2019北师大版高一数学必修四单元及期末测试题及答案(4套)01

合集下载

北师大版高中数学必修四期末复习测试卷

北师大版高中数学必修四期末复习测试卷

高中数学必修四期末复习测试卷(考试时间:100分钟 满分:150分)一、选择题1.下列命题正确的是 A.第一象限角是锐角 B. C.终边相同的角一定相等D.12.函数y 2sin( —x -)的周期,振幅,初相分别是2 4(2) 若a , b 都是单位向量,则a =b .uuu uuu(3) 向量AB 与向量BA 相等.uuu uuu(4) 若非零向量 AB 与CD 是共线向量,则 A , B , C ,以上命题中,正确命题序号是A. (1)B. (2)C. (1 )和(3)D. ( 1)和(4) 6.如果点P(sin2 , cos2 )位于第三象限,那么角 所在象限是A. 矩形B. 菱形C. 正方形D.直角梯形8.若 是第一 象限角,则sincos 的值与1的大小关系是A. sin cos 1B. sin cos1C. sin cos 1D.不能确定9.在厶ABC 中,若sinC 2cos As inB ,则此三角形必是 钝角是第二象限角不相等的角,它们终边必不相同A., 2 , —B.4 ,2,C.4 4443.如果cos(A )2,那么sin (―2 A)111 A.-B.C.2222,- D.D. 既是奇函数又是偶函数D 四点共线.A.第一象限B.第二象限C. 第三象限D. 第四象限uuu uuu uuu 7.在四边形ABCD 中,如果ABgDD 0 , AB uuuDC ,那么四边形ABCD 的形状是A.等腰三角形B.正三角形C. 直角三角形D.等腰直角三角形4. 函数 y sinC 20052004 x)是2A.奇函数B. 偶函数C. 非奇非偶函数5. 给出命题(1)零向量的长度为零,方向是任意的.D.10(2)求满足条件sin( x) sin( x) 2cos10.如图,在△ ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于14. 给出命题:以上命题中,正确的命题序号是 三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤) 15. (本小题满分13分)已知 sin2 -,[5,-]. 54 2(1 )求cos2 及cos 的值;点G , 则下列各等式中不正确的是uuur 2 uuu uuur CG uiurA. BG -BEB. 2GF3uu 1 uuur1 uuu2 uuu 1 uu C. DG — AG D. -DA — FCBC23 3 211.设扇形的周长为28cm ,面积为4cm ,则扇形的圆心角的弧度数是12.已知 tan 2,tan(则tan13.已知 a (3,1), b (sin cos),且 a // b ,则如 2cos5cos3sin(1) 在平行四边形 ABCD 中, uu uAB uu ur ADuurAC . (2) 在厶ABC 中, uuu uuur若 ABgAC ABC 是钝角三角形.(3) 在空间四边形ABCD 中,E,F 分别是BC,DA 的中点,则uuuFE 1 uu u (AB 2uuur DC). 、填空题(本大题共4小题,每小题5分,共20分)D C16. (本小题满分13分)已知函数f(x) sin x3cos- , x R.2 2(1) 求函数f(x)的最小正周期,并求函数f (x)在x [ 2 ,2 ]上的单调递增区间;(2) 函数f (x) sinx(x R)的图象经过怎样的平移和伸缩变换可以得到函数f(x)的图象•17. (本小题满分13分)已知电流I与时间t的关系式为I Asin( t ).(1)下图是I Asin( t ) ( 0,求I Asin( t )的解析式;1(2)如果t在任意一段—秒的时间内,电流150I Asin( t )都能取得最大值和最小值,那么的最小正整数值是多少?-)在一个周期内的图象,根据图中数据2 -------------------------------------------1018. (本小题满分13分)uuu uuu uuur已知向量OA (3, 4) , OB (6, 3) , OC (5 m, 3 m).(1)若点A, B, C能够成三角形,求实数m应满足的条件;(2)若厶ABC为直角三角形,且A为直角,求实数m的值.19. (本小题满分13分)uuu uuu uuuu设平面内的向量OA (1,7),OB (5,1),OM (2,1),点P是直线OM上的一个uur uuu uuiu动点,且PAgPB 8,求OP的坐标及APB的余弦值•20. (本小题满分13分)r , 3x . 3x r , x .X、已知向量a (cos ,sin ),b (cos-, sin ),且x [,].2 2 2 2 2r r r r(1 )求agD 及a b ;r r r r(2)求函数f(x) agD a b的最大值,并求使函数取得最大值时x的值.2高中数学必修(4)试卷参考答案及评分标准三、解答题515.解:(1)因为一4、选择题、填空题 (1)( 2)( 3)14.11.212. -1313.因此cos2sin 2 24分)由 cos22cos 21,得 cos10 10 8 分)(2)因为 sin( x)sin(x) 2cos1010 ,所以 2cos (1 sin x)卫,所以sin x10 211 分)因为x 为锐角,所以x 16. 解: y sin°、3cos-2(1)最小正周期2 2_ T 262吨 3).13 分)3分)3,函数ysinz单调递增区间是[?2k,2 2k](k Z).2k 2 53 4k0,得 所以, 函数y4k ,k Z .5分)5 3.x sin 3,而[3cos2, x [ 2 ,2 ]得单调递增区间是5T,3]8分),所以 2分)2uuu uuuA, B,C 能构成三角形,则这三点不共线,即 AB 与BC 不共线.(2)把函数y si nx 图象向左平移 一,得到函数y sin (x -)的图象,•••( 10分)3 3再把函数y sin(x-)的图象上每个点的横坐标变为原来的 2倍,纵坐标不3 x 变,得到函数y sin( )的图象, ............................ 2 3 然后再把每个点的纵坐标变为原来的 2倍,横坐标不变,即可得到函数 11 分)xy 2sin(2 3)的图象.(13 分) 17.解:(1)由图可知 A 300, 则周期T 2(t 21 1 设t 1 ——,t 2——,900 180 2(」 -)—,180 90075(2) 18.解:(1) 2分) 4分) Tt 1时,9001506分)0,即卩sin[150故所求的解析式为 依题意,周期TI 300si n(150 丄,即-150300 942,又uuu已知向量O A (3, 4),150 900)N ,故最小正整数uuu umrOB (6, 3),OC]0,sin( 6)0),943.(5 m, 3 m), 0.(8 分)(10 分)(13 分)uuu AB (3,1),uur AC (2m,1 m),故知3(1 m)1•••实数m - 2时,满足条件. 8 分)(若根据点A, B,C 能构成三角形,必须任意两边长的和大于第三边的长,uuu 即由AB) uuu uur(2)若厶ABC为直角三角形,且 A 为直角,则AB AC ,(10 分)若点 (4分)••• 3(2 m) (1m)0 ,•••x [2,],cosx 0.解得m 7.4uuu19.解:设 OP (x, y)•••点P 在直线OM 上,uuu uuuu uuuu • OP 与 OM 共线,而 OM (2,1),丄 2(cos 3x cos x sin 3x sin x )V222 2422cos2 x 2 cosxuuu uuu •/ PA OA uuu OP (1 2y,7 uuu y), PB uur uuu OB OP (5 2y,1 y) , ••… • (4分)uuu uuu• PAgPB (1 2y)(52y) (7 y)(1 y),uuu uuu即 PAgPB 5y 2 20y 12 .(6分)uuu uuu5y 2又 PAgPB 8 ,20 y 128 ,所以y 2 , xuuu4,此时OP (4, 2)............................................................................................... (8 分)(uuu uuuPA ( 3,5), PB (1, 1).(2 分)于是PA 8.• (10 分) uuu• x 2y 0,即 x 2y ,有 OP (2 y, y).,—uuu =— uuu uuu V34, PB V 2, PAgPB •- cos APB8 34 ,24.17 1720.解:(1) agb3x x coscos- 2 2.3x . x sinsin 2 2 cos2x , J (c °s 乎 cos 》2(sin 3x sin x )22 2(13 分)(3分)(4分)(13 分)(7 分)uuua2cos x .( 9分)22cos x 2cos x 1(11 分)( 13分)(15 分)(2) f(x) agoa b cos2x 2cos x1 2 32(cos x — )c............2 2•- x [—,],1 cosx 0,2•••当 cosx 1,即 x时 f max (x) 3.。

