数学:1.3一元一次不等式组的应用(第2课时)教案(湘教版七年级下)

合集下载

《一元一次不等式组的解法 》 教案精品 2022年数学

《一元一次不等式组的解法 》 教案精品 2022年数学

9.3 一元一次不等式组第1课时 一元一次不等式组的解法1.理解一元一次不等式组及其解集的概念; 2.掌握一元一次不等式组的解法;(重点)3.会利用数轴表示一元一次不等式组的解集.(难点)一、情境导入你能列出上面的不等式并将其解集在数轴上表示出来吗? 二、合作探究探究点一:在数轴上表示不等式组的解集不等式组⎩⎪⎨⎪⎧x <3,x ≥1的解集在数轴上表示为( )解析:把不等式组中每个不等式的解集在数轴上表示出来,它们的公共局部是1≤x <3.应选C.方法总结:利用数轴确定不等式组的解集,如果不等式组由两个不等式组成,其公共局部在数轴上方应当是有两根横线穿过.探究点二:解一元一次不等式组解以下不等式组,并把它们的解集在数轴上表示出来:(1)⎩⎪⎨⎪⎧2x -3≥1,x +2<2x ; (2)⎩⎪⎨⎪⎧3〔x +2〕>x +8,x 4≥x -13.解析:先求出不等式组中每一个不等式的解集,再求它们的公共局部.解:(1)⎩⎪⎨⎪⎧2x -3≥1,①x +2<2x .②解不等式①,得x ≥2,解不等式②,得x >2.所以这个不等式组的解集为x >2.将不等式组的解集在数轴上表示如下:(2)⎩⎪⎨⎪⎧3〔x +2〕>x +8,①x 4≥x -13.②解不等式①,得x >1,解不等式②,得x ≤4. 所以这个不等式组的解集是1<x ≤4. 将不等式组的解集在数轴上表示如下:方法总结:解一元一次不等式组的一般步骤:先分别求出不等式组中每一个不等式的解集,并把它们的解集在数轴上表示出来,然后利用数轴确定这几个不等式解集的公共局部.也可利用口诀确定不等式组的解集:大大取较大,小小取较小,大小小大中间找,大大小小无处找.探究点三:求不等式组的特殊解求不等式组⎩⎪⎨⎪⎧2-x ≥0,x -12-2x -13<13的整数解.解析:分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x 的整数值即可.解:⎩⎪⎨⎪⎧2-x ≥0,①x -12-2x -13<13.②解不等式①,得x ≤2,解不等式②,得x >-3.故此不等式组的解集为-3<x ≤2,x 的整数解为-2,-1,0,1,2.方法总结:求不等式组的特殊解时,先解每一个不等式,求出不等式组的解集,然后根据题目要求确定特殊解.确定特殊解时也可以借助数轴.探究点四:根据不等式组的解集求字母的取值范围假设不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2无解,那么实数a 的取值范围是( )A .a ≥-1B .a <-1C .a ≤1D .a ≤-1解析:解第一个不等式得x ≥-a ,解第二个不等式得x <1.因为不等式组无解,所以-a ≥1,解得a ≤-1.应选D.方法总结:根据不等式组的解集求字母的取值范围,可按以下步骤进行:①解每一个不等式,把解集用数字或字母表示;②根据条件即不等式组的解集情况,列出新的不等式.这时一定要注意是否包括边界点,可以进行检验,看有无边界点是否满足题意;③解这个不等式,求出字母的取值范围.三、板书设计一元一次不等式组⎩⎪⎨⎪⎧概念解法不等式组的解集⎩⎪⎨⎪⎧利用数轴确定解集利用口诀确定解集解一元一次不等式组是建立在解一元一次不等式的根底之上,解不等式组时,先解每一个不等式,再确定各个不等式的解集的公共局部.教学中可以把利用数轴与利用口诀确定不等式组的解集结合起来,互相验证15.1.2 分式的根本性质1.通过类比分数的根本性质,说出分式的根本性质,并能用字母表示.(重点) 2.理解并掌握分式的根本性质和符号法那么.(难点)3.理解分式的约分、通分的意义,明确分式约分、通分的理论依据.(重点) 4.能正确、熟练地运用分式的根本性质,对分式进行约分和通分.(难点)一、情境导入中国古代的数学论著中就有对“约分〞的记载,如?九章算术?中就曾记载“约分术〞,并给出了详细的约分方法,这节课我们就来学习分式化简的相关知识,下面先来探索分式的根本性质.二、合作探究探究点一:分式的根本性质【类型一】 利用分式的根本性质对分式进行变形以下式子从左到右的变形一定正确的选项是( )A.a +3b +3=a b B.a b =acbcC.3a 3b =a bD.a b =a 2b2 解析:A 中在分式的分子与分母上同时加上3不符合分式的根本性质,故A 错误;B 中当c =0时不成立,故B 错误;C 中分式的分子与分母同时除以3,分式的值不变,故C 正确;D 中分式的分子与分母分别乘方,不符合分式的根本性质,故D 错误;应选C.方法总结:考查分式的根本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.【类型二】 不改变分式的值,将分式的分子、分母中各项系数化为整数不改变分式0.2x +12+0.5x的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( )A.2x +12+5xB.x +54+x C.2x +1020+5x D.2x +12+x解析:利用分式的根本性质,把0.2x +12+0.5x 的分子、分母都乘以10得2x +1020+5x .应选C.方法总结:观察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需根据分式的根本性质让分子和分母同乘以某一个数即可.【类型三】 分式的符号法那么不改变分式的值,使以下分式的分子和分母都不含“-〞号. (1)-3b 2a ;(2)5y -7x 2;(3)-a -2b 2a +b. 解析:在分子的符号,分母的符号,分式本身的符号三者当中同时改变其中的两个,分式的值不变.解:(1)原式=-3b 2a ;(2)原式=-5y 7x 2;(3)原式=-a +2b 2a +b.方法总结:这类题目容易出现的错误是把分子的符号,分母的项的符号,特别是首项的符号当成分子或分母的符号.探究点二:最简分式、分式的约分和通分 【类型一】 判定分式是否是最简分式以下分式是最简分式的是( ) A.2a 2+a ab B.6xy 3aC.x 2-1x +1D.x 2+1x +1解析:A 中该分式的分子、分母含有公因式a ,那么它不是最简分式.错误;B 中该分式的分子、分母含有公因数3,那么它不是最简分式.错误;C 中分子为(x +1)(x -1),所以该分式的分子、分母含有公因式(x +1),那么它不是最简分式.错误;D 中该分式符合最简分式的定义.正确.应选D.方法总结:最简分式的标准是分子,分母中不含公因式.判断的方法是把分子、分母分解因式,并且观察有无公因式.【类型二】 分式的约分约分:(1)-5a 5bc 325a 3bc 4;(2)x 2-2xyx 3-4x 2y +4xy 2. 解析:先找分子、分母的公因式,然后根据分式的根本性质把公因式约去. 解:(1)-5a 5bc 325a 3bc 4=5a 3bc 3〔-a 2〕5a 3bc 3·5c =-a25c; (2)x 2-2xy x 3-4x 2y +4xy 2=x 〔x -2y 〕x 〔x -2y 〕2=1x -2y. 方法总结:约分的步骤:(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.【类型三】 分式的通分通分: (1)b 3a 2c 2,c -2ab ,a5cb 3; (2)1a 2-2a ,a a +2,1a 2-4. 解析:确定最简公分母再通分.解:(1)最简公分母为30a 2b 2c 2,b 3a 2c 2=10b 430a 2b 3c 2,c -2ab =-15ab 3c 330a 2b 3c 2,a 5cb 3=6a 3c30a 2b 3c2;(2)最简公分母为a (a +2)(a -2),1a 2-2a =a 2+2a a 〔a +2〕〔a -2〕,aa +2=a 3-2a 2a 〔a +2〕〔a -2〕,1a 2-4=aa 〔a +2〕〔a -2〕.方法总结:通分的一般步骤:(1)确定分母的最简公分母.(2)用最简公分母分别除以各分母求商.(3)用所得到的商分别乘以分式的分子、分母,化成同分母的分式.三、板书设计分式的根本性质1.分式的根本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法那么:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;假设只改变其中一个的符号或三个全变号,那么分式的值变成原分式值的相反数.本节课的流程比拟顺畅,先探究分式的根本性质,然后顺势探究分式变号法那么.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.。

