电源滤波电容选型
电源滤波电感电容的选择

电源滤波电容的选取和选择在整流滤波电路中,滤波电容的选取多是使用公式RC≥(3~5)T/2,且在实际电路设计中,一些人也认为滤波电容越大越好,其实这种想法是片面的,本文将对这一问题进行深入的探讨。
文章首先阐述了研究滤波电容选取的必要性,其次对电路进行了理论上的分析和计算,然后,根据理论计算结果编写程序,模拟电路的工作过程。
最后,通过举例讨论滤波电容对电路中的电流、电压及对其它元件参数的影响,从而为优化电路设计奠定了基础。
关键词:整流;滤波;滤波电容一、引言在大多数电源电路中,整流电路后都要加接滤波电路,以减小整流电压的脉动程度,满足稳压电路的需要。
在许多文献中,对于滤波电容C的选取,多是使用经验公式RC≥(3~5)T/2[1,2],并认为滤波电容C越大越好;在一些滤波电路的维修中,技术人员经常用比原电路容量大的电容来代替已坏掉的电容。
实践证明,在很多情况下这样做是行不通的,电容的选取是否越大越好?电容的选择对前级器件及整体电源的性能有何影响?电容的选取是否有最佳值?本文将对这些问题进行深入的讨论。
如图1所示的简单整流滤波电路,理论上讲,增大电路中的滤波电容C容量的确可以使输出电压的波形变得更为平滑、起伏更小,但在电路接通瞬间,电路中所产生的冲击电流因素却不能被忽略,这是因为,几乎所有的电子元器件都有其可以通过的最大电流值,所以,在选择电子元器件时,必须考虑冲击电流所带来的流过相关元器件瞬间电流的最大值,冲击电流越大,对电子元器件的要求就越高,电路的成本就会提高。
在一些滤波电路的维修中,对滤波电容的替换也存在冲击电流的问题,用大容量的滤波电容代替原来的电容,会使冲击电流增大,在不更换其他元件的前提下,单纯提高滤波电容的容量是危险的,它将使整个电路的实际使用寿命大大缩短,甚至烧毁整个电路。
况且,单纯地提高滤波电容的容量对改善输出电压的作用也是有限的,一味地加大滤波电容的容量,只是徒劳地增加电路的成本。
滤波电容的选型与计算(详解)之欧阳文创编

电源滤波电容的选择与计算电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。
电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。
电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。
电容和电感的很多特性是恰恰相反的。
一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。
因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。
低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。
当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。
因此在使用中会因电解液的频繁极化而产生较大的热量。
而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。
电源滤波电容的大小,平时做设计,前级用 4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。
一般前面那个越大越好,两个电容值相差大概100倍左右。
电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。
大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容的等效模型为一电感L,一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率.采用电容滤波设计需要考虑参数:ESRESL耐压值谐振频率那么如何选取电源滤波电容呢?电源滤波电容如何选取,掌握其精髓与方法,其实也不难1) 理论上理想的电容其阻抗随频率的增加而减少(1/jwc),但由于电容两端引脚的电感效应,这时电容应该看成是一个LC串连谐振电路,自谐振频率即器件的FSR参数,这表示频率大于FSR值时,电容变成了一个电感,如果电容对地滤波,当频率超出FSR后,对干扰的抑制就大打折扣,所以需要一个较小的电容并联对地.原因在于小电容,SFR值大,对高频信号提供了一个对地通路,所以在电源滤波电路中我们常常这样理解:大电容滤低频,小电容滤高频,根本的原因在于SFR(自谐振频率)值不同,想想为什么?如果从这个角度想,也就可以理解为什么电源滤波中电容对地脚为什么要尽可能靠近地了.2)那么在实际的设计中,我们常常会有疑问,我怎么知道电容的SFR是多少? 就算我知道SFR值,我如何选取不同SFR值的电容值呢? 是选取一个电容还是两个电容?电容的SFR值和电容值有关,和电容的引脚电感有关,所以相同容值的0402,0603,或直插式电容的SFR值也不会相同,当然获取SFR值的途径有两个:1)器件Datasheet,如22pf0402电容的SFR值在2G左右,2)通过网络分析仪直接量测其自谐振频率,想想如何测量S21?知道了电容的SFR值后,用软件仿真,如RFsim99,选一个或两个电路在于你所供电电路的工作频带是否有足够的噪声抑制比.