【北师大版】高中数学必修四期末试卷附答案

【北师大版】高中数学必修四期末试卷附答案

一、选择题1.已知10sin 410πα⎛⎫-= ⎪⎝⎭,02πα<<,则tan α的值为( ) A .12-B .12C .2D .12-或2 2.设等差数列{}n a 满足:()22222222272718sin cos cos cos sin sin 1sin a a a a a a a a -+-=+,公差()1,0d ∈-.若当且仅当11n =时,数列{}n a 的前n 项和n S 取得最大值,则首项1a 的取值范围是( ) A .9,10ππ⎛⎫⎪⎝⎭B .11,10ππ⎡⎤⎢⎥⎣⎦C .9,10ππ⎡⎤⎢⎥⎣⎦D .11,10ππ⎛⎫ ⎪⎝⎭3.平面直角坐标系xOy 中,点()00,P x y 在单位圆O 上,设xOP α∠=,若3,44ππα⎛⎫∈ ⎪⎝⎭,且3sin 45πα⎛⎫+= ⎪⎝⎭,则0x 的值为( )A .310B .210C .210-D .310-4.已知()()()ππcos sin 22cos πtan πf ααααα⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭=---,则2020π3f ⎛⎫-= ⎪⎝⎭( )A .3-B .12-C .12D .325.在ABC ∆中,5,6AB AC ==,若2B C =,则向量BC 在BA 上的投影是( ) A .75-B .77125-C .77125D .756.在矩形ABCD 中,|AB |=6,|AD |=3.若点M 是CD 的中点,点N 是BC 的三等分点,且BN =13BC ,则AM ·MN =( ) A .6B .4C .3D .27.如图,已知点D 为ABC 的边BC 上一点,3BD DC =,*()∈n E n N 为AC 边的一列点,满足11(32)4n n n n n E A a E B a E D +=-+,其中实数列{}n a 中,10,1n a a >=,,则{}n a 的通项公式为( )A .1321n -⋅-B .21n -C .32n -D .1231n -⋅-8.如图所示,在ABC 中,点D 在线段BC 上,且3BD DC =,若AD AB AC λμ=+,则λμ=( )A .12B .13C .2D .239.已知角α顶点在坐标原点,始边与x 轴非负半轴重合,终边过点()3,4P -,将α的终边逆时针旋转180︒,这时终边所对应的角是β,则cos β=( ) A .45-B .35C .35D .4510.设函数()32sin cos f x x x x =+,给出下列结论: ①()f x 的最小正周期为π ②()y f x =的图像关于直线12x π=对称③()f x 在2,63ππ⎡⎤⎢⎥⎣⎦单调递减 ④把函数2cos2y x =的图象上所有点向右平移12π个单位长度,可得到函数()y f x =的图象.其中所有正确结论的编号是( ). A .①④B .②④C .①②④D .①②③11.现有四个函数:①y =x |sin x |,②y =x 2cos x ,③y =x ·e x ;④1y x x=+的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是( )A .①②③④B .①③②④C .②①③④D .③②①④12.已知函数()()()()2sin 0,0,f x x ωϕωϕπ=+>∈的部分图像如图所示,将()y f x =图像上所有点的横坐标缩小到原来的12(纵坐标不变),所得图像对应的函数()g x 解析式为( )A .()2sin 46g x x π⎛⎫=+ ⎪⎝⎭B .()2sin 43g x x π⎛⎫=+ ⎪⎝⎭C .()2sin 23g x x π⎛⎫=+⎪⎝⎭D .()2sin 3g x x π⎛⎫=+⎪⎝⎭二、填空题13.已知α、0,2πβ⎛⎫∈ ⎪⎝⎭,10sin α=,()25cos αβ+=()cos 2αβ+=______.14.已知02x π-<<,1sin cos 5x x +=,则22sin cos cos x x x -的值为___________. 15.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知3b =22cos c a b A -=,则a c +的取值范围为______.16.设10AB =,若平面上点P 满足对任意的R λ∈,28AP AB λ-≥,PA PB ⋅的最小值为_______.17.设λ是正实数,三角形ABC 所在平面上的另三点1A 、1B 、1C 满足:()1AA AB AC λ=+,()1BB BC BA λ=+,()1CC CA CB λ=+,若三角形ABC 与三角形111A B C 的面积相等,则λ的值为_____.18.在ABC △中,已知4CA =,CP =23ACB π∠=,点P 是边AB 的中点,则CP CA ⋅的值为_____.19.已知将函数()sin()(06,)22f x x ππωθωθ=+<<-<<的图象向右平移3π个单位长度得到画()g x 的图象,若()f x 和()g x 的图象都关于4x π=对称,则ωθ⋅=________.20.定义在R 上的偶函数()f x 满足()()3f x f x +=-,且()12019f -=,则()2020f =______. 三、解答题21.已知函数()f x 满足:()()()22f x f x a a R +=+∈,若()12f =,且当(]2,4x ∈时,()22611f x x x =-+.(1)求a 的值;(2)当(]0,2x ∈时,求()f x 的解析式;并判断()f x 在(]0,4上的单调性(不需要证明);(3)设()24log 231x g x ⎛⎫=+⎪-⎝⎭,()2cos cos 2,22h x x m x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,若()()f h x g h x ≥⎡⎤⎡⎤⎣⎦⎣⎦,求实数m 的值.22.已知函数()4sin cos 3f x x x π⎛⎫=-⎪⎝⎭(1)求函数()f x 的最小正周期和单调递增区间;(2)当,64x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的最值及取到最值时x 的值; (3)若函数()()g x f x m =-在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的零点1x ,2x ,求实数m 的取值范围,并求()12tan x x +的值.23.已知椭圆22221(0)x y a b a b+=>>的左右焦点分别为1F 、2F ,左顶点为A ,若122F F =,椭圆的离心率为12e =. (1)求椭圆的标准方程.(2)若P 是椭圆上的任意一点,求1PF PA ⋅的取值范围. 24.已知函数()22sin cos 2cos ,x x R f x x x =+∈.(1)求()f x 的最小正周期;(2)求()f x 在[]0,π上的单调递减区间; (3)令()18g x f x π⎛⎫=+- ⎪⎝⎭,若()2g x a <-对于,63x ππ⎡⎤∈-⎢⎥⎣⎦恒成立,求实数a 的取值范围.25.如图,在直角△ABC 中,点D 为斜边BC 的靠近点B 的三等分点,点E 为AD 的中点,3,6AB AC ==(1)用,AB AC 表示AD 和EB ; (2)求向量EB 与EC 夹角的余弦值. 26.已知712sin cos 2225ππαα⎛⎫⎛⎫---+= ⎪ ⎪⎝⎭⎝⎭,其中0,4πα⎛⎫∈ ⎪⎝⎭.(1)求tan α的值;(2)求3sin sin 3cos ααα-的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由同角间的三角函数关系先求得cos()4πα-,再得tan()4πα-,然后由两角和的正切公式可求得tan α. 【详解】 ∵02πα<<,∴444πππα-<-<,∴310cos 4πα⎛⎫-=⎪⎝⎭∴sin 14tan 43cos 4παπαπα⎛⎫- ⎪⎛⎫⎝⎭-== ⎪⎛⎫⎝⎭- ⎪⎝⎭, ∴tan tan 44ππαα⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦1tan 11432111tan 34παπα⎛⎫-++ ⎪⎝⎭===⎛⎫--- ⎪⎝⎭.故选:C . 【点睛】思路点睛:本题考查三角函数的求值.考查同角间的三角函数关系,两角和的正切公式.三角函数求值时首先找到“已知角”和“未知角”之间的联系,选用恰当的公式进行化简求值.注意三角公式中“单角”与“复角”的区别与联系,它们是相对的.不同的场景充当的角色可能不一样.如题中4πα-在tan tan4tan 41tan tan 4παπαπα-⎛⎫-=⎪⎝⎭+作为复角,但在tan tan 44ππαα⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦中充当“单角”角色.2.D解析:D 【解析】因为22222222272718sin cos cos cos sin sin 1sin()a a a a a a a a -+-=+,所以由余弦二倍角公式、平方差公式及两角和与差的余弦公式可得2272718cos 2cos()cos()1sin()a a a a a a a -+-+=+,再运用积化和差公式可得227181cos 2[cos 2cos 2]21sin()a a a a a -++=+,即72181[cos 2cos 2]21sin()a a a a -=+,再由差化积公式可得727218sin()sin()1sin()a a a a a a --+=+.由于{}n a 是等差数列,因此1827a a a a +=+,即1827sin()sin()a a a a +=+,所以72sin()1a a -=-即sin51d =-注意到()1,0d ∈-,则()55,0d ∈-,所以5210d d ππ=-⇒=-,故对称轴方程故等差数列的前n 项和是1(1)2n n n S na d -=+,即221()()222020n d d S n a n n a n ππ=+-=-++,其对称轴是1202a n ππ+=,由题设可得1202123222a ππ+<<,即11110a ππ<<,应选答案D .点睛:解答本题的关键是先借助三角变换中的两角和差的余弦公式、余弦二倍角公式、积化和差与和差化积公式等三角变换公式进行化简,再借助差数列的定义和性质求出等差数列的公差10d π=-,然后将等差数列的前n 项和公式1(1)2n n n S na d -=+变形为221()()222020n d d S n a n n a n ππ=+-=-++,借助对称轴11n =的位置建立不等式组1202123222a ππ+<<,进而求得数列首项的取值范围是11110a ππ<<. 3.C解析:C 【分析】利用两角和差的余弦公式以及三角函数的定义进行求解即可. 【详解】3,44ππα⎛⎫∈⎪⎝⎭, ,42ππαπ⎛⎫∴+∈ ⎪⎝⎭, 3sin 45πα⎛⎫+= ⎪⎝⎭,4cos 45πα⎛⎫∴+=- ⎪⎝⎭,则0cos cos cos cos sin sin 444444x ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫==+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦4355=-=, 故选C . 【点睛】本题主要考查两角和差的三角公式的应用,结合三角函数的定义是解决本题的关键.4.B解析:B 【分析】根据诱导公式和同角三角函数关系式,化简函数式,最后代值计算即可. 【详解】()()()cos sin 22cos tan f ππαααπαπα⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭=--- ()()sin sin 2cos tan πααπαα⎡⎤⎛⎫-⋅-- ⎪⎢⎥⎝⎭⎣⎦=+⋅-()()sin cos cos tan αααα-⋅-=-⋅-sin cos sin cos cos ααααα⋅=⋅cos α=,所以2020202020201cos cos cos 673cos 333332f ππππππ⎛⎫⎛⎫⎛⎫-=-==+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:B . 【点睛】本题考查利用诱导公式和同角三角函数关系式化简三角函数式并求值,注意三角函数值的符号变化,属于基础题.5.B解析:B 【解析】 由正弦定理得,653cos sin sin sin 2sin 5AC AB C B C C C =⇒=⇒=,由余弦定理得,22211cos 25BC AC AB C BC AC BC +-=⇒=⋅,则77cos 125BC θ=- ,故选B. 6.C解析:C 【分析】根据向量的运算法则,求得12AM AD AB =+,2132MN AD AB =-+,再结合向量的数量积的运算公式,即可求解. 【详解】由题意,作出图形,如图所示:由图及题意,根据向量的运算法则,可得12AM AD DM AD AB =+=+, 2132MN CN CM CB CD =-=-21213232BC DC AD AB =-+=-+,所以2212121||||23234AM MN AD AB AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-+=-⋅+⋅ ⎪ ⎪⎝⎭⎝⎭21936334=-⨯+⨯=.故选C .【点睛】本题主要考查了向量的运算法则,以及平面向量的数量积的运算,其中解答中熟练应用向量的运算法则和向量的数量积的运算公式是解答的关键,着重考查推理与运算能力.7.D解析:D 【分析】以BA 和BC 为基底,表示n BE ,根据n E ,A ,C 三点共线,可得1193331442+-++=++n n n a a a ,构造等比数列,即可求出通项公式. 【详解】113(32),44+=-+=-=-n n n n n n n n E A a E B a E D E D BD BE BC BE , 113(32)()44n n n n n E A a E B a BC BE +∴=-+-113(32)(32)44n n n n a a E B a BC +=---+ 又=-n n E A BA BE113(32)(32=)44+∴---+-n n n n n a a E B a BC BA BE113(33)(32)44+-∴++=++n n n n a a BE a BC BA因为n E ,A ,C 三点共线113(33)1(32)44+-++=++∴n n n a a a ,即1=32++n n a a ,即1+1=3(1)++n n a a ,所以数列{1}n a +是等比数列,首项为2,公比为3.1+1=23-∴⋅n n a ,即1=23-1-⋅n n a , 故选:D . 【点睛】本题考查了平面向量基本定理和等比数列的通项公式,考查了运算求解能力和逻辑推理能力,属于中档题.8.B解析:B 【分析】由向量的运算法则,化简得1344AD AB AC =+,再由AD AB AC λμ=+,即可求得,λμ 的值,即可求解. 【详解】由向量的运算法则,可得34=+=+AD AB BD AB BC 313()444AB AC AB AB AC =+-=+, 因为AD AB AC λμ=+,所以13,44λμ==,从而求得13λμ=,故选:B . 【点睛】该题考查的是有关向量的基本定理,在解题的过程中,需要利用向量直角的关系,结合三角形法则,即可求得结果,属于基础题.9.B解析:B 【分析】先根据已知条件求解出cos α的值,然后根据,αβ之间的关系结合诱导公式求解出cos β的值. 【详解】 因为3cos 5α==,且180βα=+︒, 所以()3cos cos 180cos 5βαα=+︒=-=-, 故选:B. 【点睛】结论点睛:三角函数定义有如下推广:设点(),P x y 为角α终边上任意一点且不与原点重合,r OP =,则()sin ,cos ,tan 0y x yx r r xααα===≠. 10.C解析:C 【分析】根据题意,利用辅助角公式和两角和的正弦公式化简得()2sin(2)3f x x π=+,根据2T ωπ=求出最小正周期即可判断①;利用整体代入法求出()y f x =的对称轴,即可判断②;利用整体代入法求出()y f x =的单调减区间,从而可得在区间2,63ππ⎡⎤⎢⎥⎣⎦上先减后增,即可判断③;根据三角函数的平移伸缩的性质和诱导公式化简,即可求出平移后函数,从而可判断④. 【详解】解:函数()2sin cos sin 22sin(2)3f x x x x x x x π++=+,即:()2sin(2)3f x x π=+,所以()f x 的最小正周期为222T πππω===,故①正确; 令2,32πππ+=+∈x k k Z ,解得:,122k x k Z ππ=+∈, 当0k =时,则直线12x π=为()y f x =的对称轴,故②正确;令3222,232k x k k Z πππππ+≤+≤+∈,解得:7,1212ππππ+≤≤+∈k x k k Z , 所以()f x 的单调递减区间为:7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当0k =时,()f x 的一个单调递减区间为7,1212ππ⎡⎤⎢⎥⎣⎦, 则区间7,612ππ⎡⎤⎢⎥⎣⎦上单调递减,故在区间2121,3228,6ππππ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦上先减后增,故③错误; 把函数2cos2y x =的图象上所有点向右平移12π个单位长度,得到s 2)2cos 22co 22cos 2126332sin(2y x x x x πππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-=-=+-= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎦⎣⎦+⎝⎭⎣即平移后得到函数()y f x =的图象,故④正确. 所以所有正确结论的编号是:①②④. 故选:C. 【点睛】关键点点睛:本题考查三角函数的图象和性质,熟练掌握正弦型函数的周期、对称轴、单调区间的求法,以及三角函数的平移伸缩是解题的关键,还考查辅助角公式、两角和的正弦公式以及诱导公式的应用,考查学生化简运算能力.11.D解析:D 【分析】根据各函数的特征如函数值的正负,单调性、奇偶性,定义域、值域等进行判断. 【详解】左边第一个图象中0x <时,0y <,只有③满足,此时只有D 可选,实际上,左边第二个图象关于y 轴对称,是偶函数,只有②满足,而0x >时,10y x x=+>恒成立,只有最右边的图象满足,由此也可得顺序是③②①④,选D . 故选:D . 【点睛】思路点睛:本题考查由函数解析式选择函数图象,解题时可两者结合,由函数解析式和图象分别确定函数的性质,如奇偶性、单调性、函数值的正负,特殊的函数值,变化趋势等等,两者对照可得结论.12.B解析:B 【分析】 由32341234T πππ⎛⎫=--= ⎪⎝⎭可求出T π=,进而可得2ω=,令 ()22122k k Z ππϕπ⨯+=+∈结合()0,ϕπ∈即可求得ϕ的值,再根据三角函数图象的伸缩变换即可求()g x 的解析式. 【详解】 由图知32934123124T ππππ⎛⎫=--== ⎪⎝⎭, 所以T π=,可得2ππω=,解得2ω=,所以()()2sin 2f x x ϕ=+, 令()22122k k Z ππϕπ⨯+=+∈,所以()23k k Z πϕπ=+∈,因为()0,ϕπ∈,所以令0k =,可得3πϕ=,所以()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,将()y f x =图像上所有点的横坐标缩小到原来的12(纵坐标不变), 可得()2sin 43g x x π⎛⎫=+ ⎪⎝⎭, 故选:B二、填空题13.【分析】利用同角三角函数的平方关系求得的值然后利用两角和的余弦公式可求得的值【详解】因为则又所以所以故答案为:【点睛】本题考查利用两角和的余弦公式求值同时也考查了同角三角函数基本关系的应用考查计算能解析:2【分析】利用同角三角函数的平方关系求得cos α、()sin αβ+的值,然后利用两角和的余弦公式可求得()cos 2αβ+的值. 