第6套人教初中数学七下 9.3 一元一次不等式组(第2课时)课件 【经典初中数学课件】

第6套人教初中数学七下 9.3 一元一次不等式组(第2课时)课件 【经典初中数学课件】
m 的 取 值 范 围 为 ____m_≥_2________
m+1≤ 2m - 1
(2)若 不 等 式 组x x 3 m ( (1较较小大的 ))解 集 为 x>3,
m 2 则 m 的 取 值 范 围 为 _______________
3m1
课堂小结:
1. 由几个一元一次不等式所组成的不等式组
( 2x-6) <3-x ① 例 : 求 不 等 式 组 2x315x511的 ②正 整 数 解 。
解:解不等式①得:x<5 解不等式②得:x≥1.4
∴原不等式组的解集为1.4≤x<5
∵满足1.4≤x<5的正整数为:2、3、4
∴原不等式组的正整数解:2、3、4
随堂练习
(1)若 不 等 式 组x x m 2m (1 (1较较小大)无 ) 解 , 则
2、在同一平面内,两条直线的位置关系 只有‗‗‗相‗‗交‗‗‗和‗‗平‗‗行‗‗‗‗两种情况.
3、两条直线相交(不重合),交点的个 数是 1 个;两条直线平行,交点 的个数 0 个.
三、研读课文
知平
识行
点 一
线 的


练一练
1.下列说法中,正确的是( C ).
A.若两直线不相交则平行
B.若两直线不平行则相交
里积存的污水,估计积存的污水超过 1200t而不足1500t,那么将污水抽完所用 时间的范围是什么?
设用x min将污水抽完,则x同时满 足不等式
30x>1200
30x<1500
像这样由几个同一未知数的一元一次不等 式所组成的不等式组叫做一元一次不等式组.
记作. x>2 x<3
30x>1200 30x<1500

湘教版七年级下 一元一次不等式组全章复习 教案

湘教版七年级下 一元一次不等式组全章复习 教案

小结与复习教学目标1.进一步理解不等式组及基解集的含义,掌握一元一次不等式组的解法步骤,能利用不等式组解决简单的实际问题.2.经历将一些实际问题抽象为一元一次不等式组的过程,体会不等式组也是刻画现这世界中量与量之间的关系的有效方法.3.关注学生的学习情感和自信心的建立,提倡解决问题的多样化,发展学生的个性,从中体会最优化的数学思想价值.重点难点重点:一元一次不等工组的求解.难点:一元一次不等式组的应用及各种情况下的解集求法.教学过程一.知识回顾思考:1.举例说明什么是一元一次不等式.一元一次不等式组.2.一元一次不等式组的解集的各种形式及求法.3.如何运用一元一次不等式组求解实际问题.4.不等式问题的常见题型.学生活动:针对以上问题,让学生逐个思考,并在全班展开充分的讨论,教师根据讨论情况补充归纳,对于第4题,不等式问题的常见题型如下:(1)直接求不等式或不等式组的整数解集.(2)求不等式或不等式组的整数解及其个数.(3)把不等式或不等式组的解集表示在数轴上.(4)利用不等式或不等式组求解实际应用问题.二.建立本章知识框架图1.知识网络2.一元一次不等式组解集的四种基本情况. 不等式组 数轴表示(a<b) 解集法则 x>a x>bx>b同大取大 x<a x<bx<a同小取小 x>a x<ba<x<b小在取中 x<ax>b 无解 矛盾无解三.巩固练习3+x<4+2x5x-3≤4x7+2x>6+3x 32x ≥x-1 2.已知关x 的不等式组 5-2x ≥-1① x-a>0 ②学生活动:学生独立完成后,并与同伴交流.教师指导:分别解这两个关于x 的不等式 x ≤3 , 要使这个 x >a {{{{1.解不等式组 {并求出其整数解(x=0) {无解,求a 的取值范围 {不等式组无解,只要不等式②的解为x >3,所以a的范围是a≥3.3.某公司到果园基地购买某处优质水果慰问医务工作者,果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案,甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运费为5000元.试问:当购买量在什么范围时,选择哪种购买方案付款最少?并说明理由.思路点拔:若设购买水果x千克(x≥3000),按甲方案应付款9 x元,按乙方案应付款(8x+5000)元。

