂类似于金属-金属纳米叠层材料,NLMMCs的强度随软相金属层厚度的变化规律可以用以下3种强化机制来描述㊂当金属层厚度h相对较大(亚微米到微米尺度)时,NLMMCs的强度σ与金属层厚度h遵循Hall-Petch关系[31],即σɖh-0.5,此时,软相金属层中产生大量位错并在界面处塞积,引起材料强化㊂当金属层厚度h减小到某一临界尺寸(通常不大于200nm)时,材料强度仍然单调增加,但明显偏离Hall-Petch关系,此时NLMMCs的强度变化规律符合约束层滑移(confined layer slip,CLS)模型[31,68-70],这是因为层厚的减小使得单个金属层内难以形成位错塞积,而是以单个位错约束在金属层内滑移的形式来调节塑性变形进而影响材料强度㊂然而,对于金属-金属纳米叠层材料,当叠层厚度进一步降低至1~2nm时,位错源开动困难,界面不再具有阻碍位错运动的能力,单个位错能够穿过界面,此时材料强度达到饱和甚至有所降低,对应于界面势垒强度(interface barrier strength,IBS)模型[71]㊂特别地,对于非连续纳米碳增强的NLMMCs,除金属基体特征尺寸以外,纳米碳材料的横向尺寸也会通过影响纳米碳的承载强化和纳米碳阻碍位错运动影响复合材料的强度㊂例如,Zhao等[56]对Al基体层厚为200nm㊁石墨烯(reduced graphene oxide,RGO)横向尺寸分别为(186ʃ7)nm和(603ʃ58)nm的RGO-Al纳米叠层复合材料开展了基于单次和多次加载-卸载循环的微柱压缩实验,发现RGO尺寸较小的RGO-Al复合微柱具有更高的强度㊂通过对强化机制的分析发现,RGO尺寸较小的复合材料承载强化贡献小于RGO尺寸较大的复合材料;而RGO尺寸较小的复合材料中石墨烯与位错相互作用引起的各向同性硬化和动力学硬化的贡献远远大于RGO尺寸较大的复合材料㊂3.1.3㊀外在尺寸对NLMMCs强化机制的影响另一方面,除了内在尺寸效应以外,采用微纳力学方法研究NLMMCs力学行为所制备的微纳试样外在尺寸也会显著影响其力学行为[72-76]㊂例如,Zhang等[77]制备了调制比(非金属层与金属层厚度比η)相同,单层厚度h 从5nm变化到150nm的Cu-CuZr金属-非晶多层膜,采用聚焦离子束(focus ion beam,FIB)加工了直径D从350nm 变化到1425nm的微柱,并对其开展了单轴压缩实验㊂研究结果表明,当h或D发生单一变化时,微柱的强度符合 越小越强(smaller is stronger) 的规律㊂当h在10~ 150nm范围内时,位错活动主要受晶粒控制,微柱的强度仅依赖于内在特征尺度,而与外在直径无关,且强度与层厚的关系符合CLS模型;当hɤ10nm时,较小样品体积内包含位错的概率大大降低,样品外表面对位错行为的影响达到了与内界面相当的程度,导致样品强度受内在和外在尺寸共同影响㊂此外,Wang等[75]从不同调制比(η=0.1~3.0)的Cu-CuZr金属-非晶多层膜上切割不同直径(D=300~ 1500nm)的微柱开展单轴压缩测试,结果如图7所示㊂可以看出,在给定微柱直径时,微柱强度随着调制比的增加而增大;当调制比一定且小于0.5(η=0.1和0.3)时,微柱强度随直径的增大而降低,呈现 越小越强 的趋势;而当调制比大于0.5时,微柱强度随直径的增大而增大,呈现 越大越强 的趋势㊂这主要是由于复573All Rights Reserved.