电力线路工作状态实时监测点及系统的设计和原理
电力机车弓网离线监测系统_封力民

2005年第2期2005年3月10日机车电传动ELECTRICDRIVEFORLOCOMOTIVES№2, 2005Mar. 10, 2005电力机车弓网离线监测系统封力民1,刘浩2, 王黎2, 高晓蓉2(1.广州铁路(集团)公司机务处,广东广州510088;2.西南交通大学理学院,四川成都610031)试验检测作者简介:封力民(1964-),男,高级工程师,现任广州铁路(集团)公司机务处总工程师。
摘要:介绍了目前电力机车弓网离线的检测方法,给出了电力机车弓网离线监测系统的组成、工作原理及试验情况,并与国内外目前检测方法进行了比较。
试验证明,该监测系统实用有效。
关键词: 电力机车; 弓网; 离线监测中图分类号:U269.32+2 文献标识码:A 文章编号:1000-128X(2005)02-0057-02收稿日期:2004-08-24The pantograph-catenary contact-loss monitoring system for electric locomotiveFENG Li-min, LIU Hao, WANG Li, GAO Xiao-rong(1. Locomotive Department, Guangzhou Railway Group Company, Guangzhou, Guangdong 510088, China;2.School of Science, Southwest Jiaotong University, Chengdu, Sichuan 610031, China)Abstract: The detecting method to test contact-loss of the pantograph-catenary for electric locomotive is introduced. The systemconfiguration, working principle and experiments are listed. Comparisons with other detecting methods at home and abroad are made. Testsprove that the monitoring system is practical and efficient.Key words: electric locomotive; pantograph-catenary; contact-loss monitoring0引言在电气化铁路中,接触网是电气化铁道的主要供电设备,电力机车通过接触网取得电能。
高压输电线路电力塔监测系统设计

– 74 – 2012年第11卷第2期1 引言电力设施是与生产、生活密不可分的一部分。
高压输电线路和电力塔的设备完好情况以及周边环境情况是电能安全远程传输的关键。
在实际电力线路传输中却存在众多可能损害电力设施的不确定因素,诸如人为损害、自然灾害等,造成巨大经济损失,使生产和生活蒙受无法估量的经济损失。
所以对高压线路和电力塔进行全方位的因素监测是非常必要的,但是高压线路和电力塔所处环境、位置不同,人工监测和维护成本巨大且操作不方便。
论文介绍如何实现对高压线路和电力塔的远程监测系统,对电力设施建立远程的无线智能信息监测,把各种预警信息采集远程传输,从而实现对电力设施的实时安全监控,减少损失。
2 无线传感器网络原理无线传感器网络涉及多学科,它能提高获取信息的能力,把各种采集信息的传感器与传输信息的网络连接在一起组成采集与传输网络,提供实时监控信息,具有可扩展、低功耗及智慧化等优点。
无线传感器网络技术是物联网技术的基础,用来实现物与物之间信息的交互。
无线传感器网络由传感器节点、基站和管理节点构成。
无线传感器协议包含物理层、数据链路层、网络层、传输层和应用层等。
如图1所示为无线传感器网络协议。
图1 无线传感器网络协议2.1 无线传感器网络节点无线传感器网络节点一般包括电源模块,传感器模块、处理器模块和无线传输模块。
如图2所示为无线传感器网络节点结构示意图。
电源模块为整个系统提供可靠的能源,并进行能源状态监测。
传感器模块是无线传感器网络的前端部分,用来采集各种被监测目标的数据信息,根据测量对象的不同包含各种不同种类的传感器。
处理器模块接受传感器采集的各种信息并进行存储与处理,协调系统的整体工作,并控制无线传输模块的工作。
无线传输模块用来实现节点与节点之间、节点与网关之间的数据信息无线传输。
图2 所示为无线传感器网络节点结构2.2 无线传感网络工作方案比较电力设施监测中常用的无线射频技术是一种近距离、低功耗的无线通信技术,无需重新布线,利用点对点的射频技术实现对设备的无线监控。
牵引供电系统SCADA系统

