Alleviation of Tree Saturation in Multistage Interconnection Networks
基于改进Unet的多目标非侵入式负荷监测

基于改进Unet的多目标非侵入式负荷监测
程志友;张帅
【期刊名称】《淮北师范大学学报(自然科学版)》
【年(卷),期】2024(45)2
【摘要】非侵入式负荷监测被认为是能源监测和管理中一个关键问题,针对传统NILM模型对多状态电器训练准确率较低且只能对单一电器进行训练问题,文章提出基于改进Unet多目标非侵入式负荷监测模型。
模型在Unet基础上引入卷积块注意力模块(CBAM),CBAM结合通道和空间注意力,增强模型提取特征能力,通过结合残差连接,将激活函数ReLU替换为GELU,防止网络退化和梯度爆炸,利用神经网络不同通道特征提取能力实现多通道输出,对UK-DALE数据集上使用最多5个电器同时训练。
相比于现有NILM模型,该模型在更低网络参数量下,可以实现多目标监测且有较高准确率。
【总页数】8页(P21-28)
【作者】程志友;张帅
【作者单位】安徽大学互联网学院;教育部电能质量工程研究中心(安徽大学)
【正文语种】中文
【中图分类】TM721
【相关文献】
1.基于低采样率的非侵入式负荷监测多目标优化算法
2.基于隐马尔可夫模型的非侵入式负荷监测泛化性能改进
3.基于改进GMM-CNN-GRU混合的非侵入式负荷监
测方法研究4.基于改进隐马尔可夫模型的非侵入式负荷监测5.基于多目标蛇优化算法的非侵入式负荷监测研究
因版权原因,仅展示原文概要,查看原文内容请购买。
基于最大最小蚂蚁系统的容迟网络缓存机制

doi:10.3969/j.issn.1003-3114.2023.06.015引用格式:彭牧尧,魏建军,王乾舟,等.基于最大最小蚂蚁系统的容迟网络缓存机制[J].无线电通信技术,2023,49(6): 1095-1103.[PENG Muyao,WEI Jianjun,WANG Qianzhou,et al.Caching Mechanism Based on Max-Min Ant System in Delay Tolerant Network[J].Radio Communications Technology,2023,49(6):1095-1103.]基于最大最小蚂蚁系统的容迟网络缓存机制彭牧尧1,魏建军1,王乾舟2,王㊀琨3(1.西安电子科技大学通信工程学院,陕西西安710071;2.西安电子科技大学杭州研究院,浙江杭州311231;3.西安电子科技大学计算机科学与技术学院,陕西西安710071)摘㊀要:容迟网络(Delay Tolerant Network,DTN)是指节点资源紧张㊁网络延迟较大或链接频繁中断的网络结构㊂为保障消息到达率,DTN采用了缓存机制,导致网络开销大幅提升㊂为了在提升消息到达率的同时降低网络开销,通过考虑消息类别,将蚁群算法引入容迟网络缓存机制中,提出了基于最大最小蚂蚁系统的容迟网络缓存机制㊂在该机制中,节点致力于维护消息的信息素浓度,依据消息的类别及自身属性得到消息的丢弃权重,进而实现容迟网络的消息丢弃㊂实验结果表明,与基于传统蚁群算法的容迟网络缓存机制相比,所提的容迟网络缓存机制提高了7.7%的消息到达率并降低了5.4%的网络开销㊂关键词:容迟网络;缓存机制;最大最小蚂蚁系统;消息类别;信息素浓度中图分类号:TN391㊀㊀㊀文献标志码:A㊀㊀㊀开放科学(资源服务)标识码(OSID):文章编号:1003-3114(2023)06-1095-09Caching Mechanism Based on Max-Min Ant System inDelay Tolerant NetworkPENG Muyao1,WEI Jianjun1,WANG Qianzhou2,WANG Kun3(1.School of Telecommunication Engineering,Xidian University,Xi an710071,China;2.Hangzhou Institute of Technology,Xidian University,Hangzhou311231,China;3.School of Computer Science and Technology,Xidian University,Xi an710071,China) Abstract:Delay Tolerant Network(DTN)indicates a network structure where node resources are scarce,network latency is high, or links are frequently interrupted.To guarantee message delivery,DTN employs a caching mechanism which leads to an extra increase of network overhead.To improve message delivery rate and reduce network overhead,this paper considers message categories,and utili-zes an ant colony algorithm to improve DTN caching mechanism.The proposed DTN caching mechanism is termed as maximum mini-mum ant system.In this mechanism,nodes focus on maintaining the pheromone concentration of the message.Specifically,nodes deter-mine the discarding weight of message based on its category and own attributes to discard messages in the DTN.Experimental results demonstrate that compared with the DTN caching mechanism based on traditional ant colony algorithms,the proposed DTN caching mechanism increases the message delivery rate by7.7%and reduces network overhead by5.4%.Keywords:DTN;caching mechanism;max-min ant system;message category;pheromone concentration收稿日期:2023-07-12基金项目:国家自然科学基金联合基金重点项目(U21A20446)Foundation Item:Joint Funds of the National Natural Science Foundation of China(U21A20446)0㊀引言难以估计的链接范围与成本巨大的硬件覆盖导致了容迟网络(Delay Tolerant Network,DTN)的出现㊂容迟网络具有网络资源有限㊁难以维持端到端的长时间稳定链接以及网络拓扑动态变化的特征,广泛存在于智慧城市网络[1]㊁深空通信网络[2-4]和野生动物追踪网络[5]等实际应用中㊂容迟网络的特性使得在该网络中信息的传递难以依赖传统的TCP/IP协议㊂为了进行消息的传递与交互,容迟网络通过 存储-携带-转发 的方式,在存储待传递消息的节点与目的节点相遇时进行消息传递㊂这种消息传递方式需要节点进行消息存储,从而导致网络中存在同一消息的多个副本,消息副本的增多将导致网络开销的增长,需设计合理的缓存管理方法,以进行消息副本的存储丢弃管理㊂本文考虑信息的不同类别,提出了一种基于最大最小蚂蚁系统的容迟网络缓存机制(Cache Man-agement Strategy Based on Max-Min Ant Colony Sys-tem in Delay Tolerant Network)㊂基于消息的转发次数㊁消息大小与剩余生存时间等自身特征,定义不同类别信息的信息素浓度表达式㊂当节点缓存已满且有新的消息进入时,根据信息素浓度计算丢弃权重,并丢弃权重最小的消息㊂本算法考虑了消息自身的特征,并结合历史信息实现容迟网络中的缓存管理㊂1㊀相关工作1.1㊀容迟网络缓存机制近年来,国内外有许多针对容迟网络缓存机制的研究㊂文献[6-7]阐述了现有的国内外容迟网络缓存机制,其中常用且具有代表性的机制包括:①先进先出(First In First Out,FIFO)或丢弃最先进入缓存中的消息(Drop Front,DF)算法㊂如果节点缓存已满且有新的消息到达,DF算法将丢弃最先进入缓存的消息㊂②随机丢弃(Drop Random,DR)算法㊂如果节点缓存已满且有新的消息到达,DR算法将随机丢弃缓存中的消息㊂③丢弃最少生存时间消息(Drop Oldest,DO)算法㊂如果节点缓存已满且有新的消息到达,DO算法将丢弃缓存中剩余生存时间最小的消息㊂对比以上的容迟网络缓存机制,DF和DO具有最好的效果,并且这两种容迟网络缓存机制被广泛应用于容迟网络中㊂国内,崔苑茹等人[8]提出基于校园机会网络的协作小组缓存调度策略,结合校园协作学习背景,有效降低了消息的冗余程度并减少了由于缓存空间不足而出现的消息传输失败等问题㊂通过实验表明,该算法具有较优的网络指标㊂郑啸等人[9]提出了一个新的度量节点在协作缓存中重要程度的指标,即节点重要度㊂基于此指标,利用贪心算法选择初始缓存节点㊂同时,利用缓存节点相遇的机会,进行缓存数据的主动再分配,并且通过实验验证了提出的缓存协议能够有效提高数据访问效率㊂Zhang等人[10]基于分布式存储的思想提出了一种容迟网络缓存机制,当节点存在缓存压力时,将利用其可通信节点来存放接收的消息,仿真证明该算法可以有效增加消息到达率和缓存利用率㊂国外,基于广义概率转发模型和拥塞指标, Goudar等人[11]通过预测网络中的拥塞点,自适应地调整节点的消息复制率,减少了不必要的缓存,防止数据包丢失;通过显示的数学公式对相遇概率㊁传递概率等进行了表述㊂N n u等人[12]提出了一种名为 MaxDelivery 的方法,该方法有效释放了节点中的缓存,但是该方法引入了ACK确认机制,将导致网络中产生额外的ACK消息,使得网络开销增加㊂以上两种方法为了获得网络中更加多样化信息用于决策消息的丢弃,需要节点间交互额外的信息,这将导致网络开销的增加㊂文献[13]提出了一种基于多社区模型的资源优化协议,即社交相似度和优化资源(Social Similarity And Optimized Resource, SSAOR)协议,以有效利用容迟网络中的资源㊂该协议基于源节点和目标节点之间的位置关系,使用两种不同的策略来确定转发消息的顺序㊂1.2㊀蚁群算法蚁群算法的提出,为解决组合优化问题提供了新的思路,并且被逐渐应用到其他的优化问题中㊂但蚁群算法存在易陷入局部最优的问题,成为现有国内外学者研究的重点㊂Akande等人[14]将蝠群算法与蚁群算法相结合,并通过仿真证明融合算法效果好于单一算法㊂但融合算法仍然存在陷入局部最优的问题㊂Ye等人[15]对蚁群算法的负反馈机制进行了改进,利用其提高解的多样性㊂同时,根据历史搜索信息,不断获取故障经验,解决了蚁群算法容易陷入局部最优的问题㊂李宪强等人[16]把蚁群算法应用于解决无人机三维路径规划问题,将蚁群算法与人工势场算法相结合,有效解决了蚁群算法易陷入局部最优和容易忽视节点周围障碍物的问题㊂Ding等人[17]将Q-learning算法引入蚁群算法当中,通过添加量子位启发因子避免蚁群算法陷入局部最优当中,提高了算法的优化能力和收敛速度;然而该算法仍然存在实际应用的挑战和问题㊂赵晶蕊等人[18]基于蚁群算法实现了负载均衡下的QoS保障路由算法㊂仿真结果表明,该算法能够有效实现网络负载的均衡,且同时在端到端时延㊁丢包率㊁剩余带宽等QoS需求的性能上有明显提升㊂Stutzle[19]利用最大最小蚂蚁系统解决二次规划问题,并且取得了不错的效果㊂最大最小蚁群算法相较于蚁群算法有如下的改进:①最大最小蚂蚁系统规定了信息素浓度的上下界,设定最小信息素浓度有助于增加对更优解探索的可能性,设定最大信息素浓度保证经验对于蚁群的启发性㊂②信息素浓度初始值为信息素取值区间的上限,并伴随一个较小的信息素衰减系数㊂③只允许迭代最优蚂蚁,或者至今最优蚂蚁释放信息素㊂最大最小蚂蚁系统可以有效地减少蚁群算法局部收敛的问题,得到了广泛的应用㊂通过查阅文献,有以下三点发现:①基于多效用值考虑的缓存管理机制有助于提升容迟网络性能㊂②蚁群算法在解决优化问题上有着优异的表现,可以很好地应用于容迟网络性能优化问题,但需要考虑其易陷入局部最优的问题㊂③现有容迟网络缓存机制及蚁群算法少有考虑消息的类别㊂将消息分类引入容迟网络缓存机制,有助于将同类消息集中于特定的节点之上,便于为之分配特定资源,提升网络性能㊂基于以上发现,本文将最大最小蚂蚁系统应用于容迟网络缓存机制当中,节点综合考量单条信息的信息素浓度与节点上同类信息的信息素浓度,自主地依照所求权重丢弃相应的消息,提高网络整体消息到达率并减少网络开销㊂2㊀算法介绍2.1㊀蚁群信息素浓度定义本节定义了消息信息素浓度㊁同类消息信息素浓度以及丢弃权重的表达式㊂蚁群信息素浓度依赖于消息的相关特征,特征如下:①剩余生存时间(Time Till Lifetime,TTL)㊂剩余生存时间反映了消息在网络中可能继续被转发的概率㊂一般地,剩余生存时间越短,消息越难以被交付到目标节点㊂②缓存占用率(Cache Usage)㊂本机制定义缓存占用率为消息的大小与所到达节点缓存大小的比值,如式(1)所示㊂对于消息而言,缓存占用率越大,会使得消息所到达的节点更容易产生拥塞并丢弃缓存中原有消息,从而导致网络消息到达率下降㊂Cache_Usage i,j=Size iNode_Cache j,(1)式中:Cache_Usage i,j表示消息i在节点j的消息占用率,Size i表示消息i的大小,Node_Cache j表示节点j的缓存大小㊂③消息的转发次数㊂在本机制中,消息的转发次数被定义为消息经过的跳数㊂如果消息的转发次数越高,该消息在网络中则会具有更多的副本数㊂丢弃副本数较多的消息,对网络整体的消息到达率影响较小㊂本机制认为单条消息的信息素浓度取决于上述三种特征㊂因此,使用式(2)定义单条消息的信息素浓度(Pheromone Concentration of Message,PCM):PCM t,i,j=TTL t,iHops t,iˑCache_Usage i,j,(2)式中:PCM t,i,j表示t时刻进入节点j的第i条消息的信息素浓度,TTL t,i表示t时刻进入节点j的第i条消息的剩余生存时间,Hops t,i表示t时刻进入节点j的第i条消息的转发次数㊂如式(3)所示,本机制认为节点在t时刻的同类消息信息素浓度(Pheromone Concentration of the Same Category,PCSC)取决于t-1时刻的衰减后同类消息信息素浓度,与t时刻进入节点的同一类别的N条消息的信息素浓度㊂PCSC t=τmax,PCSC tȡτmax (1-ρ)PCSC t-1+ðN i=0PCM t,i,j,PCSC tɪ(τmin,τmax)τmin,PCSC tɤτmin ìîíïïïï,(3)式中:ρ表示历史信息素浓度的衰减系数,N表示t时刻进入节点的同一类别消息的数量,τmin表示信息素浓度范围的下限,τmax表示信息素浓度范围的上限㊂如式(4)所示,总信息素浓度(Total Pheromone Concentration),即丢弃权重,决定了消息丢弃的优先级㊂丢弃权重越低的消息越容易被丢弃㊂Weight t,i=PCM t,i,j+PCSC t-1,(4)式中:Weight t,i表示t时刻第i条消息的丢弃权重㊂2.2㊀基于蚁群算法的容迟网络缓存机制本节提出的缓存机制引入蚁群算法,机制有效考虑了信息的分类㊂节点维护不同类别信息的信息素浓度值㊂缓存机制流程如图1所示㊂缓存机制流程的具体步骤如下㊂步骤一:当有新消息到来时,会检查节点中的缓存是否已满㊂若缓存未满,则直接跳至步骤四;若缓存已满,则跳至步骤二㊂步骤二:利用式(4)计算该条消息的丢弃权重,其中计算同类消息信息素浓度时不设定上下限㊂步骤三:将步骤二中计算所得的丢弃权重与当前缓存中消息的丢弃权重进行比较,若新消息的权重为最小,则丢弃新消息;若不为最小,则丢弃缓存中原有消息中具有最小权重的消息并跳至步骤四㊂步骤四:新消息进入缓存㊂步骤五:利用式(3)更新缓存节点中的同类消息信息素浓度㊂图1㊀基于蚁群算法的容迟网络图缓存机制流程示意图Fig.1㊀Flow diagram of delay tolerant network cache man-agement strategy based on ant colony algorithm 2.3㊀基于最大最小蚂蚁系统的容迟网络缓存机制基于2.2节所提容迟网络缓存机制,将最大最小蚂蚁系统与缓存机制相结合,将节点上的同类信息素浓度限定在一定的范围内㊂基于最大最小蚂蚁系统的容迟网络缓存机制流程如图2所示㊂缓存机制流程的具体步骤如下㊂步骤一:按照消息的到达节点对消息进行分类㊂步骤二:当有新消息到来时,步骤二会检查节点中的缓存是否已满㊂若缓存未满,则直接跳至步骤五;若缓存已满,则跳至步骤三㊂步骤三:利用式(4)计算该条消息的丢弃权重㊂步骤四:将步骤二中计算所得的丢弃权重与当前缓存中消息的丢弃权重进行比较,若新消息的权重为最小,则丢弃新消息;若不为最小,则丢弃缓存中原有消息中具有最小权重的消息并跳至步骤五㊂步骤五:新消息进入缓存㊂步骤六:利用式(3)更新缓存节点中的同类消息信息素浓度㊂当更新后的同类消息信息素浓度超出给定范围时,若超出上限,取给定信息素浓度范围的上限;若超出下限,取给定信息素浓度范围的下限㊂图2㊀基于最大最小蚂蚁系统的容迟网络缓存机制流程示意图Fig.2㊀Flow diagram of delay tolerant network cache man-agement strategy based on max-min ant system3㊀仿真及分析3.1㊀仿真环境本文使用由赫尔辛基大学开发的ONE网络仿真平台进行仿真㊂仿真在4500mˑ3400m的区域内进行,持续7200s㊂网络中消息产生的间隔为25~35s㊂实验中,将所有的节点分为4组,其中,A组和B组节点代表步行或奔跑的行人,其移动速度为1~5m/s;C组节点代表电动车或自行车,移动速度为5~7m/s;D组为有轨电车,移动速度为7~10m/s,拥有高速通信接口㊂具体参数设置如表1所示㊂表1㊀仿真参数Tab.1㊀Simulation parameters类别参数参数值A剩余生存时间/s250消息大小100kByte~1MByte节点数量60移动模型Shortest Path Map BaesdMovement通信距离/m15通信带宽/(kbit/s)300节点移动速度/(m/s)1~4B剩余生存时间/s300消息大小100kByte~1MByte节点数量30移动模型Shortest Path Map BaesdMovement通信距离/m15通信带宽/(kbit/s)300节点移动速度/(m/s)2~5C剩余生存时间/s350消息大小100kByte~1MByte节点数量15移动模型Shortest Path Map BaesdMovement通信距离/m15通信带宽/(kbit/s)300节点移动速度/(m/s)5~7D剩余生存时间/s300消息大小100kByte~1MByte节点数量4移动模型Map Route Movement通信距离/m15通信带宽/(kbit/s)300高速接口通信范围/m1000高速接口通信带宽/(Mbit/s)10节点移动速度/(m/s)7~10㊀㊀本文期望实现每类消息在适应自己的优势路径中传输㊂其中优势路径是指适应某类消息生存的中继节点所组成的路径,且不同类别消息之间的优势路径应该尽量减少重合,以减少不同类别消息间的资源竞争㊂为了简化分类标准,直接根据源节点与目的节点的不同来进行消息分类,就可以为不同类别消息赋予地域上的差异,使得不同类别消息形成各自的优势路径㊂因此,本文依照源节点与目的节点不同将消息分为16类㊂同时,缓存大小及传输带宽都是网络拥塞的重要影响因素,因此本实验将讨论缓存大小以及传输带宽对消息到达率以及网络开销的影响㊂3.2㊀结果及分析网络指标随缓存及带宽大小变化如图3~图5所示,具体数值如表2和表3所示㊂(a)消息到达率随节点缓存大小变化㊀㊀㊀(b)网络开销随节点缓存大小变化图3㊀网络指标随节点缓存大小变化Fig.3㊀Relationship between network indicators and cache size ofnodes (a)消息到达率随带宽大小变化㊀㊀㊀(b)网络开销随带宽大小变化图4㊀网络指标随带宽大小变化Fig.4㊀Relationship between network indicators andbandwidth (a)平均消息到达率随时间变化关系㊀㊀㊀(b)平均网络开销随时间变化关系图5㊀网络指标随时间变化关系Fig.5㊀Relationship between network indicators andtime㊀㊀从图3可以看出,4种缓存方法在消息到达率㊁网络开销方面的趋势相似㊂随着缓存大小的增加,消息到达率随之增高,网络开销随之变小㊂这是因为当缓存区大小变大时,节点的缓存中可以存储更多的信息,使得网络中同一个消息的副本数增加,进而增加了消息成功到达目标节点的概率㊂同时,缓存增加,缓存当中可以容纳更多消息,消息被丢弃的概率降低,重传的次数减少,使得网络开销减少㊂从图4可以看出,随着带宽的增加,消息到达率与网络开销都随之增高㊂这是因为当传输带宽变大时,网络中的节点更加活跃,消息更容易在网络中进行传递,故而消息的到达率更高㊂因为更活跃,消息在网络中将进行更多次的传递,故而网络开销增加㊂由图5可知,提出的基于最大最小蚂蚁系统的缓存管理机制明显优于其他机制㊂这是因为随着时间的推移,特定节点上某些类型消息的信息素浓度将继续增加,使这些节点更容易成为某些类型消息传输的中继节点,其他类型的消息将难以抢占此节点的缓存㊂这将使网络中的节点更难拥塞并丢弃消息,从而提高消息传递率㊂同时,基于最大最小蚂蚁系统的容迟网络缓存机制有效解决了蚁群算法易陷入局部最优的问题,随着时间的推移,基于普通蚂蚁系统的容迟网络缓存机制的性能在大约220min达到收敛,而基于最大最小蚂蚁系统的容迟网络缓存算法在大约260min达到收敛㊂初始时刻,基于最大最小蚂蚁系统的容迟网络缓存机制相较于基于普通蚂蚁系统的容迟网络缓存机制在网络指标上表现较差,这是因为根据经验选取的初始信息素浓度值使得某些节点在初始时刻已经成为 最优 ,陷入了局部最优,导致网络指标变差㊂后续工作将在已有研究的基础上探究利用网络及消息自身的相关指标对初始浓度设置,使得初始值浓度能够自适应地进行选取㊂表2展示了当节点缓存大小为10MByte和50MByte时,4种缓存机制的网络指标的具体值㊂由表2可知,当缓存大小为10MByte时,基于最大最小蚂蚁系统的容迟网络缓存机制比普通蚂蚁系统缓存机制在消息到达率方面提高了4.0%,在网络开销方面减少了8.4%;当缓存大小为50MByte时,基于最大最小蚂蚁系统的容迟网络缓存机制比普通蚂蚁系统缓存机制在消息到达率方面提高了10.5%,在网络开销方面减少了10.0%㊂表2㊀不同缓存大小情况下网络指标具体值Tab.2㊀Specific values of network indicators under different cache sizes缓存大小/MByte算法名称消息到达率/%网络开销/Hops10Max-Min Ant64.46 3.2880Ant61.96 3.5880DF36.96 4.8421DO27.99 6.1410 50Max-Min Ant73.56 2.3652Ant66.58 2.6274DF53.80 2.5954DO52.45 2.6314㊀㊀表3展示了当带宽大小为50kbit/s和500kbit/s 时,4种缓存机制的网络指标的具体值㊂由表3可知,当带宽大小为50kbit/s时,基于最大最小蚂蚁系统的容迟网络缓存机制比普通蚂蚁系统缓存机制在消息到达率方面提高了13.2%,在网络开销方面减少了4.8%;当带宽大小为500kbit/s时,基于最大最小蚂蚁系统的容迟网络缓存机制比普通蚂蚁系统缓存机制在消息到达率方面提高了2.7%,在网络开销方面减少了2.6%㊂表3㊀不同带宽大小情况下网络指标具体值Tab.3㊀Specific values of network indicators under different bandwidth sizes带宽大小/(kbit/s)算法名称消息到达率/%网络开销/Hops50Max-Min Ant14.46 1.2269Ant12.77 1.2889DF10.87 1.1814DO11.41 1.2171 500Max-Min Ant75.66 3.7792Ant73.64 3.8792DF42.12 5.4892DO32.88 6.87114 结束语本文提出了一种基于最大最小蚂蚁系统的容迟网络缓存机制㊂该机制考虑信息的分类,使得同类别消息更容易通过同类信息素浓度高的节点进行传输㊂同时,本文定义了消息的信息素浓度㊁同类消息信息素浓度和总信息素浓度(丢弃权重)表达式,并利用总信息素浓度定义消息丢弃的优先级㊂仿真分析表明,基于最大最小蚂蚁系统的容迟网络缓存机制在消息到达率㊁网络开销方面具有比传统容迟网络算法更好的性能㊂本文所提缓存机制只考虑了同类消息信息素对于网络指标的影响,并没有考到不同类别信息的信息素之间的影响㊂下一步工作将从以下三方面进行改进:①考虑不同类别消息的信息素之间的影响对容迟网络指标的影响;②结合实际场景对消息进行分类,使得分类标准更加明确,有效区别各类消息;③对初始信息素浓度范围的取值进行研究㊂依据网络中的各类因素设置合适的信息素浓度初始值,避免基于最大最小蚂蚁系统的容迟网络缓存机制因初始信息素浓度过高而陷入局部最优㊂参考文献[1]㊀DEMIROGLOU V,MAMATAS L,TSAOUSSIDIS V.Adaptive NDN,DTN and NoD Deployment in Smart-cityNetworks Using SDN[C]ʊProceedings of2023IEEE20th Consumer Communications&Networking Conference(CCNC).Las Vegas:IEEE,2023:1092-1097. [2]㊀王洋,杨宏,陈晓光,等.面向深空通信的DTN网络跨层包大小的优化设计[J].宇航学报,2017,38(5):533-541.