激光器技术的应用现状及发展趋势讲解
激光测距技术研究现状及发展趋势

激光测距技术研究现状及发展趋势单位省市:陕西省咸阳市单位邮编:712000摘要:激光测距技术是一种通过计算激光束从发射源发射到目标物体并返回的时间或测量激光光束传播的相位差来确定目标物体与测距设备之间距离的高精度测量技术。
由于其高精度、快速测量速度和非接触性等特点,激光测距技术广泛应用于工业制造、航天航空、自动驾驶、环境测绘和安防监控等领域。
随着科技的不断进步和创新,激光测距技术正不断发展。
本文旨在探讨激光测距技术的研究现状和未来发展趋势,以便更好地了解该技术在不同领域中的应用和潜力,促进激光测距技术的进一步发展和应用。
关键词:激光测距技术;现状;发展趋势1激光测距技术1.1基本原理激光测距技术基于激光的特性进行测量,主要依靠测量激光束传播时间或激光光束的相位差来确定目标物体与测距设备之间的距离。
激光脉冲经过发射器发射后,通过光学系统聚焦到目标物体上,并被目标物体反射回测距设备。
通过测量激光脉冲从发射到接收的时间差或测量激光光束的相位差,可以准确计算出目标物体的距离。
1.2主要技术①飞行时间法飞行时间法是一种常见的激光测距技术,通过测量激光脉冲从发射到接收的时间差来计算距离。
根据光速恒定的原理,测量出激光脉冲往返的时间即可得到目标物体的距离。
②相位差法相位差法利用测量激光光束传播过程中的相位差来计算目标物体的距离。
通过比较参考波与待测波的相位差,可以精确计算出目标物体与测距设备之间的距离。
③三角法三角法利用三角计算原理进行测距,通过测量激光光束的方向和角度,结合目标物体的位置信息,利用三角关系计算出目标物体与测距设备之间的距离。
2激光测距技术在工业制造中的应用2.1 工业自动化控制激光测距技术可以用于工业自动化控制中,对生产线上的物品进行快速、高精度的测量,并将测量数据反馈给控制系统,实现自动化控制。
例如,在汽车制造中,激光测距技术可以对车身进行快速、高精度的测量,以确保车身的尺寸和形状符合设计要求。
激光加工技术的应用及未来发展趋势

激光加工技术的应用及未来发展趋势激光加工技术是目前应用最广泛的高精度、高效率加工技术之一,在诸多领域发挥着重要的作用。
本文将从激光加工技术的应用、现状及未来发展趋势等方面展开分析讨论。
一、激光加工技术的应用激光加工技术的应用范围非常广泛,主要涵盖以下几个方面:1. 材料切割。
激光切割技术被广泛应用于金属、非金属材料的加工中,如通过对金属板材进行激光切割,可以高效地完成各种金属零件的制作。
2. 焊接。
激光焊接技术被广泛应用于汽车、机械、电子、航空等诸多领域,可以完成各种材料的高精度焊接,提高了产品的质量和生产效率。
3. 雕刻。
激光雕刻技术是目前应用最广泛的激光加工技术之一,被广泛应用于玉石、皮革、木材、彩金等材料的加工。
4. 理疗医疗。
激光技术在医疗领域应用的最为广泛的领域是激光治疗、激光手术、激光检测等。
二、激光加工技术的现状当前,激光加工技术已经成为了高精度、高效率的加工方法之一。
随着工业加工需求的不断增长,激光加工技术的应用范围也在不断扩大,其应用领域和发展方向也更加多样化。
目前,激光加工技术在中国的应用也非常广泛,尤其在汽车、航空、机械、电子、建筑等领域,激光加工技术的应用已经成为一种趋势。
虽然激光加工技术已经有了广泛的应用,但目前激光加工技术面临的问题也不容忽视。
例如,激光加工过程中的废气处理和粉尘处理问题、激光加工机器的成本昂贵等问题。
三、激光加工技术的未来发展趋势随着科技的不断进步,激光加工技术的应用前景也越来越广阔。
未来,激光加工技术的应用领域还将不断拓展,同时优化激光加工设备也将成为厂家竞争的重点。
未来激光加工技术的发展趋势主要体现在以下几个方面:1. 优化设备、成本更低。