中国材料进展第41卷合薄膜在小的调制比(0.1)时,非晶的层厚小于剪切带形成需要的临界尺寸,剪切带(shear bands,SBs)难以形成,因此,更厚的软相金属层主导微柱的塑性变形㊂随着微柱直径的减小,金属层中位错源的数量减少,而且微柱中含有大晶粒的概率降低,因此,位错活动需要在较高的应力下进行,因此,微柱尺寸越小,其强度越高㊂当调制比大时(η=3.0),非晶层(<100nm)通常包含一定数量的内部缺陷,在这些缺陷处可以轻松激活剪切过渡区(shear transformation zones,STZs)并聚集形成SBs㊂随着直径减小,单个SBs 形成引起的软化更容易发生在较小的微柱中㊂图7㊀不同调制比η下Cu-CuZr 微柱2%流变应力与微柱直径的关系图[75]Fig.7㊀The flow stress at 2%strain offset of Cu-CuZr micro-pillars ob-tained from the true stress vs strain curves as a function of pillardiameter with different modulation ratio η[75]在纳米碳-金属型NLMMCs 中,Zhao 等[36]和Hu 等[76]分别研究了90ʎ(叠层方向垂直于加载方向)和0ʎ(叠层方向平行于加载方向)RGO-Al 纳米叠层复合微柱的外在尺寸效应㊂研究结果表明,直径大小对90ʎRGO-Al复合微柱的强度没有明显的影响㊂而对于0ʎRGO-Al 复合微柱,当微柱直径比铝层厚度(~200nm)大一个数量级时,微柱直径对其强度没有明显的影响,微纳米尺度下材料的力学性能能够反映宏观复合材料的力学性能㊂3.1.4㊀叠层取向对NLMMCs 强化机制的影响叠层取向与加载方向之间的相对角度会影响NLM-MCs 中的应力状态,进而影响其强度㊂例如,Mayer等[78]对0ʎ㊁45ʎ和90ʎ的Al-SiC 纳米叠层复合微柱开展单轴压缩实验,发现0ʎ微柱中增强相SiC 层处于承载方向,强度最高;45ʎ微柱由于协调剪切变形更容易,强度最低;90ʎ微柱中SiC 层出现的裂纹限制了其强度提高㊂另外,Fu 等[79]从RGO-Al 宏观块体材料中切割0ʎ和90ʎ纳米叠层RGO-Al 复合微柱,并对其开展了单轴微拉伸实验(图8a)㊂结果表明,0ʎRGO-Al 微柱的屈服强度显著高于90oRGO-Al 微柱,且都高于相应的纯铝微柱,如图8b 所示㊂经计算分析得知,90ʎRGO-Al 微柱强度的提高主要来自于RGO /Al 界面对位错的阻碍作用,而0ʎRGO-Al 复合微柱的强化来自于RGO 显著的承载强化以及RGO /Al 界面对位错的阻碍作用㊂3.2㊀纳米叠层金属基复合材料的韧化机制NLMMCs 由于纳米尺度㊁叠层构型以及大量异质界面的存在,被认为具有比传统单一均匀MMCs 更加优异的断裂韧性㊂特别是,近些年随着微纳力学技术的发展,NLMMCs 的韧化机制得到了更加深入的阐释㊂在金属-陶瓷型NLMMCs 领域,界面的存在使脆性陶瓷层中产生的裂纹发生偏转,改变了裂纹扩展的路径,并且陶瓷层中也有可能产生位错[80],实现与韧性金属层的塑性共变形,从而增加复合材料的韧性㊂Yang 等[81]采用微柱劈裂法(micro-pillar splitting,图9a)和缺口悬臂梁弯曲法(图9b)研究了叠层厚度和叠层取向对Al-SiC 纳米叠层复合薄膜断裂韧性的影响㊂结果发现,Al-SiC 纳米叠层复合薄膜在载荷平行于叠层时的断裂韧性高于其在图8㊀0ʎ和90ʎ纳米叠层RGO-Al 复合微拉伸试样示意图和SEM 照片,其中拉伸方向由黑色箭头标出(a);0ʎ和90ʎ纳米叠层RGO-Al 和纯Al 的屈服强度对比图(b)[79]Fig.8㊀Schematic illustration and SEM images of as-fabricated microtensile composite specimens with 90ʎand 0ʎRGO laminate orienta-tions (a);summaries of the 0.2%offset yield strength of 90ʎand 0ʎRGO-Al composite and pure Al samples (b)[79]673All Rights Reserved.