【详解】 因为α、0,2πβ⎛⎫∈ ⎪⎝⎭,则0αβ<+<π,又10sin10,()cos 5αβ+=,所以,cos 10α==,()sin αβ+==所以()()()()cos 2cos cos cos sin sin αβααβααβααβ+=++=+-+⎡⎤⎣⎦2-=. 【点睛】本题考查利用两角和的余弦公式求值,同时也考查了同角三角函数基本关系的应用,考查计算能力,属于中等题.14.【分析】根据得到将已知等式两边平方利用同角三角函数基本关系式可求的值然后利用二倍角公式化简求解【详解】∵∴∴∵两边平方可得∴故答案为:【点睛】本题主要考查三角函数的同角基本关系式以及倍角公式的应用还解析:85- 【分析】 根据1sin cos 5x x +=得到|cos ||sin |x x >, 将已知等式两边平方,利用同角三角函数基本关系式可求sin 2x ,cos2x 的值,然后利用二倍角公式化简求解. 【详解】 ∵02x π-<<,1sin cos 5x x +=, ∴|cos ||sin |x x >, ∴04x π-<<,π202x -<<∵1sin cos 5x x +=,两边平方, 可得24sin 225x =-,7cos 225x =,∴21cos 282sin cos cos sin 225x x x x x +-=-=-. 故答案为:85-.【点睛】本题主要考查三角函数的同角基本关系式以及倍角公式的应用,还考查了运算求解的能力,属于中档题.15.【分析】将已知等式化边为角结合两角和的正弦公式化简可得已知由余弦定理和基本不等式求出的最大值结合即可求解【详解】由正弦定理及得因为所以化简可得因为所以因为所以由已知及余弦定理得即因为所以得所以当且仅解析:【分析】将已知等式化边为角,结合两角和的正弦公式化简可得B ,已知b ,由余弦定理和基本不等式,求出a c +的最大值,结合a c b +>,即可求解. 【详解】由正弦定理及22cos c a b A -=, 得2sin sin 2sin cos C A B A -=. 因为()C A B π=-+,所以()2sinsin 2sin cos A B A B A +-=.化简可得()sin 2cos 10A B -=.因为sin 0A ≠,所以1cos 2B =. 因为0B π<<,所以3B π=.由已知及余弦定理,得2223b a c ac =+-=, 即()233a c ac +-=,因为0a >,0c >,所以()22332a c a c +⎛⎫+-≤ ⎪⎝⎭,得()212a c +≤,所以a c +≤,当且仅当a c ==.又因三角形任意两边之和大于第三边,所以a c +>,a c <+≤故a c +的取值范围为.故答案为: 【点睛】本题考查正弦定理、余弦定理、三角恒等变换解三角形,利用基本不等式求最值,属于中档题.16.【分析】建立如图所示的坐标系则设则所以从而结合可得对任意恒成立则必然成立可得而从而可求得结果【详解】解:以线段的中点为原点以所在的直线为轴以其中垂线为轴建立直角坐标系则设则所以因为所以化简得由于上述 解析:9-【分析】建立如图所示的坐标系,则(5,0),(5,0)A B -,设(,)P x y ,则(5,),(10,0)AP x y AB =+=,所以2(21010,2)AP AB x y λλ-=+-,从而2(21010,2)AP AB x y λλ-=+-,结合28AP AB λ-≥,可得222100(20040)4404360x x x y λλ-+++++≥,对任意R λ∈恒成立,则0∆≤必然成立,可得4y ≥,而2225PA PB x y ⋅=+-216259x ≥+-≥-,从而可求得结果 【详解】解:以线段AB 的中点为原点,以AB 所在的直线为x 轴,以其中垂线为y 轴,建立直角坐标系,则(5,0),(5,0)A B -,设(,)P x y ,则(5,),(10,0)AP x y AB =+=, 所以2(21010,2)AP AB x y λλ-=+-,因为28AP AB λ-≥,所以22(21010)464x y λ+-+≥,化简得222100(20040)4404360x x x y λλ-+++++≥, 由于上述不等式对任意R λ∈恒成立,则0∆≤必然成立,222(20040)4100(440436)0x x x y ∆=+-⨯⨯+++≤,解得4y ≥,所以4y ≥或4y ≤-, 因为(5,),(5,)PA x y PB x y =---=--, 所以2225PA PB x y ⋅=+-, 因为x ∈R ,216y ≥,所以2222516259x y x +-≥+-≥-, 即9PA PB ⋅≥-,所以PA PB ⋅的最小值为9-, 故答案为:9-【点睛】此题考查向量的数量积运算,考查数形结合思想,考查计算能力,属于中档题17.【分析】设的重心为点可知与关于点对称利用重心的向量性质可求得实数的值【详解】设的重心为点则由于和的面积相等则与关于点对称则解得故答案为:【点睛】本题考查了平面向量的数乘运算和线性运算涉及三角形重心向解析:23【分析】设ABC ∆的重心为点G ,可知ABC ∆与111A B C ∆关于点G 对称,利用重心的向量性质可求得实数λ的值. 【详解】设ABC ∆的重心为点G ,则3AB AC AG +=,()13AA AB AC AG λλ∴=+=, 由于ABC ∆和111A B C ∆的面积相等,则ABC ∆与111A B C ∆关于点G 对称, 则12AA AG =,32λ∴=,解得23λ=. 故答案为:23. 【点睛】本题考查了平面向量的数乘运算和线性运算,涉及三角形重心向量性质的应用,考查计算能力,属于中等题.18.6【分析】根据平方处理求得即可得解【详解】在中已知点是边的中点解得则故答案为:6【点睛】此题考查平面向量的基本运算关键在于根据向量的运算法则求出模长根据数量积的运算律计算求解解析:6【分析】 根据()12CP CA CB =+,平方处理求得2CB =,()12CP CA CA CB CA ⋅=+⋅即可得解. 【详解】在ABC △中,已知4CA =,3CP 23ACB π∠=,点P 是边AB 的中点, ()12CP CA CB =+ ()222124CP CA CB CA CB =++⋅ 211316842CB CB ⎛⎫⎛⎫=++⨯- ⎪ ⎪⎝⎭⎝⎭,解得2CB =则()()21111162462222CP CA CA CB CA CA CB CA ⎛⎫⎛⎫⋅=+⋅=+⋅=+⨯⨯-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:6 【点睛】此题考查平面向量的基本运算,关键在于根据向量的运算法则求出模长,根据数量积的运算律计算求解.19.【分析】和的图象都关于对称所以①②由①②结合即可得到答案【详解】由题意因为和的图象都关于对称所以①②由①②得又所以将代入①得注意到所以所以故答案为:【点睛】本题考查正弦型函数的性质涉及到函数图象的平解析:34π-【分析】()f x 和()g x 的图象都关于4x π=对称,所以11,42k k Z ππωθπ+=+∈①,22,432k k Z πππωωθπ-+=+∈②,由①②结合06,22ππωθ<<-<<即可得到答案.【详解】由题意,()()sin()33g x f x x ππωωθ=-=-+,因为()f x 和()g x 的图象都关于4x π=对 称,所以11,42k k Z ππωθπ+=+∈①,22,432k k Z πππωωθπ-+=+∈②,由①②,得12123(),,k k k k Z ω=-∈,又06ω<<,所以3ω=,将3ω=代入①,得11,4k k Z πθπ=-∈,注意到22ππθ-<<,所以4πθ=-,所以34ωθπ⋅=-.故答案为:34π- 【点睛】本题考查正弦型函数的性质,涉及到函数图象的平移、函数的对称性,考查学生的运算求解能力,是一道中档题.20.【分析】根据题意分析可得有即函数是周期为6的周期函数进而可得结合函数的奇偶性分析可得答案【详解】根据题意函数满足则有则函数是周期为6的周期函数则又由为偶函数则故;故答案为:【点睛】本题主要考查函数的 解析:2019-【分析】根据题意,分析可得有()()()63f x f x f x +=-+=,即函数()f x 是周期为6的周期函数,进而可得()()()2020202222f f f =-=-,结合函数的奇偶性分析可得答案. 【详解】根据题意,函数()f x 满足()()3f x f x +=-, 则有()()()63f x f x f x +=-+=, 则函数()f x 是周期为6的周期函数, 则()()()2020202222f f f =-=-,又由()f x 为偶函数,则()()()2212019f f f -==--=-, 故()20202019f =-; 故答案为:2019-. 【点睛】本题主要考查函数的奇偶性与周期性的应用,注意分析函数的周期性,属于中档题.三、解答题21.(1)7;(2)()2f x x x =+,单调递增;(3)-1.【分析】(1)根据题意可得()()3214f f a a =+=+,再由()311f =即可求解. (2)设2(]0,x ∈,则2(2,4]x +∈,代入()()227f x f x +=+即可得出()2f x x x =+,再由分段函数单调性判断方法即可求解.(3)由(2)知,当4x >时,()21f x ≥,且由条件知,()12f =,根据()g x 的单调性可得()1h x ≥恒成立,设cos [0,1]x t =∈,只需不等式222(1)0mt t m +-+≥在[0,1]t ∈上恒成立,讨论m 的取值范围即可求解. 【详解】(1)由题意()12f =,所以()()3214f f a a =+=+, 又()2323631111f =⨯-⨯+=,因为411a +=,所以7a =; (2)设2(]0,x ∈,则2(2,4]x +∈,所以()2222(2)6(2)11227f x x x x x +=+-++=++,又()()227f x f x +=+,代入解得:()2f x x x =+;显然,()f x 在(0,2],(2,4]上分别是单增函数, 又()26f =,而当2x +→时,7y →, 因为76>,所以()f x 在(0,4]上单调递增; (3)由(2)知,()f x 是区间(0,4]上单调递增, 且(2,4]x ∈时,()419f =,()7f x >,且当4x >时,设(2,22](2,)x n n n n Z ∈+≥∈,则(22)(2,4]x n --∈,()232()2(2)72(4)7(21)2(6)7221f x f x f x f x =-+=-+⋅+=-+⋅++ ()1232[(22)]72221n n n f x n ---=⋅⋅⋅=--+⋅++⋅⋅⋅++ ()123727222121n n n --->⋅+⋅++⋅⋅⋅++≥且由条件知,()12f =; 再看函数()24 log 231x g x ⎛⎫=+ ⎪-⎝⎭, 由420031x x +>⇒>-,即定义域为(0,)+∞,且4231xy =+-在(0,)+∞上单减, 所以()24log 231x g x ⎛⎫=+⎪-⎝⎭在(0,)+∞上单减, 又发现()12g =,所以()()()1f h x g h x h x ≥⇒≥⎡⎤⎡⎤⎣⎦⎣⎦恒成立, 即()22cos 2cos 11x m x +-≥在,22x ππ⎡⎤∈-⎢⎥⎣⎦上恒成立, 设cos [0,1]x t =∈,则不等式222(1)0mt t m +-+≥在[0,1]t ∈上恒成立,①当0m =时,不等式化为210t -≥,显然不满足恒成立; ②当0m >时,当0t =代入得()10m -+≥,矛盾;③当0m <时,只需(1)01122(1)01m m m m m m ⎧-+≥≤-⎧⇒⇒=-⎨⎨+-+≥≥-⎩⎩, 综上,实数m 的值为-1. 【点睛】关键点点睛:本题考查了换元法求函数的解析式,函数的单调性,解题的关键是根据函数的单调性得出()1h x ≥,转化为二次不等式恒成立,考查了分类讨论的思想. 22.(1)最小正周期π,单调递增区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈;(2)4x π=时,()f x 取得最大值1;12x π=-时,()f x 取得最小值2-;(3))m ∈,()12tan 3x x +=-. 【分析】(1)利用和与差以及辅助角公式基本公式将函数化为()sin y A ωx φ=+的形式,再利用周期公式求函数的最小正周期,最后将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间; (2)当,64x ππ⎡⎤∈-⎢⎥⎣⎦时,利用正弦函数的定义域和值域,求得()f x 的最大值和最小值,并指出()f x 取得最值时对应的x 的值. (3)函数()()g x f x m =-所在0,2π⎡⎤⎢⎥⎣⎦匀上有两个不同的零点1x ,2x ,转化为函数()f x 与函数y m =有两个交点;可求m 的范围,结合三角函数的图象可知,1x ,2x ,关于对称轴是对称的,可知12x x +,即可求()12tan x x +的值. 【详解】解:(1)函数()4sin cos 3f x x x π⎛⎫=-+ ⎪⎝⎭化简可得:()2112sin cos sin 2cos 222f x x x x x x ⎫=-=-++⎪⎭sin 222sin 23x x x π⎛⎫=-=- ⎪⎝⎭, 所以函数的最小正周期22T ππ==, 由222232k x k πππππ-≤-≤+,解得:1212k x k π5ππ-≤≤π+, 所以函数的单调递增区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. (2)由于64x ππ-≤≤,可得22336x πππ-≤-≤, 当236x ππ-=,即4x π=时,()f x 取得最大值1; 当232x ππ-=-,即12x π=-时,()f x 取得最小值2-.(3)函数()()g x f x m =-所在0,2π⎡⎤⎢⎥⎣⎦匀上有两个不同的零点1x ',2x ',转化为函数()f x 与函数y m =有两个交点, 令23u x π=-,∵ 0,2x π⎡⎤∈⎢⎥⎣⎦,∴2,33u ππ⎡⎤∈-⎢⎥⎣⎦, 可得sin y u =的图象(如图).从图可知:)m ∈时,函数sin y u =与函数y m =有两个交点,其横坐标分别为1x ',2x '.故得实数m 的取值范围是)m ∈, 由题意可知1x ',2x '是关于对称轴是对称的: 那么函数在0,2π⎡⎤⎢⎥⎣⎦的对称轴512x π=, 所以1256x x π''+=,所以()125tan tan63x x π''+==-.【点睛】本题第三问解题的关键在于将问题转化为函数()f x 与函数y m =有两个交点,进而讨论函数在0,2x π⎡⎤∈⎢⎥⎣⎦上的图象,根据数形结合思想求解,考查运算求解能力,化归转化思想,是中档题.23.(1)22143x y +=;(2)[0,12]. 【分析】(1)由椭圆的离心率及焦距,可得1,2c a ==,3b =(2)设()00,P x y ,(2,0)A -,1(1,0)F -,再将向量的数量积转化为坐标运算,研究函数的最值,即可得答案;【详解】解:(1)由题意,∵122F F =,椭圆的离心率为12e =, ∴1,2c a ==, ∴3b =∴椭圆的标准方程为22143x y +=. (2)设()00,P x y ,(2,0)A -,1(1,0)F -,∴()()22200001001232PF P x x y x A x y ⋅----+=+++=, ∵P 点在椭圆上,∴2200143x y +=,2200334y x =-,∴21001354PF PA x x ⋅=++, 由椭圆方程得022x -≤≤,二次函数开口向上,对称轴062x =-<-,当02x =-时,取最小值0,当02x =时,取最大值12.∴1PF PA ⋅的取值范围是[0,12]. 【点睛】本题考查椭圆标准方程的求解、向量数量积的取值范围,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意问题转化为二次函数的最值问题.24.(1)T π=;(2)5,88ππ⎡⎤⎢⎥⎣⎦;(3)()2+∞. 【分析】(1)化简函数()214f x x π⎛⎫=++ ⎪⎝⎭,结合三角函数的图象与性质,即可求解; (2)由正弦函数的单调性可得答案;(3)化简()2g x x =,根据,63x ππ⎡⎤∈-⎢⎥⎣⎦,求得()g x ,再根据题意,得到2a ->,即可求解. 【详解】(1)由题意,函数()sin 2cos21214f x x x x π⎛⎫=++=++ ⎪⎝⎭, 可得其最小正周期是22T ππ==. (2)由3222,242k x k k Z πππππ+≤+≤+∈得 5,88k x k k Z ππππ+≤≤+∈ 又∵[]0,x π∈,∴5,88x ππ⎡⎤∈⎢⎥⎣⎦ 故单减区间为5,88ππ⎡⎤⎢⎥⎣⎦.(3)由()122844g x f x x x πππ⎛⎫⎛⎫=+-=++= ⎪ ⎪⎝⎭⎝⎭ 因为,63x ππ⎡⎤∈-⎢⎥⎣⎦,得22,33x ππ⎡⎤∈-⎢⎥⎣⎦,则1cos 2,12x ⎡⎤∈-⎢⎥⎣⎦,所以()2g x x ⎡=∈⎢⎣,若()2g x a <-对于,63x ππ⎡⎤∈-⎢⎥⎣⎦恒成立,则()max 2a g x ->所以2a >+,即求实数a 的取值范围()2+∞.【点睛】本题主要考查了三角恒等变换,以及三角函数的图象与性质综合应用,其中解答中利用三角恒等变换的公式,求得函数的解析式,结合三角函数的图象与性质求解是解答的关键,着重考查了推理与运算能力,属于中档试题.25.(1)2133AD AB AC =+,2136EB AB AC =-,(2) 【分析】(1)利用平面向量基本定理和向量的加减法法则进行求解即可(2)如图,以AC ,AB 所在的方向分别为x 轴,y 轴的正方向,建立平面直角坐标系,然后表示出向量EB 与EC 的坐标,再利用向量夹角的坐标公式求解【详解】解:(1)因为D 为斜边BC 的靠近点B 的三等分点, 所以1111()3333BD BC AC AB AC AB ==-=-, 所以2133AD AB BD AB AC =+=+, 因为E 为AD 的中点, 所以112111223336AE AD AB AC AB AC ⎛⎫==+=+ ⎪⎝⎭, 所以2136EB AB AE AB AC =-=-, (2)1536EC AC AE AB AC =-=-+, 如图,以AC ,AB 所在的方向分别为x 轴,y 轴的正方向,建立平面直角坐标系, 则(0,3),(6,0)B C , 所以21(1,2)36EB AB AC =-=-,15(5,1)36EC AB AC =-+=- ,所以(1)52(1)7EB EC ⋅=-⨯+⨯-=-, 2222(1)25,5(1)26EB EC =-+==+-= 设向量EB 与EC 夹角为θ,则7130cos 130526EB ECEB EC θ⋅===-⨯⋅ 【点睛】此题考查平面向量基本定理的应用,考查向量夹角公式的应用,考查计算能力,属于中档题26.(1)3tan 4α=;(2)3sin 3sin 3cos 25ααα=--. 【分析】 (1)利用诱导公式可得出12cos sin 25αα=,根据题意可得出关于cos α、sin α的值,求出cos α、sin α的值,利用同角三角函数的商数关系可求得tan α的值; (2)将所求代数式变形为()()3322sin sin sin 3cos sin 3cos sin cos αααααααα=--+,在分式的分子和分母中同时除以3cos α,利用弦化切可求得所求代数式的值.【详解】(1)712sin cos 2225ππαα⎛⎫⎛⎫---+= ⎪ ⎪⎝⎭⎝⎭, 由诱导公式可得123sin cos cos sin 2522ππαααα⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭, 0,4πα⎛⎫∈ ⎪⎝⎭,cos sin 0αα∴>>,由已知可得2212cos sin 25cos sin 1cos sin 0αααααα⎧=⎪⎪+=⎨⎪>>⎪⎩,解得4cos 53sin 5αα⎧=⎪⎪⎨⎪=⎪⎩, 因此,sin 3tan cos 4ααα==; (2)()()3322sin sin sin 3cos sin 3cos sin cos αααααααα=--+()()332223sin tan 325sin sin tan 3tan 131cos cos cos ααααααααα===-⎛⎫-+⎛⎫-+ ⎪⎪⎝⎭⎝⎭. 【点睛】方法点睛:三角函数求值问题中已知tan α,求关于sin α、cos α的代数式的值时,一般利用弦化切公式后直接代入tan α的值,在关于sin α、cos α的齐次式中,常常利用弦化切的方程转化为含tan α的代数式.。