仿真完后,那就是实际电路试验,如调试手机接收灵敏度时,LNA的电源滤波是关键,好的电源滤波往往可以改善几个dB.电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好.但由于引线和PCB布线原因,实际上电容是电感和电容的并联电路,(还有电容本身的电阻,有时也不可忽略)这就引入了谐振频率的概念:ω=1/(LC)1/2在谐振频率以下电容呈容性,谐振频率以上电容呈感性.因而一般大电容滤低频波,小电容滤高频波.这也能解释为什么同样容值的STM封装的电容滤波频率比DIP封装更高.至于到底用多大的电容,这是一个参考电容谐振频率不过仅仅是参考而已,老工程师说主要靠经验.更可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段.文章来源:/s/blog_545edca401000ax6.html 我看了这篇文章,也做个粗略的总结吧:1.电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路。
详细解析电源滤波电容的选取与计算

电源滤波电容的选择与计算电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。
电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。
电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。
电容和电感的很多特性是恰恰相反的。
一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。
因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。
低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。
当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。
因此在使用中会因电解液的频繁极化而产生较大的热量。
而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。
电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。
一般前面那个越大越好,两个电容值相差大概100倍左右。
电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。
大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容的等效模型为一电感L,一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率。
如何选择滤波电容?

如何选择滤波电容?
滤波电容在交直流转换电路中起着非常重要的作用,如何正确选择滤波电容,尤其是输出滤波电容的选择则是每个工程技术人员十分关心的问题。
50赫兹工频电路中使用的普通电解电容器,其脉动电压频率仅为100赫兹(过整流桥),充放电时间是毫秒数量级。
为获得更小的脉动系数(电源转换电路中,电压或电流的幅值和平均值最直观,因此,我们用电压或电流的基波幅值与其平均值之比,称为脉动系数。
脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量),所需的电容量高达数十万微法,因此普通低频铝电解电容器的目标是以提高电容量为主,电容器的电容量、损耗角正切值以及漏电流是鉴别其优劣的主要参数。
在电源设计中,滤波电容的选取原则是:
C≥2.5T/R
其中:C为滤波电容,单位为UF;T为频率,单位为Hz;R为负载电阻,单位为Ω。
当然,这只是一般的选用原则,在实际的应用中,如条件(空间和成本)允许,都选取C≥5T/R。
滤波电容的选型与计算

电源滤波电容得选择与计算电感得阻抗与频率成正比,电容得阻抗与频率成反比、所以,电感可以阻扼髙频通过,电容可以阻扼低频通过、二者适当组合,就可过滤各种频率信号、如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波、。
电容滤波属电压滤波,就是直接储存脉动电压来平滑输岀电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。
电感滤波属电流滤波,就是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。
电容与电感得很多特性就是恰恰相反得。
一般情况下,电解电容得作用就是过滤掉电流中得低频信号,但即使就是低频信号,苴频率也分为了好几个数量级。
因此为了适合在不同频率下使用,电解电容也分为高频电容与低频电容(这里得髙频就是相对而言)。
低频滤波电容主要用于市电滤波或变压器整流后得滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后得滤波,其工作频率为几千Hz到几万Hz。
当我们将低频滤波电容用于高频电路时,由于低频滤波电容髙频特性不好,它在髙频充放电时内阻较大,等效电感较高。
