水的动力粘度与温度对照表
水的粘度与温度的关系对照表

水的粘度与温度的关系对照表
水的粘度是它分子间的相互作用力以及分子间距离的影响。
随着温度的升高,水分子之间的作用力减弱,分子间的距离变大,这会导致水的粘度减小。
下表的数据显示了粘度和温度之间的相关性:| 水的温度 | 水的粘度 |
| :---: | :---: |
| 0℃ | 1.794mPa|s |
| 10℃ | 1.002mPa|s |
| 15℃ | 0.890mPa|s |
| 20℃ | 0.794mPa|s |
| 25℃ | 0.711mPa|s |
从上表中可以看出,随着温度的升高,水的粘度逐渐降低,这是由于水分子在高温下逐渐分散,相互之间的作用力变弱,水分子之间的距离变大,因此水的粘度减小了。
粘度在普通条件下水的粘度是 1.794mPa|s,当水的温度升到10℃时,水的粘度降低到1.002mPa|s,水的粘度还会继续降低,到15℃和20℃,它的粘度减少到0.890mPa|s和0.794mPa|s;再到25℃时,水的粘度还会再次减少到0.711mPa|s。
因此,我们清楚地可以看到,随着温度的升高,水的粘度也会随之降低,这是由于水的分子在高温下,会减弱它们之间的作用力和距离,从而导致水的粘度也会变得更低。
水的粘度计算表-水的动力粘度计算公式

水的黏度表(0〜40 C)水的物理性质F3 Viscosity decreases with p ressure(at temp eratures below 33Water's p ressure-viscosity behavior [534] can be explained by the in creased p ressure (up to about 150 MPa) caus ing deformatio n, so reduci ng the stre ngth of the hydroge n-bon ded n etwork, which is also p artially res pon sible for the viscosity. This reduct ion in cohesivity more tha n compen sates for the reduced void volume. It is thus a direct con seque nee of the bala nee betwee n hydroge n bonding effects and the van der Waals dis persion forces [558] in water; hydroge n bonding p revaili ng at lower temp eratures and p ressures. At higher p ressures (and den sities), the bala nee betwee n hydroge n bonding effects and the van der Waals dis persi on forces is tipped in favor of the dis persion forces and the rema ining hydroge n bonds are stron ger dueViscous flow occurs by molecules movi ng through the voids that exist betwee n them. As the p ressure in creases, the volume decreases and the volume ofthese voids reduces, so no rmally in creas ing p ressure in creases the viscosity.|:|k-二 _r 13ireSC去*. i i screr- 丁" \ . / . 一 '气:rJ J:V .; r "舄■ 3 口二K nPV ■■L T 三n 曲 •■ 5 M r丐 町寸 -;J 百* "T N ; 【I bl■呻口 " 口寸津a “ d c i 0 290八rao 800 i wooPressure, MPa g亠C)Co©4— □]J%一MJs」气1□ u古气 a15•” ”〕阳"1■ \■ID% ;:s' ¥口『 屮n◎ 9 r奇* =' f f- ::[丄 备IT记|B - 3 D■i电-'uO丰759勺;】I -一 11 L. Pto the closer p roximity of the con tribut ing oxyge n atoms [655]. Viscosity, the n, in creases with p ressure. The dashed line (opp osite) in dicates the viscosity mi ni ma.1 .a』IflOXThe variati on of viscosity with p ressure and temp erature has bee n used as evide neethat the viscosity is determ ined more by the exte nt of hydroge n bonding rather tha nhydroge n bonding stre ngth.Self-diffusio n is also affected by p ressure where (at low temp eratures) both the tran slatio nal and rotati onal moti on of water ano malously in crease as the p ressure in creases.1血200 oPr^sure ; MPa 75X、” _50^ 山:30°C 20弋5'10X2.2 X51 ---- 护乞fOr,QR 牡m 护,/a"-1- yiy二 h--------- 0c ,宀;:u 占14^ra_ 7^6^-*=0。
水的粘度计算表