未来的激光加工机将更加高效、便捷,操作起来更加人性化。
同时,通过技术革新和成本的降低,未来激光加工设备的成本会不断被压缩,这对于提高激光加工技术的普及和应用来说非常重要。
2. 更加精细化和智能化。
未来激光加工技术将更加智能化,加工精度将得到更大的提高。
未来激光产业发展趋势

未来激光产业发展趋势未来激光产业发展趋势激光技术作为一种重要的新兴科技,已经在各个领域中得到广泛应用。
随着科技的不断进步和人们对高效、安全、环保的需求不断增加,激光技术的应用前景也变得更加广阔。
未来,激光产业将会以更快的速度发展,呈现出以下几个趋势:一、市场规模不断扩大激光技术可以应用于工业制造、通信、医疗、军事、航天等多个领域,其市场潜力巨大。
随着人们对半导体、电子产品、汽车、航空航天等高科技产品需求的增加,激光技术的市场规模也将不断扩大。
根据市场研究机构的预测,全球激光产业市场规模将从2019年的约400亿美元增长到2025年的约700亿美元,年复合增长率可达到7%以上。
二、激光设备技术不断创新未来,激光设备技术将会不断创新,以满足市场需求。
在工业应用领域,人们对加工速度、精度、质量和稳定性的要求越来越高,激光切割、激光焊接、激光打印等设备将会更加智能化、高效化。
同时,激光技术的应用领域也将不断拓宽,比如在医疗领域,激光设备可以用于肿瘤治疗、皮肤美容等方面,未来激光设备将成为医疗器械中不可或缺的一部分。
三、激光器的发展趋势激光器是激光技术的核心部件,对于激光产业的发展起着至关重要的作用。
未来,激光器的发展趋势主要包括以下几个方面:1. 功率提升:随着对激光器功率需求的不断增加,激光器的功率将会不断提高。
高功率激光器将广泛应用于工业材料加工、航天、军事等领域。
2. 尺寸缩小:目前激光器在一些领域中的应用受到体积限制,未来激光器的尺寸将会进一步缩小,以满足微型化、便携化的需求。
3. 高效率:随着能源环保意识的提高,人们对于激光器的能源效率也提出了更高要求。
未来的激光器将会更加高效,能够更好地利用能源,减少能源浪费。
四、激光通信技术的发展通过激光进行通信可以实现更高速率、更安全的数据传输。
随着互联网的普及和数据传输的需求不断增加,激光通信技术将会有更大的应用前景。
激光通信技术可以用于卫星通信、无线通信、海底光缆通信等多个领域,并可以实现更远距离、更稳定、更高效的通信。
激光技术的发展与应用

激光技术的发展与应用激光技术是一种强大的工具,被广泛应用于科学、医学、工业和军事领域,它的独特性质使得它成为了现代技术中不可或缺的一部分。
本文将会讨论激光技术的发展历程,以及它在不同领域中的应用。
激光技术的发展历程激光技术最早由美国物理学家泰奇·豪斯(Theodore Maiman)于1960年发明,他使用了一种半导体材料来制造激光器,并建造了世界上第一台完全工作的激光器。
这被认为是激光技术的诞生。
近年来,激光技术得到了极大的发展,不仅材料和电子元件得到了改进,激光器的类型与功能也得到了改进。
随着技术的进步,激光技术已经成为了许多行业中必不可少的工具。
激光技术的应用1. 科学领域激光技术在科学领域中具有广泛的应用,比如光学测量和精密加工。
在这方面,激光技术的应用使得科学家们能够实现最小尺寸范围的研究,也能够对材料进行微小的锯切并研磨,或者在不损害其它部分的情况下将它们限制在某个特定的区域内。
2. 医学领域激光技术在医学领域中也有着广泛的应用,比如激光手术。
激光手术是一种微创手术,它通过激光光束使组织破裂,从而达到治疗效果,这种技术使得手术切口更小、更干净,并且患者恢复速度更快。
激光还可以用于治疗近视、激光去毛和激光焊接等操作。
3. 工业领域激光技术在工业领域中也有着广泛的应用,比如激光切割。