㊀第5期郑思婷等:纳米叠层金属基复合材料的力学行为垂直于叠层时的断裂韧性㊂当载荷平行于叠层时,裂纹扩展沿着金属/陶瓷界面发生,并且由于Al 层塑性变形的作用,断裂韧性随层厚的增加而增加,在层厚为100nm时达到最大㊂当载荷垂直于叠层时,裂纹扩展到界面处出现了偏转,断裂韧性随着层厚的减小而增加,在层厚为25nm 时达到最大,这归因于层厚减小导致了更高的界面密度㊂图9㊀微柱劈裂法(a)和缺口悬臂梁弯曲法(b)研究Al-SiC 纳米叠层复合材料断裂韧性的加载示意图[81]Fig.9㊀Schematic diagrams of the load directions for the fracture tough-ness testing of Al-SiC nanolaminates via micro-splitting (a)andnotched cantilevers bending methods (b)[81]在金属-非晶型NLMMCs 领域,非晶层具有力学不稳定性,而叠层结构限制了非晶层中裂纹和剪切带的形成和扩展,并且在一定条件下可以实现非晶层和金属层之间产生塑性共变形,提高复合材料的塑韧性[48]㊂为了揭示金属-非晶纳米叠层复合薄膜的韧化机制和潜在的破坏机理,Wang 等[82]制备了层厚为50nm㊁宽度B 为500~3500nm 的Ag-CuZr 和Mo-CuZr 多层膜悬臂梁(图10a),并通过SEM 中的原位弯曲实验研究多层膜组分和悬臂梁外在尺寸对断裂行为的影响㊂结果如图10b 所示,当悬臂梁宽度在500~3500nm 范围内变化时,Ag-CuZr 多层膜的断裂韧性总是高于Mo-CuZr 多层膜㊂另外,Ag-CuZr 多层膜的断裂韧性随悬臂梁宽度的增加而增加;而Mo-CuZr 多层膜的断裂韧性随悬臂梁宽度的增加而减小,当悬臂梁宽度超过~1500nm 时保持不变㊂对其断裂机理的分析发现,Ag-CuZr 悬臂梁中非晶CuZr 层中开动的微裂纹在多层结构中出现了互连(图10c),而Mo-CuZr 悬臂梁中的裂纹破坏性地穿过多层薄膜扩展(图10d),导致了Ag-CuZr 悬臂梁表现为韧性断裂,而Mo-CuZr 悬臂梁表现为脆性断裂,且Ag-CuZr 断裂韧性高于Mo-CuZr 多层薄膜㊂非晶纳米叠层复合薄膜的断裂韧性随成分和悬臂梁尺寸的变化主要归因于韧性相的塑性能耗散,裂纹尖端钝化㊁裂纹桥接以及塑性区应变梯度对裂纹扩展的影响等韧化机制㊂图10㊀金属-非晶纳米叠层复合薄膜的断裂韧性及断裂机制[82]:(a)典型的多层膜悬臂梁的SEM 照片,(b)Ag-CuZr 和Mo-CuZr 悬臂梁的断裂韧性随宽度B 的变化规律,(c,d)Ag-CuZr(c)和Mo-CuZr(d)悬臂梁的断裂机制示意图Fig.10㊀Fracture toughness and fracture mechanisms of metal-amorphous nanolaminated composite films [82]:(a)typical SEM image ofthe Ag-CuZr micro-cantilevers,(b)cantilever width B -dependent fracture toughness K Q in Ag-CuZr and Mo-CuZr nanolami-nates,(c,d)schematic diagrams of fracture mechanisms in Mo-CuZr (c)and Ag-CuZr (d)micro-cantilevers773All Rights Reserved.。

