中考数学二次函数大题 二次函数最值问题

合集下载

二次函数的最值问题(中考题)(含答案)

二次函数的最值问题(中考题)(含答案)

典型中考题(有关二次函数的最值)屠园实验 周前猛一、选择题1. 已知二次函数y=a (x-1)2+b 有最小值 –1,则a 与b 之间的大小关( )A. a<bB.a=b C a>b D 不能确定答案:C2.当-2≤x≤l 时,二次函数 y=-(x-m )2+m 2+1有最大值4,则实数m 的值为( )A 、-74 B 、 C 、 2或 D 2或或- 74答案:C∵当-2≤x≤l 时,二次函数 y=-(x-m )2+m 2+1有最大值4, ∴二次函数在-2≤x≤l 上可能的取值是x=-2或x=1或x=m.当x=-2时,由 y=-(x-m )2+m 2+1解得m= - 74 ,2765y x 416⎛⎫=-++ ⎪⎝⎭此时,它在-2≤x≤l 的最大值是6516,与题意不符. 当x=1时,由y=-(x-m )2+m 2+1解得m=2,此时y=-(x-2)2+5,它在-2≤x≤l 的最大值是4,与题意相符.当x= m 时,由 4=-(x-m )2+m 2+1解得m=当m=它在-2≤x≤l 的最大值是4,与题意相符;当,2≤x≤l 在x=1处取得,最大值小于4,与题意不符.综上所述,实数m 的值为2或. 故选C .3. 已知0≤x≤12,那么函数y=-2x 2+8x-6的最大值是( ) A -10.5 B.2 C . -2.5 D. -6答案:C解:∵y=-2x2+8x-6=-2(x-2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x的增大而增大.又∵0≤x≤12,∴当x=12时,y取最大值,y最大=-2(12-2)2+2=-2.5.故选:C.4、已知关于x的函数.下列结论:①存在函数,其图像经过(1,0)点;②函数图像与坐标轴总有三个不同的交点;③当时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数。

真确的个数是()A,1个B、2个 C 3个D、4个答案:B分析:①将(1,0)点代入函数,解出k的值即可作出判断;②首先考虑,函数为一次函数的情况,从而可判断为假;③根据二次函数的增减性,即可作出判断;④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求出顶点的纵坐标表达式,即可作出判断.解:①真,将(1,0)代入可得:2k-(4k+1)-k+1=0,解得:k=0.运用方程思想;②假,反例:k=0时,只有两个交点.运用举反例的方法;③假,如k=1,b5-=2a4,当x>1时,先减后增;运用举反例的方法;④真,当k=0时,函数无最大、最小值;k≠0时,y最=224ac-b24k+1=-4a8k,∴当k>0时,有最小值,最小值为负;当k<0时,有最大值,最大值为正.运用分类讨论思想.二、填空题:1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB 上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是答案:122、已知直角三角形两直角边的和等于8,两直角边各为时,这个直角三角形的面积最大,最大面积是答案:4、4,8解:设直角三角形得一直角边为x,则,另一边长为8-x;设其面积为S.∴S= x·(8-x)(0<x<8). 配方得S=- (x2-8x)=- (x-4)2+8∴当x=4时,S最大=8.及两直角边长都为4时,此直角三角形的面积最大,最大面积为8.-≤≤的最大值与最小值分别是3、函数y=2(0x4)答案:2,0最小值为0,当4x-x2最大,即x=2最大为4,所以,当x=0时,y最大值为2,当x=2时,y取最小值为04、已知二次函数y=x2+2x+a (0≤x≤1)的最大值是3,那么a的值为答案:0解:二次函数y=x 2+2x+a 对称轴为x=-1,当0≤x ≤1时y 随x 的增大而增大,当x=1时最大值为3,代入y=x 2+2x+a 得a=0.5、如图,在△ABC 中,BC=5,AC=12,AB=13,在边AB 、AC 上分别取点D 、E ,使线段DE 将△ABC 分成面积相等的两部分,则这样线段的最小长度 .三、解答题:1某产品第一季度每件成本为50元,第二、第三季度每件产品平均降低成本的百分率为x⑴ 请用含x 的代数式表示第二季度每件产品的成本;⑵ 如果第三季度该产品每件成本比第一季度少9.5元,试求x 的值⑶ 该产品第二季度每件的销售价为60元,第三季度每件的销售价比第二季度有所下降,若下降的百分率与第二、第三季度每件产品平均降低成本的百分率相同,且第三季度每件产品的销售价不低于48元,设第三季度每件产品获得的利润为y 元,试求y 与x 的函数关系式,并利用函数图象与性质求y 的最大值(注:利润=销售价-成本)解:(1)()x -150 ⑵()5.9501502-=-x 解得1.0=x (3)(),48160≥-x 解得2.0≤x 而0 x ,∴2.00≤x而()()2150160x x y ---==1040502++-x x=()184.0502+--x ∵当4.0≤x 时,利用二次函数的增减性,y 随x 的增大而增大,而2.00≤x , ∴当2.0=x 时,y 最大值=18(元)说明:当自变量取值范围为体体实数时,二次函数在抛物线顶点取得最值,而当自变量取值范围为某一区间时,二次函数的最值应注意下列两种情形:若抛物线顶点在该区间内,顶点的纵坐标就是函数的最值。

二次函数的最值问题举例(附练习、答案) 附件

二次函数的最值问题举例(附练习、答案) 附件

二次函数的最值问题举例例1、当22x -≤≤时,求函数223y x x =--的最大值和最小值.例2、当12x ≤≤时,求函数21y x x =--+的最大值和最小值.例3、当0x ≥时,求函数(2)y x x =--的取值范围.例4、当1t x t ≤≤+时,求函数21522y x x =--的最小值(其中t 为常数). A 组1.抛物线2(4)23y x m x m =--+-,当m = _____ 时,图象的顶点在y 轴上;当m = _____ 时,图象的顶点在x 轴上;当m = _____ 时,图象过原点.2.用一长度为l 米的铁丝围成一个长方形或正方形,则其所围成的最大面积为 ________ .3.求下列二次函数的最值:(1) 2245y x x =-+; (2) (1)(2)y x x =-+.4.求二次函数2235y x x =-+在22x -≤≤上的最大值和最小值,并求对应的x 的值.5.对于函数2243y x x =+-,当0x ≤时,求y 的取值范围.6.求函数3y =7.已知关于x 的函数22(21)1y x t x t =+++-,当t 取何值时,y 的最小值为0?B 组1.已知关于x 的函数222y x ax =++在55x -≤≤上.(1) 当1a =-时,求函数的最大值和最小值; (2) 当a 为实数时,求函数的最大值.2.函数223y x x =++在0m x ≤≤上的最大值为3,最小值为2,求m 的取值范围.3.设0a >,当11x -≤≤时,函数21y x ax b =--++的最小值是4-,最大值是0,求,a b的值.4.已知函数221y x ax =++在12x -≤≤上的最大值为4,求a 的值.5.求关于x 的二次函数221y x tx =-+在11x -≤≤上的最大值(t 为常数).。

二次函数与最值问题(含答案)

二次函数与最值问题(含答案)