激光切割不但可以进行常规的金属切割,还可以进行复杂的雕刻和拼贴操作,这种方法对于需要精确准确的雕刻和拼贴的行业如电子产业和汽车制造业非常重要。
4. 军事领域激光技术在军事领域中也有着重要的应用,比如制导武器和激光测距。
激光制导武器是利用激光束对目标进行跟踪并指引武器击中目标,这种技术对于高精度的精确打击非常重要。
结论总之,激光技术的应用范围非常广泛,包括科学、医学、工业和军事领域。
虽然激光技术还有很多不足,但它已经成为了当今现代技术中的重要组成部分,并将在未来的发展中扮演更为重要的角色。
激光技术的发展及应用

• 激光切割技术广泛应用于金属和非金属材 料的加工中,可大大减少加工时间,降低加 工成本,提高工件质量。现代的激光成了人 们所幻想追求的“削铁如泥”的“宝剑”。
方向性好---发散角小
l
看似平行的探照灯 (1km时光斑直径10m) 激光器
激光的产生
自然界存在两种不同的发光方式
自发辐射
发光方式
产 生
普通光 激光
受激辐射
产生并加以放大
激光的产生
原子: 原子核、核外电子; 电子在不同的轨道; 不同轨道上电子能 量不同,稳定性不同
激光的产生
E4 E3 E2 E2 E1
粒子数反转状态
E1
激光的产生
E4 E3 粒子数反转状态
E2 E1
激光器的结构
现代激光技术的发展前沿
美国国家点火装置 (简称NIF)
现代激光技术的发展前沿
二、激光化学技术的发展
激光化学技术是用激光来指挥化学反应。因为激 光携带高度集中而均匀的能量,可精确地打在分子的 键上,比如用不同波长的紫外激光,打在硫化氢等分 子上,改变两激光束的相位差,则控制了该分子的断 裂过程,也可利用改变激光脉冲波形的方法,十分精 确和有效的把能量打在分子上,触发某种预期的反应。 激光化学虽然尚处于起步阶段,但前景十分光明。
激光波长分布范围非常窄,颜色极纯.以输出红光的 氦 氖激光器为例.其光的波长分布范围可以窄到2×10-9 纳 米.是氪灯发射的红光波长分布范围的万分之二.
单色性好、颜色极纯
激光灯 ——舞台演出、 歌剧院、 迪厅、 酒吧、 广告等场所
香港维多利亚港湾灯光汇演
2024年中红外激光器市场分析现状

2024年中红外激光器市场分析现状1. 引言中红外激光器是一种重要的激光器技术,在多领域具有广泛应用。
本文旨在分析中红外激光器市场的现状,包括市场规模、市场趋势、市场驱动因素等方面,为激光器产业研究和发展提供有价值的参考。
2. 中红外激光器市场规模中红外激光器市场规模是衡量市场潜力的重要指标。
根据市场调研数据显示,中红外激光器市场在过去几年保持了较快的增长速度。
预计未来几年,中红外激光器市场将继续保持稳定增长,并有望达到XX亿美元规模。
3. 中红外激光器市场趋势3.1 技术发展趋势近年来,中红外激光器技术取得了显著的进展,主要体现在以下几个方面:•提高激光器性能:中红外激光器的功率输出、波长调谐范围等性能指标得到了显著提升,为广泛应用提供了更多可能性。
•降低生产成本:随着技术进步和产业化规模的扩大,中红外激光器的生产成本逐步降低,使其更具竞争力。
•提高可靠性和稳定性:中红外激光器的稳定性和可靠性得到了提高,适用于更多的应用场景。
3.2 市场应用趋势中红外激光器在多个领域都有广泛的应用。
以下为市场应用趋势的几个典型案例:•军事和国防:中红外激光器在军事和国防领域的作用越来越重要,用于红外探测、目标识别和导航等关键任务。
•医疗保健:中红外激光器在医疗保健领域的应用也在不断扩大,被用于激光治疗、检测和成像等方面。
•环境检测:中红外激光器可以用于大气污染监测、烟气排放检测等环境检测应用,有助于改善环境质量。
•通信和数据传输:中红外激光器在光纤通信和数据传输领域也有广泛应用,提供更高的传输速率和更远的传输距离。