Phase Transformation from Fine-grained Austenite

1038
recrystallized hot rolled sheets for a wide range of austenite grain size between 20 to 250 m m.5) Therefore, another route proposed to produce ultrafine grained ferrite structure is transformation from ultrafine grained austenite structure. Although conventional route using static recrystallization of austenite does not normally produce austenite grain sizes under 10 m m, dynamic recrystallization could be effective to achieve further refinement. Samuel et al.6) studied dynamic recrystallization of austenite during strip rolling of Nb-contained low-carbon low-alloy steels and obtained austenite grain sizes just below 5 m m. During cooling after the rolling, a fine ferrite structure with a grain size of 3 m m was obtained. Later Salvatori et al.7) obtained ultrafine grained austenite of which grain size is 2–5 m m through dynamic recrystallization by applying large strain up to about 3 in an SUS304 austenitic stainless steel. It should be mentioned that even in steels processed by TMCP, refinement of austenite contributes to reduction of applied strain in controlled rolling in unrecrystallized regions.8) Refinement of austenite grain size smaller than 5 m m was previously studied for two kinds of reversion processes in low-carbon steels, i.e., (1) cyclic transformation between martensite and austenite, so called thermal cycling9) and (2) reversion from tempered and cold-rolltion

钨合金粉末的热等静压数值模拟及验证

钨合金粉末的热等静压数值模拟及验证郎利辉;续秋玉;张东星;布国亮;王刚;姚松【摘要】为研究钨合金粉末热等静压(HIP)的致密化行为,采用 MSC. Marc中的Shima模型针对93W-4.45Ni-2.2Fe-0.3Co-0.05Mn穿甲弹常用材料的热等静压成形过程进行模拟研究,分析钨合金粉末颗粒与包套随温度、压力加载的变化过程。

为验证数值模拟的结果,进行热等静压工艺试验。

结果表明:压坯的相对密度分布、变形趋势与实验结果符合得较好,径向周长误差最大,相对误差为5.6%,轴向相对误差为1.62%,轴向精度优于径向,致密度平均相对误差仅为1.4%。

对于简单的柱状试件,采用数值模拟的方法可以形象、准确地预测包套的变形及粉末的致密化过程,数值模拟的方法可以为复杂结构包套的研究提供参考,从而实现热等静压过程的精确控形。

%For investigating the densification behavior of tungsten alloy powders during hot isostatic pressing (HIP), the Shima yielding criterion of MSC. Marc was applied to simulate the process of 93W-Ni-Fein most use for penetrators during HIP. The process of powders and capsule changing along with the changing of temperature and pressure was studied. In order to verify the simulation results, HIP experiments were conducted. The results of prediction were compared with that of experiment and it shows that the maximum relative error of simulation is 1.62% in axial direction and 5.6% in radial direction, the accuracy of the former is better; the average relative error of density is only 1.4%.For simple cylindrical components, numerical simulation can visually and accurately predict the deformation of capsule and the densification ofpowders. In short, this method can be set for the study of complex structure caused by deformation.【期刊名称】《粉末冶金材料科学与工程》【年(卷),期】2014(000)006【总页数】8页(P839-846)【关键词】热等静压;93W-Ni-Fe;数值模拟;工艺试验;致密化;包套【作者】郎利辉;续秋玉;张东星;布国亮;王刚;姚松【作者单位】北京航空航天大学机械工程及自动化学院,北京 100191;北京航空航天大学机械工程及自动化学院,北京 100191;西安大略大学工程与材料系,伦敦 N6A3K7;北京航空航天大学机械工程及自动化学院,北京 100191;北京航空航天大学机械工程及自动化学院,北京 100191;北京航空航天大学机械工程及自动化学院,北京 100191【正文语种】中文【中图分类】TF125.241高比重钨合金是以钨为基体材料(其中含钨量为85%~99%)加入少量镍(Ni)、铜(Cu)、铁(Fe)、钴(Co)、钼(Mo)、铬(Cr)等金属粘结剂组成的一种合金材料,也被称之为高密度钨合金或重合金。

颗粒增强铝基复合材料热等静压近净成形有限元模拟

第16卷第4期精密成形工程成形有限元模拟冯效铭1,2,张峻凡1,王东1,肖伯律1*,马宗义1(1.中国科学院金属研究所师昌绪先进材料创新中心,沈阳 110016;2.中国科学技术大学材料科学与工程学院,沈阳 110016)摘要:目的建立可靠的模拟方法,以更高效地预测颗粒增强铝基复合材料(PRAMC)粉末热等静压中的形状变化和不同部位致密度的差异,解决传统实验试错方法适用性差且费时费力的问题,满足批量应用的需求。