第8章《一元一次不等式》单元教案

第8章《一元一次不等式》单元教案

第8章一元一次不等式8.1认识不等式1.能够从现实问题中抽象出不等式,理解不等式的意义,会根据给定条件列不等式.2.正确理解“非负数”、“不小于”等数学术语.3.理解不等式的解的意义,能举出一个不等式的几个解并且会检验一个数是否是某个不等式的解.重点理解并会用不等式表达数学量之间的关系,知道不等式的解的意义.难点不等号的准确应用;不等式的解.一、创设情境,问题引入问题:世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元.某班有27名少先队员去世纪公园进行活动.当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票.但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?那么,究竟李敏的提议对不对呢?是不是真的“浪费”呢?二、探索问题,引入新知同学们的探索过程如下:买27张票,付款:5×27=135(元);买30张票,付款:4×30=120(元).显然 120<135.这就是说,买30张票比买27张票付款要少,表面上看是“浪费”了3张票,而实际上节省了.思考:(1)我们只用120元就买了30张票,买30张票,我们不仅省钱,而且多买了票,那么剩下的3张票如何处理呢?(2)买30张票比买27张票付的款还要少,这是不是说任何情况下都是多买票反而花钱少?(3)至少要有多少人去参观,多买票反而合算呢?能否用数学知识来解决?设有x人要进世纪公园,如果x≥30,显然按实际人数买票,每张票只要付4元.如果x<30,那么:按实际人数买票x张,要付款5x(元),买30张票,要付款4×30=120(元),如果买30张票合算,那么应有120<5x.现在的问题就是:x取哪些数值时,上式成立?前面已经算过,当x=27时,上式成立.让我们再取一些值试一试,将结果填入课本P51页的表格中.由上表可见,当x=________时,不等式120<5x成立.也就是说,少于30人时,至少要有________人进公园时,买30张票反而合算.像上面出现的120<135,x<30,120<5x那样用不等号“<”或“>”表示不等关系的式子,叫做不等式.不等式120<5x中含有未知数x.能使不等式成立的未知数的值,叫做不等式的解.【例1】判断下列各式哪些是等式,哪些是不等式.(1)4<5;(2)x2+1>0;(3)x<2x-5;(4)x=2x+3;(5)3a2+a;(6)a2+2a≥4a-2.分析:根据不等式的定义对各小题进行逐一判断即可.解:(1)4<5是不等式;(2)x2+1>0是不等式;(3)x<2x-5是不等式;(4)x=2x+3是方程;(5)3a2+a是代数式;(6)a2+2a≥4a-2是不等式.故(1),(2),(3),(6)是不等式.点评:熟知用不等号连结的式子叫不等式是解答此题的关键.【例2】 用适当的符号表示下列关系: (1)x 的13与x 的2倍的和是非正数; (2)一枚炮弹的杀伤半径不小于300米;(3)三件上衣与四条长裤的总价钱不高于268元;(4)明天下雨的可能性不小于70%;(5)小明的身体不比小刚轻.分析:(1)非正数用“≤0”表示;(2),(4)不小于就是大于等于,用“≥”来表示;(3)不高于就是等于或低于,用“≤”表示;(5)不比小刚轻,就是与小刚一样重或者比小刚重.用“≥”表示. 解:(1)13x +2x≤0; (2)设炮弹的杀伤半径为r ,则应有r≥300;(3)设每件上衣为a 元,每条长裤是b 元,应有3a +4b≤268;(4)用P 表示明天下雨的可能性,则有P≥70%;(5)设小明的体重为a 千克,小刚的体重为b 千克,则应有a≥b. 点评:一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:>,<,≤,≥,≠.三、巩固练习1.给出下面5个式子:①3>0;②4x+3y≠0;③x=3;④x-1;⑤x+2≤3,其中不等式有( )A .2个B .3个C .4个D .5个2.学校组织同学们春游,租用45座和30座两种型号的客车,若租用45座客车x 辆,租用30座客车y 辆,则不等式“45x +30y≥500”表示的实际意义是( )A .两种客车总的载客量不少于500人B .两种客车总的载客量不超过500人C .两种客车总的载客量不足500人D .两种客车总的载客量恰好等于500人3.x 与y 的平方和一定是非负数,用不等式表示为________.4.下列各数:0,-3,3,4,-0.5,-20 ,-0.4中,________是方程x +3=0的解;________是不等式x +3>0的解;________是不等式2x +3<x 的解.5.用不等式表示. (1)x 的23与5的差小于1; (2)x 与6的和大于9;(3)8与y 的2倍的和是正数;(4)a 的3倍与7的差是负数; (5)x 的3倍大于或等于1;(6)x 与5的和不小于0.四、小结与作业小结通过本节课的学习你有什么收获?取得了哪些经验教训?还有哪些问题需要请教?作业1.教材第52页“习题8.1”中第1,2 题.2.完成练习册中本课时练习.本节教学过程中,始终通过师生互动,鼓励学生积极思考,努力探索,合作交流,关注学生能否发现问题,提出问题,能否敢于发表自己的见解,吸取正确的见解;关注学生学习过程中表现的学习习惯、个性品质、情感态度等. 通过游戏、分组竞赛等激发学生的积极性,培养团队精神.通过例题和闯关游戏,检测学生学习情况,及时反馈调节;通过不同层次的变式题,评价各层学生的学习效果,增强学习信心.留给学生思考、探究的时间和空间.对学生回答是否正确、全面都给予及时的肯定和鼓励,时刻注意激发学习内驱力,确保学生学得更多、更快、更好!总之,本节教学既贴近生活,又超越生活,既努力从生活中来,又努力到生活中去,实现了:生活世界、数学世界、教学世界的融会贯通!8.2 解一元一次不等式8.2.1 不等式的解集1.使学生掌握不等式的解集的概念,以及什么是解不等式.2.使学生能够借助数轴将不等式的解集直观地表示出来,初步理解数形结合的思想.重点1.认识不等式的解集的概念.2.将不等式的解集表示在数轴上.难点不等式的解集的概念.一、创设情境,问题引入问题1:已知有理数m,n的位置在数轴上如图所示,用不等号填空.(1)n-m______0;(2)m+n______0;(3)m-n______0; (4)n+1______0;(5)m·n______0; (6)m+1______0.问题2:下列各数中,哪些是不等式x+2>5的解?哪些不是?-3,-2,-1,0,1.5,3,3.5,5,7二、探索问题,引入新知在上面问题2中,我们发现3.5,5,7都是不等式x+2>5的解.由此可以看出,不等式x+2>5有许多个解.进而看出,大于3的每一个数都是不等式x+2>5的解,而不大于3的每一个数都不是不等式x+2>5的解.由此可见,不等式x+2>5的解有无限多个,它们组成一个集合,称为不等式x+2>5的解集.结论:一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集;求不等式的解集的过程,叫做解不等式.不等式x+2>5的解集,可以表示成x>3,它也可以在数轴上直观地表示出来,如图所示.同样,如果某个不等式的解集为x≤-2,也可以在数轴上直观地表示出来,如图所示.观察讨论:这两条折线所指的方向为什么不同?它们有什么规律吗?数轴上空心的圆点和实心的圆点是什么意义?结论:不等式的解集在数轴上可直观地表示出来,但应注意不等号的类型,小于在左边,大于在右边.当不等号为“>”“<”时用空心圆圈,当不等号为“≥”“≤”时用实心圆圈.【例1】在数轴上表示下列不等式的解集:(1)x<-2;(2)x≥1;分析:(1)在-2处用空心圆点,折线向左即可;(2)在1处用实心圆点,折线向右即可.解:(1)如图所示:(2)如图所示:点评:熟知实心圆点与空心圆点的区别是解答此题的关键.【例2】在数轴上表示不等式-4≤x<1的解集,并写出其整数解.分析:根据“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线,可得答案.解:在数轴上表示不等式-4≤x<1的解集,如图:整数解为:-4,-3,-2,-1,0.点评:不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.三、巩固练习1.方程3x=6的解有________个,不等式3x<6的解有________个.2.在数轴上表示下列不等式的解集.(1)x>-4;(2)x≤3.5;(3)-2.5<x≤4.3.请用不等式表示如图的解集.(1)(2)(3)(4)(5)四、小结与作业小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.作业1.教材第61页“习题8.2”中第2,3题.2.完成练习册中本课时练习.本节课属于一节概念课,按照“情境诱导—学生自学—展示归纳—巩固练习”的步骤进行.但从教学中来看,部分学生不会自学,个别学生不积极参与到小组活动之中.通过本节课的教学让我深深认识到,作为一名数学教师,要想让自己的学生出类拔萃,一定要在平时培养学生的自学习惯,自学能力,表达能力,教师要舍得时间,不能急躁.8.2.2不等式的简单变形1.