因此在使用中会因电解液得频繁极化而产生较大得热量。
而较髙得温度将使电容内部得电解液气化,电容内压力升髙,最终导致电容得鼓包与爆裂。
电源滤波电容得大小,平时做设讣,前级用4、7u,用于滤低频,二级用0、lu,用于滤髙频,4、7uF得电容作用就是减小输出脉动与低频干扰,0、luF得电容应该就是减小由于负载电流瞬时变化引起得高频干扰。
一般前而那个越大越好,两个电容值相差大概100倍左右。
电源滤波,开关电源,要瞧您得ESR(电容得等效串联电阻)有多大,而高频电容得选择最好在其自谐振频率上。
大电容就是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容得串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容得等效模型为一电感L, 一电阻R与电容C得串联, 电感L为电容引线所至,电阻R代表电容得有功功率损耗,电容C .因而可等效为串联L C回路求英谐振频率,串联谐振得条件为WL二l/WC, W二2*PI*f,从而得到此式子f二l/(2pi*LC).,串联L C回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果•引线电感得大小因英粗细长短而不同,接地电容得电感一般就是1 MM 为lOnll左右,取决于需要接地得频率、采用电容滤波设计需要考虑参数:ESRESL耐压值谐振频率那么如何选取电源滤波电容呢?电源滤波电容如何选取,掌握其精髓与方法,苴实也不难1)理论上理想得电容其阻抗随频率得增加而减少(1/jwc),但由于电容两端引脚得电感效应,这时电容应该瞧成就是一个LC串连谐振电路,自谐振频率即器件得FSR参数,这表示频率大于FSR值时,电容变成了一个电感,如果电容对地滤波,当频率超出FSR后,对干扰得抑制就大打折扣,所以需要一个较小得电容并联对地、原因在于小电容,SFR值大,对髙频信号提供了一个对地通路,所以在电源滤波电路中我们常常这样理解:大电容滤低频,小电容滤高频,根本得原因在于SFR(自谐振频率)值不同,想想为什么?如果从这个角度想,也就可以理解为什么电源滤波中电容对地脚为什么要尽可能靠近地了、 2)那么在实际得设计中,我们常常会有疑问,我怎么知道电容得SFR就是多少?就算我知道SFR值,我如何选取不同SFR值得电容值呢?就是选取一个电容还就是两个电容?电容得SFR值与电容值有关,与电容得引脚电感有关,所以相同容值得0102, 0603,或直插式电容得SFR值也不会相同,当然获取SFR值得途径有两个:1)器件Datasheet,如22pf0402电容得SFR值在2G左右,2)通过网络分析仪直接量测其自谐振频率,想想如何测量S21?知道了电容得SFR值后,用软件仿真,如RFsim99,选一个或两个电路在于您所供电电路得工作频带就是否有足够得噪声抑制比、仿真完后,那就就是实际电路试验,如调试手机接收灵敏度时,LNA得电源滤波就是关键,好得电源滤波往往可以改善几个dB、电容得本质就是通交流,隔直流,理论上说电源滤波用电容越大越好、但由于引线与PCB布线原因,实际上电容就是电感与电容得并联电路,(还有电容本身得电阻,有时也不可忽略)这就引入了谐振频率得槪念:=1/(LC) 1/2在谐振频率以下电容呈容性,谐振频率以上电容呈感性、因而一般大电容滤低频波,小电容滤髙频波、这也能解释为什么同样容值得STM封装得电容滤波频率比DIP封装更髙、至于到底用多大得电容,这就是一个参考电容谐振频率更可靠得做法就是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大得滤波频段、文章来源:我瞧了这篇文章,也做个粗略得总结吧:1、电容对地滤波,需要一个较小得电容并联对地,对髙频信号提供了一个对地通路。
详解滤波电容的选择及计算

电源滤波电容的选择与计算电感的阻抗与频率成正比 ,电容的阻抗与频率成反比 .所以 ,电感可以阻扼高频通过 ,电容可以阻扼低频通过 . 二者适当组合 ,就可过滤各种频率信号 .如在整流电路中 ,将电容并在负载上或将电感串联在负载上 ,可滤去交流纹波 . 。
电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。
电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。
电容和电感的很多特性是恰恰相反的。
一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。
因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。
低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千 Hz到几万Hz。
当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。
因此在使用中会因电解液的频繁极化而产生较大的热量。
而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。
