光电检测与技术知识点总结

合集下载

光电检测知识点

光电检测知识点

第一章名称解释1. 光通量2 坎德拉3. 照度4 半导体中的非平衡载流子5 绝对黑体6 基尔霍夫定律7 热噪声8 产生-复合噪声91/f 噪声知识要点半导体材料的光吸收效应(1) 本征吸收(2) 杂质吸收2. 非平衡载流子浓度载流子复合过程一般有直接复合和间接复合两种。

物体的光谱发射率总等于其光谱吸收比。

也就是强吸收体必然是强发射体。

维恩位移定律指出:当绝对黑体的温度增高时,单色辐出度的最大值向短波方向移动。

光电子发射过程可以归纳为以下三个步骤:(1) 物体吸收光子后体内的电子被激发到高能态;(2) 被激发电子向表面运动,在运动过程中因碰撞而损失部分能量;(3) 克服表面势垒逸出金属表面。

一般光电检测系统的噪声包括三种:(1) 光子噪声包括:信号辐射产生的噪声和背景辐射产生的噪声。

(2) 探测器噪声包括:热噪声、散粒噪声、产生-复合噪声、1/f 噪声和温度噪声。

(3) 信号放大及处理电路噪声在半导体器件中1/f 噪声与器件表面状态有关。

多数器件的1/f 噪声在300Hz 以上时已衰减到很低水平,所以频率再高时可忽略不计。

在频率很低时;l/f 噪声起主导作用;当频率达到中间频率范围时,产生-复合噪声比较显著;当频率较高时,只有白噪声占主导地位,其它噪声影响很小了光电探测器的合理选择(1) 根据待测光信号的大小,确定探测器能输出多大的电信号,即探测器的动态范围。

(2) 探测器的光谱响应范围是否同待测光信号的相对光谱功率分布一致。

即探测器和光源的光谱匹配。

(3) 对某种探测器,它能探测的极限功率或最小分辨率是多少—需要知道探测器的等效噪声功率;需要知道所产生电信号的信噪比。

(4) 当测量调制或脉冲光信号时,要考虑探测器的响应时间或频率响应范围。

(5) 当测量的光信号幅值变化时,探测器输出的信号的线性程度。

第二章名称解释光源的发光效率色温色表显色性相关色温分布温度知识要点选择光源时,应综合考虑光源的强度、稳定性、光谱特性等性能根据斯奇芬-玻尔兹曼定律知,物体只要其温度大于绝对零度,都会向外界辐射能量,其辐射特性与温度的四次方有关气体放电光源具有下述特点;1. 发光效率高。

