锂离子电池电极材料综述(精)
锂离子电池研究_综述

锂离子电池研究综述—陈欢1 锂离子电池简介离子电池又称为“摇椅电池”,是指以可供锂离子嵌入脱嵌的物质作为正、负极的二次电池。
电解质一般采用溶解有锂盐的有机溶液,根据所用电解质的状态,可分为液态锂离子电池、聚合物锂离子电池和全固态锂离子电池。
1.1 锂离子电池的工作原理[1]一个锂离子电池主要由正极、负极、电解液及隔膜组成,外加正负极引线,安全阀,PTC(正温度控制端子),电池壳等。
虽然锂离子电池种类繁多,但其工作原理大致相同。
充电时,锂离子从正极材料中脱嵌,经过隔膜和电解液,嵌入到负极材料中,放电以相反过程进行。
再充电,又重复上述过程。
以典型的液态锂离子为例,当以石墨为负极材料,以LiCoO2为正极材料时,其充放电原理为:充电时,Li+从LiCoO2中发生脱嵌,释放一个电子,C3+被氧化为C4 +,与此同时,Li+经过隔膜和电解液迁移到负极石墨表面,进而插入到石墨结构中,石墨结构同时得到一个电子,形成锂—碳层间化合物Li x C6,放电时过程则相反,Li+从石墨结构脱插,嵌入到正极LiCoO2中。
图1 锂离子电池从放电示意图1.2 锂离子电池的优缺点[2](1)能量密度高,输出功率大。
(2)平均输出电压高(约3.6V),为Ni-Cd、Ni-MH电池的三倍。
(3)工作温度范围宽,一般能在-20-45℃,期望值为-40-70℃。
(4)无记忆效应。
(5)可快速充放电,充放电效率高,可达100%。
(6)没有环境污染,称为绿色电池。
(7)使用寿命长,可达1200次左右。
当然,目前的锂离子电池还存在一些不足。
(1)成本较高,主要是正极材料的价格高,随着正极材料的研究开发不断深入一些新的更廉价的正极材料,如LiMnZO4、LiFePO4等己经初步商品化。
(2)过充电的安全问题还需要进一步解决;(3)与普通电池的相容性差,一般要在用3节AA电池(3.6V)的情况下才可以用锂离子电池代替。
2. 锂离子电池的正极材料为了提高锂离子电池的输出电压、比容量、循环使用寿命,目前正在开发的正极材料主要是具有层状结构、尖晶石结构和橄榄石结构的嵌入化合物,主要有氧化钻锂、氧化镍锂、氧化锰锂、磷酸亚铁锂、三元复合材料等。
锂离子电池三元正极材料(全面)

1997年, Padhi等人最早提出了LiFePO4的制 备以及性能研究 。LiFePO4具备橄榄石晶体结构, 理论容量为170 mAh/g, 有相 对于锂金属负极的稳 定放电平台, 虽然大电流充放电存在一定的 缺陷, 但 由于该材料具有理论比能量高、电压高、环境友好、 成本低廉以及良好的热稳定性等显著优点, 是近期研究的重点替 代材料之一。目前, 人们主要采点用击高添温加固标相题法制备LiFePO4 粉体, 除此之外, 还有溶胶-凝胶法、水热法等软化学方法, 这些方法都 能得到颗粒细、纯度高的LiFePO4材料。
三价锰氧化物LiMnO2是近年来新发展起来的一种锂离子电池 正极材料, 具有价格低, 比容量高(理论比容量286 mAh/g, 实 际比 容量已达到200mAh/g以上) 的优势。LiMnO2存在多种结构形式, 其中单斜晶系的LiMnO2和正方晶系LiMnO2具有层状材料的结构 特征, 并具有比较优良的电化学性能。对于层状结构 的LiMnO2而 言, 理想的层状化合物的电化学行点为击要添比加中标间题型的材料好得多, 因 此, 如何制备 稳定的LiMnO2, 层状结构, 并使之具有上千次的循 环 寿命, 而不转向尖晶石结构是急需解决的问题。
(1)可以在LiNiO2正极材料 掺杂Co、Mn、Ca、F、Al等 元素, 制成复合氧化物正极 材料以增强其稳定性, 提高充 放电容量和循环寿命。
(2) 还可以在LiNiO2材料中掺杂P2O5 ; 点击添加标题