北师大版高一数学必修四复习测试全套及答案

北师大版高一数学必修四复习测试全套及答案

北师大版高一数学必修四复习测试全套及答案北师大版高一数学必修四复习测试全套及答案第一章章末分层突破[自我校对]①弧度制②负角③零角④y=cos x⑤y=tan x三角函数的定义及三角函数函数值,利用三角函数线判断三角函数的符号,借助三角函数线求三角函数的定义域.(1)点P 从点(2,0)出发,沿圆x 2+y 2=4逆时针方向运动π3弧长到达Q 点,则Q 点的坐标为;(2)函数y =lg(2sin x -1)+1-2cos x 的定义域为.【精彩点拨】(1)先求∠POQ ,再利用三角函数定义求出Q 点坐标;(2)先列出三角函数的不等式组,再利用三角函数线求解.【规范解答】 (1)设∠POQ =θ,则θ=π32=π6,设Q (x ,y ),根据三角函数的定义,有x =2cos π6=3,y =2sin π6=1,即Q 点的坐标为(3,1).(2)要使函数有意义,必须有 ??2sin x -1>0,1-2c os x ≥0,即sin x >12,cos x ≤12,解得π6+2k π<5<="" p="">6π+2k π(k ∈Z ),π3+2k π≤x ≤53π+2k π(k ∈Z ),∴π3+2k π≤x <5π6+2k π(k ∈Z ).故所求函数的定义域为π3+2k π,5π6+2k π(k ∈Z ).【答案】 (1)(3,1) (2)π3+2k π,5π6+2k π(k ∈Z )[再练一题]1.求函数f (x )=-sin x +tan x -1的定义域.【解】函数f (x )有意义,则-sin x ≥0,tan x -1≥0,即sin x ≤0,tan x ≥1. 如图所示,结合三角函数线知2k π+π≤x ≤2k π+2π(k ∈Z ),k π+π4≤x <="" p="" π+π2(k="" ∈z="">∴2k π+5π4≤x <2k π+3π2(k ∈Z ).故f (x )的定义域为2k π+5π4,2k π+3π2(k ∈Z ).用诱导公式可以把任意角的三角函数转化为锐角三角函数,也可以实现正弦与余弦、正切与余切之间函数名称的变换.2k π+α,π±α,-α,2π±α,π2±α的诱导公式可归纳为:k ×π2+α(k ∈Z )的三角函数值.当k 为偶数时,得α的同名三角函数值;当k 为奇数时,得α的余名三角函数值,然后在前面加上一个把α看成锐角时原函数值的符号,概括为“奇变偶不变,符号看象限”,这里的奇偶指整数k 的奇偶.已知f (α)=sin ? ????-α+π2cos ? ??3π2-αtan (α+5π)tan (-α-π)sin (α-3π),(1)化简f (α);(2)若α=-25π3,求f (α)的值.【精彩点拨】直接应用诱导公式求解.【规范解答】(1)f (α)=cos α·(-sin α)·tan α(-tan α)·sin (π+α)=cos α·sin α·sin αcos α-sin αcos α·sin α=-cos α.(2)f ? ????-25π3=-cos ? ????-25π3=-cos ? ?8π+π3 =-cos π3=-12. [再练一题]2.若sin ? ????3π2+θ=14,求cos (π+θ)cos θ[cos (π+θ)-1]+cos (θ-2π)cos (θ+2π)cos (θ+π)+cos (-θ).【解】因为sin ? ????3π2+θ=14,所以cos θ=-14.所以cos (π+θ)cos θ[cos (π+θ)-1]+cos (θ-2π)cos (θ+2π)cos (θ+π)+cos (-θ)=-cos θcos θ(-cos θ-1)+cos θcos θ(-cos θ)+cos θ=cos θcos θ(cos θ+1)-cos θcos θ(cos θ-1)=1cos θ+1-1cos θ-1=1-14+1-1-14-1=3215.考查中,主要体现在三角函数图像的变换和解析式的确定,以及通过对图像的描绘、观察来讨论函数的有关性质.如图1-1是函数y =A sin(ωx +φ)+kA >0,ω>0,φ<π2的一段图像.图1-1(1)求此函数解析式;(2)分析一下该函数是如何通过y =sin x 变换得来的.【精彩点拨】(1)先确定A ,k ,再根据周期求ω,最后确定φ.(2)可先平移再伸缩,也可先伸缩再平移.【规范解答】(1)由图像知,A =-12-? ???-322=12,k =-12+? ???-322=-1,T =2×? ????2π3-π6=π,∴ω=2πT =2,∴y =12sin(2x +φ)-1.当x =π6时,2×π6+φ=π2,∴φ=π6. ∴所求函数解析式为y =12sin ? ??2x +π6-1. (2)把y =sin x 向左平移π6个单位得到y =sin ? ????x +π6,然后纵坐标保持不变,横坐标缩短为原来的12,得到y =sin ? ?2x +π6,再横坐标保持不变,纵坐标变为原来的12,得到y =12sin ? ????2x +π6,最后把函数y =12sin ? ????2x +π6的图像向下平移1个单位,得到y =12sin ? ?2x +π6-1的图像.[再练一题]3.若函数f (x )=A sin(2x +φ)(A >0,0<φ<π)在x =π6处取得最大值,且最大值为3,求函数f (x )的解析式,并说明怎样变换f (x )的图像能得到g (x )=3sin ? ?2x -π6的图像.【解】因为函数f (x )最大值为3,所以A =3,又当x =π6时函数f (x )取得最大值,所以sin ? ??π3+φ=1.因为0<φ<π,故φ=π6,故函数f (x )的解析式为f (x )=3sin ? ?2x +π6,将f (x )的图像向右移π6个单位,即得g (x )=3sin2?x -π6+π6=3sin ? ????2x -π6的图像.奇偶性、对称性等有关性质,特别是复合函数的周期性、单调性和最值(值域),应引起重视.已知函数f (x )=2sin ? ?2x +π6+a +1(其中a 为常数).(1)求f (x )的单调区间;(2)若x ∈0,π2时,f (x )的最大值为4,求a 的值;(3)求f (x )取最大值时,x 的取值集合.【精彩点拨】 (1)将2x +π6看成一个整体,利用y =sin x 的单调区间求解.(2)先求x ∈0,π2时,2x +π6的范围,再根据最值求a 的值. (3)先求f (x )取最大值时2x +π6的值,再求x 的值.【规范解答】 (1)由-π2+2k π≤2x +π6≤π2+2k π(k ∈Z ),解得-π3+k π≤x ≤π6+k π(k ∈Z ),∴函数f (x )的单调增区间为-π3+k π,π6+k π(k ∈Z ),由π2+2k π≤2x +π6≤3π2+2k π(k ∈Z ),解得π6+k π≤x ≤2π3+k π(k ∈Z ),∴函数f (x )的单调减区间为π6+k π,2π3+k π(k ∈Z ).(2)∵0≤x ≤π2,∴π6≤2x +π6≤7π6,∴-12≤sin ? ??2x +π6≤1,∴f (x )的最大值为2+a +1=4,∴a =1. (3)当f (x )取最大值时,2x +π6=π2+2k π(k ∈Z ).∴2x =π3+2k π,∴x =π6+k π(k ∈Z ).∴当f (x )取最大值时, x的取值集合是x ?x =π6+k π,k ∈Z . [再练一题]4.已知函数f (x )=2sin ? ?2x -π4,(x ∈R ) (1)求函数f (x )的最小正周期;(2)求函数f (x )在区间π8,34π上的最大值和最小值.【解】(1)∵f (x )=2sin ? ?2x -π4,∴T =2πω=2π2=π,故f (x )的最小正周期为π.(2)f (x )=2sin ? ????2x -π4在区间π8,3π8上是增函数,在区间3π8,3π4上是减函数,∴函数f (x )在x =3π8处取得最大值,在两端点之一处取得最小值.又f ? ????π8=0,f ? ??3π8= 2.F ? ????34π=2sin ? ??3π2-π4=-2cos π4=-1. 故函数f (x )在区间π8,3π4上的最大值为2,最小值为-1.问题转化为数量关系去求解,体现了数与形的联系.在三角函数中可以利用单位圆中的三角函数线或三角函数图像研究三角函数的求值、大小比较、最值、解三角不等式、单调区间、对称性等问题,其特点是直观形象.若集合M =?θsin θ≥12,0≤θ≤π,N =?θcos θ≤12,0≤θ≤π,求M ∩N .【精彩点拨】本题主要考查已知三角函数值范围求角,可以根据正弦函数图像和余弦函数图像,作出集合M 和N ,然后求M ∩N ,或利用单位圆中三角函数线确定集合M ,N .【规范解答】法一:首先作出正弦函数与余弦函数的图像以及直线y =12,如图:结合图像得集合M ,N 分别为M =?θ π6≤θ≤5π6,N =θπ3≤θ≤π,得M ∩N =θπ3≤θ≤56π. 法二:作出单位圆的正弦线和余弦线.如图:由单位圆三角函数线知:M =?θ π6≤θ≤5π6,N =θπ3≤θ≤π,得M ∩N =θπ3≤θ≤56π. [再练一题]5.(1)求满足不等式cos x <-12的角x 的集合; (2)求y =2sin x ? ??-π3≤x ≤2π3的值域.【解】 (1)作出函数y =cos x 在[0,2π]上的图像,如图所示:由于cos 2π3=cos 4π3=-12,故当2π3<-1<="" p="" x="">2.由于y =cos x 的周期为2π,∴适合cos x <-12的角x 的集合为x2π3+2k π<="" =sin="">由图像可知,当-π3≤x ≤2π3时,-32≤sin x ≤1,∴-3≤2sin x ≤2,因此函数y =2sin x ? ??-π3≤x ≤2π3的值域为[-3,2].1.要得到函数y =sin ? 4x -π3的图像,只需将函数y =sin 4x 的图像( ) A .向左平移π12个单位 B .向右平移π12个单位 C .向左平移π3个单位D .向右平移π3个单位【解析】由y =sin ? ????4x -π3=sin 4? ?x -π12得,只需将y =sin 4x 的图像向右平移π12个单位即可,故选B.【答案】 B2.函数f (x )=cos(ωx +φ)的部分图像如图1-2所示,则f (x )的单调递减区间为( )A .? ?k π-14,k π+34,k ∈ZB.? ?2k π-14,2k π+34,k ∈Z C .? ????k -14,k +34,k ∈ZD.? ?2k -14,2k +34,k ∈Z 【解析】由图像知,周期T =2? ????54-14=2,∴2πω=2,∴ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ? ?πx +π4.由2k π<πx +π4<2k π+π,得2k -14<="">4,k ∈Z ,∴f (x )的单调递减区间为? ?2k -14,2k +34,k ∈Z .故选D.【答案】 D3.如图1-3,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ? ????π6x +φ+k .据此函数可知,这段时间水深(单位:m)的最大值为( )图1-3A .5B .6D .10【解析】根据图像得函数的最小值为2,有-3+k =2,k =5,最大值为3+k =8. 【答案】 C4.已知函数f (x )=sin(ωx +φ)? ?ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图像的对称轴,且f (x )在? ??π18,5π36上单调,则ω的最大值为( )A .11B .9C .7D .5【解析】因为f (x )=sin(ωx +φ)的一个零点为x =-π4,x =π4为y =f (x )图像的对称轴,所以T 4·k =π2(k 为奇数).又T =2πω,所以ω=k (k 为奇数).又函数f (x )在? ????π18,5π36上单调,所以π12≤12×2πω,即ω≤12.若ω=11,又|φ|≤π2,则φ=-π4,此时,f (x )=sin ? ????11x -π4,f (x )在? ????π18,3π44上单调递增,在? ??3π44,5π36上单调递减,不满足条件.若ω=9,又|φ|≤π2,则φ=π4,此时,f (x )=sin ? ????9x +π4,满足f (x )在? ????π18,5π36上单调的条件.故选B.【答案】 B5.某同学用“五点法”画函数f (x )=A sin(ωx +φ)? ?ω>0,|φ|<π2在某一个周期内的图像时,列表并填入了部分数据,如下表:(1)...........)的解析式; (2)将y =f (x )图像上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图像.若y =g (x )图像的一个对称中心为? ??5π12,0,求θ的最小值.【解】 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6,数据补全如下表:且函数解析式为f (x )=5sin ? ???2x -6.(2)由(1)知f (x )=5sin ? ?2x -π6,则g (x )=5sin ? ?2x +2θ-π6.因为函数y =sin x 图像的对称中心为(k π,0),k ∈Z ,令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z . 由于函数y =g (x )的图像关于点? ????5π12,0成中心对称,所以令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z . 由θ>0可知,当k =1时,θ取得最小值π6.第二章章末分层突破[自我校对]①单位向量②坐标表示③数乘向量④坐标⑤夹角公式。

【北师大版】高中数学必修四期末试卷(附答案)(1)

【北师大版】高中数学必修四期末试卷(附答案)(1)