光电师的知识点总结

光电师的知识点总结

光电师的知识点总结第一部分:光电基础知识1. 光电效应光电效应指的是当金属或半导体受到光照射时,会产生电子的排出现象。

这是光电师工作中非常重要的基础知识。

光电效应分为外光电效应和内光电效应。

2. 光电元件光电元件是光电师研究和应用的基础。

常见的光电元件主要包括光敏电阻、光电二极管、光电晶体管等。

3. 光的波粒二象性光具有波粒二象性,既可以表现为波动,也可以表现为粒子。

光电师需要深入了解这一性质,以便更好地理解光电效应和光电元件的工作原理。

4. 光电信号的生成和传输光电师需要了解光电信号的生成和传输机制,包括光信号的接收、放大、转换和传输等方面的知识。

第二部分:光电测量技术1. 光电测量系统光电测量系统是光电师工作中常用的设备,主要包括光电传感器、光谱仪、光电倍增管、光电二极管等。

2. 光电检测原理与方法光电师需要掌握各种光电检测原理与方法,包括光电传感、光谱分析、光电放大、光电转换等。

3. 光电测量技术的应用光电测量技术在工业控制、环境监测、医学诊断等领域有广泛的应用,光电师需要了解这些应用领域的特点和需求,以便更好地开展工作。

第三部分:光电器件与应用1. 光电器件的分类和特性光电器件包括光敏电阻、光电二极管、光电晶体管、光电倍增管等,光电师需要深入了解这些器件的分类、特性和工作原理。

2. 光电器件的应用光电器件在光通信、光学成像、光谱分析、光电传感等方面有广泛的应用,光电师需要了解这些应用领域的需求和技术要求。

3. 光电器件的研发和制造光电师需要了解光电器件的研发和制造流程,包括光电器件的设计、加工、测试和封装等方面的知识。

第四部分:光电系统集成与优化1. 光电系统集成技术光电系统集成技术是光电师工作中非常重要的技术,需要深入了解光电器件的选择、配置、连接、控制等方面的知识。

2. 光电系统优化技术光电系统优化技术是光电师工作中必不可少的技术,需要了解光电系统的性能、效率、稳定性等方面的优化方法。

光电检测技术总结

光电检测技术总结

●辐射度量与光度量的区别:辐射度量与光度量。

辐射度量是物理(或客观)的计量方法,它适用于整个电磁辐射谱区,对辐射量进行物理的计量;光度量是生理(或主观)的计量方法以人眼所能见到的光对大脑的刺激程度来对光进行计量的方法,只适用于可见光谱区域,是对光强度的主观评价。

●凡高于绝对零度的物体都要进行热辐射。

●半导体特性:⑴半导体的电阻温度系数一般是负的,它对温度的变化非常敏感。

⑵半导体的导电性能可能受极微量杂质的影响而发生十分显著的变化。

⑶半导体的导电能力及性质会受热、光、电、磁等外界作用的影响而发生非常重要的变化。

●P、N型半导体特点:在N型半导体中,电子为多数载流子;在P型半导体中,空穴为多数载流子●扩散:载流子因浓度不均匀,无规则热运动而发生的从浓度高的点向浓度低的点运动。

漂移:载流子在外电场的作用下,电子向正电极方向运动,空穴向负电极方向运动称为漂移。

●当光照射到物体上使物体发射电子、或导电率发生变化、或产生光电动势等,这种因光照而引起物体电学特性的改变统称为光电效应。

可归纳为两大类⑴物体受光照后向外发射电子的现象称为外光电效应⑵物体受到光照后所产生的光电子只在物质内部运动,而不会逸出物体外部的现象称为内光电效应●光电导效应是指半导体受光照射后,其内部产生光生载流子,使半导体中载流子数显著增加而电阻减小的现象●光生伏特效应是光照使不均匀半导体或均匀半导体中光生电子和空穴在空间分开而产生电位差的现象●光电发射效应:光敏物质吸收光子后,被激发的电子能逸出光敏物质的表面而在外电场的作用下形成光子流●响应度是光电检测器件输出信号与输入辐射功率之间关系的度量。

描述的是光电探测器件的光—电转换效能●信噪比(S/N)判断噪声大小常用的参数。

它是在负载电阻上产生的信号功率与噪声功率之比●噪声等效功率(NEP)定义为信噪比为1时,入射到探测器上的辐射通量●探测率D与归一化探测率D *探测率D 定义为噪声等效功率的倒数;归一化探测率D*●光电发射材料应具备的条件⑴光吸收系数大;⑵光电子在体内传输过程中受到的能量损失小,使其逸出深度大;⑶表面势垒低,使表面逸出几率大●光电倍增管的基本结构与原理:光电倍增管主要由光入射窗、光电阴极、电子光学系统、二次发射倍增系统及阳极等部分组成;工作原理1、光子透过入射窗入射到光电阴极K上。