(3) 加入过量的锂, 制备高含锂的锂镍氧化物。
锰酸锂具有安全性好、耐过充性好、锰资源丰富、价格低廉及 无毒性等优点, 是最有发展前途的一 种正极材料。锰酸锂主要有尖晶 石型LiMnO4和层状的LiMnO2两种类型。尖晶石型 L iMnO4具有安 全性好、易合成等优点, 是目前研究较多的锂离子正极材料之一。但 LiMn2O4存在John—Teller效应, 在充放电过程 中易发生结构畸变, 造成容量迅速衰减, 特别是在较点高击温添度加的标使题用条件下, 容量衰减更加突 出。三价锰氧化物LiMnO2 是近年来新发展起来的一种锂离子电池正 极材料, 具有价格低, 比容量高(理论比容量286mAh/g, 实际比容量 已 达到200mAh/g以上) 的优势。
最新-锂离子电池正极材料与工艺详解(含三元材料)精选全文

八面体间隙
四面体间隙
02.锂离子电池正极材料简介
2.3 LiCoO2(层状) O3较O2,Li离子扩散克服能垒低,CO与Li混排需克服较高的能垒。
O3-LiCoO2结构: O原子为立方密堆积结构(ABCABC……)Li 与Co原子沿C轴方向交替占据八面体位置,且 共边( α –NaFeO2),属于六方晶系(三轴等长 ,任意两轴夹角相等),具有 R3m空间群。
02.锂离子电池正极材料简介
2.3 LiCoO2
大约对应Li0.5CoO2,由于空位有 序化出现,形成扭曲八面体单斜相
恒流充电,当电压达 到4.8V时O3正极几乎所有 的锂离子都能从正极中脱 出,大约80%的锂离子可 以在嵌入正极材料中;可 逆比容量220mA·h·g-1。
图(b)可以看出最 低电压平台O3结构的正极 最高。
(碳酸乙烯脂)
隔膜
在电解液中具有 良好的化学稳定 性及一定的机械
强度
对Li+的移动阻 碍小(内阻), 对孔径和孔隙率
的要求
良好的绝缘体, 并能阻挡从电极 上脱落物质微利
和枝晶的生长
聚乙烯、聚丙烯等聚 烯烃微孔隔膜
目录
CONTENTS
01 锂离子电池原理简介
02 锂离子电池正极材料简介
03 三元正极材料简介 04 前驱体的制备工艺 05 三元材料成品制备工艺
Li(Nix-Coy-Mnz)O2 ,x+y+z=1
3.2过渡元素对性能的影响
容量-循环性能
随着Ni含量上升,电池比容量上升,循环性能有所下降
03.三元正极材料
2.4 Li(Nix-Coy-Mnz)O2 ,x+y+z=1
3.2过渡元素对性能的影响
锂离子正极材料的分类

锂离子正极材料的分类锂离子电池是目前应用最广泛的可充电电池之一,其正极材料是其核心组成部分。
根据不同的化学构成和性能特点,锂离子电池的正极材料可以分为多种不同的类别。
本文将对锂离子正极材料进行分类和介绍。
1. 锂钴酸锂离子正极材料锂钴酸(LiCoO2)是最早被商业化应用的锂离子正极材料之一。
它具有较高的比容量和较高的电压平台,能够提供相对较高的能量密度。
然而,锂钴酸存在着容量衰减快、循环寿命短以及材料成本高等问题。
2. 锰酸锂离子正极材料锰酸锂(LiMn2O4)是一种相对廉价和环境友好的锂离子正极材料。
它具有较高的循环寿命和较高的比容量,但其能量密度相对较低。
锰酸锂材料广泛应用于便携式电子设备和电动车领域。
3. 磷酸铁锂离子正极材料磷酸铁锂(LiFePO4)是一种高安全性和良好循环寿命的锂离子正极材料。
它具有较高的比容量和较低的自放电率。
磷酸铁锂材料在电动车和储能系统等领域得到了广泛应用。
4. 钴酸锂离子正极材料钴酸锂(LiCoO2)是一种高能量密度的锂离子正极材料,但其价格较高。
为了解决锂钴酸材料的成本和资源问题,研究人员开发了各种改性的钴酸锂材料,如钴酸锂钴铝材料(NCA)和钴酸锂钴镍材料(NCM)。
这些改性材料在电动车领域得到了广泛应用。
5. 锂镍酸锂离子正极材料锂镍酸锂(LiNiO2)是一种高能量密度的锂离子正极材料,但其循环寿命相对较短。