二次函数与最值问题1.如图,二次函数y=-x2+2(m-2)x+3的图象与x、y轴交于A、B、C三点,其中A(3,0),抛物线的顶点为D.(Ⅰ)求m的值及顶点D的坐标;(Ⅱ)当a≤x≤b时,函数y的最小值为74,最大值为4,求a,b应满足的条件;(Ⅲ)在y轴右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.解:(Ⅰ)把A(3,0)代入y=-x2+2(m-2)x+3,得-9+6(m-2)+3=0,解得m=3,则二次函数为y=-x2+2x+3,∵y=-x2+2x+3=-(x-1)2+4,∴顶点D的坐标为(1,4);(Ⅱ)把y=74代入y=-x2+2x+3中,得74=-x2+2x+3,解得x1=-12,x2=25,又∵函数y的最大值为4,顶点D的坐标为(1,4),结合图象知-12≤a≤1.当a=-12时,1≤b≤25,当-12<a≤1时,b=25;(Ⅲ)存在点P,使得△PDC是等腰三角形,当x=0时,y=3,∴点C坐标为(0,3).当△PDC是等腰三角形时,分三种情况:①如解图①,当DC=DP时,由抛物线的对称性知:点P与点C关于抛物线的对称轴x=1对称,∴点P坐标为(2,3);②如解图②,当PC=PD时,则线段CD的垂直平分线l与抛物线的交点即为所求的点P, 过点D作x轴的平行线交y轴于点H,过点P作PM⊥y轴于点M,PN⊥DH的延长线于点N,∵HD=HC=1,PC=PD,∴HP是线段CD的垂直平分线.∵HD=HC,HP⊥CD,∴HP平分∠MHN,∵PM⊥y轴于点M,PN⊥HD的延长线于点N, ∴PM=PN.设P(m,-m2+2m+3),则m=4-(-m2+2m+3),解得m=253±,∴点P的坐标为(253-,255+)(解图中未标记此点)或(253+,255-);③如解图③,当CD=CP时,点P在y轴左侧,不符合题意.综上所述,所求点P的坐标为(2,3)或(253-,255+)或(253+,255-).图①图②图③第1题解图2.已知抛物线y=ax2+bx+c(a<0)过(m,b),(m+1,a)两点,(Ⅰ)若m=1,c=1,求抛物线的解析式;(Ⅱ)若b≥a,求m的取值范围;(Ⅲ)当b≥a,m<0时,二次函数y=ax2+bx+c有最大值-2,求a的最大值. 解:(Ⅰ)∵m=1,c=1,∴抛物线的解析式为y=ax2+bx+1(a<0)过(1,b),(2,a)两点,∴1421a b ba b a++=⎧⎨++=⎩,解得11ab=-⎧⎨=⎩,∴抛物线的解析式为y=-x2+x+1;(Ⅱ)依题意得22(1)(1)am bm c ba mb mc a⎧++=⎪⎨++++=⎪⎩①②,由②-①得b=-am, ∵b≥a,∴-am≥a,∵a<0,∴m≥-1;(Ⅲ) 由(Ⅱ)得b=-am,代入①得am2-am2+c=b,∴c=b=-am,∵b≥a,m<0,∴-1≤m<0,∵二次函数y=ax2+bx+c有最大值-2,∴244ac ba-=-2,∴8a=m2+4m,∴8a= (m+2)2-4,∵-1≤m<0,∴-3≤(m+2)2-4<0,∴a≤-8 3 ,∴a的最大值为-8 3 .3.平面直角坐标系xOy中,抛物线y=mx2-2m2x+2交y轴于A点,交直线x=4于B点. (Ⅰ)求抛物线的对称轴(用含m的代数式表示);(Ⅱ)若AB∥x轴,求抛物线的解析式;(Ⅲ)若抛物线在A,B之间的部分任取一点P(x p,y p),一定满足y p≤2,求m的取值范围.∴抛物线的对称轴为直线x=m;(Ⅱ)当x=0时,y=mx2-2m2x+2=2,∴点A(0,2).∵AB∥x轴,且点B在直线x=4上,∴点B(4,2),抛物线的对称轴为直线x=2,∴m=2,∴抛物线的解析式为y=2x2-8x+2;(Ⅲ)当m>0时,如解图①,∵A(0,2),∴要使0≤x p≤4时,始终满足y p≤2,只需使抛物线y=mx2-2m2x+2的对称轴与直线x=2重合或在直线x=2的右侧.∴m≥2;当m<0时,如解图②,m<0时,y p≤2恒成立.综上所述,m的取值范围为m<0或m≥2.第3题解图4.已知抛物线y=ax2+bx+c的顶点为(2,5),且与y轴交于点C(0,1). (Ⅰ)求抛物线的表达式;(Ⅱ)若-1≤x≤3,试求y的取值范围;(Ⅲ)若M(n2-4n+6,y1)和N(-n2+n+74,y2)是抛物线上的不重合的两点,试判断y1与y2的大小,并说明理由.解:(Ⅰ)∵抛物线y=ax2+bx+c的顶点为(2,5),∴设抛物线的表达式为:y=a(x-2)2+5,把(0,1)代入得:a(0-2)2+5=1,a=-1,∴抛物线的表达式为:y=-(x-2)2+5=-x2+4x+1;(Ⅱ)∵抛物线的顶点为(2,5),a=-1,对称轴为直线x=2,且-1≤x≤3,∴当x=-1时,y有最小值,最小值为y=-(-1-2)2+5=-4,当x=2时,y有最大值,最大值为y=5,∴y的取值范围是-4≤y≤5;(Ⅲ)∵n2-4n+6=(n-2)2+2≥2,-n2+n+74=-(n-12)2+2≤2,∴点M在抛物线对称轴右侧,点N在抛物线对称轴左侧,∵N(-n2+n+74,y2),∴点N关于对称轴对称的点坐标为(n2-n+94,y2),∵在抛物线对称轴右侧,y随x的增大而减小,∴①当n2-4n+6>n2-n+94时,即n<45时,y1<y2;②当n2-4n+6=n2-n+94时,即n=45时,y1=y2;③当n2-4n+6<n2-n+94时,即n>45时,y1>y2.和(m-b, m2-mb+n),其中a,b,c,m,n为实数,且a,m不为0.(Ⅰ)求c的值;(Ⅱ)求证:抛物线y=ax2+bx+c与x轴有两个交点;(Ⅲ)当-1≤x≤1时,设抛物线y=ax2+bx+c上与x轴距离最大的点为P(x0,y0),求这时|y0|的最小值.把点(m-b,m2-mb+n)代入抛物线,得:a(m-b)2+b(m-b)+c=m2-mb+n∴a(m-b)2+b(m-b)=m2-mb,am2-2abm+ab2+bm-b2-m2+mb=0,(a-1)m2-(a-1)•2bm+(a-1)b2=0,(a-1)(m2-2bm+b2)=0,(a-1)(m-b)2=0,若∴a=1,∴抛物线y=ax2+bx+c与x轴有两个交点;x轴距离最大的点的纵坐标为h,在x轴下方与x轴距离最大的点是(-1,y0),∴|H|>|h|,当b=0时等号成立,在x轴上方与x轴距离最大的点是(-1,y0),在x 轴下方与x 轴距离最大的点是(1,y 0),∴|H |>|h |,6.在平面直角坐标系中,直线l :y =x +3与x 轴交于点A ,抛物线C:y =x 2+mx +n 的图象经过点A .(Ⅰ)当m =4时,求n 的值;(Ⅱ)设m =-2,当-3≤x ≤0时,求二次函数y =x 2+mx +n 的最小值;(Ⅲ)当-3≤x ≤0时,若二次函数y =x 2+mx +n 时的最小值为-4,求m 、n 的值. 解:(Ⅰ)当y =x +3=0时,x =-3,∴点A 的坐标为(-3,0).∵二次函数y =x 2+mx +n 的图象经过点A ,∴0=9-3m +n,即n =3m -9,∴当m =4时,n =3m -9=3;当m =-2时,对称轴为x =1,n =3m -9=-15,∴当-3≤x ≤0时,y 随x 的增大而减小,∴当x =0时,二次函数y =x 2+mx +n 取得最小值,最小值为-15.在-3≤x ≤0范围内,y 随x 的增大而增大,当x =-3时,y 取得最小值0,不符合题意;∵二次函数最小值为-4,解得:2 3m n -⎧⎨⎩==或1021m n ⎧⎨⎩==(舍去),∴m =2,n =-3;∴4930n m n --+⎧⎪⎨⎪⎩==,综上所述:m =2,n =-3.7.在平面直角坐标系中,抛物线y =x 2-2x +c (c 为常数)的对称轴为x =1.(Ⅰ)当c =-3时,点(x 1,y 1)在抛物线y=x 2-2x +c 上,求y 1的最小值;∴B (2m ,0),∵二次函数y =x 2-2x +c 的对称轴为x =1,∵点A 在抛物线y =x 2-2x +c 上, ②当点A 在原点的左侧,点B 在原点的右侧时,如解图②,设A (-n ,0),∵OA =12OB ,且点A 、B 在原点的两侧, ∴B (2n ,0),由抛物线的对称性得n +1=2n -1,解得n =2,∴A (-2,0),∵点A 在抛物线y =x 2-2x +c 上,∴0=4+4+c ,解得c =-8,此时抛物线的解析式为y =x 2-2x -8,综上,抛物线的解析式为y =x 2-2x +89或y =x 2-2x -8; (Ⅲ)∵抛物线y =x 2-2x +c 与x 轴有公共点,∴对于方程x 2-2x +c =0,判别式b 2-4ac =4-4c ≥0,∴c ≤1.当x =-1时,y =3+c ;当x =0时,y =c ,∵抛物线的对称轴为x =1,且当-1<x <0时,抛物线与x 轴有且只有一个公共点, ∴3+c >0且c <0,解得-3<c <0,综上,当-1<x <0时,抛物线与x 轴有且只有一个公共点时,c 的取值范围为-3<c <0.第7题解图8.已知抛物线 y =(m -1)x 2+(m -2)x -1与x 轴交于A 、B 两点.(Ⅰ)求m 的取值范围;(Ⅱ)若m <0,且点A 在点B 的左侧,OA :OB =3:1,试确定抛物线的解析式;(Ⅲ)设(Ⅱ)中抛物线与y 轴的交点为C ,过点C 作直线l ∥x 轴,将抛物线在y 轴右侧的部分沿直线l 翻折,抛物线的其余部分保持不变,得到一个新图象.当直线y =-x +b 与新图象只有一个公共点P (x 0,y 0)且 y 0≥-5时,求b 的取值范围.解:(Ⅰ)∵抛物线y =(m -1)x 2+(m -2)x -1与x 轴交于A 、B 两点,∴()210241)0(m m m -≠-+⎩-⎧⎨>①②, 由①得m ≠1,由②得m ≠0,∴m 的取值范围是m ≠0且m ≠1;(Ⅱ)∵点A 、B 是抛物线y =(m -1)x 2+(m -2)x -1与x 轴的交点,∴令y =0,即 (m -1)x 2+(m -2)x -1=0.∴新图象经过点D (-2,-5).当直线y =-x +b 经过D 点时,可得b =-7. 当直线y =-x +b 经过C 点时,可得b =-1. 当直线y =-x +b (b >−1)与函数y =-3x 2−4x −1的图象仅有一个公共点P (x 0,y 0)时,得-x 0+b =-3x 02−4x 0−1.整理得 3x 02+3x 0+b +1=0.第8题解图9.如图,已知c <0,抛物线y =x 2+bx +c 与x 轴交于A (x 1,0),B (x 2,0)两点(x 2>x 1),与y 轴交于点C .(Ⅰ)若x 2=1,BC =5,求函数y =x 2+bx +c 的最小值; (Ⅱ)过点A 作AP ⊥BC ,垂足为P (点P 在线段BC 上),AP 交y 轴于点M .若OA OM=2,求抛物线y =x 2+bx +c 顶点的纵坐标随横坐标变化的函数解析式,并直接写出自变量的取值范围.第9题图解:(Ⅰ)∵x 2=1,∴OB =1,∵BC =5,∴OC =22BC OB =2,∴C (0,-2),把B (1,0),C (0,-2)代入y =x 2+bx +c ,得:0=1+b -2,解得:b =1,∴抛物线的解析式为:y =x 2+x -2.转化为y =(x +12)2-94; ∴函数y =x 2+bx +c 的最小值为-94; (Ⅱ)∵∠OAM +∠OBC =90°,∠OCB +∠OBC =90°,∴∠OAM =∠OCB ,又∵∠AOM =∠BOC =90°,∴△AOM∽△COB,BC上的x最小取值,使P、C、M重合,满足点P在线段根据根与系数的关系,对于x2+bx+c=0,-1,由c=2b-4,解得c=。

2023年中考高频数学专题突破--二次函数的最值问题(含解析)

2023年中考高频数学专题突破--二次函数的最值问题(含解析)