[3]㊀MADOERY P G,KURT G K,YANIKOMEROGLU H.Routing Heterogeneous Traffic in Delay Tolerant SatelliteNetworks[C]ʊProceedings of2022IEEE InternationalConference on Wireless for Space and Extreme Environ-ments(WiSEE).Winnipeg:IEEE,2022:99-104. [4]㊀聂宇雷,彭锋彬,张更新,等.深空通信中容迟容断网络协议体系应用研究[J].无线电通信技术,2016,42(3):22-25.[5]㊀NAKAGAWA K,SHIMOTOKU D,KAWASE J,et al.Sus-tainable Wildlife DTN:Wearable Animal Resource Opti-mization Through Intergenerational Multi-hop NetworkSimulation[C]ʊProceedings of202117th InternationalConference on Wireless and Mobile Computing,Networ-king and Communications(WiMob).Bologna:IEEE,2021:193-199.[6]㊀EZIFE F,LI W,YANG S H.A Survey of Buffer Manage-ment Strategies in Delay Tolerant Networks[C]ʊProcee-dings of2017IEEE14th International Conference onMobile Ad Hoc and Sensor Systems(MASS).Orlando:IEEE,2017:599-603.[7]㊀LIUF J,BAI X Y.Research on the Buffer ManagementAlgorithm in DTN[C]ʊProceedings of20152nd Inter-national Conference on Information Science and ControlEngineering.Shanghai:IEEE,2015:442-446. [8]㊀崔苑茹,李鹏,刘宏,等.基于校园机会网络的协作小组缓存调度策略[J].电子学报,2021,49(12):2399-2406.[9]㊀郑啸,高汉,王修君,等.移动机会网络中接触时间感知的协作缓存策略[J].计算机研究与发展,2018,55(2):338-345.[10]ZHANG Y,ZHANG T.Cache Management Strategy Basedon Distributed Storage in Delay/Disruption Tolerant Net-work[C]ʊProceedings of2019IEEE19th InternationalConference on Communication Technology(ICCT).Xi a n:IEEE,2019:1337-1341.[11]GOUDAR G,BATABYAL S.Optimizing Bulk TransferSize and Scheduling for Efficient Buffer Management inMobile Opportunistic Networks[J].IEEE Transactions onMobile Computing,2022,21(12):4471-4487. [12]NǍNǍU C S.MaxDelivery:A New Approach to a DTNBuffer Management[C]ʊProceedings of2020IEEE21stInternational Symposium on A World of Wireless,Mobileand Multimedia Networks (WoWMoM).Cork:IEEE,2020:60-61.[13]WANG T,TANG M B,CAO Y.Resource OptimizationProtocol Based on Multicommunity Model for Intermi-ttently Connected Mobile Networks[J].IEEE SystemsJournal,2020,14(1):410-421.[14]AKANDE H B,ABIKOYE O C,AKANDEO N.ImprovingOptimization Prowess of Ant Colony Algorithm Using BatInspired Algorithm[C]ʊProceedings of20225th Infor-mation Technology for Education and Development(ITED).Abuja:IEEE,2022:1-5.[15]YE K,ZHANG C S,NING J X,et al.Ant-colony Algo-rithm with a Strengthened Negative-feedback Mechanismfor Constraint-satisfaction Problems[J].Information Sci-ences,2017,406(c):29-41.[16]李宪强,马戎,张伸,等.蚁群算法的改进设计及在航迹规划中的应用[J].航空学报,2020,41(S2):213-219.[17]DING Y M,ZHAO Y,GAO Y X,et al.Q-learning Quan-tum Ant Colony Routing Algorithm for Micro-Nano Satel-lite Network[C]ʊProceedings of2021IEEE6th Interna-tional Conference on Computer and Communication Sys-tems(ICCCS).Chengdu:IEEE,2021:949-954. [18]赵晶蕊,刘江,张然,等.基于蚁群算法的LEO卫星网络QoS优化路由[J].无线电通信技术,2021,47(5):590-595.[19]STUTZLE T.Max-Min Ant System[J].Future GenerationComputer Systems,2000,16(8):889-914.作者简介:彭牧尧㊀男,(1999 ),硕士研究生㊂主要研究方向:容迟网络㊁深度学习和计算机视觉㊂魏建军男,(1978 ),博士,副教授㊂主要研究方向:物联网㊁通信芯片设计㊂王乾舟男,(1997 ),硕士研究生㊂主要研究方向:容迟网络㊁计算机视觉和深度学习㊂王㊀琨男,(1973 ),博士,副教授㊂主要研究方向:大数据分析㊁物联网与计算机网络㊂。
铁路通信传输与接入网工程设计规范

铁路通信传输及接入网工程设计规1总则1.0.1 为统一铁路通信传输及接入网工程的设计标准,提高工程设计质量,制定本规。
1.0.2 本规适用于新建、改建的铁路传输及接入网系统工程建设。
1.0.3 铁路通信传输及接入网工程设计应贯彻国家和铁路基本建设方针、政策,符合铁路运输生产和提高现代化管理水平的需要。
1.0.4 铁路通信传输及接入网工程建设应遵循技术先进、经济适用、安全可靠和统一标准(制式)、符合运输、合理布局、互联互通、资源共享的原则。
新建和改建的工程都应做好与既有铁路通信网的衔接,合理利用既有资源。
条文说明:铁路通信传输系统是一个全程全网的系统。
任何新建的通信传输系统都不会是一个孤立的系统,它总是要与其他网络(包括传输网络)互联,信息要进行交换。
因此,新建和改建的工程都应做好与既有铁路通信网的衔接,合理利用既有资源,这部分也是设计应重点关注和考虑的问题。
1.0.5 作为铁路通信各种业务的基础承载平台,铁路通信传输及接入网应结合通信技术发展的主流,向传输数字化、管理智能化、业务多样化发展。
1.0.6 铁路通信传输及接入网工程设计应与业务需求和发展规划相适应,以近期业务需求为主,兼顾远期业务发展。
机房等不易改、扩建的基础设施宜按远期设计,电源等宜按近期设计,系统其他设备可按交付运营后五年设计。
条文说明:铁路通信传输及接入网工程以设备为主,而且投资相对较大,因此不宜按照初期考虑,应适当考虑延长设备的使用寿命,但也要结合产品的更新换代速度,因此综合以上因素考虑,设计年度按照近期为宜。
通信机房、外电等不易扩容的基础设施宜按照远期考虑。
1.0.7 铁路通信传输及接入网工程设计除应符合本规外,尚应符合《铁路运输通信设计规》(TB 10006)和国家现行有关标准的相关规定。
2术语和符号2.1术语2.1.1 铁路通信 railway communication用于铁路运输组织、客货营销、经营管理等方面信息传输与交换的各种通信系统的总称。
N×100Gbps 光波分复用(WDM)系统技术要求

YDB XXX –2010
N×100Gbit/s 光波分复用(WDM)系统 技术要求
Technical requirements for N×100Gbit/s optical wavelength division multiplexing (WDM) systems (送审稿)
2010 –00 –00 印发
中国通信标准化协会
YDB XXX-2010
目
前 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
次
言 .................................................................... II 范围 ..................................................................... 1 规范性引用文件 ........................................................... 1 术语和定义 ............................................................... 2 符号、代号和缩略语 ....................................................... 4 系统分类 ................................................................. 5 系统参数要求 ............................................................. 8 OTU 技术要求............................................................. 12 FEC 功能与性能要求 ....................................................... 15 波分复用器件的技术要求 ................................................... 15 放大器的技术要求 ........................................................ 17 动态功率控制和增益均衡技术要求 ........................................... 17 OADM 技术要求 ............................................................ 18 多速率混传 WDM 系统技术要求 ............................................... 19 系统监控通路技术要求..................................................... 19 传输功能和性能要求 ...................................................... 20 网络管理系统技术要求........................................................................................................... 21 ARP 进程要求 ......................................................................................................................... 21
2014年中科院SCI分区

期刊全称ACM Transactions on Intelligent Systems and TechnologyACM Transactions on Intelligent Systems and TechnologyIEEE Communications Surveys and TutorialsIEEE Communications Surveys and TutorialsIEEE TRANSACTIONS ON FUZZY SYSTEMSIEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE International Journal of Neural SystemsIEEE Transactions on Industrial InformaticsMIS QUARTERLYIEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATIONIEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATIONCOMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERINGIEEE WIRELESS COMMUNICATIONSIEEE WIRELESS COMMUNICATIONSIEEE WIRELESS COMMUNICATIONSJournal of Statistical SoftwareIEEE Transactions on Neural Networks and Learning SystemsIEEE Transactions on Neural Networks and Learning SystemsIEEE Transactions on Neural Networks and Learning SystemsMEDICAL IMAGE ANALYSISMEDICAL IMAGE ANALYSISACM COMPUTING SURVEYSIEEE COMMUNICATIONS MAGAZINEINTEGRATED COMPUTER-AIDED ENGINEERINGINTEGRATED COMPUTER-AIDED ENGINEERINGENVIRONMENTAL MODELLING & SOFTWAREINTERNATIONAL JOURNAL OF COMPUTER VISIONIEEE Computational Intelligence MagazineIEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONSACM TRANSACTIONS ON GRAPHICSSIAM Journal on Imaging SciencesSIAM Journal on Imaging SciencesIEEE Transactions on Affective ComputingIEEE Transactions on Affective ComputingINFORMATION SCIENCESIEEE Transactions on CyberneticsIEEE Transactions on CyberneticsARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING JOURNAL OF INFORMATION TECHNOLOGYKNOWLEDGE-BASED SYSTEMSIEEE TRANSACTIONS ON IMAGE PROCESSINGJOURNAL OF MACHINE LEARNING RESEARCHIEEE NETWORKIEEE NETWORKIEEE NETWORKIEEE TRANSACTIONS ON INFORMATION THEORY JOURNAL OF LIGHTWAVE TECHNOLOGYCOMPUTERS & EDUCATIONKNOWLEDGE AND INFORMATION SYSTEMSKNOWLEDGE AND INFORMATION SYSTEMSIEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS JOURNAL OF THE ACMJOURNAL OF THE ACMJOURNAL OF THE ACMJOURNAL OF THE ACMIEEE TRANSACTIONS ON MOBILE COMPUTINGIEEE TRANSACTIONS ON MOBILE COMPUTINGPATTERN RECOGNITIONAPPLIED SOFT COMPUTINGAPPLIED SOFT COMPUTINGCOMMUNICATIONS OF THE ACMCOMMUNICATIONS OF THE ACMCOMMUNICATIONS OF THE ACMInformation FusionInformation FusionARTIFICIAL INTELLIGENCEACM TRANSACTIONS ON MATHEMATICAL SOFTWAREIEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION EVOLUTIONARY COMPUTATIONEVOLUTIONARY COMPUTATIONCOMPUTERS & CHEMICAL ENGINEERINGIEEE TRANSACTIONS ON SOFTWARE ENGINEERINGANNUAL REVIEW OF INFORMATION SCIENCE AND TECHNOLOGYIEEE TRANSACTIONS ON VEHICULAR TECHNOLOGYCHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMSIEEE Transactions on Systems Man Cybernetics-SystemsFUTURE GENERATION COMPUTER SYSTEMSIEEE TRANSACTIONS ON BROADCASTINGJOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TE NEURAL NETWORKSDATA MINING AND KNOWLEDGE DISCOVERYDATA MINING AND KNOWLEDGE DISCOVERYIEEE Transactions on Human-Machine SystemsIEEE Transactions on Human-Machine SystemsHUMAN-COMPUTER INTERACTIONHUMAN-COMPUTER INTERACTIONIEEE INTERNET COMPUTINGIEEE-ACM TRANSACTIONS ON NETWORKINGIEEE-ACM TRANSACTIONS ON NETWORKINGIEEE-ACM TRANSACTIONS ON NETWORKINGIEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS EXPERT SYSTEMS WITH APPLICATIONSIEEE INTELLIGENT SYSTEMSIEEE MICROIEEE MICRODECISION SUPPORT SYSTEMSDECISION SUPPORT SYSTEMSIEEE Transactions on Services ComputingIEEE Transactions on Services ComputingIEEE Transactions on Autonomous Mental DevelopmentARTIFICIAL LIFEARTIFICIAL LIFEIEEE Journal of Biomedical and Health InformaticsIEEE Journal of Biomedical and Health InformaticsIEEE PERVASIVE COMPUTINGIEEE PERVASIVE COMPUTINGINTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MA INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MA INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MA INFORMATION & MANAGEMENTINTERNATIONAL JOURNAL OF APPROXIMATE REASONINGBIOLOGICAL CYBERNETICSCOMPUTERS & STRUCTURESJOURNAL OF STRATEGIC INFORMATION SYSTEMSAd Hoc NetworksAd Hoc NetworksJOURNAL OF MATHEMATICAL IMAGING AND VISIONJOURNAL OF MATHEMATICAL IMAGING AND VISIONIEEE TRANSACTIONS ON MULTIMEDIAIEEE TRANSACTIONS ON MULTIMEDIAIEEE TRANSACTIONS ON MULTIMEDIAIEEE TRANSACTIONS ON COMMUNICATIONSIEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMSMobile Information SystemsMobile Information SystemsIEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERINGIEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING COMPUTERS & OPERATIONS RESEARCHNEURAL COMPUTATIONIEEE Transactions on Information Forensics and SecurityIEEE MICROWAVE MAGAZINEIMAGE AND VISION COMPUTINGIMAGE AND VISION COMPUTINGIMAGE AND VISION COMPUTINGENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCEIEEE TRANSACTIONS ON RELIABILITYIEEE TRANSACTIONS ON RELIABILITYNEUROCOMPUTINGAUTONOMOUS ROBOTSADVANCED ENGINEERING INFORMATICSINTERNATIONAL JOURNAL OF ELECTRONIC COMMERCEInternational Journal of Web and Grid ServicesInternational Journal of Web and Grid ServicesCOMPUTERS AND ELECTRONICS IN AGRICULTUREIEEE Antennas and Wireless Propagation LettersUSER MODELING AND USER-ADAPTED INTERACTIONIEEE Transactions on HapticsSTRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATIONCOMPUTER GRAPHICS FORUMJournal of Optical Communications and NetworkingJournal of Optical Communications and NetworkingJournal of Optical Communications and NetworkingCOMPUTERS & INDUSTRIAL ENGINEERINGMACHINE LEARNINGACM Transactions on Sensor NetworksACM Transactions on Sensor NetworksEUROPEAN JOURNAL OF INFORMATION SYSTEMSJournal of Computational ScienceJournal of Computational ScienceCOMPUTERS IN INDUSTRYIEEE-ACM Transactions on Computational Biology and BioinformaticsEMPIRICAL SOFTWARE ENGINEERINGVLDB JOURNALVLDB JOURNALJOURNAL OF MANAGEMENT INFORMATION SYSTEMSCOMPUTER SPEECH AND LANGUAGECOMPUTERCOMPUTERJournal of Grid ComputingJournal of Grid ComputingInternational Journal of Bio-Inspired ComputationInternational Journal of Bio-Inspired ComputationPervasive and Mobile ComputingPervasive and Mobile ComputingINDUSTRIAL MANAGEMENT & DATA SYSTEMSINTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMSIEEE Transactions on Computational Intelligence and AI in GamesIEEE Transactions on Computational Intelligence and AI in GamesDATA & KNOWLEDGE