根据分析结果,追踪和定位问题所在,为后 续的修复和优化提供依据。
测试结果评估与讨论
测试结果评估
根据设计要求和测试标准,对测试结果 进行评估,判断系统是否满足预期目标
。
改进措施提出
针对发现的问题,提出相应的改进措 施和建议,优化系统的设计和实现。
问题总结与分类
对发现的问题进行总结和分类,分析 问题的性质、严重程度和影响范围。
监控与控制
通过监控软件对现场设备进行实时监控,并 根据需要远程控制设备的运行。
04
牵引供电系统SCADA 系统设计
设计目标与原则
实时性
可靠性
确保系统能够实时监测牵引供电系统的状 态,及时响应和处理各种事件。
保证系统在各种恶劣环境下都能稳定运行 ,减少故障发生的概率。
可扩展性
安全性
考虑到未来发展的需要,系统应具有良好 的可扩展性,方便后续升级和改造。
数据处理
对采集的数据进行处理,如滤波、计算、转换等 。
数据传输
将处理后的数据通过通信网络传输到服务器或人 机界面。
控制策略实现
故障定位与隔离
通过实时监测和分析数据,定位故障点并自动或手动隔离故障区 域。
越区供电
在故障情况下,实现越区供电以保证列车的正常运行。
负荷分配与优化
根据实时数据和历史数据,对牵引供电系统的负荷进行分配和优 化,提高系统的运行效率和稳定性。
06
牵引供电系统SCADA 系统测试与验证
测试方案制定
测试目的明确
确保牵引供电系统SCADA系统的功能、性 能和安全性满足设计要求。
测试范围确定
涵盖系统的各个模块和组件,包括硬件、软 件和网络通信等。
电力设施监控系统施工方案三篇

《电力设施监控系统施工方案》一、项目背景随着电力行业的快速发展,电力设施的安全运行变得至关重要。
为了提高电力设施的可靠性、稳定性和安全性,实现对电力设施的实时监控和管理,特制定本电力设施监控系统施工方案。
本项目旨在为[具体项目名称]安装一套先进的电力设施监控系统,该系统将对电力设备的运行状态、电气参数、环境参数等进行实时监测,并通过网络传输到监控中心,以便管理人员及时掌握电力设施的运行情况,及时发现和处理故障,提高电力设施的运行效率和管理水平。
二、施工步骤1. 施工准备(1)组织施工人员进行技术培训,熟悉施工图纸和施工规范。
(2)准备施工所需的材料和设备,包括传感器、变送器、控制器、通讯设备、电缆等。
(3)对施工现场进行勘察,确定设备安装位置和线路走向。
(4)制定施工安全措施和应急预案。
2. 设备安装(1)传感器安装- 根据设计要求,在电力设备上安装温度传感器、湿度传感器、电压传感器、电流传感器等。
- 传感器的安装位置应准确,固定牢固,避免受到外界干扰。
(2)变送器安装- 将传感器采集到的信号进行转换和放大,然后通过电缆传输到控制器。
- 变送器的安装位置应靠近传感器,便于信号传输。
(3)控制器安装- 控制器是电力设施监控系统的核心设备,负责对传感器采集到的信号进行处理和分析,并发出控制指令。
- 控制器的安装位置应在监控中心或便于操作和维护的地方。
(4)通讯设备安装- 通讯设备用于将监控系统的数据传输到远程监控中心,实现远程监控和管理。
- 通讯设备的安装位置应保证信号稳定,便于调试和维护。
3. 线路敷设(1)电缆敷设- 根据设计要求,敷设电缆,将传感器、变送器、控制器、通讯设备等连接起来。
- 电缆的敷设应符合国家规范,避免交叉和缠绕,保证信号传输的稳定性。
(2)线路标识- 对敷设的电缆进行标识,标明电缆的型号、规格、起点和终点,便于维护和管理。
4. 系统调试(1)单机调试- 对安装好的传感器、变送器、控制器、通讯设备等进行单机调试,检查设备的性能和功能是否正常。
(技术规范标准)配电线路故障在线监测系统技术规范书