2023年中考高频数学专题突破--二次函数的最值问题1.永嘉某商店试销一种新型节能灯,每盏节能灯进价为18元,试销过程中发现,每周销量y(盏)与销售单价x(元)之间关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣进价)(1)写出每周的利润w(元)与销售单价x(元)之间函数解析式;(2)当销售单价定为多少元时,这种节能灯每周能够获得最大利润?最大利润是多少元?(3)物价部门规定,这种节能灯的销售单价不得高于30元.若商店想要这种节能灯每周获得350元的利润,则销售单价应定为多少元?2.经市场调查,某种商品在第x天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y元.(1)求出y与x的函数关系式(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?.3.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?4.小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现:每月的销售量y(件)与销售单价x(元/件)之间的关系可近似地看作一次函数y=-10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元/件)之间的函数表达式,并确定自变量x的取值范围;(2)当销售单价定为多少元/件时,每月可获得最大利润?每月的最大利润是多少?5.自2020年3月开始,我国生猪、猪肉价格持续上涨,某大型菜场在销售过程中发现,从2020年10月1日起到11月9日的40天内,猪肉的每千克售价与上市时间的关系用图1的一条折线表示:猪肉的进价与上市时间的关系用图2的一段抛物线()2=-+表示.y a x30100(1)a=;(2)求图1表示的售价P与时间x的函数关系式;(3)问从10月1日起到11月9日的40天内第几天每千克猪肉利润最低,最低利润为多少?6.2022年冬奥会即将在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价每件40元,每月销售量y(件)与销售单价x(元)之间的函数关系如图所示,设每月获得的利润为W(元).(1)求出每月的销售量y(件)与销售单价x(元)之间的函数关系式;(2)这种文化衫销售单价定为多少元时,每月的销售利润最大?最大利润是多少元?(3)为了扩大冬奥会的影响,物价部门规定这种文化衫的销售单价不高于60元,该商店销售这种文化衫每月要获得最大利润,销售单价应定为多少元?每月的最大利润为多少元?7.我市绿色和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外贸商李经理按市场价格10元/千克在我市收购了2000千克香菇存放入冷库中.请根据李经理提供的预测信息(如下图)帮李经理解决以下问题:(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额.....为y 元,试写出y与x之间的函数表达式;(销售总金额=销售单价×销售量)(2)将这批香菇仔放多少天后出售可获得最大利润..?最大利润是多少?8.“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行,某自行车店在销售某型号自行车时,标价1500元已知拔标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同。

2023学年数学中考复习重难点突破——二次函数的最值

2023学年数学中考复习重难点突破——二次函数的最值

2023学年数学中考复习重难点突破——二次函数的最值一、单选题1.当二次函数y=x 2+4x+9取最小值时,的值为( )A .-2B .1C .2D .92.对于二次函数y =2(x+1)(x ﹣3),下列说法正确的是( )A .图象过点(0,﹣3)B .图象与x 轴的交点为(1,0),(﹣3,0)C .此函数有最小值为﹣6D .当x <1时,y 随x 的增大而减小3.二次函数y=ax 2+bx+a (a≠0)的最大值是零,则代数式|a|+ 2244a b a- 化简结果为( )A .aB .1C .﹣aD .04.已知a≥2,m 2﹣2am+2=0,n 2﹣2an+2=0,则(m ﹣1)2+(n ﹣1)2的最小值是( )A .6B .3C .﹣3D .05.二次函数 23324y x ⎛⎫=-+ ⎪⎝⎭ 的图象 ()13x ≤≤ 如图所示,则该函数在所给自变量的取值范围内,函数值y 的取值范围是( )A .1y ≥B .13y ≤≤C .334y ≤≤ D .03y ≤≤6.如图,在△ABC 中,△B=90°,tan△C=34,AB=6cm .动点P 从点A 开始沿边AB 向点B 以1cm/s 的速度移动,动点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动.若P ,Q 两点分别从A ,B 两点同时出发,在运动过程中,△PBQ 的最大面积是( )A.18cm2B.12cm2C.9cm2D.3cm27.若二次函数y=|a|x2+bx+c的图象经过A(m,n)、B(0,y1)、C(3-m,n)、D( 2, y2)、E(2,y3),则y1、y2、y3的大小关系是().A.y1< y2< y3B.y1 < y3< y2C.y3< y2< y1D.y2< y3< y18.二次函数y=ax2+bx+c (a、b、c为常数且a≠0)中的x与y的部分对应值如下表,x…-3-2-1012345…y…1250-3-4-30512…下列四个结论:①二次函数y=ax2+bx+c 有最小值,最小值为-3;②抛物线与y轴交点为(0,-3);③二次函数y=ax2+bx+c 的图像对称轴是x=1;④本题条件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.其中正确结论的个数是()A.4B.3C.2D.19.如图,在矩形ABCD中,AB=8,AD=6,点M为对角线AC上的一个动点(不与端点A,C重合),过点M作ME△AD,MF△DC,垂足分别为E,F,则四边形EMFD面积的最大值为()A.6B.12C.18D.2410.已知函数y=22(0)(0)x x xx x x⎧-⎨--<⎩,当a≤x≤b时,﹣14≤y≤14,则b﹣a的最大值为()A.1B2+1C 221+D2二、填空题11.已知二次函数y=x 2﹣4x+m 的最小值是﹣2,那么m 的值是 . 12.二次函数y=x 2﹣2x ﹣5的最小值是 .13.如图,在边长为6cm 的正方形ABCD 中,点E 、F 、G 、H 分别从点A 、B 、C 、D 同时出发,均以1cm/s 的速度向点B 、C 、D 、A 匀速运动,当点E 到达点B 时,四个点同时停止运动,在运动过程中,当运动时间为 s 时,四边形EFGH 的面积最小,其最小值是 cm 2.14.飞机着陆后滑行的距离S (单位:m )与滑行的时间t (单位:s )的函数关系式是S=80t ﹣2t 2,飞机着陆后滑行的最远距离是 m .15.已知二次函数 2y ax bx c =++ (a≠0)的图象如图所示,有下列5个结论:①abc >0;②b <a+c ;③4a+2b+c >0;④2c <3b ;⑤a+b >m(am+b),(m≠l 的实数).其中正确的结论有 (只填序号).三、解答题16.把函数y=3x 2+6x+10转化成y=a (x-h )2+k 的形式,然后指出它的图象开口方向,对称轴,顶点坐标和最值.17.如图,矩形ABCD 的两边长AB =18 cm ,AD =4 cm ,点P 、Q 分别从A 、B 同时出发,P 在边AB 上沿AB 方向以每秒2 cm 的速度匀速运动,Q 在边BC 上沿BC 方向以每秒1 cm 的速度匀速运动.设运动时间为x 秒,△PBQ 的面积为y(cm 2).(1)求y 关于x 的函数关系式,并写出x 的取值范围; (2)求△PBQ 的面积的最大值.18.函数学习中,自变量取值范围及相应的函数值范围问题是大家关注的重点之一,请解决下面的问题.(1)分别求出当2≤x≤4时,三个函数:y=2x+1,y= 2x,y=2(x-1)2+1的最大值和最小值.(2)对于二次函数y=2(x-m)2+m-2,当2≤x≤4时有最小值为1,求m的值.19.由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x 的取值范围;售价(元/台)月销售量(台)400200▲ 250x▲(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?20.如图,在Rt△ABC中,△C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA 向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.21.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(△)求直线y=kx+b的函数解析式;(△)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d 关于x的函数解析式,并求d取最小值时点P的坐标;(△)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.答案解析部分1.【答案】A 2.【答案】D 3.【答案】C 4.【答案】A 5.【答案】C 6.【答案】C 7.【答案】D 8.【答案】B 9.【答案】B 10.【答案】B 11.【答案】2 12.【答案】-6 13.【答案】3;18 14.【答案】800 15.【答案】③④⑤16.【答案】解: 2222236103(2)103(211)10y x x x x x x =++=++=++-+23(1)1101x ⎡⎤=+-++⎣⎦23(1)310x =+-+ 23(1)7x =++ .图象开口向上,对称轴是 1x =- , 顶点坐标(-1,7),最小值是7.17.【答案】解:(1)∵S △PBQ =12PB·BQ ,PB =AB -AP =18-2x ,BQ =x , ∴y =12(18-2x)x ,即y =-x 2+9x(0<x≤4); (2)由(1)知,y =-x 2+9x ,∴y =-292x ⎛⎫- ⎪⎝⎭+814, ∵当0<x≤92时,y 随x 的增大而增大, 而0<x≤4,∴当x =4时,y 最大值=20, 即△PBQ 的最大面积是20 cm 2.18.【答案】(1)解:∵在函数y=2x+1中,k=2>0,∴函数y 随x 的增大而增大,∴y=2x+1的最大值为9,最小值为5;2=yx在函数中,k=2>0,∴函数y随x的增大而减小,则函数y=2x的最大值为1,最小值为12;y=2(x+1)2-1的最大值为19,最小值为3.(2)解:①当m=2时,当x=2时,y最小值为1,代入解析式,解得m= 52(舍去)或m=1∴m=1②当2≤m≤4时,m-2=1,∴m=3③当m>4时,当x=4时,y最小值为1,代入解析式,无解.综上所述:m=1或m=319.【答案】(1)解:根据题意,月销售量y与售价x之间的函数关系式为y=200+50× 40010x-=-5x+2200,当y=250时,得-5x+2200=250,解得:x=390,补全表格如下:售价(元/台)月销售量(台)400200390250x-5x+2200由30052200450xx≥⎧⎨-+≥⎩,得300≤x≤350.(2)解:∵w=(x-200)(-5x+2200)=-5(x-320)2+72000,∴当x=320时,w最大=72000,答:当售价x定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72000元.20.【答案】解:如图,∵在Rt△ABC中,△C=90°,AC=4cm,BC=3cm.∴根据勾股定理,得:22AC BC+.(1)以A,P,M为顶点的三角形与△ABC相似,分两种情况:①当△AMP△△ABC时,APAC=AMAB,即524t-=45t-,解得t=32;②当△APM△△ABC时,AMAC=APAB,即:44t-=525t-,解得t=0(不合题意,舍去);综上所述,当t=32时,以A、P、M为顶点的三角形与△ABC相似;(2)存在某一时刻t,使四边形APNC的面积S有最小值.理由如下:假设存在某一时刻t,使四边形APNC的面积S有最小值.如图,过点P作PH△BC于点H.则PH△AC,∴PHAC=BPBA,即4PH=25t,∴PH=85t,∴S=S△ABC-S△BPH=12×3×4-12×(3-t)•85t=45(t-32)2+215(0<t<2.5).∵45>0,∴S有最小值.当t=32时,S最小值=215.答:当t=32时,四边形APNC的面积S有最小值,其最小值是215.21.【答案】解:(△)由题意可得403k bb-+=⎧⎨=⎩,解得343kb⎧=⎪⎨⎪=⎩,∴直线解析式为y= 34x+3;(△)如图1,过P作PH△AB于点H,过H作HQ△x轴,过P作PQ△y轴,两垂线交于点Q,则△AHQ=△ABO ,且△AHP=90°, ∴△PHQ+△AHQ=△BAO+△ABO=90°, ∴△PHQ=△BAO ,且△AOB=△PQH=90°, ∴△PQH△△BOA ,∴PQ OB = HQ OA = PHAB, 设H (m , 34 m+3),则PQ=x ﹣m ,HQ= 34m+3﹣(﹣x 2+2x+1),∵A (﹣4,0),B (0,3), ∴OA=4,OB=3,AB=5,且PH=d ,∴3x m - = ()2332144m x x +--++ = 5d , 整理消去m 可得d= 45 x 2﹣x+ 85 = 45 (x ﹣ 58 )2+10380, ∴d 与x 的函数关系式为d= 45 (x ﹣ 58 )2+10380, ∵45>0, ∴当x= 58 时,d 有最小值,此时y=﹣( 58 )2+2× 58 +1=11964, ∴当d 取得最小值时P 点坐标为( 58 , 11964);(△)如图2,设C 点关于抛物线对称轴的对称点为C′,由对称的性质可得CE=C′E ,∴CE+EF=C′E+EF,∴当F、E、C′三点一线且C′F与AB垂直时CE+EF最小,∵C(0,1),∴C′(2,1),由(△)可知当x=2时,d= 45×(2﹣58)2+10380=145,即CE+EF的最小值为145.11/ 11。