水的黏度表(0~40℃)水的物理性质F3??? Viscosity decreases with pressure(at temperatures below 33°C)Viscous flow occurs by molecules moving through the voids that exist between them. As the pressure increases, the volume decreases and the volume of these voids reduces, so normally increasing pressure increases the viscosity.Water's pressure-viscosity behavior [534] can be explained by the increased pressure (up to about 150 MPa) causing deformation, so reducing the strength of the hydrogen-bonded network, which is also partially responsible for the viscosity. This reduction in cohesivity more than compensates for the reduced void volume.It is thus a direct consequence of the balance between hydrogen bonding effects and the van der Waals dispersion forces [558] in water; hydrogen bonding prevailing at lower temperatures and pressures. At higher pressures (and densities), the balance between hydrogen bonding effects and the van der Waals dispersion forces is tipped in favor of the dispersion forces and the remaining hydrogen bonds are stronger due to the closer proximity of the contributing oxygen atoms [655]. Viscosity, then, increases with pressure. The dashed line (opposite) indicates the viscosity minima.The variation of viscosity with pressure and temperature has been used as evidence that the viscosity is determined more by the extent of hydrogen bonding rather than hydrogen bonding strength.Self-diffusion is also affected by pressure where (at low temperatures) both the translational and rotational motion of water anomalously increase as the pressure increases.。
水的粘度计算表

水的黏度表(0~40℃)水的物理性质F3??? Viscosity decreases with pressure(at temperatures below 33°C)Viscous flow occurs by molecules moving through the voids that exist between them. As the pressure increases, the volume decreases and the volume of these voids reduces, so normally increasing pressure increases the viscosity.Water's pressure-viscosity behavior [534] can be explained by the increased pressure (up to about 150 MPa) causing deformation, so reducing the strength of the hydrogen-bonded network, which is also partially responsible for the viscosity. This reduction in cohesivity more than compensates for the reduced void volume. It is thus a direct consequence of the balance between hydrogen bonding effects and the van der Waals dispersion forces [558] in water; hydrogen bonding prevailing at lower temperatures and pressures. At higher pressures (and densities), the balance between hydrogen bonding effects and the van der Waals dispersion forces is tipped in favor of the dispersion forces and the remaining hydrogen bonds are stronger due to the closer proximity of the contributing oxygen atoms [655]. Viscosity, then, increases with pressure. The dashed line (opposite) indicates the viscosity minima.The variation of viscosity with pressure and temperature has been used as evidence that the viscosity is determined more by the extent of hydrogen bonding rather than hydrogen bonding strength.Self-diffusion is also affected by pressure where (at low temperatures) both the translational and rotational motion of water anomalously increase as the pressure increases.。
海水的运动粘度系数表

海水的运动粘度系数表1. 什么是运动粘度系数运动粘度系数是描述流体内部粘滞阻力大小的物理量,通常用符号μ表示,单位是帕斯卡秒(Pa·s)或毫帕秒(mPa·s)。
运动粘度系数越大,流体的黏稠度越高,流动阻力越大。
2. 海水的运动粘度系数海水是一种复杂的液体,其运动粘度系数会随着温度、盐度等因素的变化而发生改变。
下表列出了不同温度和盐度下海水的运动粘度系数范围:温度(℃)盐度(‰)运动粘度系数(mPa·s)0 0 1.79 - 1.7910 0 1.31 - 1.3120 0 1.00 - 1.0030 0 0.80 - 0.800 30 2.03 - 2.0310 30 1.50 - 1.5020 30 1.14 - 1.1430 30 0.91 - 0.910 60 2.29 - 2.2910 60 1.68 - 1.6820 60 1.28 - 1.2830 60 1.02 - 1.023. 温度对海水运动粘度系数的影响从表中可以看出,海水的运动粘度系数随着温度的升高而减小。
这是因为温度升高会增加海水分子的热运动能量,使得分子间的相互作用减弱,流体黏稠度降低,运动粘度系数减小。
4. 盐度对海水运动粘度系数的影响盐度是指海水中溶解的盐类的含量。
从表中可以看出,随着盐度的增加,海水的运动粘度系数也会增加。
这是因为盐离子的存在增加了海水分子间的相互作用力,导致流体黏稠度增加,运动粘度系数增大。
5. 海水运动粘度系数的应用海水的运动粘度系数是海洋科学研究中重要的物理参数之一。
它可以用于海洋流体力学模型的建立和海洋环境模拟。
例如,在海洋工程中,需要考虑海水的运动粘度系数来计算水流对结构物的作用力;在海洋油气勘探中,需要考虑海水的运动粘度系数来模拟油气在海水中的运动行为。
6. 海水运动粘度系数的测量方法测量海水的运动粘度系数可以使用旋转式黏度计或滴定法等方法。
旋转式黏度计是一种常用的测量流体黏稠度的仪器,通过旋转圆柱体或球体来测量流体的黏稠度,从而得到运动粘度系数。
水的粘度计算表