10kV配电线路故障定位及在线监测(控)系统技术规范书批准:审核:拟制:总则1.本“规范书”明确了某城市供电公司配电线路故障定位及在线监测(控)系统的技术规范。
2.本“技术规范书”与商务合同具有同等的法律效力。
1.1 系统概述配电线路传输距离远,支线多、大部分是架空线和电缆线,环境和气候条件恶劣,外破、设备故障和雷电等自然灾害常常造成故障率较高。
一旦出现故障停电,首先给人民群众生活带来不便,干扰了企业的正常生产经营;其次给供电公司造成较大损失;再者一条线路距离较长,分支又多,呈网状结构,查找故障,非常困难,浪费了大量的人力,物力。
配电线路故障定位及在线监测(控)系统主要用于中高压输配电线路上,可检测短路和接地故障并指示出来,可以实时监测线路的正常运行情况和故障发生过程。
该系统可以帮助电力运行人员实时了解线路上各监测点的电流、电压、温度的变化情况,在线路出现短路、接地等故障以后给出声光和短信报警,告知调度人员进行远程操作以隔离故障和转移供电,通知电力运行人员迅速赶赴现场进行处理。
主站SCADA系统除了显示线路故障电流途径和位置,还能显示线路负荷电流、零序电流、线路对地电场、接地尖峰电流的变化情况并绘制历史曲线图,用户根据需要还可以增加开关位置遥信采集、开关遥控、远程无线抄表和无功补偿柜电容投切等功能。
故障定位及在线监测(控)系统还可以提供瞬时性短路故障、瞬时性和间歇性接地故障的在线监测和预警功能,以及故障后事故分析和总结功能。
1.2 总体要求1.2.1当线路正常运行时:系统能够及时掌握线路运行情况,并将线路负荷电流、首半波尖峰突变电流、线路对地电场等线路运行信息和太阳能充电电压、电池电压等设备维护信息处理后发送至主站,在主站能够方便地查询有关实时信息和历史数据。
为及时掌握线路故障前的运行状态,保证线路正常运行,避免事故发生,并为在线调整故障检测参数提供技术手段。
1.2.2当线路发生故障时:系统能够及时判断出短路、过流和接地故障点,并将动作信号、短路动作电流、首半波尖峰电流、线路对地电场、接地动作电流等故障信息处理后发送至主站,在主站能购方便地查询有关历史数据和故障信息。
输变电设备状态监测系统技术导则

备案号:
国家电网公司企业标准
Q/GDWxxx—2010
输变电设备状态监测系统技术导则
Technical guide for condition monitoring system of
transmissionand transformation equipment
(报批稿)
2010-xx-xx发布2010-xx-xx实施
3.4
综合监测单元comprehensive monitoringunit
部署于变电站内,以变电站被监测设备为对象,接收与被监测设备相关的状态监测装置发送的数据,并对数据进行加工处理,实现与状态接入控制器(CAC)进行标准化数据通信的一种装置。
3.5
状态接入控制器conditionacquisitioncontroller(CAC)
部署在变电站内的,能以标准方式对站内各类综合监测单元或状态监测装置进行状态监测信息获取及控制的一种装置。
3.6
状态接入网关机conditionacquisitiongateway(CAG)
部署在主站系统侧的一种关口设备,能以标准方式远程连接状态监测代理(CMA)或CAC,获取并校验CMA或CAC发出的各类状态监测信息,并可对CMA和CAC进行控制的一种计算机。CAG有变电CAG和线路CAG之分。
f)在输电线路状态监测部分,系统和装置应尽可能在软硬件方面考虑节电技术的应用,通过智能控制策略等方法逐步降低现场端总功耗,为解决现场电源问题提供技术手段。
g)系统应用软件应具有良好的人机界面,操作简单,便于使用。
h)系统应能灵活适应各种通信技术的发展变化。
i)系统应充分考虑与本系统相关的各类系统边界和接口,最大限度地发挥信息系统建设效益。
电力自动化控制系统的原理及应用研究

电力自动化控制系统的原理及应用研究摘要:电力系统运行的稳定性和安全性与电力系统控制技术密切相关。
在现代信息技术和移动通信技术发展的关键时期,相关人员将现代技术应用于电力系统建设的具体环节,逐步建立电力自动控制系统,确保电力系统的正常运行。
关键词:电力自动化;控制系统;原理;应用研究1 电力自动化控制系统的概述1.1 基本要求自动化电力管理系统是集发电、输电、变电、配电等功能于一体的现代化生产和能源消费系统。
将自然能源转化为科技手段,充分利用电力系统控制系统,完成电力的输送和使用,为当地相关业务的发展和发展提供充足的能源。
电力在现代社会的发展中起着至关重要的作用。
在电力系统运行过程中,能量的转换和传输主要体现在电力线、变电站等基站上,起到了合理配置当地电源的作用。
电力自动化管理系统的开发和实施,极大地提高了能源转换、分配和供应的效率和效益,为能源企业生产高效运营创造了经济效益,实现了电网与能源系统的联动,改善能源环境,扩大能源系统效率,不断改善发电、变电、配电和配电的流动性。
1.2 工作原理随着电力自动控制系统的运行,现代能源管理技术主要用于有效控制电力的产生和传输,了解电力的自动调节和传输,衡量电力流量控制的效果,进行规范。
运输和能源消耗的目标,以及确保自动电源管理。
一般操作和系统稳定性。
自动化系统控制系统主要包括三个方面:电力的实时监测和传输,站和变电站的控制和控制,电力负荷压力。
在系统运行过程中,主要体现在计算机上,为电力行业提高了供电和输电效率,增强了经济效益。
自动化电力管理系统的可持续运行基于移动工作场所、远程监控站、性能管理站和数据分析站。
在现实世界中,能源系统中的工作人员正在设置三相间隔。
间隔层为光电感应开关,由连接单元和智能工作箱组成。
在每个操作间,都采用远程网络监控技术实时监控电力传输,受影响人员必须仔细分析操作系统和电力数据信息,以确保这些远程操作系统的正常运行,提高电力转换效率和效率。
《电气火灾监控系统》PPT课件