二次函数最值问题(含答案)

二次函数最值问题(含答案)

二次函数最值问题一.选择题(共8小题)1.如果多项式P=a2+4a+2014,则P的最小值是()A.2010 B.2011 C.2012 D.20132.已知二次函数y=x2﹣6x+m的最小值是﹣3,那么m的值等于()A.10 B.4 C.5 D.63.若二次函数y=ax2+bx+c的图象开口向下、顶点坐标为(2,﹣3),则此函数有()A.最小值2 B.最小值﹣3 C.最大值2 D.最大值﹣34.设x≥0,y≥0,2x+y=6,则u=4x2+3xy+y2﹣6x﹣3y的最大值是()A.B.18 C.20 D.不存在5.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是()A.3.125 B.4 C.2 D.06.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或37.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.2 C.D.8.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC 上方的抛物线上的一个动点,连结DC,DB,则△BCD的面积的最大值是()A.7 B.7.5 C.8 D.9二.填空题(共2小题)9.已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是,最大值是.10.如图,在直角坐标系中,点A(0,a2﹣a)和点B(0,﹣3a﹣5)在y轴上,=6.当线段OM最长时,点M的坐标为.点M在x轴负半轴上,S△ABM三.解答题(共3小题)11.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.12.已知关于x的函数y=kx2+(2k﹣1)x﹣2(k为常数).(1)试说明:不论k取什么值,此函数图象一定经过(﹣2,0);(2)在x>0时,若要使y随x的增大而减小,求k的取值范围;(3)试问该函数是否存在最小值﹣3?若存在,请求出此时k的值;若不存在,请说明理由.13.函数y=(m+2)是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时,当x为何值时,y 随x的增大而增大?(3)m为何值时,函数有最大值?最大值是多少?这时,当x为何值时,y随x 的增大而减小.二次函数最值问题(含答案)一.选择题(共8小题)1.A;2.D;3.D;4.B;5.C;6.B;7.D;8.C;9.1;9;10.(﹣3,0);三.解答题(共3小题)11.【解答】解:(Ⅰ)①∵点O(0,0),F(1,1),∴直线OF的解析式为y=x.设直线EA的解析式为:y=kx+b(k≠0)、∵点E和点F关于点M(1,﹣1)对称,∴E(1,﹣3).又∵A(2,0),点E在直线EA上,∴,解得,∴直线EA的解析式为:y=3x﹣6.∵点P是直线OF与直线EA的交点,则,解得,∴点P的坐标是(3,3).②由已知可设点F的坐标是(1,t).∴直线OF的解析式为y=tx.设直线EA的解析式为y=cx+d(c、d是常数,且c≠0).由点E和点F关于点M(1,﹣1)对称,得点E(1,﹣2﹣t).又点A、E在直线EA上,∴,解得,∴直线EA的解析式为:y=(2+t)x﹣2(2+t).∵点P为直线OF与直线EA的交点,∴tx=(2+t)x﹣2(2+t),即t=x﹣2.则有y=tx=(x﹣2)x=x2﹣2x;(Ⅱ)由(Ⅰ)可得,直线OF的解析式为y=tx.直线EA的解析式为y=(t﹣2m)x﹣2(t﹣2m).∵点P为直线OF与直线EA的交点,∴tx=(t﹣2m)x﹣2(t﹣2m),化简,得x=2﹣.有y=tx=2t﹣.∴点P的坐标为(2﹣,2t﹣).∵PQ⊥l于点Q,得点Q(1,2t﹣),∴OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,∵OQ=PQ,∴1+t2(2﹣)2=(1﹣)2,化简,得t(t﹣2m)(t2﹣2mt﹣1)=0.又∵t≠0,∴t﹣2m=0或t2﹣2mt﹣1=0,解得m=或m=.则m=或m=即为所求.12.解:(1)将x=﹣2代入,得y=k(﹣2)2+(2k﹣1)•(﹣2)﹣2=0,故不论k取何值,此函数图象一定经过点(﹣2,0).(2)①若k=0,此函数为一次函数y=﹣x﹣2,当x>0时,y随x的增大而减小,∴k=0符合题意.②若k≠0,此函数为二次函数,而图象一定经过(﹣2,0)、(0,﹣2)∴要使当x>0时,y随x的增大而减小,开口向下,须满足k<0即可.综上,k的取值范围是k≤0.(3)若k=0,此函数为一次函数y=﹣x﹣2,∵x的取值为全体实数,∴y无最小值,若k≠0,此函数为二次函数,若存在最小值为﹣3,则=﹣3,且k>0,解得:k=符合题意,∴当k=时,函数存在最小值﹣3.13.解:(1)根据题意得m+2≠0且m2+m﹣4=2,解得m1=2,m2=﹣3,所以满足条件的m值为2或﹣3;(2)当m+2>0时,抛物线有最低点,所以m=2,抛物线解析式为y=4x2,所以抛物线的最低点为(0,0),当x≥0时,y随x的增大而增大;(3)当m=﹣3时,抛物线开口向下,函数有最大值;抛物线解析式为y=﹣x2,所以二次函数的最大值是0,这时,当x≥0时,y随x的增大而减小.。

中考二次函数面积最值问题(含答案)

中考二次函数面积最值问题(含答案)

For personaluse only in study and research; not for c o m m e r c i a l u s e 之樊仲川亿创作创作时间:贰零贰壹年柒月贰叁拾日二次函数最值问题例1、小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40 cm ,这个三角形的面积S(单位:cm 2)随x(单位:cm)的变更而变更. (1)请直接写出S 与x 之间的函数关系式(不要求写出自变量x 的取值范围);(2)当x 是多少时,这个三角形面积S 最大?最大面积是多少? 解:(1)x 02x 212+-=S(2)∵a=21-<0 ∴S 有最大值∴0221202a2b x =-⨯-=-=)(∴ S 的最大值为200200220212=⨯+⨯-=S∴当x 为20cm 时,三角形面积最大,最大面积是200cm 2。

2.如图,矩形ABCD 的两边长AB =18cm ,AD =4cm ,点P 、Q 分别从A 、B 同时出发,P 在边AB 上沿AB 方向以每秒2cm 的速度匀速运动,Q 在边BC 上沿BC 方向以每秒1cm 的速度匀速运动.设运动时间为x 秒,△PBQ 的面积为y (cm 2).(1)求y 关于x 的函数关系式,并写出x 的取值范围; (2)求△PBQ 的面积的最大值. 解:(1)∵S △PBQ =21PB ·BQ,PB=AB -AP=18-2x ,BQ=x ,∴y=21(18-2x )x ,即y=-x 2+9x (0<x ≤4);(2)由(1)知:y=-x 2+9x ,∴y=-(x -29)2+481,∵当0<x ≤29时,y 随x 的增大而增大,而0<x ≤4,∴当x=4时,y最大值=20,即△PBQ 的最大面积是20cm 2.3.如图,在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm/s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm/s 的速度移动,如果P ,Q 两点同时出发,分别到达B ,C 两点后就停止移动. (1)设运动开始后第t 秒钟后,五边形APQCD 的面积为Scm 2,写出S 与t 的函数关系式,并指出自变量t 的取值范围. (2)t 为何值时,S 最小?最小值是多少?解:(1)第t 秒钟时,AP=tcm ,故PB=(6﹣t )cm ,BQ=2tcm , 故S △PBQ =•(6﹣t )•2t=﹣t 2+6t∵S 矩形ABCD =6×12=72.∴S=72﹣S △PBQ =t 2﹣6t+72(0<t <6);(2)∵S=t2﹣6t+72=(t﹣3)2+63,∴当t=3秒时,S有最小值63cm.4.在某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为40m的栅栏围成如图,若设花园的BC边长为x(m)花园的面积为y(m2)(1)求y与x之间的函数关系式,并求自变量的x的范围.(2)当x取何值时花园的面积最大,最大面积为多少?解:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,∵BC=xm,AB+BC+CD=40m,∴AB=,∴花园的面积为:y=x•=﹣x2+20x(0<x≤15);∴y与x之间的函数关系式为:y=﹣x2+20x(0<x≤15);(2)∵y=﹣x2+20x=﹣(x﹣20)2+200,∵a=﹣<0,∴当x<20时,y随x的增大而增大,∴当x=15时,y最大,最大值y=187.5.∴当x取15时花园的面积最大,最大面积为187.5.5.已知边长为4的正方形截去一个角后成为五边形ABCDE(如图),其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM有最大面积.解:设矩形PNDM的边DN=x,NP=y,则矩形PNDM 的面积S=xy (2≤x≤4) 易知CN=4-x ,EM=4-y . 过点B 作BH ⊥PN 于点H 则有△AFB ∽△BHP ∴PHBHBF AF =,即3412--=y x, ∴521+-=x y ,x x xy S 5212+-==)42(≤≤x ,此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,函数值y 随x 的增大而增大,对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S .6.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡局面积最大,鸡场的长度应为多少m ?(2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡局面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,则宽为350x-米,设面积为S 平方米. ∴当25=x 时,3625max =S (平方米)即:鸡场的长度为25米时,面积最大.(2) 中间有n 道篱笆,则宽为250+-n x米,设面积为S 平方米.则:)50(212502x x n n x x S -+-=+-⋅= ∴当25=x 时,2625max +=n S (平方米)由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米.即:使面积最大的x 值与中间有多少道隔墙无关.7.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式. 解:∵∠APQ =90°, ∴∠APB +∠QPC =90°. ∵∠APB +∠BAP =90°,∴∠QPC =∠BAP ,∠B =∠C =90°∴△ABP ∽△PCQ.,86,yxx CQ BP PC AB =-=∴x x y 34612+-=.8.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变更而变更.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当x 是多少时,矩形场地面积S 最大?最大面积是多少?解:(1)根据题意,得x x x xS 3022602+-=⋅-= 自变量的取值范围是(2)∵01<-=a ,∴S 有最大值当时,答:当为15米时,才干使矩形场地面积最大,最大面积是225平方米.9.较难如图,A、B两点的坐标分别是(8,0)、(0,6),点P由点B出发沿BA方向向点A作匀速直线运动,速度为每秒3个单位长度,点Q由A出发沿AO(O为坐标原点)方向向点O作匀速直线运动,速度为每秒2个单位长度,连接PQ,若设运动时间为t(0<t<)秒.解答如下问题:(1)当t为何值时,PQ∥BO?(2)设△AQP的面积为S,①求S与t之间的函数关系式,并求出S的最大值;解:(1)∵A、B两点的坐标分别是(8,0)、(0,6),则OB=6,OA=8,∴AB===10.如图①,当PQ∥BO时,AQ=2t,BP=3t,则AP=10﹣3t.∵PQ∥BO,∴,即,解得t=,∴当t=秒时,PQ∥BO.(2)由(1)知:OA=8,OB=6,AB=10.①如图②所示,过点P作PD⊥x轴于点D,则PD∥BO,∴,即,解得PD=6﹣t.S=AQ•PD=•2t•(6﹣t)=6t﹣t2=﹣(t﹣)2+5,∴S与t之间的函数关系式为:S=﹣(t﹣)2+5(0<t<),当t=秒时,S取得最大值,最大值为5(平方单位).创作时间:贰零贰壹年柒月贰叁拾日。