ENGINEERINGDATA & KNOWLEDGE ENGINEERINGPARALLEL COMPUTINGCOMPUTING IN SCIENCE & ENGINEERINGMECHATRONICSCOMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING IEEE SOFTWARESOFT COMPUTINGSOFT COMPUTINGJOURNAL OF NETWORK AND COMPUTER APPLICATIONSJOURNAL OF NETWORK AND COMPUTER APPLICATIONSJOURNAL OF NETWORK AND COMPUTER APPLICATIONSACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY TELECOMMUNICATIONS POLICYElectronic Commerce Research and ApplicationsElectronic Commerce Research and ApplicationsINTERNET RESEARCH-ELECTRONIC NETWORKING APPLICATIONS AND POLI INTERNET RESEARCH-ELECTRONIC NETWORKING APPLICATIONS AND POLIACM Transactions on Knowledge Discovery from DataACM Transactions on Knowledge Discovery from DataROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING INFORMATION SYSTEMSWiley Interdisciplinary Reviews-Data Mining and Knowledge DiscoveryWiley Interdisciplinary Reviews-Data Mining and Knowledge DiscoveryCOMPUTER METHODS AND PROGRAMS IN BIOMEDICINECOMPUTER METHODS AND PROGRAMS IN BIOMEDICINEINFORMATION AND SOFTWARE TECHNOLOGYINFORMATION AND SOFTWARE TECHNOLOGYSPEECH COMMUNICATIONJOURNAL OF HEURISTICSJOURNAL OF HEURISTICSARTIFICIAL INTELLIGENCE IN MEDICINECOMPUTER-AIDED DESIGNJOURNAL OF COMPUTING IN CIVIL ENGINEERINGFuzzy Optimization and Decision MakingJournal of the Association for Information SystemsIEEE TRANSACTIONS ON COMPUTERSIEEE Systems JournalIEEE Systems JournalCOMPUTER VISION AND IMAGE UNDERSTANDINGOPTICAL FIBER TECHNOLOGYJournal of Web SemanticsJournal of Web SemanticsJournal of Web SemanticsIEEE Vehicular Technology MagazineINTERNATIONAL JOURNAL OF SYSTEMS SCIENCEACM Transactions on the WebACM Transactions on the WebIEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITYIEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMSIEEE COMPUTER GRAPHICS AND APPLICATIONSINTERNATIONAL JOURNAL OF HUMAN-COMPUTER STUDIESADVANCES IN ENGINEERING SOFTWAREADVANCES IN ENGINEERING SOFTWARECOMPUTERS IN BIOLOGY AND MEDICINECOMPUTER NETWORKS-THE INTERNATIONAL JOURNAL OF COMPUTER AND COMPUTER NETWORKS-THE INTERNATIONAL JOURNAL OF COMPUTER AND COMPUTER NETWORKS-THE INTERNATIONAL JOURNAL OF COMPUTER AND Swarm IntelligenceInternational Journal of Fuzzy SystemsPersonal and Ubiquitous ComputingPersonal and Ubiquitous ComputingJOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION ARTIFICIAL INTELLIGENCE REVIEWINFORMATICANEURAL COMPUTING & APPLICATIONSJOURNAL OF INFORMATION SCIENCECOMPUTATIONAL LINGUISTICSCOMPUTATIONAL LINGUISTICSIEEE COMMUNICATIONS LETTERSIEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEM IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCU IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCU INFORMS JOURNAL ON COMPUTINGINTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICAT INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICAT INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICAT MACHINE VISION AND APPLICATIONSMACHINE VISION AND APPLICATIONSJOURNAL OF HYDROINFORMATICSRADIO SCIENCEJOURNAL OF COMPLEXITYAutomated Software EngineeringENGINEERING COMPUTATIONSCOMPUTER COMMUNICATIONSCOMPUTER COMMUNICATIONSACM TRANSACTIONS ON INFORMATION SYSTEMSMOBILE NETWORKS & APPLICATIONSMOBILE NETWORKS & APPLICATIONSMOBILE NETWORKS & APPLICATIONSIEEE Design & TestCOMPUTER STANDARDS & INTERFACESCOMPUTER STANDARDS & INTERFACESGenetic Programming and Evolvable MachinesGenetic Programming and Evolvable MachinesMULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSINGPATTERN RECOGNITION LETTERSIEEE Transactions on Dependable and Secure ComputingIEEE Transactions on Dependable and Secure ComputingIEEE Transactions on Dependable and Secure ComputingWORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMSWORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMSONLINE INFORMATION REVIEWROBOTICS AND AUTONOMOUS SYSTEMSJournal of Real-Time Image ProcessingINTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE ADAPTIVE BEHAVIORJOURNAL OF INTELLIGENT MANUFACTURINGJOURNAL OF COMPUTER AND SYSTEM SCIENCESJOURNAL OF COMPUTER AND SYSTEM SCIENCESNEURAL PROCESSING LETTERSJOURNAL OF SYSTEMS AND SOFTWAREJOURNAL OF SYSTEMS AND SOFTWARESOFTWARE TESTING VERIFICATION & RELIABILITYCOMPUTERS & SECURITYACM Transactions on Applied PerceptionIEEE MULTIMEDIAIEEE MULTIMEDIAIEEE MULTIMEDIAIEEE MULTIMEDIAIEEE TRANSACTIONS ON CONSUMER ELECTRONICSSIMULATION MODELLING PRACTICE AND THEORYSIMULATION MODELLING PRACTICE AND THEORYREQUIREMENTS ENGINEERINGREQUIREMENTS ENGINEERINGComputer Supported Cooperative Work-The Journal of Collaborative Computing DISPLAYSSoftware and Systems ModelingINTERACTING WITH COMPUTERSAUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMSBusiness & Information Systems EngineeringJOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCHINTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWOR ACM Transactions on Autonomous and Adaptive SystemsACM Transactions on Autonomous and Adaptive SystemsACM Transactions on Autonomous and Adaptive SystemsWIRELESS COMMUNICATIONS & MOBILE COMPUTINGWIRELESS COMMUNICATIONS & MOBILE COMPUTINGINTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTINGApplied OntologyApplied OntologyApplied OntologyJournal of Ambient Intelligence and Smart EnvironmentsJournal of Ambient Intelligence and Smart EnvironmentsJournal of Ambient Intelligence and Smart EnvironmentsINFORMATION PROCESSING & MANAGEMENTInternational Journal on Semantic Web and Information SystemsInternational Journal on Semantic Web and Information SystemsInternational Journal of Applied Mathematics and Computer Science TELECOMMUNICATION SYSTEMSOPEN SYSTEMS & INFORMATION DYNAMICSJOURNAL OF CRYPTOLOGYSIAM JOURNAL ON COMPUTINGJournal of Software-Evolution and ProcessIET OptoelectronicsCOMPUTATIONAL INTELLIGENCEIET Radar Sonar and NavigationCOMPUTERS & GRAPHICS-UKINTERNATIONAL JOURNAL OF HUMAN-COMPUTER INTERACTIONIEEE Transactions on Learning TechnologiesAPPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNALACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS COMPUTER AIDED GEOMETRIC DESIGNCOMPUTERS & ELECTRICAL ENGINEERINGCOMPUTERS & ELECTRICAL ENGINEERINGJOURNAL OF DATABASE MANAGEMENTJOURNAL OF DATABASE MANAGEMENTBEHAVIOUR & INFORMATION TECHNOLOGYACM Transactions on Multimedia Computing Communications and ApplicationsACM Transactions on Multimedia Computing Communications and ApplicationsACM Transactions on Multimedia Computing Communications and Applications MULTIMEDIA TOOLS AND APPLICATIONSMULTIMEDIA TOOLS AND APPLICATIONSMULTIMEDIA TOOLS AND APPLICATIONSIEEE Computer Architecture LettersCognitive Systems ResearchSOFTWARE-PRACTICE & EXPERIENCEScientific ProgrammingGRAPHICAL MODELSCYBERNETICS AND SYSTEMSACM SIGCOMM Computer Communication ReviewInformation VisualizationPRESENCE-TELEOPERATORS AND VIRTUAL ENVIRONMENTSPRESENCE-TELEOPERATORS AND VIRTUAL ENVIRONMENTSACM TRANSACTIONS ON DATABASE SYSTEMSACM TRANSACTIONS ON DATABASE SYSTEMSOptical Switching and NetworkingOptical Switching and NetworkingJOURNAL OF FUNCTIONAL PROGRAMMINGACM TRANSACTIONS ON COMPUTER SYSTEMSACM Transactions on Computer-Human InteractionACM Transactions on Computer-Human InteractionComputers and ConcreteETRI JOURNALIEEE SECURITY & PRIVACYIEEE SECURITY & PRIVACYR JournalCOMPUTINGVISUAL COMPUTERACM Transactions on StorageACM Transactions on StorageCONSTRAINTSCONSTRAINTSOPTIMIZATION METHODS & SOFTWAREINFORMATION SYSTEMS FRONTIERSINFORMATION SYSTEMS FRONTIERSEUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS PERFORMANCE EVALUATIONPERFORMANCE EVALUATIONIET Microwaves Antennas & PropagationACM Transactions on Modeling and Computer SimulationJOURNAL OF INTELLIGENT & ROBOTIC SYSTEMSACM Transactions on Embedded Computing SystemsACM Transactions on Embedded Computing SystemsCIN-COMPUTERS INFORMATICS NURSINGCOMPUTER JOURNALCOMPUTER JOURNALCOMPUTER JOURNALCOMPUTER JOURNALENGINEERING WITH COMPUTERSDESIGNS CODES AND CRYPTOGRAPHYNETWORKSNETWORK-COMPUTATION IN NEURAL SYSTEMSInformation Technology and ControlInformation Technology and ControlIETE TECHNICAL REVIEWInternational Journal of Data Warehousing and MiningJOURNAL OF SUPERCOMPUTINGJOURNAL OF SUPERCOMPUTINGNEW GENERATION COMPUTINGNEW GENERATION COMPUTINGWIRELESS NETWORKSWIRELESS NETWORKSPATTERN ANALYSIS AND APPLICATIONSJOURNAL OF INTELLIGENT & FUZZY SYSTEMS CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE ACM Transactions on Internet TechnologyACM Transactions on Internet TechnologyInternational Journal of Ad Hoc and Ubiquitous ComputingInternational Journal of Ad Hoc and Ubiquitous ComputingACM Transactions on Computational LogicACM Transactions on Information and System SecurityCluster Computing-The Journal of Networks Software Tools and ApplicationsCluster Computing-The Journal of Networks Software Tools and Applications INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMSEURASIP Journal on Wireless Communications and NetworkingEXPERT SYSTEMSEXPERT SYSTEMSINTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENG INTERNATIONAL JOURNAL OF GENERAL SYSTEMSINFORMATION RETRIEVALMODELING IDENTIFICATION AND CONTROLCONNECTION SCIENCECONNECTION SCIENCESOFTWARE QUALITY JOURNALSIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULA SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULA Digital InvestigationDigital InvestigationDISTRIBUTED AND PARALLEL DATABASESDISTRIBUTED AND PARALLEL DATABASESKNOWLEDGE ENGINEERING REVIEWSIGMOD RECORDSIGMOD RECORDJOURNAL OF INTELLIGENT INFORMATION SYSTEMSJOURNAL OF INTELLIGENT INFORMATION SYSTEMSInternational Journal of Wavelets Multiresolution and Information Processing International Journal on Document Analysis and RecognitionJOURNAL OF COMPUTER INFORMATION SYSTEMSINTERNATIONAL JOURNAL OF COOPERATIVE INFORMATION SYSTEMSAI MAGAZINEIET Computer VisionACM Journal on Emerging Technologies in Computing SystemsDISTRIBUTED COMPUTINGInternational Journal of Antennas and PropagationJOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTINGJOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTINGBELL LABS TECHNICAL JOURNALBELL LABS TECHNICAL JOURNALJournal on Multimodal User InterfacesJournal on Multimodal User InterfacesCryptography and Communications-Discrete-Structures Boolean Functions and Sequences Science China-Information SciencesAPPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTIN APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTIN IBM JOURNAL OF RESEARCH AND DEVELOPMENTIBM JOURNAL OF RESEARCH AND DEVELOPMENTIBM JOURNAL OF RESEARCH AND DEVELOPMENTIBM JOURNAL OF RESEARCH AND DEVELOPMENTREAL-TIME SYSTEMSCOMPUTER MUSIC JOURNALWIRELESS PERSONAL COMMUNICATIONSINFORMATION AND COMPUTATIONJOURNAL OF SYSTEMS ARCHITECTUREJOURNAL OF SYSTEMS ARCHITECTUREACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS International Journal of Distributed Sensor NetworksInternational Journal of Distributed Sensor NetworksTHEORY AND PRACTICE OF LOGIC PROGRAMMINGTHEORY AND PRACTICE OF LOGIC PROGRAMMINGACM Transactions on Architecture and Code OptimizationACM Transactions on Architecture and Code OptimizationInternational Journal of Information SecurityInternational Journal of Information SecurityInternational Journal of Information SecurityAEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS Natural ComputingNatural ComputingJOURNAL OF SYMBOLIC COMPUTATIONJournal of Signal Processing Systems for Signal Image and Video Technology MULTIMEDIA SYSTEMSMULTIMEDIA SYSTEMSMATHEMATICAL STRUCTURES IN COMPUTER SCIENCEJOURNAL OF LOGIC AND COMPUTATIONINFORMATION SYSTEMS MANAGEMENTAdvances in Electrical and Computer EngineeringComputer Science and Information SystemsComputer Science and Information SystemsJOURNAL OF