一、选择题1.若()π,2πα∈,πcos sin 042αα⎛⎫+-= ⎪⎝⎭,则πsin 6α⎛⎫+= ⎪⎝⎭( )A .B .0CD .或0 2.已知,22ππα⎛⎫∈- ⎪⎝⎭,1cos 63πα⎛⎫+= ⎪⎝⎭,则sin α=( )A B C .D 3.已知直线3x −y +1=0的倾斜角为α,则1sin22α= A .310 B .35 C .−310D .1104.已知函数()()()()21cos cos 02f x x x x ωωωω=+->,若()f x 在,64ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为( ) A .(]0,2B .(]0,1C .2,13⎛⎤⎥⎝⎦D .20,3⎛⎤ ⎥⎝⎦5.已知a 与b 的夹角为60,4a =,则a b λ-(R λ∈)的最小值为( )A .B .72C .103D 6.已知非零向量,a b 满足4,2a b ==,且a 在b 方向上的投影与b 在a 方向上的投影相等,则a b -等于( )A .1B .2C .5D .37.已知O 是三角形ABC 内部一点,且20OA OB OC ++=,则OAB ∆的面积与OAC ∆的面积之比为( ) A .12B .1C .32D .28.设O 为ABC 内一点,已知2332OA OB OC AB BC CA ++=++,则::AOB BOC COA S S S ∆∆∆= ( )A .1:2:3B .2:3:1C .3:1:2D .3:2:19.已知角α顶点在坐标原点,始边与x 轴非负半轴重合,终边过点()3,4P -,将α的终边逆时针旋转180︒,这时终边所对应的角是β,则cos β=( ) A .45-B .35C .35D .4510.设函数()3sin()10,2f x x πωϕωϕ⎛⎫=++><⎪⎝⎭的最小正周期为π,其图象关于直线3x π=对称,则下列说法正确是( )A .()f x 的图象过点30,2⎛⎫ ⎪⎝⎭; B .()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上单调递减; C .()f x 的一个对称中心是7,012π⎛⎫⎪⎝⎭; D .将()f x 的图象向左平移12ϕ个单位长度得到函数3sin 21y x =+ 的图象. 11.下列命题正确的是( )A .函数sin ||y x =是偶函数又是周期函数B .函数3tan lg3tan xy x+=-是奇函数C .函数tan 6y ax π⎛⎫=+ ⎪⎝⎭的最小正周期是a πD .函数cos(sin )y x =是奇函数12.已知函数y =f (x )的部分图象如图所示,则其解析式可能是( )A .()sin 2f x x x =B .()||sin 2f x x x =C .()cos 2f x x x =D .()||cos2f x x x =二、填空题13.若2cos()3πα-=-,02πα⎛⎫∈- ⎪⎝⎭,则tan α的值是____________.14.如图,在边长为1的正方形ABCD 中,P ,Q 分别在边BC ,CD 上,且PB QD PQ +=,则PAQ ∠的大小为__________.15.已知4sin 3cos 0+=αα,则2sin 23cos +αα的值为____________. 16.在矩形ABCD 中,已知E 、F 分别是BC 、CD 上的点,且满足2BE EC =,3CFFD .若(),AC AE AF R λμλμ=+∈,则λμ+的值为______.17.已知||1,||3,0OA OBOA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,)OC mOA nOB m n R =+∈,则mn等于 . 18.函数(x)Asin(x )f ωϕ=+ (0A >,0>ω,0ϕπ<< )的部分图象如图所示,则4f π⎛⎫= ⎪⎝⎭________.19.已知函数f (x ),任意x 1,x 2∈,22ππ⎛⎫- ⎪⎝⎭(x 1≠x 2),给出下列结论:①f (x +π)=f (x );②f (-x )=f (x );③f (0)=1;④1212()()f x f x x x -->0;⑤1212()()22x x f x f x f ++⎛⎫> ⎪⎝⎭.当()tan f x x =时,正确结论的序号为________.20.已知向量(1,3)a =,1(2,)2b =-,若单位向量c 与2a b -平行,则c =___________.三、解答题21.已知5sin25α=,()5cos 13αβ+=,()0,απ∈,0,2πβ⎛⎫∈ ⎪⎝⎭.(1)求sin 2α的值; (2)求sin β的值.22.如图,在Rt ACB 中,斜边2AB =,1BC =,在以AB 为直径的半圆上有一点D (不含端点),DAB θ∠=,设ABD △的面积1S ,ACD △的面积2S .(1)若2l S S =,求θ;(2)令12S S S =-,求S 的最大值及此时的θ.23.(1)已知非零向量1e 、2e 不共线,欲使12ke e +和12e ke +共线,试确定实数k 的值. (2)已知向量1a =,2b =,()()23a b a b +⊥-,求a 与b 夹角的大小. 24.设非零向量a ,b 不共线.(1)若(),1a t =,()5,b t =,且//a b ,求实数t 的值;(2)若OA a b =+,2OB a b =+,3OC a b =+.求证:A ,B ,C 三点共线.25.函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示:(1)求图中a ,b 的值及函数()f x 的递增区间; (2)若[0,]απ∈,且()2f α=,求α的值.26.函数()()()sin 0,0,0πf x A x A ωϕωϕ=+>><<的部分图象如图所示.(1)求函数()f x 的解析式;(2)求函数()f x 的单调递增区间,并求()f x 取最小值时的自变量x 的集合.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据题意,化简得到cossin222αα+=-,所以3,24αππ⎛⎫∈⎪⎝⎭,取得1sin 2α=-,再利用三角函数的基本关系式和两角和的正弦函数公式,即可求解. 【详解】由cos sin 042παα⎛⎫+-= ⎪⎝⎭,可得22cos sin cos sin 022222αααα⎫-+-=⎪⎝⎭,即cos sin cos sin 022222αααα⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,因为(),2αππ∈,所以,22αππ⎛⎫∈ ⎪⎝⎭,所以cos sin 022αα-≠,解得cos sin 222αα+=-,所以3,24αππ⎛⎫∈ ⎪⎝⎭,所以11sin 2α+=,所以1sin 2α=-,又3,22παπ⎛⎫∈⎪⎝⎭,所以cos 2α==,所以π11sin 0622α⎛⎫+=-= ⎪⎝⎭. 【点睛】三角函数的化简求值的规律总结:1、给角求值:一般给出的角是非特殊角,要观察所给角与特殊角的关系,利用三角变换转化为求特殊角的三角函数值问题;2、给值求值:即给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变角”,使相关角相同或具有某种关系;3、给值求角:实质上可转化为“给值求值”即通过求角的某个三角函数值来求角(注意角的范围).2.D解析:D 【分析】结合同角三角函数基本关系计算sin 6πα⎛⎫+ ⎪⎝⎭的值,再利用两角差的正弦公式进行求解即可.【详解】由,22ππα⎛⎫∈-⎪⎝⎭可得2,633πππα⎛⎫+∈- ⎪⎝⎭, 又11cos cos 6323ππα⎛⎫+=<= ⎪⎝⎭,所以2,633πππα⎛⎫+∈ ⎪⎝⎭所以sin 63πα⎛⎫+== ⎪⎝⎭, sin sin sin cos cos sin 666666ππππππαααα⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1132=-⨯=故选:D 【点睛】本题主要考查两角和与差的正余弦公式与同角三角函数基本关系,解题的关键是熟练运用公式.3.A解析:A 【分析】由题意利用直线的倾斜角和斜率求出tanα的值,再利用三角恒等变换,求出要求式子的值. 【详解】直线3x-y+1=0的倾斜角为α,∴tanα=3,∴2221133sin222219110sin cos tan a sin cos sin cos tan αααααααα=⋅====+++, 故选A . 【点睛】本题主要考查直线的倾斜角和斜率,三角恒等变换,属于中档题.4.D解析:D 【分析】利用二倍角公式和辅助角公式化简函数()f x ,根据()f x 在,64ππ⎡⎤-⎢⎥⎣⎦上单调递增,建立不等关系,解出ω的取值范围. 【详解】因为()1cos 212sin 2226x f x x x ωπωω+⎛⎫=+-=+ ⎪⎝⎭,由题意得,362,262ωπππωπππ⎧-+≥-⎪⎪⎨⎪+≤⎪⎩解得23ω≤,又0>ω,所以203ω<≤. 故选:D 【点睛】本题考查正弦函数单调性的应用,考查三角恒等变换,属于中档题.5.A解析:A 【分析】根据向量的模的表示方法得22222a b a a b b λλλ-=-⋅+,再配方即可得答案. 【详解】解:根据向量模的计算公式得:()()222222216421212a b a a b b b bb λλλλλλ-=-⋅+=-+=-+≥,当且仅当2b λ=时等号成立;所以23a b λ-≥,当且仅当2b λ=时等号成立; 故选:A. 【点睛】方法点睛:向量模的计算公式:22a a a a =⋅=6.B解析:B 【解析】因为a 在b 方向上的投影与b 在a 方向上的投影相等,设这两个向量的夹角为θ,则cos cos 4cos 2cos 2a b πθθθθθ===⇒=,又由2()a b a b -=-且4,2a b ==,所以222()225a b a b a a b b -=-=-⋅+=,故选B.7.A解析:A 【解析】由题意,O 是'AB C ∆的重心,'2OB OB =,所以OAB ∆的面积与OAC ∆的面积之比为12.故选A . 点睛:本题考查平面向量的应用.由重心的结论:若0OA OB OC ++=,则O 是ABC ∆的重心,本题中构造'AB C ∆,O 是'AB C ∆的重心,根据重心的一些几何性质,求出面积比值.8.B解析:B 【分析】根据23OA OB OC ++=32AB BC CA ++,化简得到12033OA OB OC ++=,设12,33OB OD OC OE ==,则O 为ADE 的重心,有AODAOEDOES SS==,则93,,232AOB BOC AOC S S S S S S ∆∆∆===求解. 【详解】由23OA OB OC ++=32AB BC CA ++,得233322OAOA OB OC OB OA OC OB OA OC ++=-+-+-, 整理得:320OA OB OC ++=,12033OA OB OC ∴++=,设12,33OB OD OC OE ==,则0OA OD OE ++=,即O 为ADE 的重心,AODAOEDOESSSS ∴===,则93,,232AOB BOC AOC S S S S S S ∆∆∆===, 93::3::2:3:122AOB BOC AOC S S S ∆∆∆∴==,故选:B.【点睛】本题主要考查平面向量的平面几何中的应用,属于中档题.9.B解析:B 【分析】先根据已知条件求解出cos α的值,然后根据,αβ之间的关系结合诱导公式求解出cos β的值. 【详解】 因为3cos 5α==,且180βα=+︒, 所以()3cos cos 180cos 5βαα=+︒=-=-, 故选:B. 【点睛】结论点睛:三角函数定义有如下推广:设点(),P x y 为角α终边上任意一点且不与原点重合,r OP =,则()sin ,cos ,tan 0y x yx r r xααα===≠. 10.D解析:D 【分析】先根据对称轴及最小正周期,求得函数()f x 的解析式,再结合正弦函数的图象与性质,判断点是否在函数图象上可判断A ,求得函数的单调区间及对称中心即可判断选项BC ,由平移变换求得变化后的解析式并对比即可判断D. 【详解】函数()3sin()10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭的最小正周期是π所以22πωπ==,则()()3sin 21f x x ϕ=++,()()3sin 21f x x ϕ=++图象关于直线3x π=对称,对称轴为2,2x k k Z πϕπ+=+∈,代入可得2,32k k Z ππϕπ⨯+=+∈,解得,6k k Z πϕπ=-+∈,因为,22ππϕ⎛⎫∈- ⎪⎝⎭,所以当0k =时, 6πϕ=-, 则()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭,对于A,当0x =时,()3103sin 11622f π=-+=-+=- ,所以错误; 对于B,()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的单调递减区间为3222,262k x k k πππππ+-+∈Z ≤≤, 解得5,36k x k k Z ππππ+≤≤+∈,因为123ππ<,则()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上不是减函数,所以错误; 对于C ,773sin 213sin 11012126f ππππ⎛⎫⎛⎫=⨯-+=+=≠⎪ ⎪⎝⎭⎝⎭,所以7,012π⎛⎫ ⎪⎝⎭不是()f x 的一个对称中心,所以错误; 对于D ,1212πϕ=,将()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的图象向左平移12π个单位长度得到可得3sin 213sin 21126y x x ππ⎡⎤⎛⎫=-++=+ ⎪⎢⎥⎝⎭⎣⎦,所以能得到3sin 21y x =+的图象,所以正确. 故选: D. 【点睛】本题考查了正弦函数的图象与性质的综合应用,关键点是根据已知条件先求出正弦函数的解析式,还要熟练掌握三角函数的性质才能正确的解题,属于中档题.11.B解析:B 【分析】根据函数的奇偶性与周期性判断各个选项. 【详解】sin y x =是偶函数,但不是周期函数,A 错误;对函数()f x =0>得tan x <<,33k x k k Z ππππ-<<+∈,定义域关于原点对称,()()f x f x -==-=-,函数是奇函数,B 正确;tan 6y ax π⎛⎫=+ ⎪⎝⎭的最小正周期是a π,C 错误;记()g x cos(sin )x =,定义域是R ,()()cos sin cos(sin )cos(sin )()g x x x x f x -=-=-==⎡⎤⎣⎦,()f x 是偶函数,D 错误. 故选:B .【点睛】关键点点睛:本题考查函数的奇偶性与周期性.判断奇偶性一般用奇偶性的定义进行判断.tan y x ω=的最小正周期是T πω=,sin()y x ωϕ=+的最小正周期是2πω. 12.B解析:B【分析】 利用函数()0f π=排除两个选项,再由奇偶性排除一个后可得正确选项.【详解】由图象知()0f π=,经验证只有AB 满足,C 中()cos 2f ππππ==,D 中()f ππ=,排除CD ,A 中函数满足()sin(2)sin 2()f x x x x x f x -=--==为偶函数,B 中函数满足()sin(2)sin 2()f x x x x x f x -=--=-=-为奇函数,而图象关于原点对称,函数为奇函数,排除A ,选B .故选:B .【点睛】思路点睛:由函数图象选择解析式可从以下方面入手:(1)从图象的左右位置,观察函数的定义域;从图象的上下位置,观察函数的值域;(2)从图象的变化趋势观察函数的单调性;(3)从图象的对称性观察函数的奇偶性;(4)从图象的特殊点,排除不合要求的解析式..二、填空题13.【分析】由诱导公式化简再利用同角三角函数间的关系和角的范围可得答案【详解】由且得故答案为:【点睛】本题考查三角函数的诱导公式和同角三角函数间的关系在运用公式时注意角的范围属于基础题解析:2-【分析】由诱导公式化简cos()πα-,再利用同角三角函数间的关系和角的范围可得答案.【详解】由cos()3πα-=-,且,02πα⎛⎫∈- ⎪⎝⎭,得cos tan 32ααα=====-.故答案为:2-. 【点睛】本题考查三角函数的诱导公式和同角三角函数间的关系,在运用公式时,注意角的范围,属于基础题.14.