为了改善锂镍酸锂材料的循环寿命,研究人员将其与其他金属元素进行合金化改性,形成了锂镍钴锰酸锂(NMC)和锂镍钴铝酸锂(NCA)等材料。
6. 磷酸锰锂离子正极材料磷酸锰锂(LiMnPO4)是一种廉价、环保且安全性较高的锂离子正极材料。
虽然其比容量较低,但其具有较高的循环寿命和较低的内阻,适用于一些对安全性和循环寿命要求较高的应用。
锂离子电池的正极材料可以分为锂钴酸锂离子正极材料、锰酸锂离子正极材料、磷酸铁锂离子正极材料、钴酸锂离子正极材料、锂镍酸锂离子正极材料和磷酸锰锂离子正极材料等几种类型。
锂电池正极材料概述

锂电池正极材料概述一、材料种类锂电池正极材料是指在锂电池中,用于提供正电的物质,是锂电池中最为关键的组成部分。
常见的锂电池正极材料包括钴酸锂、磷酸铁锂、锰酸锂、三元材料等。
这些材料在电池性能、成本等方面具有不同的优势和缺点,选用哪种正极材料需要根据具体的应用需求来确定。
二、性能特点1.钴酸锂:具有高能量密度、高电压、较好的循环性能等优点,但价格较高,安全性稍差。
2.磷酸铁锂:具有高能量密度、无毒、循环寿命长、成本低等优点,但高温性能较差,充电电压较高。
3.锰酸锂:具有高电压、低成本、无毒等优点,但循环性能较差,容量较低。
4.三元材料:具有高能量密度、长循环寿命、无毒等优点,且可以调节镍钴锰的比例来调整电池的容量和电压,是目前锂电池正极材料中较为优秀的一种。
三、制备工艺锂电池正极材料的制备工艺主要有物理法和化学法两种。
物理法是将原材料进行物理混合、球磨、烧结等工艺制备成正极材料;化学法则是通过化学反应制备正极材料,包括沉淀法、溶胶凝胶法、水热法等。
制备工艺对正极材料的性能和质量有着重要影响。
四、应用领域锂电池正极材料广泛应用于电动汽车、电动自行车、移动电源等领域。
随着新能源汽车的快速发展,锂电池正极材料的市场需求也在持续增长。
五、市场前景随着环保意识的提高和新能源汽车的推广,锂电池正极材料的市场前景十分广阔。
未来,随着技术的进步和成本的降低,锂电池正极材料的应用领域还将进一步扩大。
同时,政策支持和市场需求也将推动锂电池正极材料产业的快速发展。
六、技术挑战目前,锂电池正极材料仍面临着一些技术挑战,如容量密度提升、充电速度提高、安全性提升、循环寿命延长等方面的问题。
这些问题需要不断地研究和改进技术来解决,以满足市场对高性能锂电池的需求。
七、发展趋势未来,锂电池正极材料的发展趋势将主要集中在以下几个方面:1.高能量密度:随着电动汽车等应用领域的发展,对锂电池的能量密度要求越来越高,正极材料的高能量密度研究将不断深入。
锂离子电池的正极材料

锂离子电池的正极材料
锂离子电池是一种广泛应用于电子设备、电动汽车和储能系统中的重要电池类型。
它由正极、负极、电解质和隔膜组成,其中正极材料是决定电池性能的关键因素之一。
在锂离子电池中,正极材料主要负责储存和释放锂离子,因此其特性直接影响电池的能量密度、循环寿命和安全性能。
目前,锂离子电池的正极材料主要包括钴酸锂、锰酸锂、三元材料(镍钴锰酸锂)、钛酸锂、磷酸铁锂等。
这些材料各有其优缺点,选择合适的正极材料取决于电池的具体应用和性能要求。
钴酸锂是目前应用最为广泛的正极材料之一,它具有高能量密度和较好的循环寿命,但成本较高且含有稀缺资源钴。
锰酸锂具有较低的成本和较高的热稳定性,但能量密度较低且循环寿命不及钴酸锂。
三元材料由镍、钴、锰的混合物组成,综合了三种材料的优点,具有较高的能量密度和循环寿命,但成本较高。
钛酸锂和磷酸铁锂则分别具有优异的热稳定性和安全性能,适用于特定领域的高安全性要求。
除了以上常见的正极材料外,还有一些新型材料如钠离子正极材料、多孔材料等正在被研究和开发,以期望提高电池的能量密度、循环寿命和安全性能。
在选择正极材料时,需要综合考虑电池的能量密度、循环寿命、成本、安全性能等因素。