水的黏度表(0~40℃)水的物理性质F3??? Viscosity decreases with pressure(at temperatures below 33°C)Viscous flow occurs by molecules moving through the voids that exist between them. As the pressure increases, the volume decreases and the volume of these voids reduces, so normally increasing pressure increases the viscosity.Water's pressure-viscosity behavior [534] can be explained by the increased pressure (up to about 150 MPa) causing deformation, so reducing the strength of the hydrogen-bonded network, which is also partially responsible for the viscosity. This reduction in cohesivity more than compensates for the reduced void volume. It is thus a direct consequence of the balance between hydrogen bonding effects and the van der Waals dispersion forces [558] in water; hydrogen bonding prevailing at lower temperatures and pressures. At higher pressures (and densities), the balance between hydrogen bonding effects and the van der Waals dispersion forces is tipped in favor of the dispersion forces and the remaining hydrogen bonds are stronger due to the closer proximity of the contributing oxygen atoms [655]. Viscosity, then, increases with pressure. The dashed line (opposite) indicates the viscosity minima.The variation of viscosity with pressure and temperature has been used as evidence that the viscosity is determined more by the extent of hydrogen bonding rather than hydrogen bonding strength.Self-diffusion is also affected by pressure where (at low temperatures) both the translational and rotational motion of water anomalously increase as the pressure increases.。
海水粘度密度与温度对照表

海水粘度密度与温度对照表海水是地球上最丰富的水资源之一,它的性质和特点对于海洋科学、工程建设以及生物生态系统都具有重要影响。
海水的粘度和密度是其中两个重要的物理性质,它们与海水的温度密切相关。
本文将通过一个对照表的形式,详细介绍海水粘度密度与温度之间的关系。
一、海水粘度与温度的关系粘度是液体内部阻力的量度,衡量了液体的黏性和黏度。
海水的粘度与其温度呈正相关关系,即温度升高时,海水的粘度也随之增加。
以下是海水粘度与温度的对照表:温度(℃)粘度(mPa·s)0 1.795 1.3110 1.0415 0.8720 0.7425 0.6530 0.57从对照表中可以清晰地看出,海水的粘度随着温度的升高而减小,这与一般液体的变化规律相反。
这是因为海水的组分复杂,其中所含的盐类和溶解气体对其粘度产生了影响。
二、海水密度与温度的关系密度是描述物质质量与体积关系的物理量,它对于海洋的水文学和海洋学研究非常重要。
海水的密度与其温度呈负相关关系,即温度升高时,海水的密度逐渐减小。
以下是海水密度与温度的对照表:温度(℃)密度(g/cm³)-2 1.0350 1.0255 1.01910 1.01315 1.00720 1.00125 0.99530 0.989从对照表中可以看出,海水的密度随着温度的升高而减小。
这是因为在高温下,海水中的水分子具有更高的动能,分子之间的间距相对增大,导致单位体积海水中所含的质量减小,从而使得海水的密度降低。
三、海水的粘度密度与海洋科学的应用海水的粘度和密度是许多海洋科学研究的重要参数。
举例而言,粘度与流体动力学密切相关,对于海洋工程设计和海洋运输有重要意义。
密度则是地球物理学和海洋学中常用的物理变量,它用于研究海洋循环、海洋混合、水团形成以及海水密度梯度对生物分布等方面的影响。
总结:海水的粘度与温度呈正相关关系,而密度与温度呈负相关关系。
这种关系对于理解海洋环境和开展海洋科学研究至关重要。
水的粘度计算表