通过本节的学习让学生在自主探索的基础上,联系方程的基本变形得到不等式的基本性质.2.掌握一次不等式的变形求解一元一次不等式基本方法.3.体会一元一次不等式和方程的区别与联系.重点掌握不等式的三条基本性质.难点正确应用不等式的三条基本性质进行不等式变形.一、创设情境、复习引入复习等式的基本性质一:在等式的两边都________或________同一个________或________,等式仍然成立.等式的基本性质二:在等式的两边都________或________同一个________,等式仍然成立.不等式有哪些基本性质?解一元一次方程有哪些基本步骤呢?一元一次不等式的解与方程的解是不是步骤类似呢?二、探索问题,引入新知在解一元一次方程时,我们主要是对方程进行变形.在研究解不等式时,我们同样应先探究不等式的变形规律.如图,一个倾斜的天平两边分别放有重物,其质量分别为a和b(显然a>b),如果在两边盘内分别加上等量的砝码c,那么盘子仍然像原来那样倾斜(即a+c>b+c).结论:不等式的性质1:如果a>b,那么a+c>b+c,a-c>b-c.这就是说,不等式的两边都加上(或减去)同一个数或同一个整式,不等式的方向不变.思考:不等式的两边都乘以(或除以)同一个不为零的数,不等号的方向是否也不变呢?试一试:将不等式7>4两边都乘以同一个数,比较所得的数的大小,用“<”,“>”或“=”填空:7×3________4×3,7×2________4×2,7×1________4×1,7×0________4×0,7×(-1)________4×(-1),7×(-2)________4×(-2),7×(-3)________4×(-3),……从中你能发现什么?结论:不等式的性质2:如果a>b ,并且c>0,那么ac>bc.不等式的性质3:如果a>b ,并且c<0,那么ac<bc.这就是说,不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式两边都乘以(或除以)同一个负数,不等号的方向改变.与解方程一样,解不等式的过程,就是要将不等式变形成x>a 或x<a 的形式.【例1】 根据不等式的基本性质,把下列不等式化成“x>a”或“x <a”的形式:(1)4x >3x +5;(2)-2x <17.分析:(1)根据不等式的性质1:两边都减3x ,可得答案;(2)根据不等式的性质3:不等式的两边都除以-2,可得答案. 解:(1)两边都减3x ,得x >5; (2)两边都除以-2,得x >-172. 点评:不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.【例2】 根据不等式性质解下列不等式.(1)x +3>5; (2)-23x <50; (3)5x +5<3x -2.分析:根据不等式的基本性质对各不等式进行逐一分析解答即可. 解:(1)根据不等式性质1,不等式两边都减3,不等号的方向不变,得x +3-3>5-3,即x >2; (2)根据不等式性质2,不等式两边都乘以-32,不等号的方向改变,得-23x×(-32)>50×(-32),即x >-75; (3)根据不等式性质1,2,不等式两边同时减去(5+3x),然后除以2,不等号的方向不变,得(5x +5-5-3x)÷2<(3x -2-5-3x)÷2,即x <-72. 点评:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.三、巩固练习1.已知实数a ,b 满足a +1>b +1,则下列选项错误的是( ) A .a >b B .a +2>b +2C .-a <-bD .2a >3b2.若3x >-3y ,则下列不等式中一定成立的是( )A .x +y >0B .x -y >0C .x +y <0D .x -y <0 3.如果a <b ,则12-3a________12-3b(用“>”或“<”填空). 4.判断以下各题的结论是否正确(对的打“√”,错的打“×”).(1)若 b -3a <0,则b <3a ;________(2)如果-5x >20,那么x >-4;________(3)若a >b ,则 ac 2>bc 2;________(4)若ac 2>bc 2,则a >b ;________(5)若a >b ,则 a(c 2+1)>b(c 2+1); (6)若a >b >0,则1a <1b .________ 5.指出下列各式成立的条件: (1)由mx <n ,得x >n m ; (2)由a <b ,得m 2a <m 2b ;(3)由a >-2,得a 2≤-2a.四、小结与作业小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.作业1.教材第58页“练习”.2.完成练习册中本课时练习.让学生参与知识的形成过程的学习,有利于培养学生动手实践,积极探索的科学学习方法,有利于培养学生的良好学习习惯和严谨的学习态度,有利于发展学生的直觉思维、形象思维和逻辑思维能力,有利于培养学生的独立钻研、相互交流和共同协作的科学态度,符合新课标的思想.8.2.3 解一元一次不等式第1课时 一元一次不等式的解法1.掌握一元一次不等式的概念.2.体会解不等式的步骤,体会数学学习中比较和转化的作用.3.用数轴表示解集,启发学生对数形结合思想的进一步理解和掌握.重点掌握一元一次不等式的解法.难点掌握一元一次不等式的解法.一、创设情境、复习引入1.不等式的三条基本性质是什么?2.一个方程是一元一次方程的三个条件是什么?3.解一元一次方程的一般步骤是什么?二、探索问题,引入新知让同学们观察下列不等式: ①x-7≥2;②3x<2x +1;③13x≤5;④-4x >8.它们有什么共同点?你能借鉴一元一次方程给它下个定义吗? 结论:只含有一个未知数,且含未知数的式子是整式,未知数的次数是1.像这样的不等式叫做一元一次不等式.我们再来解一些一元一次不等式. 【例1】 下列各式:(1)-x≥5;(2)y -3x <0;(3)x π+5<0;(4)x 2+x≠3;(5)3x +3≤3x;(6)x +2<0是一元一次不等式的有哪些? 分析:利用一元一次不等式的定义判断即可. 解:(1)-x≥5,是;(2)y -3x <0,不是;(3)x π+5<0,是;(4)x 2+x≠3,不是;(5)3x +3≤3x,不是;(6)x +2<0,是.如何来解一元一次不等式呢?【例2】 解不等式,并把解集在数轴上表示出来:(1)2(5x +3)≤x-3(1-2x); (2)1+x 3>5-x -22. 分析:(1)先去括号,然后通过移项、合并同类项,化未知数系数为1解不等式;(2)先去分母,然后通过移项、合并同类项,化未知数系数为1解不等式.解:(1)去括号,得:10x +6≤x-3+6x ,移项、合并同类项,得:3x≤-9,系数化为1,得:x≤-3;表示在数轴上为:(2)去分母,得:6+2x >30-3x +6,移项、合并同类项,得:5x >30,系数化为1,得:x >6.表示在数轴上为:点评:需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.结论:解一元一次不等式的步骤:1.去括号,去分母;2.利用不等式的性质移项;3.合并同类项;4.系数化为1.三、巩固练习1.下列各式中,一元一次不等式是( ) A .x ≥5x B .2x >1-x 2 C .x +2y <1 D .2x +1≤3x2.不等式x +1≥2的解集在数轴上表示正确的是( )3.若(m +1)x |m|+2>0是关于x 的一元一次不等式,则m =________.4.不等式组m(x -5)>2m -10的解集是x >m ,则m 的值是________.5.解不等式2(x +6)≥3x-18,并将其解集在数轴上表示出来.6.解不等式2x +13-5x -12≥-1,并把它的解集在数轴上表示出来. 四、小结与作业小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.作业1教材第61页“习题8.2”中第1,4 题.2.完成练习册中本课时练习.在教学过程中,由于通过简单的类比解方程,学生很快掌握了解不等式的方法,而且对比起方程,不等式题目的形式较简单,计算量不大,所以能引起学生的兴趣.但是部分学生在作业中存在以下问题:由于没有结合不等式的性质,认真分析解方程与解不等式的区别:在两边同时乘以或者除以负数时,不等号忘记改变方向.第2课时 列一元一次不等式解决实际问题1.会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题.2.通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系.重点寻找实际问题中的不等关系,建立数学模型.难点弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式.一、创设情境,问题引入在“科学与艺术”知识竞赛的预选赛中共有20道题,对于每一道题,答对得10分,答错或不答扣5分,总得分不少于80分者通过预选赛.育才中学有25名学生通过了预选赛,通过者至少答对了多少道题?