未来,随着新材料的不断涌现和技术的不断进步,锂离子电池的正极材料将会更加多样化和专业化,以满足不同领域对电池性能的不同需求。
总的来说,锂离子电池的正极材料是决定电池性能的重要因素,不同的正极材料具有各自的优缺点,选择合适的正极材料需要综合考虑电池的具体应用和性能要求。
未来,随着材料科学和电池技术的发展,正极材料将会不断更新换代,为电池的性能提升提供更多可能性。
锂离子电池正极材料的研究与进展综述

锂离子电池正极材料的研究与进展综述学院:材料与化学工程学院姓名: xx学号: 5412040601xx年级:2012 级专业:电化学导师:xxxxxxx日期: 2015年12月28日锂离子电池正极材料的研究与进展综述摘要:锂离子电池近十几年一直是人们研究的课题,以其工作电压高、体积小、质量小、比能量高、无污染、无记忆效应等优点著称,并因此在市场独占鳌头。
时值今日,二次锂离子电池的研制开发已取得很大的进展。
锂离子电池“一大一小”的发展方向更增加了热度。
本文从锂离子电池正极材料的不同制备方法出发,以层状正极材料,三元类正极材料,尖晶石类正极材料,聚阴离子类正极材料为例,对其不同的电化学性能进行比较和归纳。
三元材料中镍钴锰类电池和聚阴离子中磷酸铁锂类电池因高的性价比受到青睐。
下面将具体阐述锂离子电池不同正极材料及其电化学性能。
关键词:锂离子电池;正极材料;层状类;三元材料;尖晶石类;聚阴离子;电化学性能引言:铅酸电池是最早出现的可充电电池。
但是一方面它的能量密度低,另一方面对环境污染严重,所以在电池的发展中将逐渐被淘汰[1]。
相对而言,镍镉电池(Ni/Cd较为优越;只是随着科技的最新发展和层出不穷的新型电子和通讯装置来说,首先它的能量也不是很充足,其次由于镍镉电池导致的环境污染问题同样是极其严峻的,因此在大多数国家它是被严禁控制的,甚至不许生产。
镍金属氢化物电池(Ni/MH)在许多方面都优于镍镉电池,不过它的能量密度还是比较有限,由其引起的环境问题也是存在的,更为重要的一点是,它的自放电高,使用期也是有限的[2,3]。
这样来看,寻找具有高能量密度和高放电容量的电池体系来适应电子和信息产品的迅速发展越来越紧迫。
锂离子电池正是在这样的形势下于上世纪九十年代发展起来的一种新型化学电源;它具有工作电压高,重量轻,比容量高,自放电小,循环寿命长,无记忆效应,安全可靠,绿色环保等突出优点,而成为摄像机、移动电话、笔记本电脑以及便携式测量仪器等电子装置小型轻量化的理想电源,也是未来电动汽车用轻型高能动力电池的首选电源[4,5]。
锂电池 正极材料

锂电池正极材料锂电池正极材料是构成锂离子电池的四个关键部分之一,它的性能直接影响到锂电池的功率、容量和循环寿命等重要指标。
本文将从锂电池正极材料的分类、结构、性能和应用等方面进行探讨。
一、锂电池正极材料的分类根据正极材料的化学组成和结构形式,锂电池正极材料主要可以分为以下几种类型:1、锂离子多元材料:由多种金属离子组成的复合材料,例如:镍基、钴基、锰基、铁基、钒基等材料。
多元材料组成的正极材料是当前市场上广泛使用的一种,具有良好的循环寿命、安全性和容量。
其中钴酸锂(含LiCoO2)是应用最广泛的一种材料,其优点是稳定性和能量密度高。
2、锂钴酸锂:由镍、锰、铁和钴等元素组成的复合材料,特点是电压稳定、能量密度高、寿命长,但是容量不高,成本也较高。
3、锂铁酸锂:是由钠、锰、铁和锂等元素组成的锂电池正极材料,与其他正极材料相比容量较高,循环寿命也比较长,但是其能量密度相对较低,不太适合用于需求能量密度高的场合。
4、磷酸铁锂:由铁、锂和磷等元素组成,特点是高温性能表现突出,安全性较高,但是电荷/放电过程中电压波动较大,容易造成电池内部损伤。