AUTOMATED REASONINGAI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INT SCIENCE OF COMPUTER PROGRAMMINGComputational and Mathematical Organization TheoryMICROPROCESSORS AND MICROSYSTEMSMICROPROCESSORS AND MICROSYSTEMSAdvances in Mathematics of CommunicationsJOURNAL OF VISUAL LANGUAGES AND COMPUTINGJournal of SimulationJOURNAL OF COMPUTER SCIENCE AND TECHNOLOGYJOURNAL OF COMPUTER SCIENCE AND TECHNOLOGYPHOTONIC NETWORK COMMUNICATIONSPHOTONIC NETWORK COMMUNICATIONSDISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE THEORETICAL COMPUTER SCIENCEALGORITHMICAASLIB PROCEEDINGSKYBERNETIKAANNALES DES TELECOMMUNICATIONS-ANNALS OF TELECOMMUNICATION INTEGRATION-THE VLSI JOURNALInternational Journal of Critical Infrastructure ProtectionACM Transactions on AlgorithmsInternational Journal of Computers Communications & ControlFORMAL ASPECTS OF COMPUTINGJOURNAL OF UNIVERSAL COMPUTER SCIENCEJOURNAL OF UNIVERSAL COMPUTER SCIENCECONCURRENT ENGINEERING-RESEARCH AND APPLICATIONSANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSINGInternational Journal of Microwave and Wireless TechnologiesJOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING JOURNAL OF VISUALIZATIONIET SoftwareInternational Journal of Unconventional ComputingTurkish Journal of Electrical Engineering and Computer SciencesLanguage Resources and EvaluationIEEE ANNALS OF THE HISTORY OF COMPUTINGINTERNATIONAL JOURNAL OF PARALLEL PROGRAMMINGIT ProfessionalIT ProfessionalIT ProfessionalJOURNAL OF NEW MUSIC RESEARCHINFORMATION PROCESSING LETTERSIntelligent Data AnalysisNeural Network WorldJOURNAL OF LOGIC AND ALGEBRAIC PROGRAMMINGACM SIGPLAN NOTICESAI COMMUNICATIONSJournal of Internet TechnologyJournal of Internet TechnologyIET Information SecurityIET Information SecurityJournal of Applied LogicJournal of Applied LogicFORMAL METHODS IN SYSTEM DESIGNTHEORY OF COMPUTING SYSTEMSNatural Language EngineeringVIRTUAL REALITYVIRTUAL REALITYInternational Journal of Computational Intelligence SystemsInternational Journal of Computational Intelligence SystemsJOURNAL OF COMMUNICATIONS AND NETWORKSJOURNAL OF COMMUNICATIONS AND NETWORKSMINDS AND MACHINESACTA INFORMATICAJournal of Network and Systems ManagementJournal of Network and Systems ManagementAd Hoc & Sensor Wireless NetworksAd Hoc & Sensor Wireless NetworksKSII Transactions on Internet and Information SystemsKSII Transactions on Internet and Information SystemsLogical Methods in Computer ScienceUniversal Access in the Information SocietyCOMPUTER ANIMATION AND VIRTUAL WORLDSInternational Journal of Network ManagementInternational Journal of Network ManagementJOURNAL OF ORGANIZATIONAL COMPUTING AND ELECTRONIC COMMERCE JOURNAL OF ORGANIZATIONAL COMPUTING AND ELECTRONIC COMMERCE FUNDAMENTA INFORMATICAEADVANCES IN COMPUTERSADVANCES IN COMPUTERSAPPLIED ARTIFICIAL INTELLIGENCEJOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE PROGRAM-ELECTRONIC LIBRARY AND INFORMATION SYSTEMSSecurity and Communication NetworksSecurity and Communication NetworksProblems of Information TransmissionNew Review of Hypermedia and MultimediaINTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE COMPUTER APPLICATIONS IN ENGINEERING EDUCATIONIET Computers and Digital TechniquesIET Computers and Digital TechniquesJOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Frontiers of Computer ScienceFrontiers of Computer ScienceFrontiers of Computer SciencePeer-to-Peer Networking and ApplicationsPeer-to-Peer Networking and ApplicationsANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCEChina CommunicationsCOMPUTER LANGUAGES SYSTEMS & STRUCTURESCOMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEM International Journal of Web Services ResearchInternational Journal of Web Services ResearchJournal of Organizational and End User ComputingJournal of Zhejiang University-SCIENCE C-Computers & ElectronicsJournal of Zhejiang University-SCIENCE C-Computers & ElectronicsKYBERNETESJournal of Cellular AutomataIEICE TRANSACTIONS ON COMMUNICATIONSRomanian Journal of Information Science and TechnologyInternational Arab Journal of InformationInternational Arab Journal of InformationCANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING-REVU JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERSMalaysian Journal of Computer ScienceMalaysian Journal of Computer ScienceCOMPUTING AND INFORMATICSJOURNAL OF INFORMATION SCIENCE AND ENGINEERINGJournal of Web EngineeringJournal of Web EngineeringInternational Journal on Artificial Intelligence ToolsInternational Journal on Artificial Intelligence ToolsRAIRO-THEORETICAL INFORMATICS AND APPLICATIONSIEEE Latin America TransactionsDESIGN AUTOMATION FOR EMBEDDED SYSTEMSDESIGN AUTOMATION FOR EMBEDDED SYSTEMSIEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICAT IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICAT INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE COMPUTER SYSTEMS SCIENCE AND ENGINEERINGCOMPUTER SYSTEMS SCIENCE AND ENGINEERINGJOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONALIETE JOURNAL OF RESEARCHMICROWAVE JOURNALIEICE TRANSACTIONS ON INFORMATION AND SYSTEMSIEICE TRANSACTIONS ON INFORMATION AND SYSTEMSCRYPTOLOGIAINTELLIGENT AUTOMATION AND SOFT COMPUTINGPROGRAMMING AND COMPUTER SOFTWARETraitement du SignalJournal of the Institute of Telecommunications ProfessionalsMICROWAVES & RFELECTRONICS WORLDCOMPUTER GRAPHICS WORLDJCR期刊简称ISSN所属小类所属小类(中文)小类分区大类复分大类分区ACM T INTEL SYST TEC2157-6904C OMPUTER SCIENCE, ARTI计算机:人工智能1N1 ACM T INTEL SYST TEC2157-6904C OMPUTER SCIENCE, INFO计算机:信息系统1N1 IEEE COMMUN SURV TUT1553-877X T ELECOMMUNICATIONS电信学1N1 IEEE COMMUN SURV TUT1553-877X C OMPUTER SCIENCE, INFO计算机:信息系统1N1 IEEE T FUZZY SYST1063-6706C OMPUTER SCIENCE, ARTI计算机:人工智能1N1 IEEE T PATTERN ANAL0162-8828C OMPUTER SCIENCE, ARTI计算机:人工智能1N1 INT J NEURAL SYST0129-0657C OMPUTER SCIENCE, ARTI计算机:人工智能1N1 IEEE T IND INFORM1551-3203C OMPUTER SCIENCE, INTE计算机:跨学科应1N1 MIS QUART0276-7783C OMPUTER SCIENCE, INFO计算机:信息系统1N1 IEEE T EVOLUT COMPUT1089-778X C OMPUTER SCIENCE, THEO计算机:理论方法1N1 IEEE T EVOLUT COMPUT1089-778X C OMPUTER SCIENCE, ARTI计算机:人工智能1N1 COMPUT-AIDED CIV INF1093-9687C OMPUTER SCIENCE, INTE计算机:跨学科应1N1 IEEE WIREL COMMUN1536-1284T ELECOMMUNICATIONS电信学1N1 IEEE WIREL COMMUN1536-1284C OMPUTER SCIENCE, INFO计算机:信息系统1N1 IEEE WIREL COMMUN1536-1284C OMPUTER SCIENCE, HAR计算机:硬件1N1 J STAT SOFTW1548-7660C OMPUTER SCIENCE, INTE计算机:跨学科应1N1 IEEE T NEUR NET LEAR2162-237X C OMPUTER SCIENCE, THEO计算机:理论方法1N1 IEEE T NEUR NET LEAR2162-237X C OMPUTER SCIENCE, ARTI计算机:人工智能1N1 IEEE T NEUR NET LEAR2162-237X C OMPUTER SCIENCE, HAR计算机:硬件1N1 MED IMAGE ANAL1361-8415C OMPUTER SCIENCE, INTE计算机:跨学科应1N1 MED IMAGE ANAL1361-8415C OMPUTER SCIENCE, ARTI计算机:人工智能2N1 ACM COMPUT SURV0360-0300C OMPUTER SCIENCE, THEO计算机:理论方法1N1 IEEE COMMUN MAG0163-6804T ELECOMMUNICATIONS电信学1N2 INTEGR COMPUT-AID E1069-2509C OMPUTER SCIENCE, INTE计算机:跨学科应2N2 INTEGR COMPUT-AID E1069-2509C OMPUTER SCIENCE, ARTI计算机:人工智能2N2 ENVIRON MODELL SOFTW1364-8152C OMPUTER SCIENCE, INTE计算机:跨学科应2N2 INT J COMPUT VISION0920-5691C OMPUTER SCIENCE, ARTI计算机:人工智能2N2 IEEE COMPUT INTELL M1556-603X C OMPUTER SCIENCE, ARTI计算机:人工智能2N2 IEEE J SEL AREA COMM0733-8716T ELECOMMUNICATIONS电信学1N2 ACM T GRAPHIC0730-0301C OMPUTER SCIENCE, SOFT计算机:软件工程1N2 SIAM J IMAGING SCI1936-4954C OMPUTER SCIENCE, ARTI计算机:人工智能2N2 SIAM J IMAGING SCI1936-4954C OMPUTER SCIENCE, SOFT计算机:软件工程1N2 IEEE T AFFECT COMPUT1949-3045C OMPUTER SCIENCE, CYB计算机:控制论1N2。
POJ题目分类

1000 A+B Problem 送分题1001 Exponentiation 高精度1003 Hangover 送分题1004 Financial Management 送分题1005 I Think I Need a Houseboat 几何1006 Biorhythms 送分题1007 DNA Sorting 送分题1008 Maya Calendar 日期处理1010 STAMPS 搜索+DP1011 Sticks 搜索1012 Joseph 模拟/数学方法1014 Dividing 数论/DP?/组合数学->母函数?1015 Jury Compromise DP1016 Numbers That Count 送分题1017 Packets 贪心1018 Communication System 贪心1019 Number Sequence 送分题1020 Anniversary Cake 搜索1023 The Fun Number System 数论1025 Department 模拟1026 Cipher 组合数学1027 The Same Game 模拟1028 Web Navigation 送分题1031 Fence 计算几何1034 The dog task 计算几何1037 A decorative fence DP/组合数学1039 Pipe 几何1042 Gone Fishing 贪心/DP1045 Bode Plot 送分题(用物理知识)1046 Color Me Less 送分题1047 Round and Round We Go 高精度1048 Follow My Logic 模拟1049 Microprocessor Simulation 模拟1050 To the Max DP1053 Set Me 送分题1054 The Troublesome Frog 搜索1060 Modular multiplication of polynomials 高精度1061 青蛙的约会数论1062 昂贵的聘礼DP1064 Cable master DP/二分查找1065 Wooden Sticks DP1067 取石子游戏博弈论1068 Parencodings 送分题1069 The Bermuda Triangle 搜索1070 Deformed Wheel 几何1071 Illusive Chase 送分题1072 Puzzle Out 搜索1073 The Willy Memorial Program 模拟1074 Parallel Expectations DP1075 University Entrance Examination 模拟1080 Human Gene Functions DP->LCS变形1082 Calendar Game 博弈论1084 Square Destroyer 搜索?1085 Triangle War 博弈论1086 Unscrambling Images 模拟?1087 A Plug for UNIX 图论->最大流1088 滑雪DFS/DP1090 Chain ->格雷码和二进制码的转换1091 跳蚤数论1092 Farmland 几何1093 Formatting Text DP1094 Sorting It All Out 图论->拓扑排序1095 Trees Made to Order 组合数学1096 Space Station Shielding 送分题1097 Roads Scholar 图论1098 Robots 模拟1099 Square Ice 送分题1100 Dreisam Equations 搜索1101 The Game 搜索->BFS1102 LC-Display 送分题1103 Maze 模拟1104 Robbery 递推1106 Transmitters 几何1107 W's Cipher 送分题1110 Double Vision 搜索1111 Image Perimeters 搜索1112 Team Them Up! DP1113 Wall 计算几何->convex hull1119 Start Up the Startup 送分题1120 A New Growth Industry 模拟1122 FDNY to the Rescue! 图论->Dijkstra 1125 Stockbroker Grapevine 图论->Dijkstra 1128 Frame Stacking 搜索1129 Channel Allocation 搜索(图的最大独立集)1131 Octal Fractions 高精度1135 Domino Effect 图论->Dijkstra1137 The New Villa 搜索->BFS1141 Brackets Sequence DP1142 Smith Numbers 搜索1143 Number Game 博弈论1147 Binary codes 构造1148 Utopia Divided 构造1149 PIGS 图论->网络流1151 Atlantis 计算几何->同等安置矩形的并的面积->离散化1152 An Easy Problem! 数论1157 LITTLE SHOP OF FLOWERS DP1158 TRAFFIC LIGHTS 图论->Dijkstra变形1159 Palindrome DP->LCS1160 Post Office DP1161 Walls 图论1162 Building with Blocks 搜索1163 The Triangle DP1170 Shopping Offers DP1177 Picture 计算几何->同等安置矩形的并的周长->线段树1179 Polygon DP1180 Batch Scheduling DP1182 食物链数据结构->并查集1183 反正切函数的应用搜索1184 聪明的打字员搜索1185 炮兵阵地DP->数据压缩1187 陨石的秘密DP(BalkanOI99 Par的拓展)1189 钉子和小球递推?1190 生日蛋糕搜索/DP1191 棋盘分割DP1192 最优连通子集图论->无负权回路的有向图的最长路->BellmanFord 1193 内存分配模拟1194 HIDDEN CODES 搜索+DP1197 Depot 数据结构->Young T ableau1201 Intervals 贪心/图论->最长路->差分约束系统1202 Family 高精度1209 Calendar 日期处理1217 FOUR QUARTERS 递推1218 THE DRUNK JAILER 送分题1233 Street Crossing 搜索->BFS1245 Programmer, Rank Thyself 送分题1247 Magnificent Meatballs 送分题1248 Safecracker 搜索1250 T anning Salon 送分题1251 Jungle Roads 图论->最小生成树1271 Nice Milk 计算几何1273 Drainage Ditches 图论->最大流1274 The Perfect Stall 图论->二分图的最大匹配1275 Cashier Employment 图论->差分约束系统->无负权回路的有向图的最长路->Bellman-Ford1280 Game 递推1281 MANAGER 模拟1286 Necklace of Beads 组合数学->Polya定理1288 Sly Number 数论->解模线性方程组1293 Duty Free Shop DP1298 The Hardest Problem Ever 送分题1316 Self Numbers 递推同Humble Number一样1322 Chocolate 递推/组合数学1323 Game Prediction 贪心1324 Holedox Moving BFS+压缩储存1325 Machine Schedule 图论->二分图的最大匹配1326 Mileage Bank 送分题1327 Moving Object Recognition 模拟?1328 Radar Installation 贪心(差分约束系统的特例)1338 Ugly Numbers 递推(有O(n)算法)1364 King 图论->无负权回路的有向图的最长路->BellmanFord1370 Gossiping (数论->模线性方程有无解的判断)+(图论->DFS)2184 Cow Exhibition DP2190 ISBN 送分题2191 Mersenne Composite Numbers 数论2192 Zipper DP->LCS变形2193 Lenny's Lucky Lotto Lists DP2194 Stacking Cylinders 几何2195 Going Home 图论->二分图的最大权匹配2196 Specialized Four-Digit Numbers 送分题2197 Jill's Tour Paths 图论->2199 Rate of Return 高精度2200 A Card Trick 模拟2210 Metric Time 日期处理2239 Selecting Courses 图论->二分图的最大匹配2243 Knight Moves 搜索->BFS2247 Humble Numbers 递推(最优O(n)算法)2253 Frogger 图论->Dijkstra变形(和1295是一样的)2254 Globetrotter 几何2261 France '98 递推2275 Flipping Pancake 构造2284 That Nice Euler Circuit 计算几何2289 Jamie's Contact Groups 图论->网络流?2291 Rotten Ropes 送分题2292 Optimal Keypad DP2299 Ultra-QuickSort 排序->归并排序2304 Combination Lock 送分题2309 BST 送分题2311 Cutting Game 博弈论2312 Battle City 搜索->BFS2314 POJ language 模拟2315 Football Game 几何2346 Lucky tickets 组合数学2351 Time Zones 时间处理2379 ACM Rank T able 模拟+排序2381 Random Gap 数论2385 Apple Catching DP(像NOI98“免费馅饼”)2388 Who's in the Middle 送分题(排序)2390 Bank Interest 送分题2395 Out of Hay 图论->Dijkstra变形2400 Supervisor, Supervisee 图论->二分图的最大权匹配?2403 Hay Points 送分题2409 Let it Bead 组合数学->Polya定理2416 Return of the Jedi 图论->2417 Discrete Logging 数论2418 Hardwood Species 二分查找2419 Forests 枚举2421 Constructing Roads 图论->最小生成树2423 The Parallel Challenge Ballgame 几何2424 Flo's Restaurant 数据结构->堆2425 A Chess Game 博弈论2426 Remainder BFS2430 Lazy Cows DP->数据压缩1375 Intervals 几何1379 Run Away 计算几何->1380 Equipment Box 几何1383 Labyrinth 图论->树的最长路1394 Railroad 图论->Dijkstra1395 Cog-Wheels 数学->解正系数的线性方程组1408 Fishnet 几何1411 Calling Extraterrestrial Intelligence Again 送分题1430 Binary Stirling Numbers 日期处理1431 Calendar of Maya 模拟1432 Decoding Morse Sequences DP1434 Fill the Cisterns! 