方法以45%(体积分数)SiCp/6092Al复合材料为研究对象,构建了能预测粉末热等静压成形过程的有限元模型。

使用Gurson-Tvergard-Needleman(GTN)模型作为粉末本构模型,建立了粉末尺度的代表性体积单元(RVE)对GTN模型进行修正。

结果通过对比GTN模型计算结果与实验结果,发现修正后的GTN模型能更准确地预测模型的最终变形尺寸,与修正前相比,相对误差降低了1.6%~2.9%。

使用修正后的GTN模型对杯形回转体零件的热等静压成形过程进行预测,最终形状的计算结果与实验结果的相对误差仅为0.2%~3.1%,致密度分布的相对误差在0.5%以内。

在探究包套厚度对热等静压过程的影响时发现,随着包套厚度的增大,热等静压过程中的屏蔽作用增强,内部粉体致密度下降。

结论为PRAMC热等静压近终形制备的形状和致密度控制问题提供了有限元预测工具,辅助优化了热等静压工艺和包套设计,降低了颗粒增强铝基复合材料热等静压近净成形过程开发的试错成本。

关键词:颗粒增强铝基复合材料;粉末冶金;体积代表单元;GTN模型;近净成形DOI:10.3969/j.issn.1674-6457.2024.04.001中图分类号:TB331;TG146.2+1 文献标志码:A 文章编号:1674-6457(2024)04-0001-09Finite Element Simulation of Near Net Shape Hot Isostatic Pressing ofParticle Reinforced Aluminum Matrix CompositesFENG Xiaoming1,2, ZHANG Junfan1, WANG Dong1, XIAO Bolv1*, MA Zongyi1(1. Shi Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy ofSciences, Shenyang 110016, China; 2. School of Materials Science and Engineering, University ofScience and Technology of China, Shenyang 110016, China)ABSTRACT: The work aims to establish a reliable simulation method to predict shape changes and density differences in dif-收稿日期:2024-01-31Received:2024-01-31基金项目:国家重点研发计划(2022YFB3707400);国家自然科学基金(52192594,52201052)Fund:National Key R&D Program of China (2022YFB3707400); National Natural Science Foundation of China (52192594, 52201052)引文格式:冯效铭, 张峻凡, 王东, 等. 颗粒增强铝基复合材料热等静压近净成形有限元模拟[J]. 精密成形工程, 2024, 16(4): 1-9.FENG Xiaoming, ZHANG Junfan, WANG Dong, et al. Finite Element Simulation of Near Net Shape Hot Isostatic Pressing of Particle Reinforced Aluminum Matrix Composites[J]. Journal of Netshape Forming Engineering, 2024, 16(4): 1-9.*通信作者(Corresponding author)2精密成形工程 2024年4月ferent components of particle reinforced aluminum matrix composite (PRAMC) during powder hot isostatic pressing more effi-ciently, so as to solve the problem of poor applicability and time-consuming efforts of trial errors in traditional experimental methods, and to meet the demands of batch application. A finite element model of the powder hot isostatic pressing forming process for 45vol.% SiCp/6092Al composite material was developed. With the Gurson-Tvergard-Needleman (GTN) model as the powder constitutive model, a representative volume element (RVE) was established to modify the GTN model. By compar-ing the computed results of the GTN model with experimental results, the modified GTN model accurately predicted the final deformation size of the model with a reduced relative error of 1.6%-2.9% compared to that before the modification. The modi-fied GTN model was used to predict the hot isostatic pressing forming process of a rotary components, the final shape calcula-tion result had a relative error range of only 0.2%-3.1% with the experimental result and the relative error of the density distribu-tion was within 0.5%. In addition, the effect of sheath thickness on the hot isostatic pressing process was explored and it was found that as the encapsulated thickness increased, the encapsulated effect in the hot isostatic pressing process also increased, leading to a decrease in the internal powder densification. A finite element prediction tool was provided for the shape and den-sity control of PRAMC near net shape forming, helps to optimize the hot isostatic pressing process and encapsulation design, and reduces the trial error cost of developing the near net shape process of PRAMC by hot isostatic pressing.KEY WORDS: particle reinforced aluminum matrix composites; powder metallurgy; representative volume element; GTN model; near net shape颗粒增强铝基复合材料(PRAMC)[1-4]是在铝合金基体中添加SiC、B4C等陶瓷颗粒增强相而形成的复合材料,具备高比强度、高比刚度、高耐磨性等优势。