二、锂电池正极材料的结构锂电池正极材料由多个组分构成,包括活性材料、导电剂、粘结剂等,具体的结构组成如下:1、活性材料:一般由金属氧化物、金属磷酸盐等电化学活性物质组成,可以进行大量的锂离子插入和释放。
活性材料是锂电池中的核心组成部分,直接影响到电池的性能。
例如钴酸锂、氧化钒等都是锂离子电池中常用的活性材料。
2、导电剂:很多锂电池正极材料并不是良好的电导体,需要添加导电剂,提高电解液与活性材料之间的导电性,通常使用碳黑、金属铝等材料作为导电剂。
3、粘结剂:粘结剂是将活性材料与导电剂粘在一起的关键,同时也非常重要,因为如果材料之间的粘结不牢固,容易导致电极剥落,从而影响电池的性能。
常用的粘结剂包括聚合物、纳米硅胶等。
三、锂电池正极材料的性能锂电池正极材料的性能是影响电池性能的关键因素之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锂离子电池电极材料综述一、引言从上世世纪70年代起锂离子电池的研究至第一个可充式锂-二硫化钼电池于1979年研究成功,再到1991年SONY公司首次推出商品化锂离子电池产品算起,锂离子电池的发展至今已有30多年的时间。
锂离子电池是以Li+嵌入化合物为正负极的二次电池,实际上是一个锂离子浓差电池,正负极由两种不同的锂离子嵌入化合物组成。
与其它蓄电池相比,锂离子电池具有开路电压高、循环寿命长、能量密度高、安全性能高、自放电率低、无记忆效应、对环境友好等优点。
目前,锂离子电池已经被广泛应用于移动通讯、便携式笔记本电脑、摄像机、便携式仪器仪表等领域。
随着这些电器的高能化,轻量化,对锂离子电池的需求也越来越迫切。
同时被看作是未来电动汽车动力电源的重要候选者之一,并在空间技术、国防工业等大功率电源方面展示出广阔的应用前景二、工作原理锂离子电池通常正极采用锂化合物,负极采用锂-碳层间化合物。
电介质为锂盐的有机电解液。
充电时,Li+从正极脱嵌经过电解质嵌入负极,正极处于贫锂态,同时电子的补偿从外电路供给到碳负极,保证负极的电荷平衡。
放电时, Li+从负极脱嵌经过电解质嵌入正极,正极处于富锂态。
在正常充放电过程中, Li+在层状结构的碳材料和层状结构的金属氧化物的层间嵌入和脱出,一般只引起层面间距变化,不破坏晶体结构。
三、电极材料(1)电极材料的性能要求简单来说,电池主要包括正极、负极、电解质与隔膜四个部分。
正极材料通常是一种嵌入化合物,在外电场作用下化合物中的锂可逆的嵌入和嵌出;负极材料一般是层状结构的碳材料。
锂离子电池正极材料在改善电池容量方而起着非常重要的作用。
理想的正极材料应具备以下品质:点位高、比能量大、电池充放电速率快、充放电循环寿命长、密度(包括重量能量密度和体积能量密度)大、导电率高、无环境污染、成本低、易制成电极和低温性能好等。
选取负极材料的依据是锂在其中可逆容量、反应电位、扩散速率等。
理想的负极材料应具有电位低、比能量大、电池充放电速率快、充放电循环寿命长、密度(包括重量能量密度和体积能量密度)大、导电率高和低温性能好等优良品质。
为了提高电极材料的电化学性能,我们需要对其修饰改进,处理方法不同得到的电极材料的电化学性能也不相同,碳包覆、金属掺杂等多种手段都被用于电极材料电化学性能的改进。
(2)正极材料在所要求的充放电电位范围内,正极材料应具有与电解质溶液良好的电化学相容性,温和的电极过程动力学和高度的可逆性。
根据材料中阴离子的种类,正极材料可以分为氧化物、聚阴离子化合物、硫化物和氟化物。
氧化物正极材料一般都含有锂,而第二阳离子通常为第一过渡金属系元素,如V、Mn、Co、Ni等。
根据材料的结构,氧化物材料又可以分为层状与尖晶石结构两大类。
下面介绍几种常见的正极材料。
1. LiCoO2LiCoO2是目前商品化锂离子电池中最常用的正极材料。
在可逆性、放电容量、充电效率、电压的稳定性等各方面综合性能最好。