中考压轴题二次函数中的最(定)值问题

中考压轴题二次函数中的最(定)值问题

二次函数中的最(定)值问题【典例1】(2019•宜宾)如图,在平面直角坐标系xOy 中,已知抛物线y =ax 2﹣2x +c 与直线y =kx +b 都经过A (0,﹣3)、B (3,0)两点,该抛物线的顶点为C . (1)求此抛物线和直线AB 的解析式;(2)设直线AB 与该抛物线的对称轴交于点E ,在射线EB 上是否存在一点M ,过M 作x 轴的垂线交抛物线于点N ,使点M 、N 、C 、E 是平行四边形的四个顶点?若存在,求点M 的坐标;若不存在,请说明理由;(3)设点P 是直线AB 下方抛物线上的一动点,当△P AB 面积最大时,求点P 的坐标,并求△P AB 面积的最大值.【点拨】(1)将A (0,﹣3)、B (3,0)两点坐标分别代入二次函数的解析式和一次函数解析式即可求解;(2)先求出C 点坐标和E 点坐标,则CE =2,分两种情况讨论:①若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE =MN ,②若点M 在x 轴上方,四边形CENM 为平行四边形,则CE =MN ,设M (a ,a ﹣3),则N (a ,a 2﹣2a ﹣3),可分别得到方程求出点M 的坐标;(3)如图,作PG ∥y 轴交直线AB 于点G ,设P (m ,m 2﹣2m ﹣3),则G (m ,m ﹣3),可由S △PAB =12PG ⋅OB ,得到m 的表达式,利用二次函数求最值问题配方即可.【解答】解:(1)∵抛物线y =ax 2﹣2x +c 经过A (0,﹣3)、B (3,0)两点, ∴{9a −6+c =0c =−3, ∴{a =1c =−3, ∴抛物线的解析式为y =x 2﹣2x ﹣3,∵直线y =kx +b 经过A (0,﹣3)、B (3,0)两点, ∴{3k +b =0b =−3,解得:{k =1b =−3, ∴直线AB 的解析式为y =x ﹣3, (2)∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣4, ∴抛物线的顶点C 的坐标为(1,﹣4), ∵CE ∥y 轴, ∴E (1,﹣2), ∴CE =2,①如图,若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE =MN , 设M (a ,a ﹣3),则N (a ,a 2﹣2a ﹣3), ∴MN =a ﹣3﹣(a 2﹣2a ﹣3)=﹣a 2+3a ,∴﹣a 2+3a =2,解得:a =2,a =1(舍去), ∴M (2,﹣1),②如图,若点M 在x 轴上方,四边形CENM 为平行四边形,则CE =MN ,设M (a ,a ﹣3),则N (a ,a 2﹣2a ﹣3), ∴MN =a 2﹣2a ﹣3﹣(a ﹣3)=a 2﹣3a ,∴a 2﹣3a =2, 解得:a =3+√172,a =3−√172(舍去), ∴M (3+√172,−3+√172), 综合可得M 点的坐标为(2,﹣1)或(3+√172,−3+√172). (3)如图,作PG ∥y 轴交直线AB 于点G , 设P (m ,m 2﹣2m ﹣3),则G (m ,m ﹣3),∴PG =m ﹣3﹣(m 2﹣2m ﹣3)=﹣m 2+3m ,∴S △P AB =S △PGA +S △PGB =12PG ⋅OB =12×(−m 2+3m)×3=−32m 2+92m =−32(m −32)2+278, ∴当m =32时,△P AB 面积的最大值是278,此时P 点坐标为(32,−154).【点睛】本题是二次函数综合题,考查了待定系数法求函数解析式,二次函数求最值问题,以及二次函数与平行四边形、三角形面积有关的问题.【典例2】(2019•绵阳)在平面直角坐标系中,将二次函数y =ax 2(a >0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x 轴交于点A 、B (点A 在点B 的左侧),OA =1,经过点A 的一次函数y =kx +b (k ≠0)的图象与y 轴正半轴交于点C ,且与抛物线的另一个交点为D ,△ABD 的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图象下方,求△ACE 面积的最大值,并求出此时点E 的坐标; (3)若点P 为x 轴上任意一点,在(2)的结论下,求PE +35P A 的最小值.【点拨】(1)先写出平移后的抛物线解析式,经过点A (﹣1,0),可求得a 的值,由△ABD 的面积为5可求出点D 的纵坐标,代入抛物线解析式求出横坐标,由A 、D 的坐标可求出一次函数解析式; (2)作EM ∥y 轴交AD 于M ,如图,利用三角形面积公式,由S △ACE =S △AME ﹣S △CME 构建二次函数,利用二次函数的性质即可解决问题;(3)作E 关于x 轴的对称点F ,过点F 作FH ⊥AE 于点H ,交x 轴于点P ,则∠BAE =∠HAP =∠HFE ,利用锐角三角函数的定义可得出EP +35AP =FP +HP ,此时FH 最小,求出最小值即可.【解答】解:(1)将二次函数y =ax 2(a >0)的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为y =a (x ﹣1)2﹣2, ∵OA =1,∴点A 的坐标为(﹣1,0),代入抛物线的解析式得,4a ﹣2=0, ∴a =12,∴抛物线的解析式为y =12(x −1)2−2,即y =12x 2−x −32. 令y =0,解得x 1=﹣1,x 2=3, ∴B (3,0), ∴AB =OA +OB =4, ∵△ABD 的面积为5, ∴S △ABD =12AB ⋅y D =5,∴y D =52,代入抛物线解析式得,52=12x 2−x −32,解得x 1=﹣2,x 2=4, ∴D (4,52),设直线AD 的解析式为y =kx +b ,∴{4k +b =52−k +b =0,解得:{k =12b =12, ∴直线AD 的解析式为y =12x +12.(2)过点E 作EM ∥y 轴交AD 于M ,如图,设E (a ,12a 2−a −32),则M (a ,12a +12),∴EM =12a +12−12a 2+a +32=−12a 2+32a +2, ∴S △ACE =S △AME ﹣S △CME =12×EM ⋅1=12(−12a 2+32a +2)×1=−14(a 2−3a −4), =−14(a −32)2+2516,∴当a =32时,△ACE 的面积有最大值,最大值是2516,此时E 点坐标为(32,−158).(3)作E 关于x 轴的对称点F ,连接EF 交x 轴于点G ,过点F 作FH ⊥AE 于点H ,交x 轴于点P ,∵E (32,−158),OA =1,∴AG =1+32=52,EG =158,∴AG EG=52158=43,∵∠AGE =∠AHP =90° ∴sin ∠EAG =PHAP =EGAE =35, ∴PH =35AP , ∵E 、F 关于x 轴对称, ∴PE =PF ,∴PE +35AP =FP +HP =FH ,此时FH 最小, ∵EF =158×2=154,∠AEG =∠HEF , ∴sin∠AEG =sin∠HEF =AGAE =FHEF =45, ∴FH =45×154=3. ∴PE +35P A 的最小值是3.【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系,解决相关问题.【精练1】(2019秋•河北区期末)在平面直角坐标系中,抛物线y =﹣x 2+bx +c 经过点A 、B ,C ,已知A (﹣1,0),C (0,3). (1)求抛物线的解析式;(2)如图1,P 为线段BC 上一动点,过点P 作y 轴的平行线,交抛物线于点D ,是否存在这样的P 点,使线段PD 的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)如图2,抛物线的顶点为E ,EF ⊥x 轴于点F ,N 是直线EF 上一动点,M (m ,0)是x 轴一个动点,请直接写出CN +MN +12MB 的最小值以及此时点M 、N 的坐标,直接写出结果不必说明理由.【点拨】(1)y=﹣x2+bx+c经过点C,则c=3,将点A的坐标代入抛物线表达式:y=﹣x2+bx+3,即可求解;(2)设点D(x,﹣x2+2x+3),则点P(x,﹣x+3),则PD=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x,即可求解;(3)过点B作倾斜角为30°的直线BH,过点C作CH⊥BH交于点H,CH交对称轴于点N,交x轴于点M,则点M、N为所求,即可求解.【解答】解:(1)y=﹣x2+bx+c经过点C,则c=3,将点A的坐标代入抛物线表达式:y=﹣x2+bx+3并解得:b=2,抛物线的表达式为:y=﹣x2+2x+3;(2)存在,理由:令y=0,则x=﹣1或3,故点B(3,0),将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x+3,设点D(x,﹣x2+2x+3),则点P(x,﹣x+3),则PD=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x,当x=32时,PD最大值为:94;(3)过点B作倾斜角为30°的直线BH,过点C作CH⊥BH交于点H,CH交对称轴于点N,交x轴于点M,则点M、N为所求,直线BH表达式中的k值为√33,则直线CH的表达式为:y=−√3x+3,当x=1时,y=3−√3,当y=0时,x=√3,故点N、M的坐标分别为:(1,3−√3)、(√3,0),CN+MN+12MB的最小值=CH=CM+FH=3+3√32.【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、点的对称性等,其中(3),本题提供对的采取的用点的对称轴确定线段和的方法,是此类题目的一般方法.【精练2】(2020•郑州模拟)如图1,在平面直角坐标系中,直线y=x+4与抛物线y=−12x2+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求PDOD的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.