有哪些可能的情形.二、探索问题,引入新知讨论:(1)试解决这个问题(不限定方法).你是用什么方法解决的?有没有其他方法?与你的同伴讨论和交流一下.(2)如果利用不等式的知识解决这个问题,在得到不等式的解集以后,如何给出原问题的答案?应该如何表述?分析:如果用不等式,必须找出不等关系.根据题意可知,答对题的得分减去答错题的扣分大于或等于80分.所以这个问题的关键是表示出答对的题数和答错或不答的题数.解:设通过者答对了x道题,答错或不答的题有(20-x)道,根据题意可得,10x-5(20-x)≥80,解得:x≥12,所以,通过者至少要答对12道题.你能类比列一元一次方程解决实际问题的方法,总结出列不等式解决实际问题的步骤吗?结论:用一元一次不等式解决实际问题的步骤:(1)审题,找出不等关系; (2)设未知数;(3)列出不等式;(4)求出不等式的解集; (5)找出符合题意的值; (6)作答.【例1】学校准备用2000元购买名著和词典作为艺术节奖品,其中名著每套65元,词典每本40元,现已购买名著20套,问最多还能买词典多少本?分析:先设未知数,设还能买词典x本,根据名著的总价+词典的总价≤2000,列不等式,解出即可,并根据实际意义写出答案.解:设还能买词典x本,根据题意得:20×65+40x≤2000,40x≤700,x ≤70040,x ≤1712.答:最多还能买词典17本. 【例2】 某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?分析:(1)设甲队胜了x 场,则负了(10-x)场,根据每队胜一场得2分,负一场得1分,利用甲队在初赛阶段的积分为18分,进而得出等式求出答案;(2)设乙队在初赛阶段胜a 场,根据积分超过15分才能获得参赛资格,进而得出答案.解:(1)设甲队胜了x 场,则负了(10-x)场,根据题意可得:2x +10-x =18,解得:x =8,则10-x =2.答:甲队胜了8场,则负了2场;(2)设乙队在初赛阶段胜a 场,根据题意可得:2a +(10-a)>15,解得:a >5.答:乙队在初赛阶段至少要胜6场.点评:正确表示出球队的得分是解题关键.三、巩固练习1.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买( )A .16个B .17个C .33个D .34个2.甲、乙两人从相距24 km 的A 、B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度( )A .小于8 km /hB .大于8 km /hC .小于4 km /hD .大于4 km /h3.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为________元/千克.4.某工人计划在15天内加工408个零件,最初三天中每天加工24个.问以后每天至少加工多少个零件,才能在规定的时间内超额完成任务?四、小结与作业小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.作业1.教材第61页“习题8.2”中第6 ,7 题.2.完成练习册中本课时练习.本节课是在学习不等式的概念、性质及其解法和运用一元一次方程(或方程组)解决实际问题等知识的基础上,利用不等式解决实际问题.这既是对已学知识的运用和深化,又为今后在解决实际问题中提供另一种有效的解决途径.通过实际问题的探究,让学生学会列一元一次不等式,解决具有不等关系的实际问题.经历由实际问题转化为数学问题的过程,掌握利用一元一次不等式解决问题的基本过程.促进学生的数学思维意识,从而使学生乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活动中发挥积极作用.同时向学生渗透由特殊到一般、类比、建模和分类考虑问题的思想方法.8.3一元一次不等式组第1课时解一元一次不等式组1.了解一元一次不等式组及其解集的概念.2.探索不等式组的解法及其步骤.重点1.一元一次不等式组的概念,会用数轴表示一元一次不等式组解集的情况.2.一元一次不等式组的解法.难点一元一次不等式组的解法.一、创设情境,问题引入1.解下列不等式,并把解集在数轴上表示出来.(1)3x>1-x ;(2)6x -7<2-4x.2.问题:用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,那么需要多少时间能将污水抽完?二、探索问题,引入新知对问题2的分析:设需要x 分钟能将污水抽完,那么总的抽水量为30x 吨,由题意可知30x≥1200,并且30x≤1500.在这个实际问题中,未知量x 应同时满足这两个不等式,我们把这两个一元一次不等式合在一起,就得到一个一元一次不等式组:⎩⎪⎨⎪⎧30x≥1200 ①,30x ≤1500 ②,分别求这两个不等式的解集,得⎩⎪⎨⎪⎧x≥40x≤50 在同一数轴上表示出这两个不等式的解集,可知其公共部分是40和50之间的数(包括40和50),记作40≤x≤50.这就是所列不等式组的解集.所以,需要40到50分钟能将污水抽完.结论:不等式组中几个不等式的解集的公共部分,叫做这个不等式组的解集.解一元一次不等式组,通常可以先分别求出不等式组中每一个不等式的解集,再求出它们的公共部分,利用数轴可以帮我们得到一元一次不等式组的解集.探究:设a ,b 是已知实数,且a >b ,在数轴上表示下列不等式组的解集. (1)⎩⎪⎨⎪⎧x>a ,x>b ;(2)⎩⎪⎨⎪⎧x<a ,x<b ;(3)⎩⎪⎨⎪⎧x<a ,x>b ;(4)⎩⎪⎨⎪⎧x>a ,x<b. 解:(1)解集为:x>a (2)解集为:x<b (3)解集为:b<x<a (4)无解结论:皆大取大,皆小取小,大小小大取中间,大大小小是无解. 【例1】 下列不等式组:①⎩⎪⎨⎪⎧x>-2,x<3;②⎩⎪⎨⎪⎧x>0,x +2>4;③⎩⎪⎨⎪⎧x 2+1<x ,x 2+2>4;④⎩⎪⎨⎪⎧x +3>0,x<-7;⑤⎩⎪⎨⎪⎧x +1>0,y -1<0.其中是一元一次不等组的有哪些? 分析:根据一元一次不等式组的定义,只含一个未知数且有两个或两个以上的不等式,不等式中的未知数相同,并且未知数的最高次数是一次,对各选项判断后再计算个数即可.解:根据一元一次不等式组的定义,①②④都只含有一个未知数,并且未知数的最高次数是1,所以都是一元一次不等式组;③含有一个未知数,但未知数的最高次数是2,⑤含有两个未知数,所以②⑤都不是一元一次不等式组.故有①②④三个一元一次不等式组.【例2】 解不等式组,并把解集在数轴上表示出来. (1)⎩⎪⎨⎪⎧1-3x≤5-x ,4-5x>-x ; (2)⎩⎪⎨⎪⎧3(x -2)≥x -4,2x +13>x -1. 分析:先求出每个不等式的解集,根据不等式的解集找出不等式组的解集即可. 解:(1)⎩⎪⎨⎪⎧1-3x≤5-x ①,4-5x>-x ②, 由①得:x≥-2,由②得:x <1,∴不等式组的解集为:-2≤x<1.如图,在数轴上表示为:(2)∵解不等式3(x -2)≥x-4得:x≥1,解不等式2x +13>x -1得:x <4,∴不等式组的解集是1≤x <4,在数轴上表示不等式组的解集是:. 【例3】 若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -a>0,1-x>x -1无解,求a 的取值范围.分析:先求出各不等式的解集,再与已知解集相比较求出a 的取值范围. 解:由x -a >0得,x >a ;由1-x >x -1得,x <1,∵此不等式组的解集是空集,∴a ≥1.故答案为:a≥1.点评:熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.三、巩固练习1.将不等式组⎩⎪⎨⎪⎧2x -6≤0,x +4>0的解集表示在数轴上,下面表示正确的是( )2.解集如图所示的不等式组为( )A .⎩⎨⎪⎧x>-1x≤2B .⎩⎪⎨⎪⎧x≥-1x>2C .⎩⎪⎨⎪⎧x≤-1x<2D .⎩⎪⎨⎪⎧x>-1x<2 3.若关于x 的一元一次不等式组⎩⎪⎨⎪⎧2x -1>3(x -2),x<m 的解是x <5,则m 的取值范围是( ) A .m ≥5 B .m >5C .m ≤5D .m <5 4.若不等式组⎩⎪⎨⎪⎧1+x>a ,2x -4≤0有解,则a 的取值范围是________. 5.解不等式组,并把解集表示在数轴上. (1)⎩⎪⎨⎪⎧x -23+3<x -1,1-3(x +1)≥6-x ; (2)⎩⎪⎨⎪⎧2x -1≥0,3x +1>0,3x -2<0.四、小结与作业小结 先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.作业1.教材第65页“习题8.3”中第1,2 题.2.完成练习册中本课时练习.教学“不等式组的解集”时,用数形结合的方法,通过借助数轴找出公共部分解出解集,这是最容易理解的方法,也是最适用的方法.用“皆大取大,皆小取小,大小小大取中间,大大小小是无解”求解不等式,我认为减轻学生的学习负担,有易于培养学生的数形结合能力.在教学中我要求学生在解不等式(组)时,一定要通过画数轴,求出不等式的解集,建立数形结合的数学思想.第2课时 列一元一次不等式组解决实际问题。