LiCoO2的合成条件比较宽松,制备工艺简单,能采用多种方法合成,目前常用固相合成法,原料通常采用Li2CO3和Co3O4。
尽管LiCoO2的理论可逆容量可达到274mAh/g,但由于在充放电过程中,Li+的反复嵌入与脱出会造成LiCoO2的结构在多次收缩和膨胀后发生从三方晶系到单斜晶系的相变,同时还会导致LiCoO2发生粒间松动而脱落,使内阻增大,容量减小。
实际使用时,只有部分锂能够可逆地嵌入和脱出,Li1-xCoO2的容量一般被限制在120-150mAh/g左右,x=0.5时,相当于 140 mAh/g的容量。
过充电将导致容量衰减和极化电压增大,使其循环性能大大降低。
且由于钴属于战备物资,资源有限,价格较贵,且对环境有污染,不利于锂离子电池的推广应用。
因此,开发廉价的、新的锂离子电池正极材料一直是人们的研究目标。
LiFePO4是一种橄榄石型的化合物,属于正交晶系,O2-采取微变形的六方密堆积方式,四面体位由P5+占据,形成(PO43-聚阴离子,Li和Fe占据交替的a-c面上的八面体空隙,形成一个具有二维锂离子嵌脱通道的三维框架结构。
由于LiFePO4结构稳定,材料本身具有良好的循环性能和热稳定性,自1997年Goodenough等首次提出具有橄榄石结构的聚阴型锂离子材料LiFePO4可以做为锂离子电池正极材料到现在LiFePO4已成为电动汽车等的理想电极材料之一,得到广泛的关注。
LiFePO4的理论放电容量170mAh/g,小电流下实际放电容量约150 mAh/g,电位平台为3.5V。
但传统的LiFePO4的缺点主要有俩方面,一是电子电导率低,二是锂离子迁移速率低。
这严重影响了LiFePO4容量的发挥,目前主要通过改进材料的制备方法和对材料表面进行包覆的手段来制备新的LiFePO4以改变其电化学性能。
LiFePO4的制备方法有:高温固相合成法、微波合成法、水热合成、液相反应共沉淀制备法、有机碳裂解还原制备法等。
每种方法制备的LiFePO4无论从形貌还是性能上都各不相同,但是比纯相的LiFePO4有了很大改进。
由于LiFePO4优良的电化学性能,较低的成本以及优异的环境友好性,LiFePO4已成为国内外关注与研发的重点。
2. LiNiO2LiNiO2 和LiCoO2一样是层状结构,而且是目前研究的各种正极材料中实际放电容量较高的,理论可逆容量为275mAh/g,实际容量高达190~210mAh/g,工作电压范围为2.5~4.1V。
但LiNiO2 的合成比LiCoO2 困难,其主要原因是在高温条件下化学计量比的LiNiO2 容易分解,LiNiO2 的合成需在氧气氛中进行,条件苛刻,且热稳定性较差。
为了提高LiNiO2的热稳定性和耐过充电性能,可以使用掺杂的方法进行改性,常用的掺杂金属有Co、Mn、Ti、Al和碱土金属Mg、Ga、Sr等。
例如掺入Mn可改善LiNiO2的热稳定性,因此,同时掺入多种元素将是LiNiO2改性的发展方向。
由于锰价格低廉,来源丰富且环境相容性好,有可能实现锂传输的全部容量(LiCoO2只能达到一半容量,是很有发展潜力的正极材料,因此一直倍受人们的关注。
但层状LiMnO2用作锂离子电池正极材料虽然比容量较大( 160^200 mAh/g,2.4^4.6 V,安全性好,主要的问题是循环性能较差,在循环过程中容易向尖晶石型结构转变。
尤其是在高温条件下充放电过程中不可逆相变的发生导致析氧放热的发生,造成其安全性能差,因此制约了该材料的实用化。
5.复合氧化物复合氧化物种类繁多,各有特长,其中以Co、Mn、Ni三元复合物最为引人关注,LiNi1/3Co1/3Mn1/3O2为层状三元化合物,与LiCoO2结构基本相同,这种材料融合了钴酸锂、镍酸锂、锰酸锂的优势,具有放电比容量高达160mAh/g,热稳定性优于LiCoO2,循环性能好,价格相对较低,近几年得到了较快的发展,并得到较广泛的应用。