【分析】先分别设则在中由勾股定理得再分别表示出之后利用正切的和角公式求即可解决【详解】解:设则因为是直角三角形所以由勾股定理得:化简得在中在中所以又因为所以故答案为:【点睛】本题主要考查正切的和角公 解析:4π 【分析】先分别设PB x =,DQ y =,则在PCQ △中,由勾股定理得1xy x y -=+,再分别表示出tan BAP ∠,tan DAQ ∠,之后利用正切的和角公式求()tan BAP DAQ ∠+∠即可解决.【详解】解:设PB x =,DQ y =,则1CP x =-,1CQ y =-,因为PCQ △是直角三角形,PB QD PQ +=,所以由勾股定理得:()()()22211x y x y -+-=+,化简得1xy x y -=+,在ABP △中,tan BP BAP x AB∠==, 在ADQ △中,tan DQ DAQ y AD ∠==, 所以()tan tan tan 11tan tan 1BAP DAQ x y BAP DAQ DAQ BAP xy ∠+∠+∠+∠===-∠∠-, 又因为02BAP DAQ π<∠+∠<,所以,=4PAQ π∠ 故答案为:4π 【点睛】 本题主要考查正切的和角公式,数据处理能力与运算能力,是中档题.15.【分析】由已知式求出利用同角三角函数间的平方关系和商数关系将化为代入即可求值【详解】则故答案为:【点睛】本题考查了同角三角函数间的平方关系和商数关系正余弦其次式的计算二倍角的正弦公式属于中档题 解析:2425【分析】由已知式求出3tan 4α=-,利用同角三角函数间的平方关系和商数关系,将2sin 23cos +αα化为22tan 3tan 1αα++,代入即可求值. 【详解】4sin 3cos 0αα+=, 3tan 4α∴=-, 则22222sin cos 3cos sin 23cos sin cos ααααααα++=+ 22tan 3tan 1αα+=+ 232()343()14⨯-+=-+ 2425=. 故答案为:2425. 【点睛】本题考查了同角三角函数间的平方关系和商数关系,正、余弦其次式的计算,二倍角的正弦公式,属于中档题.16.【分析】本题首先可根据题意得出然后将转化为再然后根据列出算式最后通过计算即可得出结果【详解】如图结合题意绘出图像:因为所以则故因为所以解得故答案为:【点睛】关键点点睛:本题考查向量的相关运算主要考查 解析:1310【分析】 本题首先可根据题意得出23BE AD 、14DF AB =,然后将AC AE AF λμ=+转化为2314AB AD λμλμ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭,再然后根据AC AB AD =+列出算式,最后通过计算即可得出结果.【详解】如图,结合题意绘出图像:因为2BE EC =,3CF FD , 所以2233BE BC AD ,1144DF DC AB , 则23AE AB BE AB AD ,14AF AD DF AD AB , 故3142AB AD AC AE AF AD AB λμλμ⎛⎫⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭+ 4231AB AD λμλμ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭, 因为AC AB AD =+,所以114213λμλμ⎧+=⎪⎪⎨⎪+=⎪⎩,解得910λ=,25μ=,1310λμ+=, 故答案为:1310. 【点睛】关键点点睛:本题考查向量的相关运算,主要考查向量的三角形法则以及平行四边形法则的应用,考查计算能力,考查数形结合思想,是中档题. 17.【详解】方法一:①又②③将②③代入①得:所以点在内所以方法二:以直线OAOB 分别为轴建立直角坐标系则设又得即解得故答案为:3 解析:【详解】方法一: 3cos 2OA OCAOC OA OC ⋅∠==⋅, ① 又()2OA OC OA mOA nOB m OA m ⋅=⋅+==, ② 22222222||()||||23OC mOA nOB m OA n OB mnOA OB m n =+=++⋅=+, ③将②③代入①22323m n =+,所以229m n =, 点C 在AOB ∠内, 所以3m n=.方法二:以直线OA ,OB 分别为,x y 轴建立直角坐标系,则()(10,03A B ,, , 设()31cos30,sin 30=,22OC λλλ⎛⎫=︒︒ ⎪ ⎪⎝⎭,又()(()1,033OC mOA nOB m n m n =+=+=, 得()31,=322m n λ⎛⎫ ⎪ ⎪⎝⎭,即 3=2132m n λλ⎧⎪⎪⎨⎪=⎪⎩, 解得3m n=. 故答案为:3.18.【分析】观察图象可求得进而可得然后求出的值可得;而后由可求得的值得出最后代值计算即可得解【详解】由图象可知∴∴∴又∴()∴()∵∴∴则故答案为:【点睛】本题重点考查了正弦型三角函数的图象和性质考查逻 3【分析】观察图象可求得2A =,311341264T πππ=-=,进而可得T π=,然后求出ω的值,可得()()22f x sin x ϕ=+;而后由26f π⎛⎫= ⎪⎝⎭,可求得ϕ的值,得出()2sin 26f x x π⎛⎫=+ ⎪⎝⎭, 最后代值计算即可得解.【详解】由图象可知2A =,311341264T πππ=-=,∴T π=,∴22πωπ==,∴()()22f x sin x ϕ=+, 又26f π⎛⎫=⎪⎝⎭,∴2262k ππϕπ⨯+=+(k Z ∈), ∴26k πϕπ=+(k Z ∈),∵0ϕπ<<,∴6π=ϕ, ∴()2sin 26f x x π⎛⎫=+⎪⎝⎭, 则222cos 34466f sin ππππ⎛⎫⎛⎫=⨯+== ⎪ ⎪⎝⎭⎝⎭. 故答案为:3.【点睛】本题重点考查了正弦型三角函数的图象和性质,考查逻辑思维能力和计算能力,属于常考题.19.①④【分析】根据正切函数的周期判断①是否正确正切函数的奇偶性判断②是否正确由判断③是否正确由正切函数的单调性判断④是否正确由正切函数的图象判断⑤是否正确【详解】由于f(x)=tanx 的周期为π故①正 解析:①④【分析】根据正切函数()tan f x x =的周期判断①是否正确,正切函数的奇偶性判断②是否正确,由tan 00=判断③是否正确,由正切函数的单调性判断④是否正确,由正切函数的图象判断⑤是否正确.【详解】由于f (x )=tan x 的周期为π,故①正确;函数f (x )=tan x 为奇函数,故②不正确;f (0)=tan 0=0,故③不正确;④表明函数为增函数,而f (x )=tan x 为区间,22ππ⎛⎫- ⎪⎝⎭上的增函数,故④正确; ⑤由函数f (x )=tan x 的图象可知,设A =12()()2f x f x +,B =122x x f +⎛⎫ ⎪⎝⎭故函数在区间,02π⎛⎫- ⎪⎝⎭上有1212()()22x x f x f x f ++⎛⎫> ⎪⎝⎭, 在区间0,2π⎛⎫ ⎪⎝⎭上有1212()()22x x f x f x f ++⎛⎫< ⎪⎝⎭,故⑤不正确. 故答案为:①④【点睛】本题考查了正切函数的图象和性质,属于中档题.20.或【分析】由向量的坐标运算求出并求出它的模用除以它的模得一向量再加上它的相反向量可得结论【详解】由题意∴又∴或故答案为:或【点睛】易错点睛:本题考查求单位向量一般与平行的单位向量有两个它们是相反向量 解析:34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭. 【分析】由向量的坐标运算求出2a b -,并求出它的模,用2a b -除以它的模,得一向量,再加上它的相反向量可得结论.【详解】由题意2(1,3)(4,1)(3,4)a b -=--=-,∴22(3)5a b -=-=, 又234,552a b a b -⎛⎫=- ⎪⎝⎭-, ∴c =34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭. 故答案为:34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭. 【点睛】易错点睛:本题考查求单位向量,一般与a 平行的单位向量有两个,它们是相反向量:aa ±.只写出一个向量a a 是错误的.三、解答题21.(1)2425;(2)1665. 【分析】(1)由二倍角公式求得cos α,再由平方关系得sin α,然后由正弦的二倍角公式得sin 2α;(2)确定α的范围,得αβ+范围,从而可求得sin()αβ+,再由两角差的正弦公式计算.【详解】(1)由已知223cos 12sin 1225αα=-=-⨯=⎝⎭,又(0,)απ∈,∴(0,)2πα∈,∴sin 45α==, ∴4324sin 22sin cos 25525ααα==⨯⨯=; (2)∵(0,)2πβ∈,∴(0,)αβπ+∈,∴12sin()13αβ+=, ∴1235416sin sin[()]sin()cos cos()sin 13513565βαβααβααβα=+-=+-+=⨯-⨯=.【点睛】关键点点睛:本题考查二倍角公式,两角和与差的正弦公式,同角间的三角函数关系,解题关键是确定“已知角”和“未知角”之间的关系,确定选用的公式和应用公式的顺序.在应用三角函数恒等变换公式时注意“单角”和“复角”的相对性.如在sin ,cos αβ,求cos()a β+时,,αβ是单角,αβ+是两个单角的和,但象本题中求sin β时,αβ+作为一个单角,α作为一个单角,()βαβα=+-.由此直接应用公式求解.22.(1)3πθ=;(2)512πθ=,S 有最大值12-. 【分析】由已知可得11sin 22S AD BD θ=⨯⨯=,21sin 26S AD CF πθθ⎛⎫=⨯⨯=+ ⎪⎝⎭.(1)根据12S S 解sin 2sin 6πθθθ⎛⎫=+ ⎪⎝⎭可得答案;(2)由sin 2sin 6S πθθθ⎛⎫=-+ ⎪⎝⎭化简为1sin 223πθ⎛⎫- ⎪⎝⎭,根据θ的范围可得答案.【详解】因为Rt ACB △中,2AB =,1BC =,所以AC =6BAC π∠=,3ABC π∠=.又因为D 为以AB 为直径的半圆上一点, 所以2ADB π∠=.在Rt ADB 中,2cos AD θ=,2sin BD θ=,0,2πθ⎛⎫∈ ⎪⎝⎭. 作CF AD ⊥于点F ,则36CF πθ⎛⎫=+ ⎪⎝⎭, 1112cos 2sin sin 222S AD BD θθθ=⨯⨯=⨯⨯=, 2112cos 33sin 2266S AD CF ππθθθθ⎛⎫⎛⎫=⨯⨯=⨯+=+ ⎪ ⎪⎝⎭⎝⎭ (1)若12S S ,则sin 23sin 6πθθθ⎛⎫=+ ⎪⎝⎭, 因为cos 0θ≠, 所以2sin 36πθθ⎛⎫=+⎪⎝⎭, 所以332sin sin 22θθθ=+,整理得13sin 22θθ=, 所以tan 3θ=3πθ=.(2)sin 23sin 6S πθθθ⎛⎫=-+ ⎪⎝⎭ 31sin 23cos 22θθθθ⎛⎫=+ ⎪ ⎪⎝⎭ 33sin 2sin 2cos 2)4θθθ=-+ 133sin 224θθ=-13sin 223πθ⎛⎫=- ⎪⎝⎭ 因为02πθ<<,所以22333πππθ-<-<,当232ππθ-=时,即512πθ=,S 有最大值124-. 【点睛】 本题考查了三角函数的性质和解三角形,关键点是利用已知得到1sin 2S θ=,2sin 6S πθθ⎛⎫=+ ⎪⎝⎭,正确的利用两角和与差的正弦公式得到函数表达式()()sin f x A x ωϕ=+的形式,考查了运算能力.23.(1)1k =±;(2)3π. 【分析】(1)本题首先可以根据12ke e +和12e ke +共线得出()1212ke e e ke λ+=+,然后通过计算即可得出结果;(2)本题首先可根据()()23a b a b +⊥-得出()()230a b a b +⋅-=,然后根据1a =以及2b =求出1cos 2θ=,最后根据[]0,θπ∈即可得出结果. 【详解】(1)因为12ke e +和12e ke +共线,非零向量1e 、2e 不共线,所以存在唯一实数λ使()1212ke e e ke λ+=+,即1212ke e e ke λλ+=+,则1k kλλ=⎧⎨=⎩,即21k =,1k =±, 故当1k =±时,12ke e +和12e ke +共线.(2)因为()()23a b a b +⊥-, 所以()()22233520a b a b a a b b +⋅-=+⋅-=, 令a 与b 夹角为θ, 因为1a =,2b =,所以2235231512cos 240a a b b θ+⋅-=⨯+⨯⨯⨯-⨯=,解得1cos 2θ=, 因为[]0,θπ∈,所以a 与b 的夹角3πθ=. 【点睛】 本题考查向量共线以及向量垂直的相关性质,若非零向量a 、b 共线,则存在唯一实数λ使λa b ,若非零向量a 、b 垂直,则0a b ⋅=,考查计算能力,是中档题.24.(1)2)证明见解析.【分析】(1)利用平面向量的坐标运算和共线定理列方程求出t 的值;(2)根据条件得到2AC AB =且有公共点A ,即可得到结论.【详解】解:(1)∵(),1a t =,()5,b t =,且//a b ,故250t t -=⇒=,即实数t 的值为:5±;(2)证明:∵OA a b =+,2OB a b =+,3OC a b =+.∴AB OB OA b =-=,2AC OC OA b =-=,即2AC AB =且有公共点A ,故A ,B ,C 三点共线.【点睛】本题考查向量平行的坐标表示,用向量法证明三点共线,属于基础题. 25.(1)712a π=-,1b =,()f x 的递增区间为,,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)24π或724π 【分析】(1)根据图中最大值得2A =,得出周期可求得2ω=,由23f π⎛⎫-=- ⎪⎝⎭可求出ϕ,即可求得,a b ,令222,262k x k k Z πππππ-+≤+≤+∈可求出单调递增区间;(2)利用解析式直接求解即可.【详解】(1)由图可得2A =,35341234T πππ⎛⎫=--= ⎪⎝⎭,则T π=,22πωπ∴==, ()2sin(2)f x x ϕ∴=+,22sin 233f ππϕ⎛⎫⎛⎫-=-+=- ⎪ ⎪⎝⎭⎝⎭,则22,32k k Z ππϕπ-=-+∈, 则2,6k k Z πϕπ=+∈,||2πϕ<,6πϕ∴=,()2sin 26f x x π⎛⎫∴=+ ⎪⎝⎭, 2sin 16b π=∴=,7343412T a ππππ=--=--=-,令222,262k x k k Z πππππ-+≤+≤+∈,解得,36k x k k Z ππππ-+≤≤+∈,∴()f x 的递增区间为,,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)()2sin 26f παα⎛⎫=+= ⎪⎝⎭sin 26πα⎛⎫+= ⎪⎝⎭, [0,]απ∈,132,666πππα∴⎡⎤+∈⎢⎥⎣⎦, 264ππα∴+=或3264ππα+=,则24πα=或724π. 【点睛】 方法点睛:根据三角函数()()sin f x A x =+ωϕ部分图象求解析式的方法: (1)根据图象的最值可求出A ;(2)求出函数的周期,利用2T πω=求出ω; (3)取点代入函数可求得ϕ.26.(1)()22sin 23f x x π⎛⎫=+ ⎪⎝⎭;(2)递增区间为7,,1212ππππ⎡⎤-+-+∈⎢⎥⎣⎦k k k Z ,x 的集合为5,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭【分析】(1)先求出2A =,根据图形得出周期,可求出2ω=,再代入,06π⎛⎫ ⎪⎝⎭可求出ϕ; (2)令2222,232k x k k Z πππππ-+≤+≤+∈可求出增区间,当2322,32x k k Z πππ+=+∈时可得最小值. 【详解】(1)由图可知,2A =, 46124T πππ⎛⎫=--= ⎪⎝⎭,即T π=,22πωπ∴==, 则()()2sin 2f x x ϕ=+,2sin 2066f ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,即,3k k Z πϕπ+=∈, 则,3k k Z πϕπ=-∈,0πϕ<<,23πϕ∴=,()22sin 23f x x π⎛⎫∴=+ ⎪⎝⎭; (2)令2222,232k x k k Z πππππ-+≤+≤+∈,解得27,121ππππ-+≤≤-+∈k x k k Z , 故()f x 的单调递增区间为7,,1212ππππ⎡⎤-+-+∈⎢⎥⎣⎦k k k Z , 当2322,32x k k Z πππ+=+∈,即25,1ππ=+∈x k k Z 时,()f x 取得最小值为2-, 此时x 的集合为5,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 【点睛】方法点睛:根据三角函数()()sin f x A x =+ωϕ部分图象求解析式的方法: (1)根据图象的最值可求出A ;(2)求出函数的周期,利用2T πω=求出ω; (3)取点代入函数可求得ϕ.。