电源滤波电容的大小,平时做设计,前级用 4.7u,用于滤低频,二级用 0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,O.luF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。
一般前面那个越大越好,两个电容值相差大概100 倍左右。
电源滤波,开关电源,要看你的ESR电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。
大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容的等效模型为一电感L, 一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM 为10n H左右,取决于需要接地的频率.采用电容滤波设计需要考虑参数:ESRESL耐压值谐振频率那么如何选取电源滤波电容呢?电源滤波电容如何选取 ,掌握其精髓与方法 ,其实也不难1)理论上理想的电容其阻抗随频率的增加而减少(1/jwc), 但由于电容两端引脚的电感效应 , 这时电容应该看成是一个LC串连谐振电路,自谐振频率即器件的FSR参数,这表示频率大于FSR值时,电容变成了一个电感,如果电容对地滤波,当频率超出FSR后,对干扰的抑制就大打折扣,所以需要一个较小的电容并联对地•原因在于小电容,SFR值大,对高频信号提供了一个对地通路,所以在电源滤波电路中我们常常这样理解:大电容滤低频,小电容滤高频,根本的原因在于SFR自谐振频率)值不同,想想为什么?如果从这个角度想,也就可以理解为什么电源滤波中电容对地脚为什么要尽可能靠近地了 .2)那么在实际的设计中,我们常常会有疑问,我怎么知道电容的 SFR是多少?就算我知道SFR 值,我如何选取不同 SFR值的电容值呢?是选取一个电容还是两个电容?电容的SFR值和电容值有关,和电容的引脚电感有关所以相同容值的 0402,0603,或直插式电容的SFR值也不会相同,当然获取SFR值的途径有两个:1)器件Datasheet,如22pf0402电容的SFR值在2G左右,2)通过网络分析仪直接量测其自谐振频率,想想如何测量 S21?知道了电容的SFR值后,用软件仿真,如 RFsim99,选一个或两个电路在于你所供电电路的工作频带是否有足够的噪声抑制比 .仿真完后,那就是实际电路试验,如调试手机接收灵敏度时丄NA的电源滤波是关键,好的电源滤波往往可以改善几个dB.电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好•但由于引线和PCB布线原因,实际上电容是电感和电容的并联电路,(还有电容本身的电阻,有时也不可忽略)这就引入了谐振频率的概念:3 =1/(LC)1/2在谐振频率以下电容呈容性,谐振频率以上电容呈感性 .因而一般大电容滤低频波,小电容滤至于到底用多大的电容,这是一个参考电容谐振频率不过仅仅是参考而已,老工程师说主要靠经验更可靠的做法是将一大一小两个电容并联, 一般要求相差两个数量级以上,以获得更大的滤波频段文章来源:我看了这篇文章,也做个粗略的总结吧:1•电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路。
开关电源中选取滤波电容的三个主要参数
开关电源中选取滤波电容的三个主要参数开关电源中选取滤波电容的三个主要参数许多电子设计者都知道滤波电容在电源中起的作用,但在开关电源输出端用的滤波电容上,与工频电路中选用的滤波电容并不一样,在工频电路中用作滤波的普通电解电容器,其上的脉动电压频率仅有100 赫兹,充放电时间是毫秒数量级,为获得较小的脉动系数,需要的电容量高达数十万微法,因而一般低频用普通铝电解电容器制造,目标是以提高电容量为主,电容器的电容量、损耗角正切值以及漏电流是鉴别其优劣的主要参数。
在开关稳压电源中作为输出滤波用的电解电容器,其上锯齿波电压的频率高达数十千赫,甚至数十兆赫,它的要求和低频应用时不同,电容量并不是主要指标,衡量它好坏的则是它的阻抗一频率特性,要求它在开关稳压电源的工作频段内要有低的等的阻抗,同时,对于电源内部,由于半导体器件开始工作所产生高达数百千赫的尖峰噪声,亦能有良好的滤波作用,一般低频用普通电解电容器在10 千赫左右,其阻抗便开始呈现感性,无法满足开关电源使用要求。
开关稳压电源专用的高频铝电解电容器,它有四端个子,正极铝片的两端分别引出作为电容器的正极,负极铝片的两端也分别引出作为负极。
稳压电源的电流从四端电容的一个正端流入,经过电容内部,再从另一个正端流向负载;从负载返回的电流也从电容的一个负端流入,再从另一个负端流向电源负端。
因为四端电容具有良好的高频特性,它为减小输出电压的脉动分量以及抑制开关尖峰噪声提供了极为有利的手段。
高频铝电解电容器还有多芯的形式,它将铝箔分成较短的若干小段,用多引出片并联连接以减小容抗中的电阻成份,同时,采用低电阻率的材料并用螺杆作为引出端子,以增强电容器承受大电流的能力。
叠片电容也称为无感电容,一般电解电容器的芯子都卷成圆柱形,等效串联电感较大;叠片电容的结构和书本相仿,因流过电流产生的磁通方向相反而被抵消,因而降低了电感的数值,具有更为优良的高频特性,这种电容一般做成方形,便于固定,还可以适当减小占机体积。
LED驱动电源中使用电容滤波的大小选择