计算几何->离散化/1445 Random number 数据结构->碓1447 Ambiguous Dates 日期处理1450 Gridland 图论(本来TSP问题是NP难的,但这个图比较特殊,由现成的构造方法)1458 Common Subsequence DP->LCS1459 Power Network 图论->最大流1462 Random Walk 模拟+解线性方程组1463 Strategic game 贪心1466 Girls and Boys 图论->n/a1469 COURSES 贪心1475 Pushing Boxes DP1476 Always On the Run 搜索->BFS1480 Optimal Programs 搜索->BFS1481 The Die Is Cast 送分题1482 It's not a Bug, It's a Feature! 搜索->BFS1483 Going in Circles on Alpha Centauri 模拟1484 Blowing Fuses 送分题1485 Fast Food DP(似乎就是ioi2000的postoffice)1486 Sorting Slides 图论->拓扑排序1505 Copying Books DP+二分查找1510 Hares and Foxes 数论1512 Keeps Going and Going and ... 模拟1513 Scheduling Lectures DP1514 Metal Cutting 几何1515 Street Directions 图论->把一个无向连通图改造成为有向强连通图1517 u Calculate e 送分题1518 Problem Bee 几何1519 Digital Roots 送分题(位数可能很大)1520 Scramble Sort 排序1547 Clay Bully 送分题1555 Polynomial Showdown 送分题(非常阴险)1563 The Snail 送分题1601 Pizza Anyone? 搜索1604 Just the Facts 送分题1605 Horse Shoe Scoring 几何1606 Jugs 数论/搜索1631 Bridging signals DP+二分查找1632 Vase collection 图论->最大完全图1633 Gladiators DP1634 Who's the boss? 排序1635 Subway tree systems 图论->不同表示法的二叉树判同1637 Sightseeing tour 图论->欧拉回路1638 A number game 博弈论1639 Picnic Planning 图论->1641 Rational Approximation 数论1646 Double Trouble 高精度1654 Area 几何1657 Distance on Chessboard 送分题1658 Eva's Problem 送分题1660 Princess FroG 构造1661 Help Jimmy DP1663 Number Steps 送分题1664 放苹果组合数学->递推1677 Girls' Day 送分题1688 Dolphin Pool 计算几何1690 (Your)((Term)((Project))) 送分题1691 Painting A Board 搜索/DP1692 Crossed Matchings DP1693 Counting Rectangles 几何1694 An Old Stone Game 博弈论?1695 Magazine Delivery 图论->1712 Flying Stars DP1713 Divide et unita 搜索1714 The Cave 搜索/DP1717 Dominoes DP1718 River Crossing DP1719 Shooting Contest 贪心1729 Jack and Jill 图论->1730 Perfect Pth Powers 数论1732 Phone numbers DP1734 Sightseeing trip 图论->Euler回路1738 An old Stone Game 博弈论?1741 Tree 博弈论?1745 Divisibility DP1751 Highways 图论->1752 Advertisement 贪心/图论->差分约束系统1753 Flip Game 搜索->BFS1755 Triathlon 计算几何?1770 Special Experiment 树形DP1771 Elevator Stopping Plan DP1772 New Go Game 构造?1773 Outernet 模拟1774 Fold Paper Strips 几何1775 Sum of Factorials 送分题1776 T ask Sequences DP1777 Vivian's Problem 数论1870 Bee Breeding 送分题1871 Bullet Hole 几何1872 A Dicey Problem BFS1873 The Fortified Forest 几何+回溯1874 Trade on Verweggistan DP1875 Robot 几何1876 The Letter Carrier's Rounds 模拟1877 Flooded! 数据结构->堆1879 Tempus et mobilius Time and motion 模拟+组合数学->Polya定理1882 Stamps 搜索+DP1883 Theseus and the Minotaur 模拟1887 Testing the CATCHER DP1889 Package Pricing DP1893 Monitoring Wheelchair Patients 模拟+几何1915 Knight Moves 搜索->BFS1916 Rat Attack 数据结构->?1936 All in All DP?1946 Cow Cycling DP1947 Rebuilding Roads 二分1985 Cow Marathon 图论->有向无环图的最长路1995 Raising Modulo Numbers 数论->大数的幂求余2049 Finding Nemo 图论->最短路2050 Searching the Web 模拟(需要高效实现)2051 Argus 送分题(最好用堆,不用也可以过)2054 Color a Tree 贪心2061 Pseudo-random Numbers 数论2080 Calendar 日期处理2082 Terrible Sets 分治/2083 Fractal 递归2084 Game of Connections 递推(不必高精度)2105 IP Address 送分题2115 C Looooops 数论->解模线性方程2136 Vertical Histogram 送分题2165 Gunman 计算几何2179 Inlay Cutters 枚举2181 Jumping Cows 递推2182 Lost Cows ->线段树/=============================================1370 Gossiping (数论->模线性方程有无解的判断)+(图论->DFS)1090 Chain ->格雷码和二进制码的转换2182 Lost Cows ->线段树/2426 Remainder BFS1872 A Dicey Problem BFS1324 Holedox Moving BFS+压缩储存1088 滑雪DFS/DP1015 Jury Compromise DP1050 To the Max DP1062 昂贵的聘礼DP1065 Wooden Sticks DP1074 Parallel Expectations DP1093 Formatting Text DP1112 Team Them Up! DP1141 Brackets Sequence DP1157 LITTLE SHOP OF FLOWERS DP1160 Post Office DP1163 The Triangle DP1170 Shopping Offers DP1179 Polygon DP1180 Batch Scheduling DP1191 棋盘分割DP1293 Duty Free Shop DP2184 Cow Exhibition DP2193 Lenny's Lucky Lotto Lists DP2292 Optimal Keypad DP1432 Decoding Morse Sequences DP1475 Pushing Boxes DP1513 Scheduling Lectures DP1633 Gladiators DP1661 Help Jimmy DP1692 Crossed Matchings DP1712 Flying Stars DP1717 Dominoes DP1718 River Crossing DP1732 Phone numbers DP1745 Divisibility DP1771 Elevator Stopping Plan DP1776 T ask Sequences DP1874 Trade on Verweggistan DP1887 Testing the CATCHER DP1889 Package Pricing DP1946 Cow Cycling DP1187 陨石的秘密DP(BalkanOI99 Par的拓展)1485 Fast Food DP(似乎就是ioi2000的postoffice) 2385 Apple Catching DP(像NOI98“免费馅饼”) 1064 Cable master DP/二分查找1037 A decorative fence DP/组合数学1936 All in All DP?1505 Copying Books DP+二分查找1631 Bridging signals DP+二分查找1159 Palindrome DP->LCS1458 Common Subsequence DP->LCS1080 Human Gene Functions DP->LCS变形2192 Zipper DP->LCS变形1185 炮兵阵地DP->数据压缩2430 Lazy Cows DP->数据压缩1067 取石子游戏博弈论1082 Calendar Game 博弈论1085 Triangle War 博弈论1143 Number Game 博弈论2311 Cutting Game 博弈论2425 A Chess Game 博弈论1638 A number game 博弈论1694 An Old Stone Game 博弈论?1738 An old Stone Game 博弈论?1741 Tree 博弈论?2083 Fractal 递归1104 Robbery 递推1217 FOUR QUARTERS 递推1280 Game 递推2261 France '98 递推2181 Jumping Cows 递推1316 Self Numbers 递推同Humble Number一样2084 Game of Connections 递推(不必高精度) 1338 Ugly Numbers 递推(有O(n)算法)2247 Humble Numbers 递推(最优O(n)算法)1322 Chocolate 递推/组合数学1189 钉子和小球递推?1947 Rebuilding Roads 二分2418 Hardwood Species 二分查找2082 Terrible Sets 分治/1001 Exponentiation 高精度1047 Round and Round We Go 高精度1060 Modular multiplication of polynomials 高精度1131 Octal Fractions 高精度1202 Family 高精度2199 Rate of Return 高精度1646 Double Trouble 高精度1147 Binary codes 构造1148 Utopia Divided 构造2275 Flipping Pancake 构造1660 Princess FroG 构造1772 New Go Game 构造?1005 I Think I Need a Houseboat 几何1039 Pipe 几何1070 Deformed Wheel 几何1092 Farmland 几何1106 Transmitters 几何2194 Stacking Cylinders 几何2254 Globetrotter 几何2315 Football Game 几何2423 The Parallel Challenge Ballgame 几何1375 Intervals 几何1380 Equipment Box 几何1408 Fishnet 几何1514 Metal Cutting 几何1518 Problem Bee 几何1605 Horse Shoe Scoring 几何1654 Area 几何1693 Counting Rectangles 几何1774 Fold Paper Strips 几何1871 Bullet Hole 几何1875 Robot 几何1873 The Fortified Forest 几何+回溯1031 Fence 计算几何1034 The dog task 计算几何1271 Nice Milk 计算几何2284 That Nice Euler Circuit 计算几何1688 Dolphin Pool 计算几何2165 Gunman 计算几何1755 Triathlon 计算几何?1379 Run Away 计算几何->1113 Wall 计算几何->convex hull1434 Fill the Cisterns! 计算几何->离散化/1151 Atlantis 计算几何->同等安置矩形的并的面积->离散化1177 Picture 计算几何->同等安置矩形的并的周长->线段树2419 Forests 枚举2179 Inlay Cutters 枚举1025 Department 模拟1027 The Same Game 模拟1048 Follow My Logic 模拟1049 Microprocessor Simulation 模拟1073 The Willy Memorial Program 模拟1075 University Entrance Examination 模拟1098 Robots 模拟1103 Maze 模拟1120 A New Growth Industry 模拟1193 内存分配模拟1281 MANAGER 模拟2200 A Card Trick 模拟2314 POJ language 模拟1431 Calendar of Maya 模拟1483 Going in Circles on Alpha Centauri 模拟1512 Keeps Going and Going and ... 模拟1773 Outernet 模拟1876 The Letter Carrier's Rounds 模拟1883 Theseus and the Minotaur 模拟2050 Searching the Web 模拟(需要高效实现)1012 Joseph 模拟/数学方法1086 Unscrambling Images 模拟?1327 Moving Object Recognition 模拟?1893 Monitoring Wheelchair Patients 模拟+几何1462 Random Walk 模拟+解线性方程组2379 ACM Rank T able 模拟+排序1879 Tempus et mobilius Time and motion 模拟+组合数学->Polya定理1520 Scramble Sort 排序1634 Who's the boss? 排序2299 Ultra-QuickSort 排序->归并排序1008 Maya Calendar 日期处理1209 Calendar 日期处理2210 Metric Time 日期处理1430 Binary Stirling Numbers 日期处理1447 Ambiguous Dates 日期处理2080 Calendar 日期处理2351 Time Zones 时间处理1770 Special Experiment 树形DP1916 Rat Attack 数据结构->?1197 Depot 数据结构->Young T ableau1182 食物链数据结构->并查集2424 Flo's Restaurant 数据结构->堆1877 Flooded! 数据结构->堆1445 Random number 数据结构->碓1023 The Fun Number System 数论1061 青蛙的约会数论1091 跳蚤数论1152 An Easy Problem! 数论2191 Mersenne Composite Numbers 数论2381 Random Gap 数论2417 Discrete Logging 数论1510 Hares and Foxes 数论1641 Rational Approximation 数论1730 Perfect Pth Powers 数论1777 Vivian's Problem 数论2061 Pseudo-random Numbers 数论1014 Dividing 数论/DP?/组合数学->母函数?1606 Jugs 数论/搜索1995 Raising Modulo Numbers 数论->大数的幂求余2115 C Looooops 数论->解模线性方程1288 Sly Number 数论->解模线性方程组1395 Cog-Wheels 数学->解正系数的线性方程组1000 A+B Problem 送分题1003 Hangover 送分题1004 Financial Management 送分题1006 Biorhythms 送分题1007 DNA Sorting 送分题1016 Numbers That Count 送分题1019 Number Sequence 送分题1028 Web Navigation 送分题1046 Color Me Less 送分题1053 Set Me 送分题1068 Parencodings 送分题1071 Illusive Chase 送分题1096 Space Station Shielding 送分题1099 Square Ice 送分题1102 LC-Display 送分题1107 W's Cipher 送分题1119 Start Up the Startup 送分题1218 THE DRUNK JAILER 送分题1245 Programmer, Rank Thyself 送分题1247 Magnificent Meatballs 送分题1250 T anning Salon 送分题1298 The Hardest Problem Ever 送分题1326 Mileage Bank 送分题2190 ISBN 送分题2196 Specialized Four-Digit Numbers 送分题2291 Rotten Ropes 送分题2304 Combination Lock 送分题2309 BST 送分题2390 Bank Interest 送分题2403 Hay Points 送分题1411 Calling Extraterrestrial Intelligence Again 送分题1481 The Die Is Cast 送分题1484 Blowing Fuses 送分题1517 u Calculate e 送分题1547 Clay Bully 送分题1563 The Snail 送分题1604 Just the Facts 送分题1657 Distance on Chessboard 送分题1658 Eva's Problem 送分题1663 Number Steps 送分题1677 Girls' Day 送分题1690 (Your)((Term)((Project))) 送分题1775 Sum of Factorials 送分题1870 Bee Breeding 送分题2105 IP Address 送分题2136 Vertical Histogram 送分题1555 Polynomial Showdown 送分题(非常阴险) 2388 Who's in the Middle 送分题(排序)1519 Digital Roots 送分题(位数可能很大)1045 Bode Plot 送分题(用物理知识)2051 Argus 送分题(最好用堆,不用也可以过) 1011 Sticks 搜索1020 Anniversary Cake 搜索1054 The Troublesome Frog 搜索1069 The Bermuda Triangle 搜索1072 Puzzle Out 搜索1100 Dreisam Equations 搜索1110 Double Vision 搜索1111 Image Perimeters 搜索1128 Frame Stacking 搜索1142 Smith Numbers 搜索1162 Building with Blocks 搜索1183 反正切函数的应用搜索1184 聪明的打字员搜索1248 Safecracker 搜索1601 Pizza Anyone? 搜索1713 Divide et unita 搜索1129 Channel Allocation 搜索(图的最大独立集)1190 生日蛋糕搜索/DP1691 Painting A Board 搜索/DP1714 The Cave 搜索/DP1084 Square Destroyer 搜索?1010 STAMPS 搜索+DP1194 HIDDEN CODES 搜索+DP1882 Stamps 搜索+DP1101 The Game 搜索->BFS1137 The New Villa 搜索->BFS1233 Street Crossing 搜索->BFS2243 Knight Moves 搜索->BFS2312 Battle City 搜索->BFS1476 Always On the Run 搜索->BFS1480 Optimal Programs 搜索->BFS1482 It's not a Bug, It's a Feature! 搜索->BFS 1753 Flip Game 搜索->BFS1915 Knight Moves 搜索->BFS1017 Packets 贪心1018 Communication System 贪心1323 Game Prediction 贪心1463 Strategic game 贪心1469 COURSES 贪心1719 Shooting Contest 贪心2054 Color a Tree 贪心1328 Radar Installation 贪心(差分约束系统的特例)1042 Gone Fishing 贪心/DP1752 Advertisement 贪心/图论->差分约束系统1201 Intervals 贪心/图论->最长路->差分约束系统1097 Roads Scholar 图论1161 Walls 图论1450 Gridland 图论(本来TSP问题是NP难的,但这个图比较特殊,由现成的构造方法)2197 Jill's Tour Paths 图论->2416 Return of the Jedi 图论->1639 Picnic Planning 图论->1695 Magazine Delivery 图论->1729 Jack and Jill 图论->1751 Highways 图论->1122 FDNY to the Rescue! 图论->Dijkstra1125 Stockbroker Grapevine 图论->Dijkstra1135 Domino Effect 图论->Dijkstra1394 Railroad 图论->Dijkstra1158 TRAFFIC LIGHTS 图论->Dijkstra变形2395 Out of Hay 图论->Dijkstra变形2253 Frogger 图论->Dijkstra变形(和1295是一样的)1734 Sightseeing trip 图论->Euler回路1466 Girls and Boys 图论->n/a1515 Street Directions 图论->把一个无向连通图改造成为有向强连通图1635 Subway tree systems 图论->不同表示法的二叉树判同1275 Cashier Employment 图论->差分约束系统->无负权回路的有向图的最长路->Bellman-Ford1274 The Perfect Stall 图论->二分图的最大匹配1325 Machine Schedule 图论->二分图的最大匹配2239 Selecting Courses 图论->二分图的最大匹配2195 Going Home 图论->二分图的最大权匹配2400 Supervisor, Supervisee 图论->二分图的最大权匹配?1637 Sightseeing tour 图论->欧拉回路1383 Labyrinth 图论->树的最长路1094 Sorting It All Out 图论->拓扑排序1486 Sorting Slides 图论->拓扑排序1149 PIGS 图论->网络流2289 Jamie's Contact Groups 图论->网络流?1192 最优连通子集图论->无负权回路的有向图的最长路->BellmanFord 1364 King 图论->无负权回路的有向图的最长路->BellmanFord1985 Cow Marathon 图论->有向无环图的最长路1087 A Plug for UNIX 图论->最大流1273 Drainage Ditches 图论->最大流1459 Power Network 图论->最大流1632 Vase collection 图论->最大完全图2049 Finding Nemo 图论->最短路1251 Jungle Roads 图论->最小生成树2421 Constructing Roads 图论->最小生成树1026 Cipher 组合数学1095 Trees Made to Order 组合数学2346 Lucky tickets 组合数学1286 Necklace of Beads 组合数学->Polya定理2409 Let it Bead 组合数学->Polya定理1664 放苹果组合数学->递推。