【北师大版】高中数学必修四期末试卷(含答案)(1)

【北师大版】高中数学必修四期末试卷(含答案)(1)

一、选择题1.设函数22()cos sin 2cos sin f x x x x x =-+,下列说法中,错误的是( )A .()f x 的最小值为2-B .()f x 在区间,48ππ⎡⎤-⎢⎥⎣⎦上单调递增. C .函数()y f x =的图象可由函数2sin y x =的图象先向左平移4π个单位,再将横坐标缩短为原来的一半(纵坐标不变)而得到. D .将函数()y f x =的图象向左平移4π个单位,所得函数的图象关于y 轴对称. 2.若1sin 34a π⎛⎫-= ⎪⎝⎭,则sin 26a π⎛⎫-= ⎪⎝⎭( )A .78-B .78C .1516-D .15163.如下图,圆O 与x 轴的正半轴的交点为A ,点,C B 在圆O 上,且点C 位于第一象限,点B 的坐标为43,,,55AOC α⎛⎫-∠= ⎪⎝⎭若1BC =,则233cos sin cos 222ααα--的值为( )A .45B .35C .45-D .354.函数()()sin 0y x πϕϕ=+>的部分图象如图所示,设P 是图象最高点,,A B 是图象与x 轴的交点,记APB θ∠=,则sin 2θ的值是( )A .1665B .6365C .1663-D .1665-5.已知O 为坐标原点,点M 的坐标为(2,﹣1),点N 的坐标满足111x y y x x +≥⎧⎪-≤⎨⎪≤⎩,则OM ON ⋅的最大值为( )A .2B .1C .0D .-16.已知M 、N 为单位圆22:1O x y +=上的两个动点,且满足1MN =,()3,4P ,则PM PN +的取值范围为( )A .53,53+⎡⎣B .103,103⎡-⎣C .523,523-+⎡⎣D .1023,1023-+⎡⎤⎣⎦7.已知向量,a b 满足2(1,2),(1,)+==a b m b m ,且a 在b 25,则实数m =( ) A .2±B .2C .5D 58.在ABC 中,2BAC π∠=,2AB AC ==,P 为ABC 所在平面上任意一点,则()PA PB PC ⋅+的最小值为( )A .1B .12-C .-1D .-29.如图,一半径为4.8m 的筒车按逆时针方向转动,已知筒车圆心O 距离水面2.4m ,筒车每60s 转动一圈,如果当筒车上点P 从水中浮现时(图中点0P )开始计时,则( )A .点P 第一次到达最高点需要10sB .点P 距离水面的高度h (单位:m )与时间t (单位:s )的函数解析式为4.8sin 2.4306h t ππ⎛⎫=-+ ⎪⎝⎭ C .在筒车转动的一圈内,点P 距离水面的高度不低于4.8m 共有10s 的时间 D .当筒车转动50s 时,点P 在水面下方,距离水面1.2m 10.函数1sin3y x =-的图像与直线3x π=,53x π=及x 轴所围成的图形的面积是( ) A .23π B .πC .43π D .53π 11.已知()f x 是定义在R 上的奇函数,()1f x +也是奇函数,当(]0,1x ∈时,()11f x x=-.若函数()()sin F x f x x π=+,则()F x 在区间[]1949,2021上的零点个数是( ) A .108 B .109 C .144 D .14512.设函数()tan 3f x x π=-,()sin 3g x x π⎛⎫=-⎪⎝⎭,则函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是( ) A .4B .5C .12D .13二、填空题13.已知10cos 0,42ππθθ⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭,则sin 23πθ⎛⎫-= ⎪⎝⎭______ 14.将22sin 23cos x x x +化简为sin()A x B ωϕ++(0A >,0>ω,π2ϕ<)的形式为______.15.已知函数31()sin 2222f x x x =-+,对于任意的3a ⎡∈⎢⎣⎭,方程()2(0)f x a x m -=≤<仅有一个实数根,则m 的最大值为__________.16.已知向量a 、b 满足1a b +=,2a b -=,则a b +的取值范围为___________.17.若点O 和点F 分别为椭圆24x +23y =1的中心和左焦点,点P 为椭圆上的任意一点,则OP ·FP 的最大值为________.18.如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点5BA CA ⋅=,2BF CF ⋅=-,则BE CE ⋅的值是________.19.关于1()sin sin f x x x=-,有如下四个结论: ①()f x 是奇函数.②()f x 图像关于y 轴对称. ③2x π=是()f x 的一条对称轴.④()f x 有最大值和最小值. 其中说法正确的序号是________.20.函数(x)Asin(x )f ωϕ=+ (0A >,0>ω,0ϕπ<< )的部分图象如图所示,则4f π⎛⎫= ⎪⎝⎭________.三、解答题21.在下列三个条件中任选一个,补充在下面问题中,并进行解答. ①函数()2sin(2)f x x ωϕ=+(0>ω,||2ϕπ<)的图象向右平移12π个单位长度得到()g x 的图象,()g x 图象关于原点对称;②函数()3)cos(2)(0)f x x x ωπωω=-->;③函数()4cos sin 1(0)6f x x x πωωω⎛⎫=+-> ⎪⎝⎭; 问题:已知________,函数()f x 的图象相邻两条对称轴之间的距离为2π. (Ⅰ)求()f x 的单调递增区间; (Ⅱ)若0,2πα⎛⎫∈ ⎪⎝⎭,()3f α=,求α的值. 22.已知函数()23sin cos cos f x x x x m =++的最小值为3-. (1)求m 的值及()f x 的单调递减区间; (2)()0,x π∀∈,sin 06a x f x π⎛⎫++< ⎪⎝⎭,求实数a 的取值范围. 23.如图一,在平面直角坐标系xOy 中,O 为坐标原点,()11,A x y ,()22,B x y ,请根据以下信息,处理问题(1)和(2).信息一:O 为坐标原点,()22,OB x y =,若将OB 顺时针旋转90︒得到向量'OB ,则()22',OB y x =-,且'OB OB =;信息二:()22,OB x y =与()11,OA x y =的夹角记为θ,()22',OB y x =-与()11,OA x y =的夹角记为α,则sin cos θα=;信息三:1sin 2OAB S OA OB θ=⋅⋅△;信息四:11122122x y x y x y x y =-,叫二阶行列式.(1)求证:112212OAB x y S x y =△,(外层“”表示取绝对值);(2)如图二,已知三点()2,1M ,()3,4N ,()1,6Q ,试用(1)中的结论求MNQ △的面积.24.已知函数21()sin 3cos 2f x x x x =+.(1)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域; (2)若关于x 的方程()2()1()0f x m f x m -++=在区间0,2π⎡⎤⎢⎥⎣⎦上恰有三个不同的实根,求实数m 的取值范围.25.已知||1a =,||2b =.(1)若向量a 与向量b 的夹角为135︒,求||a b +及b 在a 方向上的投影; (2)若向量a b -与向量a 垂直,求向量a 与b 的夹角.26.已知函数()()sin f x A x =+ωϕ(0A >,0>ω)的图像是由3y x πω⎛⎫=+ ⎪⎝⎭的图像向右平移3π个单位得到的.(1)若()f x 的最小正周期为π,求()f x 的与y 轴距离最近的对称轴方程; (2)若()f x 在,2ππ⎡⎤⎢⎥⎣⎦上仅有一个零点,求ω的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由二倍角公式及辅助角公式化简,再根据正弦型函数性质判断AB ,利用图象平移伸缩判断CD. 【详解】由22()cos sin 2cos sin cos 2sin 2)4f x x x x x x x x π=-+=+=+,可知函数的最小值为,故A 正确;当,48x ππ⎡⎤∈-⎢⎥⎣⎦时,2,442x πππ⎡⎤+∈-⎢⎥⎣⎦,由正弦函数单调性知())4f x x π=+单调递增,故B 正确;y x =的图象先向左平移4π个单位得)4y x π=+,再将横坐标缩短为原来的一半(纵坐标不变)得)4y x π=+,故C 正确;将函数()y f x =的图象向左平移4π个单位得)]))44424y x x x πππππ=++=++=+,图象不关于y 轴对称,故D 错误. 故选:D 【点睛】关键点点睛:首先要把函数解析式化简,利用正弦型函数的图象与性质判断值域与单调性,利用图象变换的时候,注意平移与伸缩都变在自变量上,属于中档题.2.B解析:B 【分析】 化简sin 2cos 2()63a ππα⎛⎫-=- ⎪⎝⎭,再利用二倍角公式化简求值. 【详解】22sin 2sin[(2)]cos(2)=cos 2()cos 2()632333a ππππππαααα⎛⎫-=-+=--=- ⎪⎝⎭=21712sin ()123168πα--=-⨯=. 故选:B 【点睛】方法点睛:三角恒等变换常用的方法有:三看(看角、看名、看式)三变(变角变名变式),要根据已知条件灵活选择方法化简求值.3.B解析:B 【解析】 ∵点B 的坐标为43,55⎛⎫-⎪⎝⎭,设AOB θ∠=, ∴325sinπθ-=-(),425cos πθ-=(), 即35sin θ=,45cos θ=, ∵AOC α∠=,若1BC =,∴3πθα+=,则3παθ=-,则213sincossin cos cos sin 2222625αααππαααθθ⎛⎫⎛⎫-=-=+=-== ⎪ ⎪⎝⎭⎝⎭故选B.点睛:本题主要考查三角函数的化简和求值,利用三角函数的定义以及三角函数的辅助角公式是解决本题的关键;利用降幂公式可将所求表达式化简为关于α的表达式,设AOB θ∠=,当角α的终边与单位圆的交点坐标为(),u v 时,sin v α=,cos u α=,可先求出关于θ的三角函数式,结合等边三角形寻找,αθ之间的关系即可.4.A解析:A 【分析】过点P 作x 轴的垂线,垂足为D ,由三角函数性质得2AB =,12AD =,1DP =,32DB =,故1tan 2APD ∠=,3tan 2BPD ∠=,进而得()tan tan 8APD BPD θ=∠+∠=,故2222sin cos 2tan 16sin 22sin cos sin cos tan 165θθθθθθθθθ====++.【详解】解:根据题意,如图,过点P 作x 轴的垂线,垂足为D , 由于函数的最小正周期为22T ππ==,最大值为max 1y =,所以2AB =,12AD =,1DP =,32DB =, 所以在直角三角形ADP 和直角三角形BDP 中,1tan 2APD ∠=,3tan 2BPD ∠=, 所以()tan tan tan APB APD BPD θ=∠=∠+∠tan tan 28311tan tan 122APD BPD APD BPD ∠+∠===-∠⋅∠-⨯, 所以2222sin cos 2tan 16sin 22sin cos sin cos tan 165θθθθθθθθθ====++. 故选:A.【点睛】本题考查三角函数的性质,同角三角函数关系,正切的和角公式,考查运算能力,是中档题.5.A解析:A【分析】根据题意可得,OM ON⋅=2x﹣y,令Z=2x﹣y,做出不等式组所表示的平面区域,做直线l0:2x﹣y=0,然后把直线l0向可行域内平移,结合图象可判断取得最大值时的位置.【详解】根据题意可得,OM ON⋅=2x﹣y,令Z=2x﹣y做出不等式组所表示的平面区域,如图所示的△ABC阴影部分:做直线l0:2x﹣y=0,然后把直线l0向可行域内平移,到点A时Z最大,而由x+y=11x⎧⎨=⎩可得A(1,0),此时Z max=2.故选:A . 【点睛】本题主要考查了利用线性规划求解最优解及目标函数的最大值,解题的关键是正确作出不等式组所表示的平面区域,并能判断出取得最大值时的最优解的位置.利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值。