水的黏度表(0~40℃)水的物理性质F3 Viscosity decreases with pressure (at temperatures below 33°C)Viscous flow occurs by molecules moving through the voids that exist between them. As the pressure increases, the volume decreases and the volume of these voids reduces, so normally increasing pressure increases the viscosity.Water's pressure-viscosity behavior [] can be explained by the increased pressure (up to about 150 MPa) causing deformation, so reducing the strength of the hydrogen-bonded network, which is also partially responsible for the viscosity. This reduction in cohesivity more than compensates for the reduced void volume. It is thus a direct consequence of the between hydrogen bonding effects and the van der Waals dispersion forces [] in water; hydrogen bonding prevailing at lower temperatures and pressures. At higher pressures (and densities), the between hydrogen bonding effects and the van der Waals dispersion forces is tipped in favor of the dispersion forces and the remaining are stronger due to the closer proximity of the contributing oxygen atoms []. Viscosity, then, increases with pressure. The dashed line (opposite) indicates the viscosity minima.The variation of viscosity with pressure and temperature has been used as evidence that the viscosity is determined more by the extent of hydrogen bonding rather than hydrogen bonding strength.Self-diffusion is also affected by pressure where (at low temperatures) both the translational and rotational motion of water anomalously increase as the pressure increases.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水的动力粘度与温度对照表
表:水的动力粘度与温度对照
① 0℃时:动力粘度为:1.7989×10-3 PXa.s
② 15℃时:动力粘度为:1.0037×10-3 PXa.s
③ 30℃时:动力粘度为:0.588×10-3 PXa.s
④ 50℃时:动力粘度为:0.334×10-3 PXa.s
⑤ 70℃时:动力粘度为:0.1956×10-3 PXa.s
⑥ 90℃时:动力粘度为:0.1144×10-3 PXa.s
水是自然界最常用的液体物质,在生物的各个过程中起着至关重要的
作用。
动力粘度是温度对水流动粘度的表现,对于农业水利、机械工程、液压传动及温度传递设备等工业部门都有很重要的意义。
以下是
水的动力粘度与温度间的对照表:
以0℃为基准,其动力粘度为1.7989×10-3 PXa.s;水的温度升高到15℃时,其动力粘度会变成1.0037×10-3 PXa.s;当水的温度升高到30℃时,
动力粘度变成0.588×10-3 PXa.s;随着水的温度继续上升到50℃时,其动力粘度变成0.334×10-3 PXa.s;继续往上加温至70℃时,动力粘度会变成0.1956×10-3 PXa.s;最后在90℃时,动力粘度变成0.1144×10-3 PXa.s。
根据此表可知,随着温度的升高,水的动力粘度呈现出逐渐减弱的趋势,其中升高每10℃温度所引起的动力粘度变化差值可以逐步趋于0.66X×10-3 PXa.s。
因此,水的动力粘度的变化受温度的大幅影响,只有准确地测量了水的温度,才能够准确测量出水的动力粘度。
而温度这一因素也是一些水利建设及机械设备运行过程中必不可少程度的一种因素。
因此,为了更好地推进水利建设、机械设备发展,以及各类水流体运行过程,研究者们必须更精确准确地测量及分析水的温度及动力粘度间的关系。
从而有效帮助行业研发各类新技术新产品,完善与推进一系列传统的行业技术。