【点拨】(1)利用直线解析式求出点A、B的坐标,再利用待定系数法求二次函数解析式解答;(2)作PF∥BO交AB于点F,证△PFD∽△OBD,得比例线段PDOD =PFOB,则PF取最大值时,求得PDOD的最大值;(3)(i)点F在y轴上时,过点P作PH⊥x轴于H,根据正方形的性质可证明△CPH≌△FCO,根据全等三角形对应边相等可得PH =CO =2,然后利用二次函数解析式求解即可;(ii )点E 在y 轴上时,过点PK ⊥x 轴于K ,作PS ⊥y 轴于S ,同理可证得△EPS ≌△CPK ,可得PS =PK ,则P 点的横纵坐标互为相反数,可求出P 点坐标;点E 在y 轴上时,过点PM ⊥x 轴于M ,作PN ⊥y 轴于N ,同理可证得△PEN ≌△PCM ,可得PN =PM ,则P 点的横纵坐标相等,可求出P 点坐标.由此即可解决问题. 【解答】解:(1)直线y =x +4与坐标轴交于A 、B 两点, 当x =0时,y =4,x =﹣4时,y =0, ∴A (﹣4,0),B (0,4),把A ,B 两点的坐标代入解析式得,{−4b +c =8c =4,解得,{b =−1c =4,∴抛物线的解析式为y =−12x 2−x +4; (2)如图1,作PF ∥BO 交AB 于点F , ∴△PFD ∽△OBD , ∴PD OD=PF OB,∵OB 为定值, ∴当PF 取最大值时,PD OD有最大值,设P (x ,−12x 2−x +4),其中﹣4<x <0,则F (x ,x +4), ∴PF =y P −y F =−12x 2−x +4−(x +4)=−12x 2−2x , ∵−12<0且对称轴是直线x =﹣2, ∴当x =﹣2时,PF 有最大值, 此时PF =2,PD OD=PF OB=12;(3)∵点C (2,0), ∴CO =2,(i)如图2,点F在y轴上时,过点P作PH⊥x轴于H,在正方形CPEF中,CP=CF,∠PCF=90°,∵∠PCH+∠OCF=90°,∠PCH+∠HPC=90°,∴∠HPC=∠OCF,在△CPH和△FCO中,{∠HPC=∠OCF ∠PHC=∠COF PC=CF,∴△CPH≌△FCO(AAS),∴PH=CO=2,∴点P的纵坐标为2,∴−12x2−x+4=2,解得,x=−1±√5,∴P1(−1+√5,2),P2(−1−√5,2),(ii)如图3,点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,∴PS=PK,∴P点的横纵坐标互为相反数,∴−12x2−x+4=−x,解得x=2√2(舍去),x=﹣2√2,∴P3(−2√2,2√2),如图4,点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,∴PN=PM,∴P点的横纵坐标相等,∴−12x2−x+4=x,解得x=−2+2√3,x=−2−2√3(舍去),∴P4(−2+2√3,−2+2√3),综合以上可得P点坐标为(−2+2√3,−2+2√3),(−2√2,2√2),(−1+√5,2),(−1−√5,2).【点睛】此题主要考查了二次函数的综合应用,全等三角形的判定与性质以及待定系数法求二次函数解析式,正方形的性质的应用,解题的关键是正确进行分类讨论.【精练3】(2020•武汉模拟)如图1,抛物线M1:y=﹣x2+4x交x正半轴于点A,将抛物线M1先向右平移3个单位,再向上平移3个单位得到抛物线M2,M1与M2交于点B,直线OB交M2于点C.(1)求抛物线M2的解析式;(2)点P是抛物线M1上AB间的一点,作PQ⊥x轴交抛物线M2于点Q,连接CP,CQ.设点P的横坐标为m,当m为何值时,使△CPQ的面积最大,并求出最大值;(3)如图2,将直线OB向下平移,交抛物线M1于点E,F,交抛物线M2于点G,H,则EGHF的值是否为定值,证明你的结论.【点拨】(1)先将抛物线M1:y=﹣x2+4x化为顶点式,由平移规律“上加下减,左加右减”可直接写出抛物线M2的解析式;(2)分别求出点A,点B,点C的坐标,求出m的取值范围,再用含m的代数式表示出△CPQ的面积,可用函数的思想求出其最大值;(3)设将直线OB向下平移k个单位长度得到直线EH,分别求出点E,F,G,H的横坐标,分别过G,H作y轴的平行线,过E,F作x轴的平行线,构造相似三角形△GEM与△HFN,可通过相似三角形的性质求出EGHF的值为1.【解答】解:(1)∵y=﹣x2+4x=﹣(x﹣2)2+4,∴将其先向右平移3个单位,再向上平移3个单位的解析式为:y=﹣(x﹣5)2+7=﹣x2+10x﹣18;(2)∵抛物线M1与M2交于点B,∴﹣x2+4x=﹣x2+10x﹣18,解得,x=3,∴B(3,3),将点B(3,3)代入y=kx,得,k=1,∴y OB=x,∵抛物线M2与直线OB交于点C,∴x=﹣x2+10x﹣18,解得,x1=3,x2=6,∴C(6,6),∵点P的横坐标为m,∴点P(m,﹣m2+4m),则Q(m,﹣m2+10m﹣18),∴QP=﹣m2+10m﹣18﹣(﹣m2+4m)=6m﹣18,∴S△PQC=12(6m﹣18)(6﹣m)=﹣3m2+27m﹣54,=﹣3(m−92)2+274,在y=﹣m2+4m中,当y=0时,x1=0,x2=4,∴A(4,0),∵B(3,3),∴3≤m≤4,∴在S=﹣3(m−92)2+274中,根据二次函数的图象及性质可知,当m=4时,△PCQ有最大值,最大值为6;(3)GEHF的值是定值1,理由如下:设将直线OB向下平移k个单位长度得到直线EH,则y EH=x﹣k,∴令x﹣k=﹣x2+4x,解得,x1=3+√9+4k2,x2=3−√9+4k2,∴x F=3+√9+4k2,x E=3−√9+4k2,令x﹣k=﹣x2+10x﹣18,解得,x1=9+√9+4k2,x2=9−√9+4k2,∴x H=9+√9+4k2,x G=9−√9+4k2,∴ME=x G﹣x E=9−√9+4k2−3−√9+4k2=3,FN=x H﹣x F=9+√9+4k2−3+√9+4k2=3,分别过G,H作y轴的平行线,过E,F作x轴的平行线,交点分别为M,N,Q,则∠HFN=∠GEM,∠HNF=∠GME=90°,∴△GEM∽△HFN,∴GEHF =EMFN,∴GEHF =EMFN=33=1,∴GEHF的值是定值1.【点睛】本题考查了二次函数的图象平移规律,二次函数的图象及性质,相似三角形的判定与性质等,解题关键是掌握用函数的思想求极值等.【精练4】(2019秋•南岗区期末)如图,抛物线y=ax2﹣11ax+24a交x轴于C,D两点,交y轴于点B(0,449),过抛物线的顶点A作x轴的垂线AE,垂足为点E,作直线BE.(1)求直线BE的解析式;(2)点H为第一象限内直线AE上的一点,连接CH,取CH的中点K,作射线DK交抛物线于点P,设线段EH的长为m,点P的横坐标为n,求n与m之间的函数关系式.(不要求写出自变量m的取值范围);(3)在(2)的条件下,在线段BE上有一点Q,连接QH,QC,线段QH交线段PD于点F,若∠HFD=2∠FDO,∠HQC=90°+12∠FDO,求n的值.【点拨】(1)根据抛物线可得对称轴,可知点E的坐标,利用待定系数法可得一次函数BE的解析式;(2)如图1,作辅助线,构建直角三角形,根据抛物线过点B (0,449),可得a 的值,计算y =0时,x的值可得C 和D 两点的坐标,从而知CD 的值,根据P 的横坐标可表示其纵坐标,根据tan ∠PDM =PMDM=1154(n−3)(n−8)8−n=1154(3−n),tan ∠KDN =KN DN =m2154=2m 15,相等列方程为1154(3−n)=2m 15,可得结论;(3)如图2,延长HF 交x 轴于T ,先根据已知得∠FDO =∠FTO ,由等角的三角函数相等和(2)中的结论得:tan ∠FDO =tan ∠FTO ,则m ET=2m 15,可得ET 和CT 的长,令∠FDO =∠FTO =2α,表示角可得∠TCQ =∠TQC ,则TQ =CT =5, 设Q 的坐标为(t ,−89t +449),根据定理列方程可得:TS 2+QS 2=TQ 2,(2+t )2+(−89t +449)2=52,解得t 1=4729,t 2=1;根据两个t 的值分别求n 的值即可. 【解答】解:(1)∵抛物线y =ax 2﹣11ax +24a , ∴对称轴是:x =−−11a2a =112, ∴E (112,0),∵B (0,449),设直线BE 的解析式为:y =kx +b ,则{112k +b =0b =449,解得:{k =−89b =449, ∴直线BE 的解析式为:y =−89x +449;(2)如图1,过K 作KN ⊥x 轴于N ,过P 作PM ⊥x 轴于M ,∵抛物线y =ax 2﹣11ax +24a 交y 轴于点B (0,449),∴24a =449, ∴a =1154, ∴y =1154x 2−12154x +449=1154(x ﹣3)(x ﹣8), ∴当y =0时,1154(x ﹣3)(x ﹣8)=0,解得:x =3或8, ∴C (3,0),D (8,0), ∴OC =3,OD =8, ∴CD =5,CE =DE =52, ∴P 点在抛物线上, ∴P [n ,1154(n ﹣3)(n ﹣8)],∴PM =1154(n ﹣3)(n ﹣8),DM =8﹣n ,∴tan ∠PDM =PM DM =1154(n−3)(n−8)8−n =1154(3−n),∵AE ⊥x 轴,∴∠KNC =∠HEC =90°, ∴KN ∥EH , ∴CN EN=CK KH=1,∴CN =EN =12CE =54,∴KN =12HE =12m ,ND =154,在△KDN 中,tan ∠KDN 中,tan ∠KDN =KN DN =m2154=2m 15,∴1154(3−n)=2m 15,n =−3655m +3;(3)如图2,延长HF 交x 轴于T ,∵∠HFD =2∠FDO ,∠HFD =∠FDO +∠FTO , ∴∠FDO =∠FTO , ∴tan ∠FDO =tan ∠FTO , 在Rt △HTE 中,tan ∠FTO =EHET , ∴m ET=2m 15,∴ET =152, ∴CT =5,令∠FDO =∠FTO =2α,∴∠HQC =90°+12∠FDO =90°+α,∴∠TQC =180°﹣∠HQC =90°﹣α,∠TCQ =180°﹣∠HTC ﹣∠TQC =90°﹣α, ∴∠TCQ =∠TQC , ∴TQ =CT =5,∵点Q 在直线y =−89x +449上,∴可设Q 的坐标为(t ,−89t +449), 过Q 作QS ⊥x 轴于S ,则QS =−89t +449,TS =2+t , 在Rt △TQS 中,TS 2+QS 2=TQ 2, ∴(2+t )2+(−89t +449)2=52, 解得t 1=4729,t 2=1;①当t =4729时,QS =10029,TS =10529, 在Rt △QTH 中,tan ∠QTS =1002910529=2021,∴2m 15=2021,m =507, ∴n =−3655×507+3=−12977, ②当t =1时,QS =4,TS =3, 在Rt △QTH 中,tan ∠QTS =QS TS =43, ∴2m 15=43,m =10, ∴n =−3655×10+3=−3911. 