电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。
<>电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。
电容和电感的很多特性是恰恰相反的。
一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。
因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。
低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。
当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。
因此在使用中会因电解液的频繁极化而产生较大的热量。
而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。
电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。
一般前面那个越大越好,两个电容值相差大概100倍左右。
电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。
大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容的等效模型为一电感L,一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f = 1/(2pi* LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率。
滤波电容的选择
滤波电容的选择引言在电子电路中,滤波电容是一种常用的电子元件,它可以在电路中起到滤波作用。
滤波电容的选择对电路的性能和稳定性起着重要的影响。
本文将介绍如何选择适合的滤波电容,从而提高电路的效果和可靠性。
滤波电容的作用滤波电容主要起到滤波作用,它可以消除或减弱电路中的噪声和干扰信号,使得输出信号更加纯净。
滤波电容可以将高频噪声信号短路到地,从而使得电路的输出信号只包含所需的有效信号。
此外,滤波电容还可以提高电路的稳定性和抗干扰能力。
滤波电容的选择因素在选择滤波电容时,需要考虑以下几个因素:1. 容值滤波电容的容值决定了它能够滤波的频率范围。
一般来说,滤波电容的容值越大,其滤波效果越好,可以滤去更低频的噪声信号。
但是,容值过大也会增加电路的成本和体积。
因此,选择滤波电容的容值时需要综合考虑电路的要求和成本因素。
2. 电压滤波电容的电压等级需要根据电路中的最大工作电压来选择。
一般来说,滤波电容的电压等级应大于电路中的最大工作电压,以确保电容正常工作并具有足够的寿命。
如果滤波电容的电压等级过低,容易导致电容击穿或短路的故障。
3. 精度滤波电容的精度决定了其与电路中其他元件的匹配程度。
如果滤波电容的精度过低,会影响电路的稳定性和精度。
因此,在选择滤波电容时,需要根据电路的要求选择合适的精度。
4. 稳定性滤波电容的稳定性是指其在不同温度和频率下的性能是否稳定。
一些特殊的应用场合,如高温环境或频率较高的电路中,需要选择具有良好稳定性的滤波电容,以确保电路的正常运行。
5. 尺寸和价格滤波电容的尺寸和价格也是选择的重要考虑因素。
尺寸过大会影响电路的布局和组装,价格过高会增加电路的成本。
因此,需要综合考虑电路的要求和经济性,选择适合的滤波电容。
选择滤波电容的步骤根据以上因素,我们可以通过以下步骤选择适合的滤波电容:步骤1:确定电路的要求首先需要确定电路的滤波要求,包括所需的滤波频率范围、最大工作电压等。
步骤2:计算所需的容值范围根据电路的滤波要求和能够接受的成本、尺寸等因素,计算出所需的滤波电容容值范围。
LC滤波电容选型计算方法(CAPHIT)
深圳市凯普希特电子有限公司
CAPHIT Electronics Co,. Ltd. TEL:0755-8316 9894 FAX:0755-2263 7345
(a)当逆变电源输入电压增大时,输出电压中的频率为 (2s 0 ) 的谐波的谐波含量将 增大。 (b)当 在 (0,1/ N 2 ) 范围内取值时, HF0 (2s 0 ) 随 的增加而增加,其中最小值是 一个大于 18%的数。 (c)当 在 (1/ N 2 ,1) 范围内取值时,随着 的增大, HF0 (2s 0 ) 将减小,其最小值为
iin
L
Uin
C
Z
U0
则由图 1可得:
图 1 LC 滤波器
I in 0CU 0
(1)
由上式可知,空载时滤波器输入基波电流的大小与C成正比。所以从限制逆变电源空载损 耗的角度来讲,LC滤波的电容值不能太大。
1.2、非线性负载的适应性指标
逆变电源对非线性负载的适应性是衡量逆变电源性能优劣的重要指标。非线性负载之所 以会引起逆变电源输出电压波形的畸变,是因为非线性负载时一种谐波电流源,它产生的谐 波电流在逆变电源输出阻抗上产生谐波压降,从而引起输出电压波形畸变。可见逆变电源的 输出阻抗直接关系着逆变电源对非线性负载的适应性,输出阻抗越小,逆变电源的输出阻抗 直接关系着逆变电源对非线性负载的适应性,输出阻抗越小,逆变电源对非线性负载适应性 越好。 开环时逆变电源的输出阻抗就是 LC 滤波器的输出阻抗,根据公式