4. 市场驱动因素中红外激光器市场的发展离不开多方面的市场驱动因素。
以下为几个重要的市场驱动因素:•技术创新和研发投入:中红外激光器领域的技术创新和研发投入是市场发展的基础,不断推动市场向前发展。
•政府政策支持:政府在激光器领域提供的政策支持和资金扶持对市场发展起到积极作用。
•需求增长与应用拓展:中红外激光器在多个领域的应用需求不断增长,推动了市场的扩大和发展。
2024年激光技术被广泛应用于各领域

激光光谱学的定义和原理 激光光谱学在科研领域的应用 激光光谱学在材料科学中的应用
激光光谱学在生物医学中的应用 激光光谱学在环境科学中的应用 激光光谱学在物理学中的应用
激光冷却技术: 利用激光使原子 冷却到接近绝对 零度的技术
陷俘原子技术: 利用激光将原子 捕获在特定位置 的技术
应用领域:量子 计算、精密测量、 原子钟等
和病变
激光美容的优 势:无创、无 痛、恢复快、
效果显著
激光美容的应 用:去除皱纹、 色斑、疤痕、
纹身等
激光美容的注 意事项:选择 正规医疗机构, 避免不良反应
和并发症
激光诊断的原理:利用激光的 波长、强度、相位等特性进行 诊断
激光诊断的优势:非侵入性、 无痛、快速、准确
激光诊断的应用:包括眼科、 皮肤科、耳鼻喉科等
激光雷达的优势:精度高、 速度快、抗干扰能力强
激光雷达的发展趋势:小型 化、智能化、多功能化
应用:导弹制导、炸弹制导、 无人机制导等
原理:利用激光束照射目标, 通过反射回来的激光信号进 行定位和跟踪
优点:精度高、抗干扰能力 强、反应速度快
发展趋势:智能化、小型化、 多功能化
原理:利用激光束传输信息 优点:速度快、容量大、抗干扰能力强 应用:军事通信、卫星通信、海底通信等 发展趋势:提高传输速率、增强安全性、降低成本
发展前景:有望 在量子通信、量 子计算等领域取 得突破性进展
激光操控化学反 应的原理
激光操控化学反 应的应用实例
激光操控化学反 应的优点
激光操控化学反 应的未来发展趋 势
原理:利用激光 干涉现象进行精 确测量
应用领域:光学、 机械、电子、航 空航天等
优点:精度高、 速度快、非接触 式测量
超快速激光技术的发展及其应用前景

超快速激光技术的发展及其应用前景随着科技的不断进步,人类对于激光技术的研究也在不断深入。
超快速激光技术作为激光技术的一种重要分支,其发展速度更是令人惊叹。
它可以帮助人类探索更深入的物质世界,也具有广泛的实际应用前景,本文将对超快速激光技术的发展和应用前景做一介绍。
一、超快速激光技术的基本原理超快速激光是介于红外激光和紫外激光之间的一种激光光源,它的工作原理是通过激光在极短的时间内产生强烈的电场和磁场,使物质原子或分子处于极短的时间内达到高能态。
超快速激光通过控制激光单光子、多光子或光子串联来实现对物质结构的刻画和在物质中的精确定位,从而可以帮助人类深入了解物质结构,探索物质的本质。
二、超快速激光技术的发展历程1970年代中期,激光技术在人类历史上被广泛应用。
科学家们意识到,由于激光极短的脉冲宽度和极高的功率,它们可以用来研究物质的基本性质。
这一认识促使科学家们开始研究超快速激光技术的理论和实践。
随着技术的发展,超快速激光技术得到了迅速的发展。
超快速激光技术的发展历史可以分为四个阶段:第一阶段是时间分辨光谱学,第二阶段是分子反应动力学,第三阶段是材料加工和纳米制造,第四阶段是交叉学科应用。
三、超快速激光技术的应用前景1、半导体行业超快速激光技术在半导体行业中有广泛的应用。
半导体芯片的制造需要高精度的光学加工技术,超快速激光可以在微小的区域内实现高精度加工,为半导体行业提供了宝贵的技术支持。
2、医疗行业超快速激光技术在医疗行业中的应用也非常广泛。