数学湘教版七年级下《一元一次不等式组》教案3

数学湘教版七年级下《一元一次不等式组》教案3

第一章一元一次不等式组1.1一元一次不等式组目的要求:1. 认识一元一次不等式组的含义.2. 理解一元一次不等式组的解集.3. 能求较简单的一元一次不等式组的解集,并能运用数轴进行表示.4. 能结合生活实例得到一元一次不等式组.5. 提高学生的计算能力、分析问题的能力.重点:理解一元一次不等式组并能进行简单的运用.准备:小黑板幻灯过程:一、复习引入.1. 解方程.(出示小黑板)⑴ 3x-(4x-6)=8-2x⑵ 7y+4=9-(3y-6)2. 解下列不等式并在数轴上表示出来.(出示小黑板)⑴ 2.5x-1.5≤4⑵ 4y>2y-(4y+2)二、一元一次不等式组的含义及简单认识解法.想一想.(出示幻灯)北方某城市提倡居民节约用水,规定每人每月用水量不超过3.5吨部分按2元每收费;超过3.5吨部分按2.5元每吨收费.已知小明家有4口人,每月的总用水量超过14吨,其水费支出预算是33~38元,你能知小明家每月用水量应控制在什么范围吗?师问:根据题意,以这种收费标准,如果小明家用水6.5吨,要交多少钱?如果小明家用水是x吨,则要用多少钱?我们能从哪看出小明家的用水量的控制范围?(其水费支出预算是33~38元)“33元”是指?“38元”是指?(33元是指小明家用水量的最小量,38元是指小明家用水量的最大量)由此我们能否用一元一次方程来解?能否用不等式来解?根据老师的以上分析填空:(出示幻灯)1.设小明家每月用水X吨(X>14),则他家每月的水费支出为.(2×3.5×4+2.5(x-3.5×4))2.小明家每月水费支出预算为33~38元.由第1题可得不等式最低费用33元时和.(2×3.5×4+2.5(x-3.5×4)≥332×3.5×4+2.5(x-3.5×4)≤38 )教师引导:根据题意,我们必须把两个不等式连起来才能表示用水量的最小与最大的范围,在数学中我们把这两个不等式合在一起,记作:2×3.5×4+2.5(x-3.5×4)≥33 ①2×3.5×4+2.5(x-3.5×4)≤38 ②师引导得到:像这样,把含有相同未知数的几个一元一次不等式合在一起,组成的不等式组我们叫它一元一次不等式组如何得到答案呢?2×3.5×4+2.5(x-3.5×4)≥33 ①2×3.5×4+2.5(x-3.5×4)≤38 ②化简整理得:2.5x-7≥33 ③2.5x-7≤38 ④解③得:x≥16解④得:x≤18怎样才能表示x的取值?我们把这两个结果在同一数轴上表示出来如图:从图上我们发现,要使不等式①、②同时成立x的值只能取图中解集的公共部分,即:16≤x≤18由此可知,小明家每月用水量应控制在16~18之间.师小结:在数学中,这几个一元一次不等式的解集的公共部分,叫作由它们所组成的一元一次不等式组的解集.三、试练:根据题设条件列不等式组.⑴ x与3的和小于5且x与6的差是负数.⑵ 2x与4的差是非正数,2与x的和是非负数.四、动脑筋.出示幻灯.某工厂生产的一种产品有高、中、低三种档次,已知每天工时不变且生产同一档次产品、产品每提高一个档次,每件产品利润可增加20元,但每天要少生产4件产品,如果安排生产低档产品所获利润最大且一天可生产低档产品40件,你能求出生产一件低档产品所获得利润的取值范围吗?如果一天生产低档产品所得利润最大,则得不等式组:(要求学生讨论完成.并指名学生上台演练.)五、练习:P4练习题.六、作业.P4 T1 ⑴⑵T2 ⑴七、小结.本节课我们认识了一元一次不等式组,并已经知道了如何去找一元一次不等式组的解集.但我们要注意的是要多加强如何在较复杂的应用中去找不等量的关系.学*优*中∽考∠,网。