光电知识点总结

光电知识点总结

光电知识点总结光电技术是一门涉及光和电的交叉学科,主要研究光和电能量之间的相互转换和作用规律。

光电技术涉及到光电器件的设计、制造和应用,涵盖了光电转换、光电检测、光电调制等方面的内容。

光电技术已经成为现代科技发展的重要领域,在通讯、医疗、能源、环境等领域都有着广泛的应用。

一、光电效应1. 光电效应概述光电效应是指材料受到光照射后,发生电子的发射、传输或者输运现象的过程。

光电效应包括外光电效应和内光电效应两种。

外光电效应是指光照射在材料表面,引起材料表面电子的发射,产生光电流现象;内光电效应是指光照射在材料内部,通过光生载流子(电子-空穴对)的发生,从而产生光电流。

2. 外光电效应外光电效应是指光照射在金属或半导体表面时,引起金属或半导体表面电子的发射,产生光电流现象。

外光电效应是实现光电转换的关键过程,应用广泛。

3. 内光电效应内光电效应是指在光照射下,材料内部的电子-空穴对的产生和输运过程。

内光电效应是光电器件的工作原理,包括光电二极管、太阳能电池等。

二、光电器件1. 光电二极管光电二极管是一种能够将光信号转化为电信号的光电转换器件。

光电二极管分为光电探测二极管和光发射二极管两种。

光电探测二极管是将光信号转化为电信号的光电器件,主要应用于光通信、光电传感等领域。

光发射二极管是将电信号转化为光信号的光电器件,主要应用于光通信、显示屏等领域。

2. 光电场效应器件光电场效应器件是一种基于光电效应的半导体器件,主要包括光电场效应晶体管、光电场效应器件。

光电场效应器件主要应用于光电调制、光电开关等领域。

3. 太阳能电池太阳能电池是一种将太阳能转化为电能的光电转换器件,是目前能源领域的热门技术之一。

太阳能电池主要包括单晶硅太阳能电池、多晶硅太阳能电池、非晶硅太阳能电池等。

4. 光电晶体管光电晶体管是一种能够实现光电转换的半导体器件,是现代光电器件中最重要的一种。

光电晶体管主要应用于光电检测、光电调制、光电放大等领域。

光电检测技术总结

光电检测技术总结

定义:一类能够输出图像信息(图像或视频信号)的 功能器件,也称为光电图像传感器 。 分类:直视型、摄像型。


直视型光电成像器件 具有图像的转换、增强、显示等功能部 件和高真空管壳,通常简称为像管。 摄像型光电成像器件 将二维空间的光强分布(光学图像)转 换为一维时序电信号,不直接输出图像(只有对时序电信号 进行再处理后才可获得目标图像)。
光电检测技术


检测与测量 光电传感器:

基于光电效应,将光信号转换为电信号的一种光电器件 将非电量转换为与之有确定对应关系的电量输出。

光电检测技术:是利用光电传感器实现各类检测。它将被
测量转换成光通量,再将光通量转换成电量,并综合利用信息 传送技术和处理技术,完成在线和自动测量

光电检测系统
像管成像物理过程


1.辐射图像的光电转换: 利用外光电效应.光敏面采用光电发射型材料.发射的 电子流分布正比于人射的辐射通量分布.由此完成辐射 图像转换为电子图像的过程. 2.电子图像增强: 电场加速 或微通道板中二次电子发射. 3电子图像的发光显示 高能电子轰击荧光屏,发出可见光.
光电导效应

定义:光照变化引起半导体材料电导变化的现 象。
——内光电效应

内光电效应产生的自由电子停留在物体内部, 不发生电子逸出。
器件:光敏电阻、由光敏电阻制作的光导管。
分类:本征光电导效应与杂质光电导效应
光敏电阻


利用半导体光电导效应制成的器件称为光电导 器件,也称光敏电阻。 光敏电阻材料:主要是硅、锗和化合物半导体, 例如:硫化镉(CdS),锑化铟(InSb)等。



基本功能:根据自然 光的情况决定是否开 灯。 基本结构:整流滤波 电路;光敏电阻及继 电器控制;触电开关 执行电路 基本原理:光暗时, 光敏电阻阻值很高, 继电器关,灯亮;光 亮时,光敏电阻阻值 降低,继电器工作, 灯关。