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、三角函数、平行线分线段成比例定理、解直角三角形等,其中(3),运用方程的思想,求解t 的值,难度很大.【精练5】(2019秋•大东区期末)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 与x 轴交于点A (﹣2,0),点B (4,0),与y 轴交于点C (0,2√3),连接BC ,位于y 轴右侧且垂直于x 轴的动直线l ,沿x 轴正方向从O 运动到B (不含O 点和B 点),且分别交抛物线、线段BC 以及x 轴于点P ,D ,E ,连接AC ,BC ,P A ,PB ,PC . (1)求抛物线的表达式;(2)如图1,当直线l 运动时,求使得△PEA 和△AOC 相似的点P 点的横坐标; (3)如图1,当直线1运动时,求△PCB 面积的最大值;(4)如图2,抛物线的对称轴交x 轴于点Q ,过点B 作BG ∥AC 交y 轴于点G .点H 、K 分别在对称轴和y 轴上运动,连接PH 、HK ,当△PCB 的面积最大时,请直接写出PH +HK +√32KG 的最小值.【点拨】(1)根据A和B的坐标设抛物线的解析式为:y=a(x+2)(x﹣4),把点C(0,2√3)代入可得:a=−√34,即可求解;(2)只有当∠P AE=∠ACO时,△PEA△∽AOC,可得方程,解方程可得P的横坐标;(3)如图1,先确定△PCB的面积最大时,PD最大,设P(x,−√34x2+√32x+2√3),D(x,−√32x+2√3),表示PD的长,根据二次函数的最值可得PD的最大值,最后利用三角形面积公式可得结论;(4)由(3)知:△PCB的面积最大时,P(2,2√3),则OP=√22+(2√3)2=4,如图2,将直线GO绕点G逆时针旋转60°,得到直线a,作PM⊥直线a于M,KM′⊥直线a于M′,则PH+HK+√32KG=PH+HK+KM′≥PM,求出PM即可解决问题.【解答】解:(1)∵点A(﹣2,0),点B(4,0),∴设抛物线的解析式为:y=a(x+2)(x﹣4),把点C(0,2√3)代入得:a=−√3 4,故抛物线的表达式为:y=−√34(x+2)(x﹣4)=−√34x2+√32x+2√3;(2)设P(x,−√34x2+√32x+2√3),∵动直线l在y轴的右侧,P为抛物线与l的交点,∴0<x<4,∵点A(﹣2,0)、C(0,2√3),∴OA=2,OC=2√3,∵l⊥x轴,∴∠PEA =∠AOC =90°, ∵∠P AE ≠∠CAO ,∴只有当∠P AE =∠ACO 时,△PEA ∽△AOC ,此时PEAE=AO OC,即−√34x 2+√32x+2√3x+2=2√3,3x 2﹣2x ﹣16=0, (x +2)(3x ﹣8)=0, x =﹣2(舍)或83,则点P 的横坐标为83;(3)如图1,△PCB 的面积=12⋅PD ⋅OB ,∵OB =4是定值,∴当PD 的值最大时,△PCB 的面积最大, ∵B (4,0),C (0,2√3), 设直线BC 的解析式为:y =kx +b , 则{4k +b =0b =2√3, 解得:{k =−√32b =2√3,∴直线BC 的解析式为:y =−√32x +2√3,设P (x ,−√34x 2+√32x +2√3),D (x ,−√32x +2√3),∴PD =(−√34x 2+√32x +2√3)﹣(−√32x +2√3)=−√34x 2+√3x =−√34(x ﹣2)2+√3,∵−√34<0,∴当x=2时,PD有最大值是√3,此时△PCB的面积=12⋅PD⋅OB=12×√3×4=2√3;(4)如图2中,△AOC中,OA=2,OC=2√3,∴AC=4,∴∠ACO=30°,∵BG∥AC,∴∠BGO=∠ACO=30°,Rt△BOG中,OB=4,∴OG=4√3,由(3)知:△PCB的面积最大时,P(2,2√3),则OP=√22+(2√3)2=4,如图2,将直线GO绕点G逆时针旋转60°,得到直线a,作PM⊥直线a于M,KM′⊥直线a于M′,则PH+HK+√32KG=PH+HK+KM′≥PM,∵P(2,2√3),∴∠POB=60°,∵∠MOG=30°,∴∠MOG+∠BOC+∠POB=180°,∴P,O,M共线,Rt△OMG中,OG=4√3,MG=2√3,∴OM=6,可得PM=10,∴PH+HK+√32KG的最小值为10.【点睛】本题属于二次函数综合题,考查了一次函数的性质,二次函数的性质,垂线段最短,相似三角形的判定和性质,一元二次方程等知识,解题的关键是,学会用转化的思想思考问题,把最短问题转化为垂线段最短,学会利用参数构建方程解决问题,属于中考压轴题.【精练6】(2016秋•集宁区期末)如图,对称轴为直线x=﹣1的抛物线y=a(x﹣h)2﹣4(a≠0)与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣3,0)(1)求该抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.【点拨】(1)由对称轴确定h的值,代入点A坐标即可求解;(2)设出点P坐标并表示△POC的面积根据题意列出方程求解即可;(3)设出点Q,D坐标并表示线段QD的长度,建立二次函数,运用二次函数的最值求解即可.【解答】解:(1)由题意对称轴为直线x=﹣1,可设抛物线解析式:y=a(x+1)2﹣4,把点A(﹣3,0)代入可得,a=1,∴y=(x+1)2﹣4=x2+2x﹣3,(2)如图1,y =x 2+2x ﹣3,当x =0时,y =﹣3,所以点C (0,﹣3),OC =3,令y =0,解得:x =﹣3,或x =1,∴点B (1,0),OB =1,设点P (m ,m 2+2m ﹣3),此时S △POC =12×OC ×|m |=32|m |, S △BOC =12×OB ×OC =32, 由S △POC =4S △BOC 得32|m |=6,解得:m =4或m =﹣4,m 2+2m ﹣3=21,或m 2+2m ﹣3=5,所以点P 的坐标为:(4,21),或(﹣4,5);(3)如图2,设直线AC 的解析式为:y =kx +b ,把A (﹣3,0),C (0,﹣3)代入得:{0=−3k +b −3=b,解得:{k =−1b =−3, 所以直线AC :y =﹣x ﹣3,设点Q (n ,﹣n ﹣3),点D (n ,n 2+2n ﹣3)所以:DQ =﹣n ﹣3﹣(n 2+2n ﹣3)=﹣n 2﹣3n =﹣(n +32)2+94,所以当n =−32时,DQ 有最大值94. 【点睛】此题主要考查二次函数综合问题,会求函数解析式,会根据面积相等建立方程并准确求解,知道运用二次函数可以解决线段最值问题,是解题的关键.【精练7】(2019秋•农安县期末)定义:对于抛物线y =ax 2+bx +c (a 、b 、c 是常数,a ≠0),若b 2=ac ,则称该抛物线为黄金抛物线.例如:y =x 2﹣x +1是黄金抛物线(1)请再写出一个与上例不同的黄金抛物线的解析式;(2)将黄金抛物线y =x 2﹣x +1沿对称轴向下平移3个单位①直接写出平移后的新抛物线的解析式;②新抛物线如图所示,与x 轴交于A 、B (A 在B 的左侧),与y 轴交于C ,点P 是直线BC 下方的抛物线上一动点,连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP ′C ,那么是否存在点P ,使四边形POP ′C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.③当直线BC 下方的抛物线上动点P 运动到什么位置时,四边形 OBPC 的面积最大并求出此时P 点的坐标和四边形OBPC 的最大面积.【点拨】(1)直接根据黄金抛物线的定义写一个解析式即可;(2)①根据平移的知识直接写出新抛物线的解析式;②设P 点坐标为(x ,x 2﹣x ﹣2),PP ′交CO 于E ,若四边形POP ′C 是菱形,则有PC =PO ,连结PP ′则PE ⊥CO 于E ,P 点的横坐标为﹣1,进而解方程求出x 的值;③过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (x ,x 2﹣x ﹣2),先求出BC 的直线解析式,进而设Q 点的坐标为(x ,x ﹣2),根据S 四边形OBPC =S △OBC +S △BPQ +S △CPQ 列出x 的二次函数解析式,根据二次函数的性质求出满足条件的P 点坐标以及面积最大值.【解答】解:(1)不唯一,例如:y =x 2+x +1;(2)①:y =x 2﹣x ﹣2;②存在点P ,如图1,使四边形POP ′C 为菱形.设P 点坐标为(x ,x 2﹣x ﹣2),PP ′交CO 于E若四边形POP ′C 是菱形,则有PC =PO .连结PP ′则PE ⊥CO 于E ,∴OE =EC =1,∴y =﹣1,∴x 2﹣x ﹣2=﹣1解得x 1=1+√52,x 2=1−√52(不合题意,舍去) ∴P 点的坐标为(1+√52,﹣1); ③过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (x ,x 2﹣x ﹣2),易得,直线BC 的解析式:y =x ﹣2则Q 点的坐标为(x ,x ﹣2).S 四边形OBPC =S △OBC +S △BPQ +S △CPQ=12OB •OC +12QP •OF +12QP •FB =12×2×2+12(−x 2+2x)×2=﹣(x ﹣1)2+3,当x =1时,四边形OBPC 的面积最大此时P 点的坐标为(1,﹣2),四边形OBPC 的面积最大值是3.【点睛】本题主要考查了二次函数的综合题,此题涉及黄金抛物线新定义、菱形的判定与性质、四边形面积的求法等知识,解答此题要掌握黄金抛物线的定义,解答(2)问需要掌握菱形的性质以及分割法求四边形的面积,此题难度不大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数最值问题题型一竖直线段(或水平线段)最值问题典例剖析例1如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x=,D为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.(1)求抛物线的表达式;(2)当线段DF的长度最大时,求D点的坐标及DF的最大值.跟踪训练1.如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y轴于点C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的表达式;(2)若点P仅在线段AO上运动,如图,求线段MN的最大值.2.