总的来说,锂离子电池性能的进一步提高,主要依赖于电池材料的改进及电池工艺的革新。
其中瓶颈所在就是正极材料的性能。
因此,对正极材料进一步研究和开发势在必行(3)负极材料锂离子电池的负极材料主要作为储锂的主体,从锂离子电池的发展来说,负极材料的研究对锂离子电池的出现起着决定性作用。
正是由于碳负极材料的出现才解决了金属锂电极的安全问题,从而促进了锂离子电池的应用。
目前锂离子二次电池的负极材料主要有两大类:碳负极材料和非碳(金属氧化物材料。
1.碳材料碳材料对锂的电位比较低,一般小于1V,是较理想的负极材料,也是人们探索研究最多的一种材料,目前己商业化的锂离子电池所用的负极材料几乎均是碳材料。
锂电池中具实用价值和应用前景的碳主要有三种:(1高度石墨化的碳;(2软碳和硬碳;(3碳纳米材料。
目前,对嵌锂石墨作负极的研究主要焦点是:一是石墨与电解质的相容性比较差,充放电过程中容易发生石墨的层状剥落,导致循环性能变差;二是石墨结构与电化学性能的关系。
石墨的结晶程度、微观组织、堆积形式、颗粒大小及分布、纯度等都对嵌锂容量有影响。
而软碳是由石油沥青在1000C左右热处理,使其脱氧、脱氢而成。
这类碳材料中存在一定杂质,难以制备高纯碳,但资源丰富,价格低廉。
用石油焦作负极组装的锂离子电池负极容量可达到186mAh/g,对电解液不敏感,不会造成电解液的分解,锂与电解液在石墨表面形成的钝化层不易分解,过充、过放性能好。
但对锂电位较高,在 1V 左右,造成电池的端电压较低,限制了电池容量和能量密度。
硬碳是各种高分子有机物的热解碳,这类材料己有超过1000mAh/g 储锂容量。
但是高的储锂容量并不意味着高的可逆容量,许多热解碳材料的不可逆容量很高,除了电极液分解形成钝化膜外,硬碳材料表面的各种活性基团如氢氧基,以及其吸附的水分也是形成不可逆容量的主要原因。
1991年日本NEC的Iijima用真空电弧蒸发石墨电极时,发现了具有纳米尺寸的碳多层管状物—纳米碳管,引起了人们广泛的兴趣和深入研究。
纳米碳管具有尺寸小、机械强度高、比表面大、电导率高和界面效应强等特点。
近年未,已把碳纳米管用于锂离子电池中作为负极材料。
研究表明,碳纳米管在较大电流密度下充放电比一般碳材料具有更高的放电容量和良好的嵌锂稳定性2.非碳材料目前碳是锂离子二次电池较好的负极材料,但缺点是比容量低,在有机电解液中会形成钝化层,引起初始容量损失,存在明显的电压滞后现象,并且碳电极的性能受制备工艺的影响较大。
因此在研究碳负极材料的同时,人们也在寻找新型非碳负极材料,如SnO、WO2、MoO2、VO2、Li4Ti5O12、Li4Mn5O12等金属氧化物。
这些材料大部分都具有比碳材料更高的比容量,但本身也还存在循环性能差等缺陷。
3.合金材料与碳材料相比,合金类负极材料一般具有较高的比容量,其理论容量可以达到1000 mAh/g以上。
但是目前所面临的主要问题是循环过程中锂离子的嵌入脱出容易引起材料大的体积变化,导致电极材料的粉化和接触电阻的增大,造成可逆容量的损失,甚至会失去可逆储锂作用,因此在锂离子电池中很难实际应用。
因此,开发出具有高比容量、长寿命、低成本、安全可靠的新型实用负极材料,将是今后锂离子电池负极材料研究的主要方向。
4.C/Si复合材料在过去的几年中,基于单质硅的具有有特殊结构的纳米材料以及碳硅复合材料被证明可以很好地改进硅负极的循环性能,因此,制备具有一定孔隙的碳硅复合材料,可以有效地缓解循环过程中电极的体积膨胀,防止活性物质从电极上脱落。
5.氮化物对于氮化物的研究源于Li3N具有较高的离子导电性,锂离子更容易迁移,与过渡金属元素作用形成氮化物后可逆容量显著提高。
虽然氮化物循化性能较好,但其平均氮化物放电电压比石墨高,合成条件苛刻,使用化有一定难度。