光电检测技术

光电检测技术

光电检测技术摘要:光电检测技术是一种利用光电效应来检测和测量物体的技术。

本文将介绍光电检测技术的原理和应用领域,探讨光电检测技术的优势和局限,并展望其未来发展方向。

第一部分:光电检测技术的原理1.1 光电效应的基本原理光电效应是指当光照射到特定材料表面时,产生光电子和电子的释放现象。

光电效应包括光电发射效应和光电吸收效应两种情况。

在光电检测技术中,一般利用光电发射效应来实现光电测量。

1.2 光电检测元件在光电检测技术中,常用的光电检测元件包括光电二极管、光敏电阻、光电倍增管等。

这些元件能够将光信号转化为电信号,并进行相应的电路处理。

1.3 光电检测技术的基本原理光电检测技术利用光电效应的原理,将光信号转化为电信号,并通过电路处理和分析得到所需的测量结果。

光电检测技术可以实现对光强度、光功率、光频率等参数的测量。

第二部分:光电检测技术的应用领域2.1 工业自动化光电检测技术在工业自动化领域中有广泛的应用。

例如,光电传感器可以用于检测物体的位置、速度和形状等信息,从而实现对生产流程的控制和优化。

2.2 无损检测光电检测技术可以用于无损检测领域,例如对材料的缺陷、组织结构和磨损程度进行检测和分析,从而提高材料的品质和可靠性。

2.3 生物医学在生物医学领域中,光电检测技术可以用于血氧测量、生物分子测量、细胞成像等应用。

例如,光电子学显微镜可以观察和研究微观生物结构。

2.4 环境监测光电检测技术在环境监测领域中被广泛应用。

例如,光电二极管可以用于光强度的测量,从而监测光照强度对环境的影响。

第三部分:光电检测技术的优势和局限3.1 优势光电检测技术具有响应速度快、精度高、可靠性强等优点。

光电检测元件体积小,可放置在狭小的空间中,并能耐受高温和高压等恶劣环境。

3.2 局限光电检测技术在进行远距离测量和透明物体测量时存在一定的局限。

此外,光电检测技术的应用受到光照强度和环境噪声等因素的影响。

第四部分:光电检测技术的未来发展方向随着科技的不断进步,光电检测技术将会在以下几个方面得到进一步发展:4.1 小型化和集成化光电检测元件将趋向于小型化和集成化,以适应小型化和高性能化的设备和系统要求。

光电检测课程总结

光电检测课程总结

1.光电检测技术的特点高精度:从地球到月球激光测距的精度达到1米。

高速度:光速是最快的。

远距离、大量程:遥控、遥测和遥感。

非接触式检测:不改变被测物体性质的条件下进行测量。

寿命长:光电检测中通常无机械运动部分,故测量装置寿命长,工作可靠、准确度高,对被测物无形状和大小要求。

数字化和智能化:强的信息处理、运算和控制能力。

2.简述本征吸收、杂质吸收。

本征吸收:电子从价带激发到导带引起的吸收称为本征吸收, 当一定波长的光照射到半导体上时,电子吸收光后能从价带跃迁入导带,显然,要发生本征吸收,光子能量必须大于半导体的禁带宽度Eg。

杂质吸收:由光纤材料的不纯净而造成的附加吸收损耗(二章38-43)3.外光电效应、内光电效应、光伏效应外光电效应:固体受光照后从其表面逸出电子的现象称为光电发射效应或外光电效应。

当金属或半导体受到光照射时,其表面和体内的电子因吸收光子能量而被激发,如果被激发的电子具有足够的能量,足以克服表面势垒而从表面离开,产生了光电子发射效应。

被光逸出的电子称为光电子,基于外光电效应的光电器件有光电管、光电倍增管等。

内光电效应:物质受到光辐射的作用后,内部电子能量状态产生变化,但不存在表面发射电子的现象。

(二章57)光伏效应:又称光生伏特效应,是指由内建电场形成势垒,此势垒将光照产生的电子空穴对分开,从而在势垒两侧形成电荷堆积,产生光生电动势的效应。

(二章91-112)4.简述光电探测器的特性参数。

响应特性、噪声特性、量子效率、线性度、工作温度响应度(或称灵敏度):是光电探测器输出信号与输入光功率之间关系的量度。

描述的是光电探测器件的光电转换效率(响应度是随入射光波长变化而变化的,响应度分电压响应率和电流响应率)[电压响应度:光电探测器件输出电压与入射光功率之比;电流响应度:光电探测器件输出电流与入射光功率之比;光谱响应度:探测器在波长为λ的单色光照射下,输出电压或电流与入射的单色光功率之比;积分响应度:检测器对各种波长光连续辐射量的反应程度;响应时间:响应时间τ是描述光电探测器对入射光响应快慢的一个参数(上升时间:入射光照射到光电探测器后,光电探测器输出上升到稳定值所需要的时间。