比如,超快速激光可以实现眼科手术,帮助患者改善视力;超快速激光也可以实现皮肤去除,帮助患者恢复美丽肌肤;此外,超快速激光还可以实现口腔治疗、智能健康诊断等多个方面的应用。
3、环境保护超快速激光技术在环境保护方面也具有很大的作用。
比如,超快速激光可以帮助我们监测大气污染物和环境污染物的分布和浓度,从而制定更加有效的环保政策。
4、新能源随着环保意识不断提高,新能源的发展也日益重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光器技术的应用现状及发展趋势 摘 要:简述了激光精密加工技术及其特点;综述了激光精密加工的应用现状; 探讨了激光精 密加工技术的发展趋势。激光加工技术在机械工业中的广泛应用,促进了激光加工技术向工业化发展。为此,介绍了几种应用较广泛的激光加工技术;重点讨论了激光硬化和激光珩磨技术的应用和发展趋势。摘 要 由于在光通信 光数据存储 传感技术 医学等领域的广泛应用 近几年来光纤激光器发展十分迅速本文简要介绍了光纤激光器的工作原理及特性,并对 目前多种光纤激光器作了较为详细的分类;同时介绍了近几年国内外对于光纤激光器的研究方向及其目前的热点是高功率光纤激光器、窄线宽可调谐光纤激光器和超短脉冲光纤激光器;最后指出光纤激光器向高功率、多波长、窄线宽发展的趋势. :结合河北工业大学光机电一体化研究室近几年对激光加工技术研究的初步成果,对激光加工技术的特点,激光加工技术在国内外的应用发展状况,以及激光加工技术的发展趋势进行了简要介绍,同时分析了我国激光加工产业面临的机遇与挑战,并提出了应采取的对策
前言 1 概述 激光加工是 20 世纪 60 年代初期兴起的一项新技术,此后逐步应用于机械、汽车、航空、电子等行业,尤以机械行业的应用发展速度最快。在机械制造业中的广泛使用又推动了激光加工技术的工业化。 20 世纪 70 年代,美国进行了两大研究:一是福特汽车公司进行的车身钢板的激光焊接;二是通用汽车公司进行的动力转向变速箱内表面的激光淬火。这两项研究推动了以后的机械制造业中的激光加工技术的发展。到了 20 世纪 80 年代后期,激光加工的应用实例有所增加,其中增长最迅速的是激光切割、激光焊接和激光淬火。这 3 项技术目前已经发展成熟,应用也很广泛。进入 20 世纪 90 年代后期,激光珩磨技术的出现又将激光微细加工技术在机械加工中的应用翻开了崭新的一页。 激光加工技术之所以得到如此广泛的应用,是因为它与传统加工技术相比具有很多优点:一、是非接触加工,没有机械力;二、是可以加工高硬度、高熔点、极脆的难加工材料;三、是加工区小,热变形很小,加工质量高;四是与现代数控机床相结合,使激光加工具有加工精度高、可控性好、程序简单、省料及污染少等特点。下面综合介绍应用比较广泛的几种激光加工技术。目前,激光加工技术得到了越来越广泛的应用,具有非常广阔的市场前景,在国民经济和工业发展中发挥着日益重要的作用 [1] . 激光加工的实质是激光将能量传递给被加工材料,被加工材料发生物理或化学变化,从而达到加工的目的.按照激光与被加工工件之间作用机理的不同,可将激光加工分为两类:一类是激光热加工,一类是激光冷加工.激光热加工是指激光作用于加工工件表面所引起的快速热效应的各种加工过程,如激光焊接、激光打孔、激光切割等;激光冷加工是指激光借助高能量高密度光子引发或控制光化学反应的各种加工过程,亦称为激光光化学反应加工,如激光刻蚀、激光掺杂、表面氧化等.激光加工技术应用的领域非常广泛,如机械制造、纺织、医疗器械、汽车、航天航空、电子电器、电站电机、量具刃具、冶金、化工、包装、测量、建筑以及工艺装饰等行业 [3].在发达国家的加工行业中,已经逐步进入了激光加工的时代.日本的激光加工已经占到整个加工业的 10%以上;在激光医疗及激光检测技术方面美国处于领先地位,美国也是最早将高功率激光器引入汽车工业的国家;在激光材料加工设备方面,德国走在了世界前列.