初中数学《一元一次不等式和一元一次不等式组》单元教学设计以及思维导图

初中数学《一元一次不等式和一元一次不等式组》单元教学设计以及思维导图

一元一次不等式和一元一次不等式组
主题单元学习目标
知识与技能:
1、经历将一些实际问题抽象成不等式的过程,体会不等式也是刻画现实世界中量与量之间关系的有效数学模型进一步发展符号感。

2、能够根据具体问题中的大小关系了解不等式的意义。

3、掌握不等式的基本性质。

4、理解不等式组的解及解集的含义,会解简单的一元一次不等式并能在数轴上表示一元一次不等式的解集,会解一元一次不等式组并会在数轴上确定其解集,初步体会数形结合的思想。

其他:纸、笔
学习活动设计
活动一、
如下图,正方形的边长和圆的直径都是acm。

1、如果要使正方形的周长不大于25cm,那么 a 应满足怎样的关系式?
2、如果要使圆的周长不小于100cm,那么a 应满足怎样的关系式?
3、当 a= 8 时,正方形和圆的周长哪个大?a = 12 呢?
4、你能得到什么猜想?改变a的取值再试一试。

观察由上述问题得到的关系式,它们有什么共同特点?
由4a 4a4a≤25, πa ≥100 ,3x+5>240得,这些关系式都是用不等号连接的式子.由此
一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式
活动二、。

2021年七年级数学下册 .一元一次不等式组的解法教案 湘教版(2)

2019-2020年七年级数学下册 1.2一元一次不等式组的解法教案1湘教版教学目标1 会解由两个一元一次不等式组成的不等式组,会用数轴确定解集.2 让学生进一步感受数形结合的作用,逐步熟悉和掌握这一重要思想方法.教学重点、难点:重点:解一元一次不等式组.难点:确定一元一次不等式组的解集.教学过程一 创设情境,导入新课1 复习:什么叫一元一次不等式组?什么叫一元一次不等式组的解集?2 怎样确定不等式组的解集呢?这一节课我们来学习------一元一次不等式组的解法(板书课题)二 合作交流,探究新知一元一次不等式组的解法做一做某数加上4就大于3,且这个数的一半与2的差是正数,你能求出这个数的范围吗?试试看.设这个数是x ,则:43(1)120(1)2x x +>⎧⎪⎨->⎪⎩ 由(1)得:x>-1,由(2)得:x>4,在数轴上表示两个不等式的解集所以不等式组的解集是:x>4通过上面问题,你能归纳接一元一次不等式组的步骤吗?第一步:接不等式组中的每一个不等式,第二步:把每个不等式的解集表示在同一数轴上 第三步:确定不等式组的解集.210-1思考:关键是哪一步?(关键是确定不等式组的解集)考考你:1填表:总结确定解集的经验:同大取大,同小取小,大小、小大取中间,大大、小小解不了 2 不等式组的解集在数轴上表示正确的是( )ABD三 知识迁移,应用提高,1 解不等式组例1 解不等式组:强调包含与不包含的区别.例2 解不等式组:475(1)2432x x x x -<-⎧⎪-⎨>-⎪⎩ 例3解不等式组:2 关于不等式组的解例4 已知不等式组无解,则a,b 的关系怎样?变式:(1)“a ”换成:“ 2a-1”,“b ”换成“a+1”(2) “>”换成“≥”,“<”换成:“≤”四 课堂练习,巩固提高P 7 练习 1,2作P 7 A B 5\35703 8B77 護Y&. 30429 76DD 盝30514 7732 眲33193 81A9 膩35787 8BCB 诋21584 5450 呐24709 6085 悅37489 9271 鉱。

1、1一元一次不等式组2湘教版七年级下


练一练
1.一堆玩具分给若干个小朋友,若每人分2件, 则剩余3件;若前面每人分3件,则最后一个人 得到的玩具数不足2件.求小朋友的人数与玩具 数 2.已知利民服装厂现有A种布料70米,B种布 料52米,现计划用这两种布料生产M,N两种型 号的时装共80套,已知做一套M型号时装需A种 布料0.6米,B种布料0.9米;做一套N型号时装 需A种布料1.1米,B种布料0.4米;若设生产N 型号的时装套数为X,用这批布料生产这两种型 号的时装有几种方案
2、将若干只鸡放在若干个笼里,若每个笼里 放4只鸡,则剩下一只鸡无笼可放;若每个笼里 放5只鸡,则有一笼无鸡可放.那么至少有几只 鸡?多少个笼?
例1:一群女生住若干间宿舍,每间住4人,剩19人无房住;每 间住6人,有一间宿舍住不满. (1)设有x间宿舍,请写出x应满足的不等式组 (2)可能有多少间宿舍和多少名学生?
小结与收获
1:经过本节课的学习,你有那些收获?
(1) 审题; (2)设未知数,找不等量关系; (3)根据不等量关系列不等式(组) (4)解不等式组; (5)检验并作答。
2:列一元一次不等式组解实际问题的一般步骤:
解:设有X间宿舍,则有(4X+19)名女生, 根据题意,得 6 x 4 x 19

6( x 1)4 x 19
(2)解不等式组,得 9.5<X<12.5 因为X是整数,所以X=10,11,12
因此有三种可能,第一种,有10间宿舍,59名学生; 第二种,有11间宿舍,63名女生;第三种, 有12间宿舍,67名女生
挑战自我
火车站有某公司待运的甲种货物1530吨,乙种 货物1150吨,现计划用50节A、B两 种型号的车 厢将这批货物运至北京,已知每节A型货厢的运 费是0.5万元,每节B节货厢的运费是0.8万元;甲 种货物35吨和乙种货物15吨可装满一节A型货 厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排A、B两种货厢的节数,共有 哪几种方案?请你设计出来;并说明哪种方案的运 费最少?

2021年(新)湘教版数学七年级下1.3二元一次方程组的应用教案

13 二元一次方程组的应用第5课时 二元一次方程组的应用〔1〕教学目标:1.经历用方程组解决实际问题的过程,体会方程组是刻画现实世界中含有多个未知数的问题的有效数学模型;2.能够找出实际问题中的数和未知数,分析它们之间的数量关系,列出方程组;3.培养分析、解决问题的能力,体会二元一次方程组的应用价值,感受数学文化。

教学重点:以方程组为工具分析,解决含有多个未知数的实际问题教学难点:确定解题策略,比拟估算与精确计算教学过程:一、快乐启航今天我们来学习实际问题与二元一次方程组本节课的学习目标为:1.经历用方程组解决实际问题的过程,体会方程组是刻画现实世界中含有多个未知数的问题的有效数学模型;2.能够找出实际问题中的数和未知数,分析它们之间的数量关系,列出方程组; 教师出示学习目标,学生观察学习目标二、我会自主学习:学一学:阅读教材P 14的动脑筋。