如图,已知二次函数y=﹣x2+bx+c的图象与x轴交于点A、C,与y轴交于点B,直线y=x+3经过A、B两点.(1)求二次函数的表达式;(2)若点P是直线AB上方抛物线上的一动点,过点P作PF⊥x轴于点F,交直线AB 于点D,求线段PD的最大值.过关精练1.已知:如图,抛物线y=ax2+4x+c经过原点O(0,0)和点A(3,3),P为抛物线上的一个动点,过点P作x轴的垂线,垂足为B(m,0),并与直线OA交于点C.(1)求抛物线的解析式;(2)当点P在直线OA上方时,求线段PC的最大值.题型二斜线段最值问题典例剖析例1如图,抛物线y=ax2+bx﹣2经过点A(4,0)、B(1,0),交y轴于点C.(1)求抛物线的解析式;(2)点P是直线AC上方的抛物线上一点过点P作PH⊥AC于点H,求线段PH长度的最大值.例2 如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴交于点A,B(点A在点B 的左侧),交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.(1)连结BD,求直线BD的表达式;(2)点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN⊥BD,交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD于点F,当MN取得最大值时,求点N的坐标.1.如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?2.在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣3,0)、B(1,0),交y 轴于点N,点M为抛物线的顶点,对称轴与x轴交于点C.(1)求抛物线的解析式;(2)如图1,连接AM,点E是线段AM上方抛物线上一动点,EF⊥AM于点F,过点E 作EH⊥x轴于点H,交AM于点D.当EF取最大值时,求点D的坐标.1.如图,抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C,直线y=﹣x与该抛物线交于E,F两点.(1)求抛物线的解析式.(2)P是直线EF下方抛物线上的一个动点,作PH⊥EF于点H,求PH的最大值.2. 在平面直角坐标系中,抛物线y=-x2+bx+c与x轴交于A,B两点.与y轴交于点C.且点A的坐标为(-1,0),点C的坐标为(0,5).(1)求该抛物线的解析式;(2)如图,若点P是第一象限内抛物线上的一动点.当点P到直线BC的距离最大时,求点P的坐标;题型三 线段和差最值问题典例剖析例1 如图,抛物线L :y =x 2﹣x ﹣3与x 轴正半轴交于点A ,与y 轴交于点B .(1)求直线AB 的解析式及抛物线顶点坐标;(2)如图1,点P 为第四象限且在对称轴右侧抛物线上一动点,过点P 作PC ⊥x 轴,垂足为C ,PC 交AB 于点D ,求PD +BD 的最大值,并求出此时点P 的坐标.例2 如图,在平面直角坐标系中,抛物线y=x 2+bx+c 经过点A (-1,0),B (25,0),直线y=x+21与抛物线交于C ,D 两点,点P 是抛物线在第四象限内图象上的一个动点.过点P 作PG⊥CD,垂足为G ,PQ∥y 轴,交x 轴于点Q .(1)求抛物线的函数表达式; (2)当2PG+PQ 取得最大值时,求点P 的坐标和2PG+PQ 的最大值1. 如图,在平面直角坐标系中,抛物线y=ax 2+bx+c (a 、b 、c 为常数,a≠0)的图象与x轴交于点A (1,0)、B 两点,与y 轴交于点C (0,4),且抛物线的对称轴为直线x=23-. (1)求抛物线的解析式; (2)在直线BC 上方的抛物线上有一动点M ,过点M 作MN⊥x 轴,垂足为点N ,交直线BC 于点D ;是否存在点M ,使得MD+22DC 取得最大值,若存在请求出它的最大值及点M 的坐标;若不存在,请说明理由.2. 如图,在平面直角坐标系中,抛物线y=23212--x x 交x 轴于A 、B 两点(点A 在点B 左侧).一次函数y=21x+b 与抛物线交于A 、D 两点,交y 轴于点C . (1)求点D 的坐标;(2)点E 是线段CD 上任意一点,过点E 作EF⊥y 轴于点F ,过点E 作EP⊥AD 交抛物线于点P .点P 位于直线AD 下方,求EF PE 455+的最大值及相应的P 点坐标.1. 抛物线y=﹣x2﹣x+与x轴交于点A,B(点A在点B的左边),与y轴交于点C,点D是该抛物线的顶点.(1)如图1,连接CD,求线段CD的长;(2)如图2,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC交于点E,当PE+EC的值最大时,求出对应的点P的坐标.题型四 周长最值问题典例剖析例1 如图,在平面直角坐标系中,抛物线2y x bx c =++经过(0,1)A -,(4,1)B .直线AB 交x 轴于点C ,P 是直线AB 下方抛物线上的一个动点.过点P 作PD AB ⊥,垂足为D ,//PE x 轴,交AB 于点E .(1)求抛物线的函数表达式;(2)当PDE ∆的周长取得最大值时,求点P 的坐标和PDE ∆周长的最大值.例2 如图,抛物线y=﹣x 2+2x+3与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 和点C 关于抛物线的对称轴对称,直线AD 与y 轴交于点E .(1)求直线AD 的解析式;(2)如图1,直线AD 上方的抛物线上有一点F ,过点F 作FG ⊥AD 于点G ,作FH 平行于x 轴交直线AD 于点H ,求△FGH 周长的最大值;跟踪训练1.在平面直角坐标系中,抛物线y=﹣x2+x+2与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点Q.(1)如图1,连接AC,BC,求直线BC的表达式;(2)若点P为直线BC上方抛物线上一动点,过点P作PE∥y轴交BC于点E,作PF ⊥BC于点F.当△PEF的周长最大时,求△PEF的周长最大值及此时点P的坐标.2.如图1,抛物线y=﹣x2+x+2与x轴交于A,B两点(点A在点B右侧),与y轴交于点C,点D是抛物线的顶点,连接AD、BD.(1)如图1,连接AC、BC,若点P是直线AC上方抛物线上一动点,过点P作PE∥BC 交AC于点E,作PQ∥y轴交AC于点Q,当△PQE周长最大时,求点P的坐标.过关精练1. 如图,已知抛物线y=ax2+bx+c与x轴交于点A(2,0),B(-4,0),与y轴交于C(0,-3),连接BC.(1)求抛物线的解析式;(2)如图1,点P是直线BC下方抛物线上一点,过点P作PD⊥BC于点D,过点P作PE∥y轴交BC于点E,求△PDE周长的最大值及此时点P的坐标;题型五面积最值问题典例剖析例1 如图,在平面直角坐标系中,抛物线y=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C.(1)求该抛物线的解析式;(2)直线l为该抛物线的对称轴,点D与点C关于直线l对称,点P为直线AD下方抛物线上一动点,连接P A,PD,求△P AD面积的最大值.例2 如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(﹣,0),直线BC的解析式为y=﹣x+2.(1)求抛物线的解析式;(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标.跟踪训练1.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与直线AB相交于A,B两点,其中A(﹣3,﹣4),B(0,﹣1).(1)求该抛物线的函数表达式;(2)点P为直线AB下方抛物线上的任意一点,连接P A,PB,求△P AB面积的最大值.2. 如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x上,且横坐标为1,点B与点A 关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).(1)求线段AB的长;(2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点H,点F 为y轴上一点,求△PBE的最大面积及点P的坐标.A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.求△PCE的最大面积及点P的坐标.过关精练1.已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△P AB的面积最大?2.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.(1)求此抛物线的表达式;(2)连接AC,求△P AC面积的最大值及此时点P的坐标.在点B左侧),与y轴交于点C,抛物线的顶点为点E.(1)试判断△ABC的形状;(1)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,求△PCD的最大面积及点P的坐标.4.如图,直线y=﹣x+2交y轴于点A,交x轴于点C,抛物线y=﹣x2+bx+c经过点A,点C,且交x轴于另一点B.(1)直接写出点A,点B,点C的坐标及拋物线的解析式;(2)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M 的坐标.5.如图,抛物线y=ax2+bx﹣2与x轴交于A,B两点,与y轴交于点C,已知A(﹣1,0),直线BC的解析式为y=x﹣2,过点A作AD∥BC交抛物线于点D,点E为直线BC下方抛物线上一点,连接CD,DB,BE,CE.(1)求抛物线的解析式;(2)求四边形DBEC面积的最大值,以及此时点E的坐标.题型六 其他最值问题典例剖析已知:抛物线y=ax 2+bx+c 经过A (-1,0),B (3,0),C (0,3)三点.(1)求抛物线的解析式;(2)如图1,点P 为直线BC 上方抛物线上任意一点,连PC 、PB 、PO ,PO 交直线BC 于点E ,设k OEPE ,求当k 取最大值时点P 的坐标,并求此时k 的值.跟踪训练1.已知抛物线y=ax 2+bx+c 与x 轴交于A (-2,0)、B (6,0)两点,与y 轴交于点C (0,-3).(1)求抛物线的表达式;(2)点P 在直线BC 下方的抛物线上,连接AP 交BC 于点M ,当AM PM 最大时,求点P 的坐标及AMPM 的最大值。

相关文档
最新文档