计算机网络第四版(课后练习+答案)
计算机网络第四版(课后练习+答案)第 1 章概述1.假设你已经将你的狗Berníe 训练成可以携带一箱3 盒8mm 的磁带,而不是一小瓶内哇地. (当你的磁盘满了的时候,你可能会认为这是一次紧急事件。
)每盒磁带的窑最为7GB 字节;无论你在哪里,狗跑向你的速度是18km/h 。
请问,在什么距离范围内Berníe的数据传输速率会超过一条数据速率为150Mbps的传输线?答:狗能携带21千兆字节或者168千兆位的数据。
18 公里/小时的速度等于0.005 公里/秒,走过x公里的时间为x / 0.005 = 200x秒,产生的数据传输速度为168/200x Gbps或者840 /x Mbps。
因此,与通信线路相比较,若x<5.6 公里,狗有更高的速度。
6. 一个客户·服务器系统使用了卫星网络,卫星的高度为40 000km. 在对一个请求进行响应的时候,最佳情形下的延迟是什么?答:由于请求和应答都必须通过卫星,因此传输总路径长度为160,000千米。
在空气和真空中的光速为300,000 公里/秒,因此最佳的传播延迟为160,000/300,000秒,约533 msec。
9. 在一个集中式的二叉树上,有2n -1 个路出器相互连接起来:每个树节点上都布一个路由器。
路由器i 为了与路由器j 进行通信,它要给树的根发送一条消息。
然后树根将消息送下来给j 。
假设所有的路由器对都是等概率出现的,请推导出当n很大时,每条消息的平均跳数的一个近似表达式。
答:这意味着,从路由器到路由器的路径长度相当于路由器到根的两倍。
若在树中,根深度为1,深度为n,从根到第n层需要n-1跳,在该层的路由器为0.50。
从根到n-1 层的路径有router的0.25和n-2跳步。
因此,路径长度l为:18.OSI 的哪一层分别处理以下问题?答:把传输的比特流划分为帧——数据链路层决定使用哪条路径通过子网——网络层.28. 一幅图像的分辨率为1024X 768 像素,每个像素用3 字节来表示。
基于插值和周期图法的高动态信号载波频偏粗估计
收稿日期:2021 07 03;修回日期:2021 09 01作者简介:魏苗苗(1987 ),女(通信作者),河南鹿邑人,讲师,博士,主要研究方向为时序信号处理(6542@zut.edu.cn);刘洲峰(1962 ),男,河南郑州人,教授,硕导,博士,主要研究方向为数字图像处理;李春雷(1979 ),男,教授,博士,主要研究方向为智能信息处理;孙俊(1982 ),男,河南洛阳人,副教授,博士研究生,主要研究方向为信道测量和噪声估计.基于插值和周期图法的高动态信号载波频偏粗估计魏苗苗1,2 ,刘洲峰1,李春雷1,孙 俊1,2(1.中原工学院电子信息学院,郑州450007;2.郑州大学信息工程学院,郑州450001)摘 要:针对卫星通信系统中接收信号载波动态范围大、信噪比低造成的信号载波同步困难的问题进行了研究。
基于联合插值和频域移位平均周期图法的载波频偏估计算法,通过对半符号周期频域移位平均周期图法中各并行支路输出的功率谱峰值波形进行双谱线插值,以进一步降低载波频偏变化率估计误差,进而改善原算法捕获概率。
仿真结果显示,当比特信噪比为2.5dB时,相比于半符号周期频域移位平均周期图法,该算法只增加了一次插值计算就可以实现将载波频偏变化率估计误差降低27%。
在同等估计精度和参数设置下,相比于半符号周期频域移位平均周期图法和带补零频域移位评价周期图法,基于联合插值和周期图法的载波频偏粗估计算法可达到更高的捕获概率。
关键词:频偏估计;载波同步;频域移位;插值估计;高动态中图分类号:TN927+.23 文献标志码:A 文章编号:1001 3695(2022)02 038 0548 04doi:10.19734/j.issn.1001 3695.2021.07.0303CoarsecarrieroffsetestimationofhighdynamicalsignalbasedoninterpolationandperiodogramalgorithmWeiMiaomiao1,2 ,LiuZhoufeng1,LiChunlei1,SunJun1,2(1.SchoolofElectronics&Information,ZhongyuanUniversityofTechnology,Zhengzhou450007,China;2.SchoolofInformationEnginee ring,ZhengzhouUniversity,Zhengzhou450001,China)Abstract:Insatellitecommunicationsystems,thereceivedsignalusuallyhasthecharacteristicsofhighdynamicrangeandlowsignal to noiseratio(SNR),whichleadstodifficultyofcarriersynchronization.Thecarrierestimationalgorithmbasedoninterpolationandfrequencydomainshiftedaverageperiodogrammethodcouldreducetheestimationerroroffrequencyoffsetderivative,andincreasetheacquisitionprobabilitybybispectruminterpolationonthepeakwaveformofpowerspectrumoutputbyparallelbranchesinthesemi symbolfrequencydomainshiftedaverageperiodogrammethod.ThesimulationresultsshowthatwhenbitSNRis2.5dB,comparedwiththesemi symbolfrequencydomainshiftedaverageperiodogrammethod,theestimationerrorofthefrequencyoffsetderivativecanbereducedby27%withonlyoneinterpolationcalculationadded.Withthesameaccuracyrequirementandparametersetting,comparedwithsemi symbolfrequencydomainshiftedaverageperiodogrammethodandzero paddingfrequencydomainshiftedaverageperiodogrammethod,theproposedalgorithmreachesahigherprobabilityofacquisition.Keywords:frequencybiasestimation;carriersynchronization;frequencydomainshift;interpolationestimation;highdynamics0 引言面对近年来日益增高的卫星应用需求,实现超远距离下的可靠通信是保证空间探测系统有效运行的关键,但是有效载荷通信信号普遍存在运动速度极高、信噪比极低的特点,以火星等深空探测活动为例,接收信号比特信噪比可低至2dB以下,并伴有复杂运动情况[1],致使载波频偏参量不仅包含频率偏差,而且还有更高阶分量[2~4]。
多队列VC调度算法研究
多队列VC调度算法研究 吴舜贤 刘衍珩 田明 吉林大学计算机科学与技术学院,吉林 长春 130012 E-mail:wushxian@摘 要 本文首先分析了VC和GPS/PGPS分组调度算法的优点和缺点,在此基础上提出了一种具有GPS调度算法特性的多队列VC调度算法MQVC。
完整阐述了MQVC的设计目标、改进措施,并给出了MQVC算法模型和算法描述,通过定理和引理证明了该模型比单队列VC 和PGPS调度算法模型在实现复杂度、系统调度性能和包的丢失等方面的明显改善。
网络仿真结果显示该算法具有良好的服务质量性能。
关键词 调度算法,虚拟时钟,MQVC,GPS,服务质量。
中图分类号:TP393.02 文献标识码:A1引言 在高速路由器技术研究中,核心部分之一是路由器中分组调度算法研究[1]。
通过对调度算法的综合比较[2]发现集成服务网络分组调度算法中,VC (Virtual Clock) [3,4]和GPS (Generalized Processor Sharing)/PGPS(Packet-by-packet Generalized Processor Sharing)[5]是两种比较典型的调度模型。
VC算法是一种基于TDM的统计时分的服务模型。
文献[6]认为VC调度算法是 “不公平”的,但文献[3,4,7,8]从理论和仿真结果表明它的有效性、可行性和优越性,认为VC算法是一种能够有效满足一定的服务速率保证、时延保证和流隔离监视的调度算法。
相对于本文提出的算法模型,称原来的VC 算法为单队列VC调度算法。
GPS调度算法是一种理想的绝对的基于流的公平队列算法,在现实条件下是不可实现的,对GPS的模拟演化出一系列调度算法,如WFQ[1]、PGPS[5]、WF2Q[9]、WF2Q+[10]、SFQ[11]等,其最大差异在于虚拟时间定义和调度条件选定。
PGPS是GPS的一种较好的逼近模拟。
当前对VC算法主要的改进研究有前跳虚拟时钟[12]、核心无状态虚拟时钟[13]及基于虚拟时钟的接纳控制技术[14]等。
时间敏感网络端系统中队列管理器电路的设计与实现
第55卷 第5期2022年5月通信技术Communications TechnologyVol.55 No.5May 2022
·656·文献引用格式:杜婧,乔庐峰,陈庆华,等.时间敏感网络端系统中队列管理器电路的设计与实现[J].通信技术,2022,55(5):656-662.doi:10.3969/j.issn.1002-0802.2022.05.017
时间敏感网络端系统中队列管理器电路的设计与实现杜 婧,乔庐峰,陈庆华,刘 熹,邹仕祥(中国人民解放军陆军工程大学,江苏 南京 210007)
摘 要:设计了一种应用于时间敏感网络(Time Sensitive Network,TSN)端系统的队列管理器电路,它由缓冲区管理器和队列调度器构成。缓冲区管理器采用链表结构管理16个基于流的逻辑队列和8个基于优先级的逻辑队列,针对每个逻辑队列设置了独立的临时指针缓冲区,用以实现TSN所要求的对数据帧读出时间的精确控制;队列调度器同时支持门控机制、基于信用的整形器(Credit Based Shaper,CBS)调度算法和严格优先级调度算法;调度参数可以灵活配置。三者有机结合,可以满足不同类型用户业务接入TSN网络的需求。关键词:链表;存储区管理;传输选择算法;调度器中图分类号:TP332;TP393.1 文献标识码:A 文章编号:1002-0802(2022)-05-0656-07
Design and Implementation of the Queue manager Circuit in End-station for Time sensitive Network
DU Jing, QIAO Lufeng, CHEN Qinghua, LIU Xi, ZOU Shixiang(Army Engineering University of PLA, Nanjing Jiangsu 210007, China)Abstract: This paper designs a queue manager circuit used in end-station for TSN (Time Sensitive Network), which consists of buffer manager and queue scheduler. The buffer manager uses a linked list to manage 16 flow-based logical queues and 8 priority-based logical queues, and sets up an independent temporary pointer buffer for each logical queue to realize the accurate control of data frame readout time required by TSN; The queue scheduler supports gate control mechanism, CBS (Credit Based Shaper) transmission selection algorithm and strict priority transmission selection algorithm. Scheduling parameters can be configured flexibly. The organic combination of the above three can meet the demands of different types of traffic accessing the TSN.Keywords: linked list; buffer manager; transmission selection algorithm; scheduler
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Alleviation of Tree Saturation inMultistage Interconnection NetworksMatthew Farrens Brad Wetmore Allison Woodruff Division of Computer Science Division of Computer Science Division of Computer Science University of California University of California University of California Davis,CA95616Davis,CA95616Davis,CA95616tel:(916)752-9678tel:(916)752-2149tel:(916)752-8878fax:(916)752-4767fax:(916)752-4767fax:(916)752-4767 email:farrens@ email:wetmore@ email:woodruff@AbstractThis paper presents an examination of two distinct but complementary extensions of previous work on hot spot contention in multistage interconnection networks. Thefirst extension focuses on the use of larger queues at the memory modules than are traditionally studied.The second extension explores a simple feedback damping scheme,which we refer to as bleeding,which allows selected processors to ignore feedback information.The impact of memory queue size,feedback thres-hold value,and bleeding on system performance (specifically maximum bandwidth per processor)is evaluated by analyzing the results of extensive network simulations.These results indicate that combining these approaches can significantly improve the effective bandwidth of a multistage interconnection network.1.IntroductionIn order to achieve the goal of teraflop computing speeds by the end of the century,the number of process-ing nodes in a multiprocessor will have to increase sub-stantially.However,as the number of processors grows, so does the impact of two problems inherent to multipro-cessors:how can memory and processors be efficiently connected,and how can the side effects of memory con-tention be controlled?There are several ways to interconnect a large number of processors.A shared bus memory architecture is the least expensive,but is inappropriate for systems with many processors and memory modules;the amount of traffic far exceeds the capacity of a single bus.A sub-stantially more costly solution is a crossbar network in which every processor has a connection to every memory module via a set of intersecting wires.Such a network requires at least N2crosspoint switches(where N is the number of processors and memory modules),an impracti-cal solution for large values of N.A popular compromise is to use multistage interconnection networks consisting of log k N levels of k×k switches.Since these networks areThis work was supported by the National Science Founda-tion under Grant CCR-90-11535.inexpensive enough to be feasible,and provide sufficient bandwidth for many processors and memory modules to communicate simultaneously[Sieg85],they will be the focus of this paper.Unfortunately,sharing memory leads to memory contention.Furthermore,the larger the number of proces-sors,the greater the degree of contention[Lee89].The result in multistage interconnection networks is an undesirable phenomenon known as hot spots[PfNo85]. Hot spots are locations(nodes within the network, memory modules,or specific addresses)which receive a nonuniform distribution of traffic.This concentration of traffic can be caused by events such as references to shared or global variables(e.g.for barrier synchronization or operations on semaphores[Lee85,TaYe90]);block transfers[Thom86];a coincidental concentration of requests to a single memory module[Lee85,NoPf85];or a coincidental concentration of traffic through an internal switch(nonuniform traffic spots,or NUTS[LaKu90]) which can occur even if the requests to memory are evenly distributed.The model used in this study assumes that queues exist between processors and switches, switches and switches,and switches and memory modules,in order to buffer requests(see Figure1).When nonuniform traffic occurs,the queue(s)at the hot spot(s) become full and can not accept further requests;requests which are blocked will remain in the switches feeding the hot spot.These queues at these switches can alsofill,etc., and the effects will propagate backward through the net-work,forming a tree of nodes whose queues are full.Hot spots degrade performance of requests to both hot and cold modules.Since a hot module or queue has several pending requests but can only service one at a time,the mean service time for these requests is increased.Requests to cold memory modules("cold" requests)can encounter full queues;therefore,the latency of the cold requests is increased,and the level of conges-tion in the network is heightened[PoHa89,ScSo90].This degradation is called"tree saturation"and is compounded by the fact that its onset can be rapid[KuPf86]and may take a long time to alleviate.In addition,it takes very lit-tle nonuniform traffic to induce this condition [PfNo85,Ston87].2x2Switch2x2Switch2x2Switch2x2SwitchP N I P N IP N I P N IProcessorProcessorProcessorProcessorMemoryMemoryMemoryMemorymqmqmqmqqq qq q q q qFigure 1.Components of a