依据的设计指标有四个: (1)输出电压谐波含量指标。由用户对输出电压的单词谐波含量要 求来确定该指标,输出电压波形满足要求。 (2)滤波器的基波电压增益指标。使逆变电压在 输入电压最低、负载最重、感性负载、功率因数最低的情况下,输出电压仍能达到额定值, 不发生过调制。 (3)滤波器的空载输入基波电流指标,使空载损耗不致过大。 (4)负载适应 性指标。在满足前三个基本指标的前提下,使逆变电源对非线性负载的适应性最好。 (1)由输出电压的谐波含量指标确定 LC 的取值范围 为了使输出电压中歌词谐波的谐波含量满足要求,只要使空载输入电压最高的情况下特定谐 波的含量满足要求即可,设 HF0 表示特定谐波的谐波含量上限,该值根据输出电压的单次谐 波含量要求确定。 令
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电源滤波电容选型
滤波电容在开关电源中起着非常重要的作用,如何正确选择滤波电容,尤其是
输出滤波电容的选择则是每个工程技术人员都十分关心的问题。
50Hz工频电路中使用的普通电解电容器,其脉动电压频率仅为100Hz,充放电
时间是毫秒数量级。为获得更小的脉动系数,所需的电容量高达数十万μF,因此
普通低频铝电解电容器的目标是以提高电容量为主,电容器的电容量、损耗角正切
值以及漏电流是鉴别其优劣的主要参数。而开关电源中的输出滤波电解电容器,其
锯齿波电压频率高达数十kHz,甚至是数十MHz,这时电容量并不是其主要指标,
衡量高频铝电解电容优劣的标准是“阻抗-频率”特性,要求在开关电源的工作频
率内要有较低的等效阻抗,同时对于半导体器件工作时产生的高频尖峰信号具有良
好的滤波作用。
普通的低频电解电容器在10kHz左右便开始呈现感性,无法满足开关电源的使
用要求。而开关电源专用的高频铝电解电容器有四个端子,正极铝片的两端分别引
出作为电容器的正极,负极铝片的两端也分别引出作为负极。电流从四端电容的一
个正端流入,经过电容内部,再从另一个正端流向负载;从负载返回的电流也从电
容的一个负端流入,再从另一个负端流向电源负端。
由于四端电容具有良好的高频特性,为减小电压的脉动分量以及抑制开关尖峰
噪声提供了极为有利的手段。高频铝电解电容器还有多芯的形式,即将铝箔分成较
短的若干段,用多引出片并联连接以减小容抗中的阻抗成份。并且采用低电阻率的
材料作为引出端子,提高了电容器承受大电流的能力。
电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频
通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电
路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电
压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;
适用于小电流,电流越小滤波效果越好。
电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压
低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的
很多特性是恰恰相反的。
一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,
其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为
高频电容和低频电容(这里的高频是相对而言)。
低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一
致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千
Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特
性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的
频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压
力升高,最终导致电容的鼓包和爆裂。
电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,
用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是
减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值
相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)
有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好
比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、
电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻
最小,所以滤波最好!