据统计,全球现在有激光加工站 5 000 多家,主要分布在美国、日本和欧洲.我国的激光加工技术研究虽然与世界先进水平有一定差距,但起步也并不晚,1961年就研制成功第一台红宝石激光器.但激光加工技术真正得到长足发展,还是在改革开放以后.发展较快的地区是湖北、北京、上海等省市.以激光为特色的光电子信息产业,作为一支产业新军迅速崛起.不论从科技、经济、以及社会效益上,都取得了重要成就和巨大进步.激光加工技术特点激光具有高亮度、方向性强、单色性好、相干性好、空间控制和时间控制性好等优越性能,容易获得超短脉冲和小尺寸光斑,能够产生极高的能量密度和功率密度,几乎能加工所有的材料,例如,塑料,陶瓷,玻璃,金属,半导体材料,复合材料等等, 以及生物 / 医用材料,特别适用于加工自动化,而且对被加工材料的形状、尺寸和加工环境要求很低.激光加工具有很多优点,如下所述.激光加工属无接触加工[1]: 激光加工是通过激光光束进行加工, 与被加工工件不直接接触, 降低了机械加工惯性和机械变形, 方便了加工. 同时, 还可加工常规机械加工不能或很难实现的加工工艺, 如内雕、 集成电路打微孔、 硅片的刻划等.加工质量好,加工精度高:由于激光能量密度高可瞬时完成加工,与传统机械加工相比,工件热变 形小、无机械变形,使得加工质量显著提高;激光可通过光学聚焦镜聚焦,激光加工光斑非常小,加工 精度很高,如PC 机硬盘高速转子采用激光平衡技术,其转子平衡精度可达微米或亚微米级 [5] . 加工效率高:激光切割可比常规机械切割提高加工效率几十倍甚至上百倍;激光打孔特别是微孔可 比常规机械打孔提高效率几十倍至上千倍;激光焊接比常规焊接提高效率几十倍;激光调阻可提高效率 上千倍,且精度亦显著提高; 材料利用率高,经济效益高:激光加工与其他加工技术相比可节省材料10 ~ 30%,可直接节省材料成本费,且激光加工设备操作维护成本低,对加工费用降低提供了先决条件.激光加工具有优越的加工性能,使得激光加工技术得到了广泛的应用,并产生了巨大的经济效益和社会效益.目前已成熟的激光加工技术包括:激光快速成形技术、激光焊接技术、激光打孔技术、激光切割技术、激光打标技术、激光刻蚀技术、激光微调技术、激光存储技术、激光划线技术、激光清洗技术、激光热处理和表面处理技术.下面以几种常用的加工工艺为例进行简单的介绍. 激光快速成型技术 激光快速成型技术是上世纪80年代发展起来的一门高新技术,它是利用激光技术、CAX 技术、自动控制技术和新材料技术,直接造型,快速制造产品模型的一门多学科综合技术.激光快速成型技术一改传统加工“去除”成型加工工艺,改为“堆积”成型加工工艺,在加工领域具有划时代的意义.激光快速成型技术中LOM工艺,是利用CAD模型设计功能和CAM加工制造功能,不需要工程图纸,将设计模型数据直接切片生成加工代码,快速制造出设计模型样件或样机.在新产品开发设计阶段,采用激光快速成型技术可有效缩短设计周期.如河北工业大学快速成型中心,对某型号汽车除霜管设计制造在一两天中即可完成,并取得了良好的效果.目前,激光快速成型技术广泛应用于航空航天、汽车、玩具制造等行业 [6] 激光焊接技术激光焊接是利用高能量激光束照射焊接工件,工件受热融化,然后冷却得到焊接的目的.激光焊接的显著特征是大熔、焊道、小热影响区,以及高功率密度,大气压力下进行不要求保护气体,不产生X射线,在磁场内不会出现束偏移,更加之该法焊速快、与工件无机械接触、可焊接磁性材料便于实现遥控等优点,尤其可焊高熔点的材料和异种金属,并且不需要添加材料,因此很快在电子行业中实现了产业化.激光焊接有两种基本方式:传导焊与深熔(小孔)焊.