Multistage Interconnection Network2.Previous ApproachesSeveral methods of controlling tree saturation have been proposed.Most,however,have been impractical in terms of technology or expense.Three of these methods are described biningOne commonly discussed approach to reducing tree saturation is to combine requests to the same address.Both hardware [GGKM83,LeK86,PfNo85]and software [TaYe90,YeT87]solutions have been proposed.These approaches reduce the number of requests to a hot memory location,as well as minimize network traffic.However,combining has several disadvantages:large hardware expense 1;lack of scalability in practical applications [Lee89];and failure to alleviate tree satura-tion arising from causes other than excessive competition for a single address.2.2.FeedbackThe technique of feedback can be used to control tree saturation as follows:a threshold value for the queues at all memory modules is chosen.When a queue’s thres-hold is reached,all processors are notified to hold1Lee et al found that the hardware cost is even higher than originally suspected,because suggested methods of combining are ineffective,necessitating even more sophisticated hardware to achieve favorable results [LeK86].requests to the corresponding (hot)memory module.Once the queue length falls below the threshold,proces-sors are informed that they may once again issue requests to the formerly hot module.This can considerably decrease network congestion by limiting requests which would contribute to tree saturation,and therefore improve the performance of requests to cold modules.Unfortunately,because of the inherent latencies involved in the network,a new batch of requests may not arrive before the hot module services all of its queued requests (leaving the memory module idle).Scott and Sohi label this undershoot ,an analogy from classic control systems theory [ScSo90].Another problem with feedback occurs when several of the processors have saved a number of requests for a hot module.When the processors are notified that the module is again accepting requests,the stored requests will be simultaneously released by the proces-sors,possibly flooding the network.This re-creation of tree saturation is termed overshoot [ScSo89,ScSo90].2.3.LimitingA limiting scheme assumes the presence of a global arbiter which controls the number of requests to each memory module that enter the network per cycle.Limit-ing can be used by itself as a scheme to control tree saturation,although it is difficult to predict how many requests to allow per cycle to maximize bandwidth and minimize the idle time of the memory modules.This scheme can be enhanced by using limiting in conjunction with feedback to temper both undershoot and overshoot.Undershoot will be avoided because there is a constant,albeit reduced,flow of requests to a hot module. Overshoot will be avoided because requests to the hot memory module will be released gradually.Unfor-tunately,the drawback to limiting is a direct result of its most prominent characteristic:it assumes global coordi-nation,a complex and expensive solution.3.Extensions to Previous WorkThis paper examines two methods of controlling tree saturation:the use of feedback with larger queues at the memory modules,and the use of a damping mechan-ism which releases requests gradually into the network. These methods should reduce tree saturation occurring from nonuniform traffic to a given memory module,but should not affect tree saturation due to nonuniformity of requests to switches internal to the network.rger Queues at the Memory ModulesSeveral authors have suggested that larger queues at the memory modules could reduce the negative effects of nonuniform traffic.Stone has suggested using large queues at the memory modules in regular multistage interconnection networks(works without feed-back)[Ston87].Although it has been shown that simply increasing memory queue sizes is not an effective method of controlling tree saturation[GGKM83,Lee85],this paper shows that this technique is significantly more use-ful when used in conjunction with feedback.3.2.DampingBecause hardware costs and complexity of a global arbiter are prohibitive,some other form of controlling requests to a hot module is desirable.A better solution [ScSo90]is to allow each processor to independently limit its requests to hot and/or cold memory modules, using some method that(with a high degree of probabil-ity)will reduce tree saturation.By using the queue status information,for example, it is possible to limit requests to the hot modules,rather than stopping them completely as would occur in a straight feedback scheme.This paper explores a simplification of the limiting scheme proposed by Scott and Sohi,who suggest that whenever a module is hot,at most1request to a hot module and2requests to a cold module be allowed to enter the network each cycle [ScSo89].Requests are damped as follows:at each network cycle,a number of processors are selected and allowed to submit a request to the hot module,if they have one pend-ing.Cold requests are not restricted from entering the network.We call this technique bleeding.The motivation for this approach stems from a desire to keep a small number of hot requests in the network at all times in order to reduce the possibility of undershoot.It also provides a more gradual release of blocked requests into the net-work,reducing overshoot.4.The SimulatorIn this study we used a slightly modified version of the model-driven simulator used by Scott and Sohi,thus allowing our results to be directly compared to their work [ScSo89,ScSo90].4.1.The Simulation ModelThe simulation model assumes an equal number of processors(P)and memory modules(M);in this study M and P are set to256.The processors and memory modules are connected by a standard Omega network with2×2crossbar blocking switches.The number of lev-els in our network is log2256=8,implying a total of 128×8=1024switches(nodes).Each node is capable of receiving one request from each node input per cycle,and will place that request in a FIFO queue in time for the next cycle;queues can accept up to two inputs per cycle,as in[LeK86,Lee89].Each queue feeds the next stage of the network,and can hold up to four elements.The queue that lies between thefinal stage of the network and the memory modules is called the memory queue(mq)and has a variable length.A queue length of four is the same length selected by several previous studies[KuPf86,PfNo85,ScSo90]. The appropriateness of a small queue size is shown by both Lee and Gottlieb,who suggest increasing the queue size beyond sizefive[Lee85]or size eight[GGKM83] does not help alleviate tree saturation.(However,neither study takes feedback into account.)The model also assumes two complete interconnec-tion networks,one to propagate requests from the proces-sors to the memory modules,and one for the reverse trip. Each processor/memory module has a network interface which interacts with both the forward and the reverse net-works and is responsible for requests being released or received.Each processor may make at most one request per network cycle,via its processor network interface (PNI),and there is no limit on the number of requests a processor may have outstanding.The memory modules are assumed to have a latency equal to one network cycle.In order to force hot spots to exist within the net-work the simulator directs a user-selectable proportion of the requests to a designated memory module.This module is called the"hot"module,although it may be either hot or cold at any point during the simulation.The model does not differentiate the percentage of time spent in hot spot versus uniform traffic conditions.It has been noted that hot spots are transient[LeK86],but the amount of time spent in different states has not beenfully explored,and is not examined here.We assume a steady-state representation.Further,the model is some-what optimistic in forcing only one hot spot at a time.It will allow more than one hot spot to arise,but this will only happen if the random distribution of uniform requests leads to an additional hot spot.In practice there may be nonuniform requests to several modules simul-taneously,although Pfister and Norton suggest that typi-cally there are only one or two memory modules hot simultaneously [PfNo85].5.Simulation ResultsThe simulator was run under a variety of condi-tions,varying parameters such as memory queue size,feedback threshold,hot rates,degree of bleeding,etc.In discussing our results,we use the following variables,chosen to allow comparison with previous models [PfNo85,ScSo89,ScSo90]:N :The number of processors and memory modules.n :The number of levels in the network.(n =log 2N ).P h :The fraction of "hot"processors:those processors making nonuniform requests to a hot memory module.h :The percentage of nonuniformity of requests from the hot processors.h is also known as the hot rate.The uniform requests from all processors are distri-buted evenly among all memory modules,including the hot module.T f :The threshold value for feedback.When the number of elements in a module’s queue exceeds this threshold,processors are notified that that module has become hot.mq :The size of the queue at the last level of the net-work.Each processor will attempt to offer a request dur-ing each network cycle.If the network cannot accept the request,either because the first-stage queue has no room,or because the request is to a forbidden hot spot,the pro-cessor must wait to resubmit.For each processor,effec-tive maximum bandwidth is calculated by the following formula:Maximum Bandwidth =TIME ×N Total Number of Requestswhere TIME is the simulated number of network cycles elapsed,accumulated from the first cycle in which the request was generated.The maximum bandwidth of a network can only approach 1.0,even if there are no hot spots,because collisions in both the nodes and the memory modules occur even under uniform traffic [DiJu81].In these simulations,the term "relative bandwidth"refers to the performance of the modified network understudy compared to that of a standard Omega network with no modifications.Relative Bandwidth =Bandwidth of Unmodified Network Bandwidth of Modified NetworkTherefore,if the maximum bandwidth of a modified network is .76,and that of an unmodified Omega network is .38,the relative bandwidth of the net-work under study is 2.0(meaning the new method effec-tively doubled the bandwidth).5.1.Effects of Increasing the Memory Module Queue SizeFigure 2shows the results of varying the size of the queue at the memory module (the mq )with no feedback mechanism provided.The dashed line represents the theoretical degradation which would occur if tree satura-tion did not affect the bandwidth [ScSo90],i.e.if all degradation could be attributed to the fact that the hot memory module can process only one request per cycle.As expected,increasing the size of the memory queue provides virtually no improvement in bandwidth.Without feedback,a large queue experiences the same problems that smaller queues do;the only difference is the amount of time before saturation occurs.As shown in [Lee85]and [GGKM83],employing larger memory queues without supplying some kind of feedback mechan-ism does not eliminate saturation conditions (although it might be useful for reducing the effects of transient hot spots).In order to test how well feedback would work in conjunction with larger memory queues,another set of simulations was performed.Figure 3shows the results of simulations with a hot rate of 2%and various memory queue sizes and threshold