电容的等效模型为一电感L,一电阻R和电容C的串联,
电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.
因而可等效为串联LC回路求其谐振频率,串联谐振的条件为
WL=1/WC,W=2*PI*f,从而得到此式子f = 1/(2pi* LC).,串联LC回路中心频率处电
抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长
短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率。
采用电容滤波设计需要考虑参数:
ESR
ESL
耐压值
谐振频率
那么如何选取电源滤波电容呢?
电源滤波电容如何选取,掌握其精髓与方法,其实也不难
1)理论上理想的电容其阻抗随频率的增加而减少(1/jwc),但由于电容两端引
脚的电感效应,这时电容应该看成是一个LC串连谐振电路,自谐振频率即器件的FSR
参数,这表示频率大于FSR值时,电容变成了一个电感,如果电容对地滤波,当频率超
出FSR后,对干扰的抑制就大打折扣,所以需要一个较小的电容并联对地.原因在于
小电容,SFR值大,对高频信号提供了一个对地通路,
所以在电源滤波电路中我们常常这样理解:大电容滤低频,小电容滤高频,根本
的原因在于SFR(自谐振频率)值不同,想想为什么?如果从这个角度想,也就可以理
解为什么电源滤波中电容对地脚为什么要尽可能靠近地了.
2)那么在实际的设计中,我们常常会有疑问,我怎么知道电容的SFR是多少?就
算我知道SFR值,
我如何选取不同SFR值的电容值呢?是选取一个电容还是两个电容?
电容的SFR值和电容值有关,和电容的引脚电感有关,所以相同容值的
0402,0603,或直插式电容
的SFR值也不会相同,当然获取SFR值的途径有两个:1)器件Data sheet,如
22pf0402电容的SFR
值在2G左右, 2)通过网络分析仪直接量测其自谐振频率,想想如何测量S21?
知道了电容的SFR值后,用软件仿真,如RFsim99,选一个或两个电路在于你所
供电电路的工作频
带是否有足够的噪声抑制比.仿真完后,那就是实际电路试验,如调试手机接收
灵敏度时,LNA的
电源滤波是关键,好的电源滤波往往可以改善几个dB.
电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好.但由于引线
和PCB布线原因,实际上电容是电感和电容的并联电路,(还有电容本身的电阻,有时
也不可忽略)这就引入了谐振频率的概念:ω=1/(LC)1/2
在谐振频率以下电容呈容性,谐振频率以上电容呈感性.因而一般大电容滤低
频波,小电容滤高频波.
这也能解释为什么同样容值的STM封装的电容滤波频率比DIP封装更高.
至于到底用多大的电容,这是一个参考电容谐振频率
电容值 DIP (MHz) STM (MHz)
1.0μF 2.5 5
0.1μF 8 16
0.01μF 25 50
1000pF 80 160
100 pF 250 500
10 pF 800 1.6(GHz)
不过仅仅是参考而已,老工程师说主要靠经验.
更可靠的做法是将一大一小两个电容并联,
一般要求相差两个数量级以上,以获得更大的滤波频段.
总结
1.电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地
通路。
2.电源滤波中电容对地脚要尽可能靠近地。
3.理论上说电源滤波用电容越大越好,一般大电容滤低频波,小电容滤高频波。
4.可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以
获得更大的滤波频段.