国外利用固体 YAG 激光器进行缝焊和点焊,已有很高的水平.另外,用激光焊接印刷电路的引出线,不需要使用焊剂,并可减少热冲击,对电路管芯无影响.日本自 90 年代以来,在电子行业的精密焊接方面已实现了从点焊向激光焊接的转变.目前,激光焊接主要应用在汽车行业,如汽车车身的焊接(美国福特汽车公司,日本本田、尼桑汽车公司等) ,底板焊接(西德大众) ,发动机悬架焊接(奥迪轿车)等等 [7] 激光打孔技术 激光打孔技术具有精度高、通用性强、效率高、成本低和综合技术经济效益显著等优点,已成为现代制造领域的关键技术之一.激光打孔在微细孔加工中的应用,解决了一些传统机械加工不能解决的难题,为微孔加工提供了先进的加工手段.在上世纪 90年代,激光打孔技术就朝着多样化、高速度、高精度、直径更微小的方向发展.例如在飞机机翼上打 5万个直径为0.064 mm 的小孔,可以大大减小气流对飞机的阻力,取得节油 40%的良好效果.我国从上世纪 60 年代开始在钟表行业中使用激光加工技 术,对宝石轴承进行激光打孔. 激光切割技术 自从1967年 Sullivan 和 Houldcroft 首先提出并实现用吹氧气法进行金属激光切割以来,激光切割以其切割范围广、切割速度高、切缝窄、切割面粗糙度低、热影响区域小、加工柔性好、可实现众多复杂零件的切割等优点而应用越来越广.激光切割技术可广泛应用于金属和非金属材料的加工中,可大大减少加工时间,降低加工成本,提高工件质量.脉冲激光适用于金属材料,连续激光适用于非金属材料,后者是激光切割技术的重要应用领域.目前,激光切割主要应用在航空航天工业和汽车制造业中,如飞机框架、尾翼壁板、飞机主旋翼、汽车车架等切割. 激光打标技术 激光打标技术是激光加工最大的应用领域之一. 激光打标是利用高能量密度的激光对工件进行局部照射,使表层材料汽化或发生颜色变化的化学反应,从而留下永久性标记的一种打标方法.激光打标可以打出各种文字、符号和图案等,字符大小可以从毫米量到微米量级,这对产品的防伪有特殊的意义.准分子激光打标是近年来发展起来的一项新技术,特别适用于金属打标,可实现亚微米打标,目前,广泛用于微电子工业、生物工程、食品包装和防伪鉴别等领域. 激光刻蚀技术 自从首次报道准分子激光能获得快速、高分辨光刻以来,人们在八十年代即对准分子激光光刻进行了大量研究.尽管电子束、X射线、离子束具有更短的波长,在提高分辨率方面有更多好处,但曝光源、掩模、抗蚀剂、成像光学系统方面存在极大的困难.而相反,准分子光刻有着明显的经济性和现实性,它将光学光刻扩展至 DUV 和 VUV,其高功率大大缩短了基片曝光时间,分辨率易获得亚微米线宽,掩模和抗蚀剂问题易解决.1992 年美国IBM公司将准分子光刻机用于生产线上,商品化的XL-1型193 nm光刻机能获得0.25 m线宽光刻胶图形.最近的相移掩模技术,将准分子光刻分辨率提高到0.13 m以下.另一方面,准分子激光直刻有机和无机物材料方面有着独到之处,单脉冲去除深度在0.05 ~ 0.1 m 之间,这使得通过简单的脉冲计数即可获得高精密切削.将准分子光刻装备进行适合于材料加工的改进,如使掩模及整个光学系统能承受更大激光峰值功率密度,采用高倍率投影物镜,设计实时残渣去除系统等等,则非常适于新近迅速发展起来的微结构、 微机械的加工技术. 目前,英国Exitech公司,德国Microlas公司,日本浜松光子公司先后推出了商品化微结构加工用准分子激光微加工装备.激光刻蚀技术主要应用在高集成度电路的制作.激光微调技术激光微调主要用于调整厚膜电路或薄膜电路中的电阻、电容以及其他多种功能参数.激光调阻时,受到照射的部位受热汽化挥发,阻值区域截面面积减小,随之阻值增大.过去对厚膜电阻采用机械磨蚀法,对薄膜电阻采用电火花烧蚀法,但这种调整法的精度、效率都很低,对工件