• 2、如果用在供电距离很长时,供电线路对大 地的分布电容就不能忽视了.在负载发生短 路故障或漏电使设备外壳带电时,漏电电流 经大地形成架路,保护设备不一定动作,这是 危险的.只有在供电距离不太长时才比较安 全.
• 这种供电方式在工地上很少见.
5、几种接线系统比较
一 TN系统中性点直接接地,并引出有中性线.保 护线或保护中性线〔顾名思义,中性线和地线合为 了一体〕属于三相四线制系统,系统有个特点就是, 设备不单独接地,只系统接地,分为TN--C 、TN--S 和TN--C--S 三种. <a> TN--C 系统:整个系统的中性导体和保护导 体是合一的 〔b〕TN--S系统:整个系统的中性导体和保护导 体是分开的 〔c> TN--C--S系统:系统中一部分线路的中性 导体和保护导体是合一的
系统.
二、字母含义
• 1 〕第一个字母表示电力〔电源〕系统对地关系.如 T 表示 是中性点直接接地; I 表示所有带电部分绝缘.
2 〕第二个字母表示用电装置外露的可导电部分对地的关 系.如 T 表示设备外壳接地,它与系统中的其他任何接地点 无直接关系; N 表示负载采用接零保护.
3 〕第三个字母表示工作零线与保护线的组合关系. • 如 C 表示工作零线与保护线是合一的,如 TN-C ; • S 表示工作零线与保护线是严格分开的,所以 PE 线称为
三、 电气火灾监控系统安装方式
• 1、 低压配电系统总剩余电流检测 • 单位有独立的变电系统,要监测本单位用电系统的
总体绝缘状态,需检测系统的总剩余电流. • 可将电流互感器安装于变压器接地线中以提供剩
余电流,探测器、报警器可以选用分体式或一体化 结构,如图所示. • 此种剩余电流检测要求供电系统的接地形式为 TN-S系统.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力线路工作状态实时监测点及系统的设计和原理
今天为大家介绍一项国家发明授权专利——电力线路工作状态实时监测点及
系统。该专利由国网上海市电力公司申请,并于2017年7月25日获得授权公告。
内容说明本发明涉及电力技术领域,具体涉及电力线路监控系统。
发明背景电力线路是电力系统的命脉,它担负着传送电能的重任。随着电力系统规模的日
益扩大,高电压、大能量、远距离输电力线路的日益增多,一旦输电力线路发生故障,对
电力系统的安全运行、工农业生产和人们日常生活的影响也愈来愈大,因此,确保输电力
线路的安全运行是非常重要的。
电网上的高压和超高压输电力线路传输路径很长,有的长达几百公里,甚至有的长达上千
公里。其分布的地域又广。输电力线路长时间暴露在大气中,受气候和环境条件的影响,
会在外界因素的作用下(如在雷击、雾、下雨、污秽等)发生闪烁,导致输电力线路故障
的发生,这些是电网运行中不可避免的问题。
现有技术中对电力线路监控往往采用人为实地勘察型,信息同步实时性差,工作人员无法
实际的得到电力线路的工作状态,无法及时的发现故障,做出处理。
发明内容本发明的目的在于提供电力线路工作状态实时监测点及系统,以解决现有电力线
路监控由于采用人工实地勘察,信息同步实时性差的技术问题。
本发明所解决的技术问题可以采用以下技术方案来实现:电力线路工作状态实时监测系
统,其特征在于,包括至少三个检测电力线路工作状态的传感器,所述的传感器分别设置
在电力线路上的至少三个监测点上;所述的监测点是设置在电力线路上的易断点,易断点
处的外径小于电力线路上其他位置的外径;所述传感器是无线无源传感器,所述传感器设
有无线通信模块;通过所述无线通信模块连接主机服务器;所述传感器包括电压互感器,
以所述电压互感器作为所述传感器的电源,所述电压互感器的电能输出端连接整流稳压系
统,所述整流稳压系统设有具有升压功能的电源管理模块;所述电源管理模块的电能输出
端连接所述传感器的电能输入端。