高温高压简写英文

高温高压简写英文High Temperature High Pressure (HTHP) abbreviated English refers to a specific set of terminology used in the field of materials science and engineering related to extreme temperature and pressure conditions. HTHP conditions are often encountered in industrial applications such as high-temperature andhigh-pressure processing, materials synthesis, and testing.In order to facilitate communication and understanding among professionals in the field, a standardized system of abbreviations has been developed. These abbreviations are commonly used in research papers, technical reports, and international conferences to describe experimental setups, material properties, and testing procedures under HTHP conditions. This document aims to outline some of the most frequently used HTHP abbreviations and their corresponding meanings.1. P-T: Pressure-TemperaturePT refers to the simultaneous measurement of pressure and temperature. This abbreviation is often used to describe experimental conditions, such as PT phase diagram, which shows the relationship between different phases of a material as a function of pressure and temperature.2. HIP: Hot Isostatic PressingHIP is a process used to densify, consolidate, or sinter materials by applying simultaneous hightemperature and high pressure. This technique is commonly used in powder metallurgy, ceramics, and composite material processing to improve material properties such as density, porosity, and mechanical strength.3. HPHT: High Pressure High TemperatureHPHT refers to the conditions of both high pressure and high temperature. This abbreviation is often used to describe material synthesis or testing under extreme conditions. For example, HPHT diamond synthesis refers to the artificial production of diamonds using high pressure and high temperature.4. HPCS: High-Pressure Carbonaceous Sedimentary RocksHPCS refers to a type of rock formation composed of carbon-rich materials that have undergone high-pressure metamorphism. These rocks are often associated with deep subduction zones and are of great interest to geologists studying the Earth's dynamics.5. DAC: Diamond Anvil CellA DAC is a high-pressure cell often used in experiments to generate extreme pressures. It consists of two opposing diamonds that exert pressure on a sample placed between them. The DAC allows for measurements of material properties under high-pressure conditions.6. TGA: Thermogravimetric AnalysisTGA is an analytical technique used to study the thermal stability and decomposition behavior of materials. It involves continuously monitoring the sample's weight as it is heated or cooled. TGA is particularly usefulfor characterizing the decomposition or phase transitions of materials at elevated temperatures and pressures.7. DSC: Differential Scanning CalorimetryDSC is a technique used to measure the heat flow associated with a sample's phase transitions or chemical reactions. It provides valuable information about the thermal behavior of materials under HTHP conditions.8. RTILs: Room-Temperature Ionic LiquidsRTILs are a class of molten salts or liquid materials that remain in the liquid state at or near room temperature. These unique liquids possess excellent thermal stability and chemical resistance, making them ideal for various high-temperature and high-pressure applications.9. HTHP Synthesis: High-Temperature High-Pressure SynthesisHTHP synthesis refers to the production or creation of materials under extreme temperature and pressure conditions. It is often used to modify material properties, induce desired phase transitions, or synthesize new compounds with unique properties that are not achievable under normal conditions.10. HTHP Testing: High-Temperature High-Pressure TestingHTHP testing refers to the evaluation of material properties or behavior under extreme temperature and pressure conditions. This testing is crucial for understanding the response of materials in high-pressure environments, such as in oil and gas exploration or deep-sea exploration.In conclusion, HTHP abbreviated English provides a standardized system for communicating and understanding research related to extreme temperature and pressure conditions. The abbreviations discussed in this document are commonly used in scientific literature and discussions. Familiarity with these terms is essential for researchers and professionals working in the field of HTHP materials science and engineering.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档