完成下面问题鸡头数+ 兔头数=鸡的腿数+ 兔子的腿数=设鸡有x 只,兔有y 只根据等量关系,得解这个方程组,得⎩⎨⎧==.y x 答:笼中有 只鸡, 只兔。

学一学:阅读教材P 14-15的例1、2议一议:完成P 16 的练习【归纳总结】二元一次方程组解简单应用题的步骤是什么?三、我会合作交流探究:合作探究一:〔1〕根据下列图提供的信息,求每件T恤衫和每瓶矿泉水的价格.四、我会实践应用:列出二元一次方程组,并根据问题的实际意义,找出问题的解。

一农户有鸡、羊假设干只,共计有头40个,脚136只,该农户养鸡、羊各多少只?五、我会归纳总结:二元一次方程组解简单应用题的步骤六、快乐摘星台:〔每题3颗星〕〔一〕耐心填一填,一锤定音!1.在方程29x ay-=中,如果31xy=⎧⎨=⎩,是它的一个解,那么a的值为______.2.大数和小数的差为12,这两个数的和为60,那么大数是______,小数是______.3.买14支铅笔和6本练习本,共用5.4元.假设铅笔每支x元,练习本每本y元,写出以x和y为未知数的方程为______.4.甲、乙两人速度之比是2:3,那么他们在相同时间内走过的路程之比是______,他们在走相同路程所需时间之比是______.5.羊圈里白羊的只数比黑羊的脚数少2,黑羊的只数比白羊的脚数少187,那么白羊有______只,黑羊有______只.〔二〕精心选一选,慧眼识金!1.既是方程23x y -=的解,又是方程3410x y +=的解是〔 〕A.12x y =⎧⎨=⎩B.21x y =⎧⎨=⎩C.43x y =⎧⎨=⎩D.45x y =-⎧⎨=-⎩2.甲、乙两数这和为16,甲数的3倍等于乙数的5倍,假设设甲数为x ,乙数为y ,那么方程组〔1〕1635x y x y +=⎧⎨=⎩,;〔2〕1653x y x y +=⎧⎨=⎩,;〔3〕16530x y y x -=⎧⎨-=⎩,;〔4〕1653y x x y -=⎧⎪⎨=⎪⎩,中,正确的有〔 〕A.1组 B.2组 C.3组 D.4组3.某校150名学生参加竞赛,平均分为55分,其中及格学生平均分为77分,不及格学生平均分为47分,那么不及格学生的人数为〔 〕A.49 B.101 C.40 D.110七、课外作业:板书设计:见五归纳总结.第6课时 二元一次方程组的应用〔2〕教学目标:1.进一步经历用方程组解决实际问题的过程,体会方程组是刻画现实世界中含有多个未知数的问题的有效数学模型;2.能够找出实际问题中的数和未知数,分析它们之间的数量关系,列出方程组;3.培养分析问题、解决问题的能力,进一步体会二元一次方程组的应用价值. 教学重点:用列表的方式分析题目中的各个量的关系。

湘教版七年级数学下册1.3二元一次方程组的应用1.3.1二元一次方程组的应用教学设计

湘教版七年级数学下册1.3二元一次方程组的应用1.3.1二元一次方程组的应用教学设计一. 教材分析湘教版七年级数学下册1.3节主要讲解二元一次方程组的应用。

这部分内容是在学生掌握了二元一次方程组的基本知识基础上进行的,旨在让学生能够将理论知识运用到实际问题中,培养学生的解决问题的能力。

本节课的内容对于学生来说较为抽象,需要通过具体的实例来帮助学生理解和掌握。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于二元一次方程组的概念和基本解法有一定的了解。

但是,对于如何将方程组应用于实际问题中,可能还存在一定的困惑。

因此,在教学过程中,需要通过具体的实例,让学生逐步理解和掌握如何将方程组应用于实际问题中。

三. 教学目标1.知识与技能:让学生掌握二元一次方程组的应用,能够将实际问题转化为方程组,并求解。

2.过程与方法:通过具体的实例,让学生学会如何将实际问题转化为方程组,培养学生的解决问题的能力。

3.情感态度与价值观:让学生体验数学与生活的紧密联系,增强学生学习数学的兴趣。

四. 教学重难点1.重点:让学生掌握二元一次方程组的应用,能够将实际问题转化为方程组,并求解。

2.难点:如何将实际问题转化为方程组,让学生能够灵活运用所学知识解决实际问题。

五. 教学方法采用问题驱动的教学方法,通过具体的实例,引导学生逐步理解和掌握二元一次方程组的应用。

同时,运用合作学习的方法,让学生在小组讨论中,共同解决问题,培养学生的团队协作能力。

六. 教学准备1.准备相关的实例,用于讲解二元一次方程组的应用。

2.准备PPT,用于展示和解题过程。

七. 教学过程1.导入(5分钟)通过一个实际问题,引入二元一次方程组的应用。

例如,某商店同时出售两种商品,商品A售价10元,商品B售价15元。

若商店想要通过出售这两种商品获得利润最大化,应该如何设定商品A和商品B的售价?2.呈现(10分钟)呈现这个问题,让学生思考如何解决。

引导学生将这个问题转化为方程组,并求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3一元一次不等式组的应用
教学目标
1.根据实际问题列出一元一次不等式组解决简单的实际问题。

2.提高分析问题,解决问题的能力。

3.进一步渗透数学建模思想,增强克服困难的信心,培养坚韧不拨的意志。

教学重点
1.根据实际问题中的不等关系。

2.信息量大的问题中信息的把握。

教学过程
一、创设问题情境。

出示信息:
某工厂现有甲种原料360千克,乙种原料290千克。

计划利用这两种原料生产A、B 两种产品共50件。

已知生产一件A种产品用甲种原料9千克,乙种原料3千克,生产一件B种产品需用用甲种原料4千克,乙种原料10千克。

学生阅读信息后提问:你能设计出A、B两种产品的生产方案吗?
二、建立模型。

1.填空:
设计生产A产品x件,则生产B产品_____件。

生产1件A产品需甲种原料_____千克,乙种原料_____-千克,那么生产x 件A产品需要甲种原料______千克。

乙种原料_______千克。

生产1件B产品需
甲种原料______千克,乙种原料______千克。

那么生产(50-x)件B产品需甲
种原料_____千克,乙种原料_____千克。

生产x件A产品和(50-x)件B产品
共需甲种原料______千克,乙种原料______千克。

2.本题中甲种原料重量9x+4(50-x)千克与360千克之间有什么关系?为什么?乙种原料呢?
3.列不等式。

三、解决问题。

1.学生解出不等式组。

2.本题中x能否是分数。

3.设计生产方案。

思考:
(1)如果生产一件A产品,获利700元,生产一件B产品获利1200元。

哪种方案获得总利润最大?
(2)如果生产一件A 产品成本是a元,生产一件B产品的成本是b元。

(a>b)哪种方案所需成本最大?
四、练习。

1.P14练习。

2.P18复习题一C组题。

(讨论,合作完成)
五、小结。

列一元一次不等式组解决实际问题关键是什么?有哪些需注意的地方?
六、作业。

习题1.3A组第2题。

B组题
后记:。

相关文档
最新文档