光电专业必学知识点总结

光电专业必学知识点总结

光电专业必学知识点总结第一,光电基础知识:光电技术是用光来传输、处理信息,其基础知识包括光波特性、光学成像、光的干涉和衍射等。

在这部分的学习中,学生需要了解光的波粒二象性、光的传播特性、光的相互作用等基本概念,同时还需要学习光的成像原理、光的干涉和衍射现象等内容。

第二,光电器件与器件制造技术:光电器件是光电技术的核心部分,它包括光电二极管、光电晶体管、光电探测器等。

在这部分的学习中,学生需要了解不同光电器件的结构和工作原理,以及光电器件的性能参数和制造工艺。

此外,还需要学习光电器件的测试方法和应用技术。

第三,光电传感技术:光电传感技术是一种重要的感知技术,它包括光电传感器的种类、工作原理、应用领域以及实际应用案例等内容。

在这部分的学习中,学生需要了解各种光电传感器的结构和特点,以及光电传感技术在工业自动化、环境监测、智能交通等方面的应用。

第四,光电测量与控制技术:光电测量与控制技术是一种重要的检测和控制技术,它包括光电仪器的种类、工作原理、精度和分辨率等。

在这部分的学习中,学生需要了解光电仪器的设计和校准原理,以及光电测量与控制技术在精密测量、自动化控制、医学影像等方面的应用。

第五,光电信息处理技术:光电信息处理技术是一种重要的信息处理技术,它包括光电数字转换技术、光电信号处理技术、光电成像技术等。

在这部分的学习中,学生需要了解光电信息处理技术的基本原理、算法和硬件实现,以及光电信息处理技术在通信、图像处理、光纤传感等方面的应用。

第六,光电系统集成技术:光电系统集成技术是一种重要的系统集成技术,它包括光电器件的组装、调试和测试技术,以及光电系统的设计和优化方法。

在这部分的学习中,学生需要了解光电系统集成技术的基本原理和技术,以及光电系统集成技术在通信网、光学仪器等领域的应用及发展趋势。

以上是光电专业的一些必学知识点总结,其中所涉及到的内容十分庞杂,学生需要在学习光电专业的过程中注重理论知识与实践技能的结合,不断提升自己的动手能力和创新能力,为今后在光电领域的发展和应用做好充分的准备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电检测与技术知识点总结
一、光电检测基础知识
1. 光电效应:光子射入物质时,将能量传递给物质,或者将物质中的粒子激发出来。

前者称为光吸收,后者称为光发射。

2. 光电效应分类:外光电效应、内光电效应和光热效应。

3. 光电效应的应用:光电管、光电倍增管、光电摄像管等。

二、光电检测技术基础
1. 光电检测器的分类:根据工作原理,可分为外光电效应检测器、内光电效应检测器和光热效应检测器。

2. 光电检测器的工作特性:光谱响应、频率响应、线性范围、探测率和噪声等。

3. 常用光电检测器:光电二极管、光电晶体管、光电池、光电倍增管等。

三、光电检测系统
1. 光电检测系统的基本组成:光源、被测物、光电检测器、信号处理电路和显示设备。

2. 光电检测系统的应用:测量长度、测量角度、测量速度、测量温度等。

3. 光电检测系统的误差来源:光源的不稳定性、光学系统的误差、探测器噪声和信号处理电路的误差等。

四、常用光电检测技术
1. 红外线检测技术:利用红外线的热效应,可以测量物体的温度和辐射功率。

红外线传感器有热敏电阻、热电偶等。

2. 激光雷达技术:利用激光的反射和散射,可以测量物体的距离和形状。

常用的激光雷达有脉冲式和连续波式两种。

3. 光纤传感器技术:利用光纤的传光特性,可以测量物体的位移、压力和温度等物理量。

光纤传感器有折射率型、光强调制型和光相位调制型等。

4. 图像传感器技术:利用图像传感器将光学图像转换为电信号,可以测量物体的尺寸和形状。

常用的图像传感器有CCD和CMOS两种。

5. 色彩传感器技术:利用色彩传感器测量物体的颜色和色差,可以应用于颜色识别和颜色检测等方面。

常用的色彩传感器有RGB和CMYK两种。

相关文档
最新文档