values.Data is presented for the most effective threshold values,T f =1,2,3,4.In Figure 3,the line of mq =4can be directly com-pared with Scott and Sohi’s work,and is consistent with their results.From the figure we see that larger values of mq yielded relative bandwidths greater than those of Scott and Sohi.As expected,the relative bandwidth is close to 1.0for high values of P h .In this case,a hot memory module’s latency,and not tree saturation,is the bottleneck.The relative bandwidth for nearly uniform traffic (low values of P h )never passes 1.0.This stems from the fact that if no processors are directing their requests to a particular module,the requests will be approximately uniform over the memory space.Tem-porary hot spots in random modules may occur,but a sin-gle module should not receive a disproportionate amount of traffic.The additional buffer space provided by a large memory queue will rarely be used,and larger queues will not substantially improve system bandwidth.ht d i w d n a B m u m i x a M fraction of hot processors1.00.80.60.40.20.0 1.00.80.60.40.20.0fraction of hot processors1.00.80.60.40.20.0mq=4mq=32mq=128mq=4mq=32mq=128(a)(b)Figure 2.Maximum Bandwidth per Processor in a Regular Omega Network(a)h =2%,(b)h =8%The lower values of T f ,1and 2,give relative bandwidths substantially below 1.0,evidencing undershoot;under uniform traffic conditions,lower thres-hold values tend to decrease network bandwidth since a random access pattern could declare a module hot when in fact it was experiencing a temporary locality of refer-ence.In this case,requests that would not degrade the network are forbidden to enter,reducing relative bandwidth to values lower than 1.0.Conversely,the higher the threshold,the more time will elapse before requests are forbidden to enter the net-work.Note that even under the most intensive nonuni-form request conditions,the net gain in a module’s mq length is only one request per cycle since the mq is fed by only two switches and the module processes one request per cycle.Since the onset of tree saturation is rapid,pro-cessors may be not be warned to stop issuing requests to the hot module until saturation is nearly complete.For example,if half of the 256processors are making nonuni-form requests with a hot rate of 8%,an average of ten requests are generated to the hot module every network cycle.By the time a threshold of 8is reached,approxi-mately 80requests have been issued to the hot module,meaning the network has been clogged with requests to a single module.Having a large mq does not solve this problem entirely,since only two requests can enter an mq per network cycle.Therefore,as we increase the threshold value,we also limit the bandwidth for the middle values of P h ;simulation shows higher thresholds yield lower throughput.Unfortunately,as previously described,lower thresholds give false "hot"readings which introduce more undershoot.These effects can be seen in Figure 2:T f =4generates no undershoot,but has lower relative bandwidth improvements than the other threshold values.Therefore,T f =3seems optimal,demonstrating little undershoot and yielding the greatest relative bandwidth improvements.Figure 3also shows that only small amounts of bandwidth improvement are achieved for middle values of P h .This can be directly attributed to the low hot rate.With a hot rate of only 2%,tree saturation occurs less fre-quently and is less severe than with higher hot rates.In Figure 2,the distance between the actual curve and the theoretical curve (the dashed line)represents the room for improvement if all tree saturation is removed.This mar-gin is much larger for h =8%than for h =2%.Figure 4shows the results of set of simulations with a higher hot rate (h =8%).We chose to simulate this higher hot rate on the basis of current trends in multipro-cessing systems.As the number of processors in a system becomes larger,it is anticipated that the severity of tree saturation caused by a given hot rate will increase,lead-ing to decreased network performance [ScSo90].By using the higher hot rates in smaller systems,we can esti-mate the performance of lower hot rates in larger systems.ht d i w d n a B e v i t a l e R fraction of hot processors2.01.51.00.50.00.90.70.50.30.1fraction of hot processors0.90.70.50.30.1fraction of hot processors2.01.51.00.50.00.90.70.50.30.1fraction of hot processors0.90.70.50.30.1(a)(b)(c)(d)mq =128mq =64mq =32mq =16mq =8mq =4mq =128mq =64mq =32mq =16mq =8mq =4mq =128mq =64mq =32mq =16mq =8mq =4mq =128mq =64mq =32mq =16mq =8mq =4ht d i w d n a B e v i t a l e R Figure 3.Maximum Bandwidth relative to a regular Omega network,using straight feedback,h =2%.(a)T f =1,(b)T f =2,(c)T f =3,(d)T f =4.As in Figure 3,the relative bandwidth is unaffected by mq size for highest values of P h .However,the effects of undershoot are less pronounced since fewer false "hot"readings occur than for h =2%.Additionally,the results for the middle value of P h are much more impressive for this higher hot rate,showing a relative bandwidth increase of over 3.0.It is also interesting to note that as the queue sizes increase exponentially,the relative bandwidth only increases (approximately)linearly.The reason for the smaller return may be that as the larger queues are able to handle the request overflows,the number of times and degree to which the network becomes saturated decreases.Since there is less saturation,the amount of improvement gained by adding additional queue elementsdrops.Therefore,at some point,it may become cost-ineffective to further increase the size of the mq .In fact,preliminary runs with larger queue sizes were performed,with no appreciable difference in results observed.fraction of hot processors4.03.53.02.52.01.51.00.50.00.90.70.50.30.1fraction of hot processors0.90.70.50.30.1fraction of hot processors4.03.53.02.52.01.51.00.50.00.90.70.50.30.1fraction of hot processors0.90.70.50.30.1R e l a t i v e B a n d w i d t hR e l a t i v e B a n d w i d t hmq =4mq =8mq =16mq =32mq =64mq =128mq =4mq =8mq =16mq =32mq =64mq =128mq =4mq =8mq =16mq =32mq =64mq =128mq =4mq =8mq =16mq =32mq =64mq =128(a)(b)(c)(d)Figure 4.Maximum Bandwidth relative to a regular Omega network,using straight feedback,h =8%.(a)T f =1,(b)T f =2,(c)T f =3,(d)T f =4.ing Bleeding in Conjunction with Feedback to Control Undershoot and OvershootOvershoot and undershoot can be seen as results of the bursty nature of the model when feedback is used to abruptly stop and start requests from being released into the network.A better idea is to promote a smoother flow of requests by allowing a small number of hot requests toignore the thresholding scheme and enter the network every cycle.This bleeding of requests into the network has the additional advantage that it decreases the latency of these hot requests which are permitted to enter the net-work during hot spot conditions.The most promising such scheme is a round robin one in which,during each cycle,a specific number of hot processors may issue a blocked hot request.Cold requests are not limited,and may be released by any pro-cessor.Figure5shows the results obtained by a bleeding scheme in which one processor per cycle is permitted to make a request to the hot module,if it has one pending. The results show a marked improvement over the straight feedback scheme.This is partially because overshoot is decreased.Although the degree of undershoot seems to be unaffected by the addition of bleeding when traffic is uniform,undershoot is lessened for the middle and higher values of P h,contributing to the increased relative bandwidth.Threshold size does not have the impact on perfor-mance at the middle values of P h that it did in the straight feedback scheme.Because additional requests are in transit,the queues rarely empty to leave the memory module idle.There is obviously an optimal number of requests to bleed to the network per network cycle.Performance plummets when the simulation allows two hot requests to enter the network per cycle,eliminating most of the beneficial effects of feedback because the network can not clear and tree saturation is enhanced.The optimal number appears to be one request per cycle,since that is the latency of the memory module in servicing requests.6.Hardware RequirementsOne of the goals of this study was to examine tree saturation limiting schemes which could be implemented easily and inexpensively(unlike combining,which has been estimated to increase hardware cost by a factor of between6and32[PfNo85],or global limiting,which not only increases hardware cost and design difficulty,but also potentially lengthens the critical path for submitting requests to the network).A brief estimate of the hardware complexity of the approaches examined in this paper are presented below.6.1.FeedbackMeasuring the size of queues to see if they have exceeded their threshold value can be implemented trivi-ally.A bus to allow the memory/network interface to communicate with the processor/network interface(PNI) each time a module changes temperature is slightly more complicated;since multiple transitions can occur per cycle[ScSo90],the memory/network interface may have to wait for the bus.However,the bus will only require O(logN)wires to uniquely identify the memory module whose temperature has changed.Finally,a buffer with a list of hot modules can be implemented at the PNIs(if the scheme allows more than one module to be designated"hot"at any given time). The size of the buffer is dependent on the number of hot spots expected to occur simultaneously.rge Queues at Memory ModulesIncreasing the size of the queues at the level of switching nodes closest to the memory modules entails minimal cost in actual components.While the memory queues will be slightly different than the other queues,the design and fabrication of this additional component should be trivial.6.3.DampingThe bleeding scheme presented in this paper can be implemented in a straightforward manner.Each PNI keeps an internal counter which increments on each syn-chronous network clock pulse and runs from0to N-1.On each network cycle,the PNIs compare the processor id and internal counter to either permit or forbid a request from entering the network.7.Future WorkThere are a number of topics yet to be investigated. Hot spots on the return network should be examined in non-combining networks;in[LeK86],it was discovered that with combining,return networks needed larger queues because requests came out in bursts.Further,the effects of caching have yet to be examined,although Pfister and Norton suggest that caching does not help to alleviate tree saturation related to global variables(since they can not be cached)[PfNo85].In addition,an examination of the literature reveals that the frequency of occurrence of hot spots and degree of hot rate have not been explored in detail.A study of the percentage of time spent in various hot spot condi-tions,for different values of P h and h,would facilitate performance analysis of practical applications of any tree saturation mechanism.Additional research is also needed regarding the behavior of tree saturation(e.g.onset,fre-quency,effect on bandwidth)in larger networks.We are currently investigating a variation of bleed-ing in which each processor is allowed to issue a request to a hot module with a given probability,for example1/N. We are also trying to ascertain the optimal mq size.Addi-tionally,we are looking at an extension of feedback designed to eliminate undershoot and overshoot,which is to use different threshold values for temperature transi-tions.。