【北师大版】高中数学必修四期末试题(附答案)

【北师大版】高中数学必修四期末试题(附答案)

一、选择题1.已知θ为锐角,且满足如tan 311tan θθ=,则tan 2θ的值为( ) A .34B .43 C .23D .322.已知()3sin 2020cos2020f x x x =+的最大值为A ,若存在实数1x ,2x ,使得对任意的实数x ,总有()()()12f x f x f x ≤≤成立,则12A x x -的最小值为( ) A .2020π B .1010π C .505π D .4040π 3.已知72cos 410πθ⎛⎫-=⎪⎝⎭,则sin 2θ=( ) A .2425-B .1225-C .1225D .24254.已知函数()23sin 22cos 1f x x x =-+,将()f x 的图象上的所有点的横坐标缩短到原来的12,纵坐标保持不变;再把所得图象向上平移1个单位长度,得到函数()y g x =的图象,若()()129g x g x ⋅=,则12x x -的值可能为( ) A .54π B .34π C .2π D .3π 5.若12,e e 是夹角为60︒的两个单位向量,则向量1212,2a e e b e e =+=-+的夹角为( ) A .30B .60︒C .90︒D .120︒6.在空间直角坐标系中,(3,3,0)A ,(0,0,1)B ,点(,1,)P a c 在直线AB 上,则 ( ) A .11,3a c ==B .21,3a c ==C .12,3a c ==D .22,3a c ==7.如图,一条河的两岸平行,河的宽度d =0.6 km ,一艘客船从码头A 出发匀速驶往河对岸的码头B .已知AB =1 km ,水的流速为2 km/h ,若客船从码头A 驶到码头B 所用的时间为6 min ,则客船在静水中的速度为( )A .2B .8 km/hC .34D .10 km/h8.在△ABC 中,点D 在线段BC 的延长线上,且3BC CD =,点O 在线段CD 上(与点C ,D 不重合),若()1AO xAB x AC =+-,则x 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,3⎛⎫ ⎪⎝⎭C .1,02⎛⎫-⎪⎝⎭ D .1,03⎛⎫- ⎪⎝⎭9.如图,一个质点在半径为1的圆O 上以点P 为起始点,沿逆时针方向旋转,每2s 转一圈,由该质点到x 轴的距离y 关于时间t 的函数解析式是( )A .2sin()3y t ππ=+ B .2sin()3y t ππ=- C .2sin()3y t ππ=-D .2sin()3y t ππ=+10.将函数sin()y x ϕ=+的图像上所有点的横坐标缩短到原来的12倍(纵坐标不变),再将所得图像向左平移12π个单位后得到的函数图像关于原点中心对称,则sin 2ϕ=( )A .12-B .12C .3D .3211.当5,2,2παβπ⎛⎫∈ ⎪⎝⎭时,若αβ>,则以下不正确的是( ) A .sin sin tan tan αββα->- B .cos tan cos tan αββα+<+ C .sin tan sin tan αββα> D .tan sin tan sin αββα<12.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象(如图所示),则下列有关函数()f x 的结论错误的是( )A .图象关于点,012π⎛⎫- ⎪⎝⎭对称 B .最小正周期是π C .在0,6π⎛⎫⎪⎝⎭上单调递减 D .在0,12π⎡⎤⎢⎥⎣⎦上最大值是3 二、填空题13.已知函数()222x f x a -=-(0a >且1a ≠)过定点P ,且点P 在角6πα⎛⎫+⎪⎝⎭的终边上cos α=_______. 14.已知πsin(π)3sin()02αα+--=,则cos2α的值为________. 15.已知cosα17=,cos(α﹣β)1314=,且0<β<α2π<,则sinβ=_____. 16.已知平面向量a ,b ,c ,d 满足1a b ==,2c =,0a b ⋅=,1c d -=,则2a b d ++的取值范围为______.17.如图,在△ABC 中,13AN NC =,P 是BN 上的一点,若AP =m 211AB AC +,则实数m 的值为_____.18.已知()()sin 03f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=-⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是___________. 19.已知如下变换:①将图象上各点的横坐标伸长到原来的2倍,纵坐标保持不变; ②将图象上各点的横坐标缩短到原来的12倍,纵坐标保持不变;③将图像整体向右平移3π个单位长度; ④将图像整体向右平移6π个单位长度; ⑤将图像整体向左平移3π个单位长度; ⑥将图像整体向左平移6π个单位长度; 要得到函数sin(2)3y x π=-的图象,只需将函数sin y x =的图象经过变换____________(填上你认为正确的一种情况即可,注意编号顺序)20.在ABC 中,2AB =,32AC =,135BAC ∠=︒,M 是ABC 所在平面上的动点,则w MA MB MB MC MC MA =⋅+⋅+⋅的最小值为________.三、解答题21.已知函数2()3sin 22sin f x x x =+.(1)求函数()f x 的单调递减区间; (2)当,312x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的值域. 22.在ABC 中,A B C <<且 tan A ,tan B ,tan C 均为整数. (1)求A 的大小; (2)设AC 的中点为D ,求BCBD的值. 23.已知平面直角坐标系中,点 O 为原点,()()3,1,1,2A B - . (I)求AB 的坐标及AB ;(Ⅱ)设 e 为单位向量,且 e OB ⊥,求e 的坐标24.如图,四边形ABOC 是边长为1的菱形,120CAB ∠=︒,E 为OC 中点.(1)求BC 和BE ;(2)若点M 满足ME MB =,问BE BM ⋅的值是否为定值?若是定值请求出这个值;若不是定值,说明理由.25.函数()cos()0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭的部分图象如图所示.(1)写出()f x 的解析式; (2)将函数()f x 的图象向右平移12π个单位后得到函数()g x 的图象,讨论关于x 的方程()3()0f x g x m -⋅-=(11)m -<≤在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数.26.为整治校园环境,设计如图所示的平行四边形绿地ABCD ,在绿地中种植两块相同的扇形花卉景观,两扇形的边(圆心分别为A 和C )均落在平行四边形ABCD 的边上,圆弧均与BD 相切,其中扇形的圆心角为120°,扇形的半径为12米.(1)求两块花卉景观扇形的面积;(2)记BDA θ∠=,求平行四边形绿地ABCD 占地面积S 关于θ的函数解析式,并求面积S 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先利用两角和的正切计算tan tan 2tan 31tan tan 2θθθθθ+=-,再利用二倍角的正切化简前者,结合tan 311tan θθ=可得1tan 2θ=,从而可求tan 2θ.【详解】32222tan tan tan tan 23tan tan 1tan tan 32tan 1tan tan 213tan 1tan 1tan θθθθθθθθθθθθθθ++--===---⨯-,故32223tan tan tan 33tan 13tan 11tan tan 13tan θθθθθθθθ---===-,故21tan 4θ=, 因为θ为锐角,故1tan 2θ=,故1242tan 21314θ⨯==-, 故选:B. 【点睛】思路点睛:已知θ的三角函数值,求()*n n N θ∈的三角函数值,应利用两角和的三角函数值逐级计算即可.2.B解析:B 【分析】化简函数()f x 的解析式可得周期与最大值,对任意的实数x ,总有()()()12f x f x f x ≤≤成立,即12x x -半周期的整数倍,代入求最小值即可.【详解】()2020cos 20202sin 20206f x x x x π⎛⎫=+=+ ⎪⎝⎭,则220201010T ππ==,2A = 1212210101010A x x ππ-≥⨯⨯=故选:B 【点睛】本题考查正弦函数的性质,考查三角恒等变换,考查周期与最值的求法,属于中档题.3.D解析:D 【分析】由2sin 2cos(2)cos[2()]2cos ()1244πππθθθθ=-=-=--,代入即可求解. 【详解】因为cos 410πθ⎛⎫-=⎪⎝⎭, 由24924sin 2cos(2)cos[2()]2cos ()1212445025πππθθθθ=-=-=--=⨯-=. 故选:D. 【点睛】本题主要考查了三角恒等变换的化简、求值,其中解答中熟记余弦的倍角公式,准确运算是解答的关键,着重考查了运算与求解能力.4.C解析:C 【分析】根据三角恒等变换化简函数()f x ,再由图象的平移得到函数()g x 的解析式,利用函数()g x 的值域,可知12x x -的值为函数()y g x =的最小正周期T 的整数倍,从而得出选项.【详解】函数2()22cos 12cos 22sin 26f x x x x x x π⎛⎫=-+=-=- ⎪⎝⎭,将函数()y f x =的图象上的所有点的横坐标缩短到原来的12倍,得2sin 46y x π⎛⎫=- ⎪⎝⎭的图象;再把所得图象向上平移1个单位,得函数()2sin 416y g x x π⎛⎫==-+ ⎪⎝⎭的图象,所以函数()y g x =的值域为[1,3]-.若()()129g x g x ⋅=,则()13g x =且()23g x =,均为函数()y g x =的最大值, 由42()62x k k Z πππ-=+∈,解得()62k x k Z ππ=+∈; 其中1x 、2x 是三角函数()y g x =最高点的横坐标,12x x ∴-的值为函数()y g x =的最小正周期T 的整数倍,且242T ππ==. 故选:C. 【点睛】本题考查三角函数的恒等变换,三角函数的图象的平移,以及函数的值域和周期,属于中档题.5.B解析:B 【分析】首先分别求出12a e e =+与122b e e =-+的数量积以及各自的模,利用数量积公式求之.【详解】 由已知,1212e e ⋅=,所以(()1212)2e e e e +-+=32,|12e e +|=3,|122e e -+|=3, 设向量1212,2a e e b e e =+=-+的夹角为α,则312cos ,2333παα==∴=⋅.故答案为B 【点睛】(1)本题主要考查向量的夹角的求法,意在考查学生对该知识的掌握水平和分析推理计算能力.(2) 求两个向量的夹角一般有两种方法,方法一:·cos ,ab a b a b=,方法二:设a =11(,)x y ,b =22(,)x y ,θ为向量a 与b 的夹角,则121222221122cos x x y y x y x y θ+=+⋅+.6.B解析:B 【解析】∵点P (a ,1,c )在直线AB 上, ∴存在实数λ使得AB BP λ=, ∴()()()0,0,13,3,0,1,1a c λ-=- , 化为()3,3,1(,,)a c λλλλ--=- ,∴3{31ac λλλλ-=-==- ,解得3{123a c λ=-==.本题选择B 选项.7.A解析:A 【解析】设客船在静水中的速度大小为 /v km h 静,水流速度为 v 水,则2/v km h =水,则船实际航行的速度v v v =+静水,60.160t h =,由题意得100.1AB v ≤=. 把船在静水中的速度正交分解为x y v v v 静=+, ∴0.660.1y v ==,在Rt ABC 中,0.8BC ==. ∵80.1x x BCv v v v +=+==水水,∴826x v =-=∴22x yv v v 静=+=设v v 静水<,>=θ,则tan 1yxv v θ==,∴cos θ=.此时222721010v v v v v v v +=+⋅+==≤静水静静水水= ,满足条件,故选A.8. D解析:D 【分析】设CO yBC =,则()1AO AC CO AC yBC yAB y AC =+=+=-++,根据3BC CD =得出y 的范围,再结合()1AO xAB x AC =+-得到,x y 的关系,从而得出x的取值范围. 【详解】 设CO yBC =,则()()1AO AC CO AC yBC AC y AC AB yAB y AC =+=+=+-=-++, 因为3BC CD =,点O 在线段CD 上(与点C ,D 不重合),所以10,3y ⎛⎫∈ ⎪⎝⎭, 又因为()1AO xAB x AC =+-, 所以x y =-,所以1,03x ⎛⎫∈- ⎪⎝⎭. 故选:D 【点睛】本题考查平面向量基本定理及向量的线性运算,考查利用向量关系式求参数的取值范围问题,难度一般.9.A解析:A 【分析】首先根据图象理解t 秒后23POx t ππ∠=+,再根据三角函数的定义求点P 的纵坐标和该质点到x 轴的距离y 关于时间t 的函数解析式. 【详解】由题意可知点P 运动的角速度是22ππ=(弧度/秒) 那么点P 运动t 秒后23POx t ππ∠=+, 又三角函数的定义可知,点P 的纵坐标是2sin 3t ππ⎛⎫+⎪⎝⎭, 因此该质点到x 轴的距离y 关于时间t 的函数解析式是2sin 3y t ππ⎛⎫=+ ⎪⎝⎭. 故选:A 【点睛】关键点点睛:本题的关键是理解三角函数的定义,并正确表示点23POx t ππ∠=+,即可表示函数的解析式.10.C解析:C 【分析】先根据条件写出图像变换后的函数解析式,然后根据图像关于原点中心对称可知函数为奇函数,由此得到ϕ的表示并计算出sin 2ϕ的结果. 【详解】因为变换平移后得到函数sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,由条件可知sin 26y x πϕ⎛⎫=++ ⎪⎝⎭为奇函数,所以6k πϕπ+=,sin 2sin 2sin 33k ππϕπ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭故选C . 【点睛】本题考查三角函数的图像变换以及根据函数奇偶性判断参数值,难度一般.正弦型函数()()sin f x A x =+ωϕ为奇函数时,k k Z ϕπ=∈,为偶函数时,2k k Z πϕπ=+∈.11.D解析:D 【分析】对A ,由()sin tan f x x x =+在52,2ππ⎛⎫⎪⎝⎭上单调递增可判断;对B ,由()cos tan f x x x =-在52,2ππ⎛⎫ ⎪⎝⎭上单调递减可判断;对C ,由()sin tan f x x x =在52,2ππ⎛⎫⎪⎝⎭上单调递增可判断;对D ,由tan ()sin x f x x =在52,2ππ⎛⎫ ⎪⎝⎭上单调递增可判断.【详解】A .设()sin tan f x x x =+,则()f x 在52,2ππ⎛⎫⎪⎝⎭上单调递增, 因为αβ>,所以()()f αf β>,所以sin tan sin tan ααββ+>+,所以sin sin tan tan αββα->-,所以A 对,不符合题意;B .设()cos tan f x x x =-,则()f x 在52,2ππ⎛⎫⎪⎝⎭上单调递减, 因为αβ>,所以()()f f αβ<,所以cos tan cos tan ααββ-<-, 所以cos tan cos tan αββα+<+,所以B 对,不符合题意; C .设()sin tan f x x x =,因为sin ,tan x x 在52,2ππ⎛⎫⎪⎝⎭都为正数,且都单调递增, 所以()sin tan f x x x =在52,2ππ⎛⎫⎪⎝⎭上单调递增, 因为αβ>,所以()()f αf β>, 所以sin tan sin tan ααββ>,所以sin tan sin tan αββα>,所以C 对,不符合题意; D .设tan ()sin x f x x =,则tan 1()sin cos x f x x x ==在52,2ππ⎛⎫⎪⎝⎭上单调递增, 因为αβ>,所以()()f αf β>,所以tan tan sin sin αβαβ>, 所以tan sin tan sin αββα>,所以D 错,符合题意. 故选:D. 【点睛】本题考查利用三角函数的单调性比较大小,解题的关键是恰当构造函数,判断函数的单调性,利用单调性判断大小.12.C解析:C 【分析】首先根据题中所给的函数图象,从最值、周期和特殊点着手将解析式确定,之后结合函数的性质对选项逐一分析,得到结果. 【详解】根据图象得到:2A =,311341264T πππ=-=,所以T π=, 所以2ππω=,解得2ω=,所以()()2sin 2f x x ϕ=+.将点,26π⎛⎫ ⎪⎝⎭代入,得到2sin 23πϕ⎛⎫+= ⎪⎝⎭,则()232k k Z ππϕπ+=+∈,得()26k k Z πϕπ=+∈,又2πϕ<,所以6π=ϕ, 所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 对于A ,20126ππ⎛⎫⨯-+= ⎪⎝⎭,则函数()f x 关于,012π⎛⎫- ⎪⎝⎭对称,故A 正确; 对于B ,函数的周期22T ππ==,故B 正确; 对于C ,当0,6x π⎛⎫∈ ⎪⎝⎭时,2,662x πππ⎛⎫+∈ ⎪⎝⎭,此时函数()f x 为增函数,故C 错误; 对于D ,当0,12x π⎡⎤∈⎢⎥⎣⎦时,2,663x πππ⎡⎤+∈⎢⎥⎣⎦,则1sin 262x π⎡⎛⎫+∈⎢ ⎪⎝⎭⎣⎦,2sin 26x π⎛⎫⎡+∈ ⎪⎣⎝⎭,故()f x 在0,12π⎡⎤⎢⎥⎣⎦D 正确.故选:C . 【点睛】该题考查的是有关三角函数的问题,涉及到的知识点有根据图象确定函数解析式,正弦型函数的相关性质,属于简单题目.二、填空题13.【分析】由指数为0时可得定点进而可得和利用展开即可得解【详解】由所以函数(且)过定点所以所以故答案为:【点睛】关键点点睛:本题解题的关键是利用展开求解解析:16【分析】由指数为0时可得定点P ,进而可得sin 6πα⎛⎫+ ⎪⎝⎭和cos 6πα⎛⎫+ ⎪⎝⎭,利用cos cos[()]66ππα=α+-展开即可得解.【详解】由(012f a =-=,所以函数()2x f x a -=-0a >且1a ≠)过定点P ,所以1sin 63πα⎛⎫+== ⎪⎝⎭,cos 63πα⎛⎫+== ⎪⎝⎭. 所以cos cos[()]cos()cossin()sin 666666ππππππα=α+-=α++α+1132=⨯=. 【点睛】关键点点睛:本题解题的关键是利用cos cos[()]66ππα=α+-展开求解.14.【分析】根据利用诱导公式结合商数关系得到然后由求解【详解】因为所以解得所以故答案为:【点睛】本题主要考查诱导公式和二倍角公式以及同角三角函数基本关系式的应用还考查了运算求解的能力属于中档题解析:45-【分析】根据πsin(π)3sin()02αα+--=,利用诱导公式结合商数关系得到tan 3α=-,然后由222222cos sin cos 2cos sin cos sin ααααααα-=-=+求解. 【详解】因为πsin(π)3sin()02αα+--=, 所以sin 3cos 0αα--=, 解得tan 3α=-,所以222222cos sin cos 2cos sin cos sin ααααααα-=-=+,()()2222131tan 41tan 513αα---===-++-, 故答案为:45- 【点睛】本题主要考查诱导公式和二倍角公式以及同角三角函数基本关系式的应用,还考查了运算求解的能力,属于中档题.15.【分析】利用同角三角函数的基本关系式求得的值由的值【详解】依题意则所以所以所以故答案为:【点睛】本小题主要考查同角三角函数的基本关系式考查两角差的正弦公式考查化归与转化的数学思想方法属于基础题解析:2【分析】利用同角三角函数的基本关系式求得()sin ,sin ααβ-的值,由()sin sin βααβ=--⎡⎤⎣⎦的值. 【详解】 依题意02πβα<<<,则02πβ>->-,所以02παβ<-<,所以sin 7α==,()sin 14αβ-==()sin sin βααβ=--⎡⎤⎣⎦()()sin cos cos sin ααβααβ=---1317147147142=⨯-⨯==⨯.【点睛】本小题主要考查同角三角函数的基本关系式,考查两角差的正弦公式,考查化归与转化的数学思想方法,属于基础题.16.【分析】用几何意义求解不妨设则在圆心在原点半径为2的圆上设则在以为圆心半径为1的圆上运动后形成的轨迹是圆心在原点大圆半径为3小圆半径为1的圆环表示圆环内的点与定点的距离由图形可得最大值和最小值【详解解析:3⎡⎤⎣⎦【分析】用几何意义求解.不妨设()1,0a =,()0,1b =,(),c x y =,则(,)C x y 在圆心在原点,半径为2的圆上,设(),d x y '=',则(,)D x y ''在以C 为圆心半径为1的圆上,C 运动后,D 形成的轨迹是圆心在原点,大圆半径为3,小圆半径为1的圆环,2a b d ++表示圆环内的点D 与定点()2,1P --的距离,由图形可得最大值和最小值. 【详解】令()1,0a =,()0,1b =,(),c x y =,设C 的坐标为(),x y ,C 的轨迹为圆心在原点,半径为2的圆上.设(),d x y '=',D 的坐标为(),x y '',D 的轨迹为圆心在原点,大圆半径为3,小圆半径为1的圆环上.()22,1a b d d ++=---表示D 与点()2,1P --的距离,由图可知,故2a b d ++的取值范围为0,53⎡⎤+⎣⎦. 故答案为:0,53⎡⎤+⎣⎦【点睛】本题考查向量模的几何意义,考查模的最值,解题关键是设()1,0a =,()0,1b =,(),c x y =,(),d x y '=',固定,a b 后得出了,C D 的轨迹,然后由模2a b d ++的几何意义得出最值.17.【解析】由得设=n 所以+n=+n()=(1-n)=m 由n=得m=1-n= 解析:311【解析】 由13AN NC =,得14AN AC =. 设BP =n BN ,所以AP AB BP AB =+=+n BN =AB +n (AN AB -)=(1-n )14AB nAC +=m 211AB AC +. 由14n=211,得m=1-n=311.18.【分析】由周期公式可得由三角函数的中心对称可得结合即可得为奇数即可得由可得进而可得即可得解【详解】由可得由是奇函数可得函数的图象关于中心对称所以即又所以所以为奇数由可得因为在上没有最小值所以即故答案解析:511,612ππ⎛⎤⎥⎝⎦【分析】由周期公式可得ω,由三角函数的中心对称可得,3k k Z πϕπ=+∈,结合()06f f π⎛⎫< ⎪⎝⎭即可得k 为奇数,即可得()sin 23πf x x ⎛⎫=-⎪⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭,进而可得432332t πππ<-≤,即可得解. 【详解】 由T π=可得22T πω==,()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭由3y f x π⎛⎫=-⎪⎝⎭是奇函数可得函数()f x 的图象关于,03π⎛-⎫⎪⎝⎭中心对称, 所以2,33k k Z ππϕπ⎛⎫⨯-++=∈ ⎪⎝⎭,即,3k k Z πϕπ=+∈, 又()06f f π⎛⎫< ⎪⎝⎭,所以2sin sin 33ππϕϕ⎛⎫⎛⎫+<+ ⎪ ⎪⎝⎭⎝⎭, 所以,3k k πϕπ=+为奇数,()sin 2sin 2333f x x k x ππππ⎛⎫⎛⎫=+++=- ⎪ ⎪⎝⎭⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭, 因为()f x 在[)0,t 上没有最小值,所以432332t πππ<-≤即511,612t ππ⎛⎤∈ ⎥⎝⎦. 故答案为:511,612ππ⎛⎤⎥⎝⎦. 【点睛】本题考查了三角函数图象与性质的应用,考查了运算求解能力,牢记知识点是解题关键,属于中档题.19.②④或③②(填一种即可)【分析】利用三角函数图象变换可以先平移后伸缩也可以先伸缩后平移即可得到结论【详解】经过变换②可得到再经过变换④可得;或者经过变换③可得到再经过变换②可得故答案为:②④或③②(解析:②④或③②(填一种即可) 【分析】利用三角函数图象变换,可以“先平移,后伸缩”,也可以“先伸缩,后平移”即可得到结论. 【详解】sin y x =经过变换②可得到sin 2y x =,再经过变换④可得sin(2)3y x π=-;或者sin y x =经过变换③可得到sin()3y x π=-,再经过变换②可得sin 2y x =.故答案为: ②④或③②(填一种即可). 【点睛】本题考查三角函数图象变换,分辨清“先平移,后伸缩”,还是“先伸缩,后平移”是解题的关键,熟练掌握无论是哪种变换,切记每一个变换总是对x 而言,属于中档题.20.【分析】以A 为原点AC 所在直线为x 轴建系如图所示根据题意可得ABC 坐标设可得的坐标根据数量积公式可得的表达式即可求得答案【详解】以A 为原点AC 所在直线为x 轴建立坐标系如图所示:因为所以设则所以=当时 解析:283-【分析】以A 为原点,AC 所在直线为x 轴,建系,如图所示,根据题意,可得A 、B 、C 坐标,设(,)M x y ,可得,,MA MB MC 的坐标,根据数量积公式,可得w 的表达式,即可求得答案.【详解】以A 为原点,AC 所在直线为x 轴,建立坐标系,如图所示:因为2AB =,32AC =135BAC ∠=︒, 所以(0,0),(2,2),(32,0)A B C -,设(,)M x y ,则(,),(2,2),(32,)MA x y MB x y MC x y =--=---=--, 所以(2)(2)w MA MB MB MC MC MA x x y y =⋅+⋅+⋅=++22)(32)(2)(2)x x y y x x y -++-+=22222222834232263()3()333x x y x y -+--=-+--,当,33x y ==时,w 有最小值,且为283-, 故答案为:283- 【点睛】解题的关键是建立适当的坐标系,求得点坐标,利用数量积公式的坐标公式求解,考查分析理解,计算化简的能力,属基础题.三、解答题21.(1)()5,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)[]1,1-【分析】(1)首先利用二倍角公式和辅助角公式化简函数()2sin 216f x x π⎛⎫=-+ ⎪⎝⎭,再求函数的单调递减区间; (2)先求26x π-的范围,再求函数sin 26x π⎛⎫-⎪⎝⎭的范围,最后求函数的值域. 【详解】(1)因为()21cos 22sin 216f x x x x π⎛⎫=+-=-+ ⎪⎝⎭, 令3222262k x k πππππ+≤-≤+,解得5,36k x k k Z ππππ+≤≤+∈ 所以函数()f x 的单调增区间为()5,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦.(2),312x ππ⎡⎤∈-⎢⎥⎣⎦,22,36x ππ⎡⎤∴∈-⎢⎥⎣⎦,52,066x ππ⎡⎤∴-∈-⎢⎥⎣⎦,利用正弦函数的图像与性质知[]sin 21,06x π⎛⎫-∈- ⎪⎝⎭,[]2sin 211,16x π⎛⎫∴-+∈- ⎪⎝⎭所以()f x 的值域为[]1,1-. 【点睛】方法点睛:本题考查三角函数恒等变换和函数性质的综合应用,()sin y A x ωϕ=+的性质:(1)周期2π.T ω=(2)由 ()ππ2x k k +=+∈Z ωϕ求对称轴,由()πx k k ωϕ+=∈Z 求对称中心.(3)由()ππ2π2π22k x k k -+≤+≤+∈Z ωϕ求增区间;由()π3π2π2π22k x k k +≤+≤+∈Z ωϕ求减区间.22.(1)45A =︒;(2)1BCBD= 【分析】(1)A B C <<,A 不能是钝角,且若tan 2A ≥,与A B C π++=矛盾,可得45A =︒;(2)由(1)结合两角和与差的正切公式,以及tan B ,tan C 均为整数,可得tan ,tan B C ,再利用正弦定理结合平面向量求出BD ,进而得出答案.【详解】 (1)A B C <<,A ∴不能是钝角,tan 0A >若tan 2A ≥,tan 60︒=tan y x =在0,2π⎡⎫⎪⎢⎣⎭内单调递增,60A ∴>︒ 又A B C <<,,B C ∴都大于60︒,与A B C π++=矛盾tan 1A ∴=,即45A =︒(2)45,135A B C =︒∴+=︒,()tan tan1351B C +=︒=-又()tan tan tan 11tan tan B CB C B C++==--,即tan tan 1tan tan B C B C -=+由tan B ,tan C 均为整数,且B C <,可得tan 2,tan 3B C ==则cos ,sin 55B B ==;cos ,sin 105C C ==由正弦定理sin 45sin sin a b c B C ==︒,可得,55b ac a ==又AC 的中点为D ,则2214BA BC BD AC ⋅=-,即221cos 4c a ABC BD AC ⋅⋅∠=-2214a BD ⎫⋅=-⎪⎪⎝⎭解得BD a =,故1BC aBD a== 【点睛】关键点点睛:本题考查三角恒等变换,考查同角三角函数的关系,考查正弦定理以及平面向量的应用,解决本题的关键点是充分利用A B C <<且tan A ,tan B ,tan C 均为整数,结合两角和与差的正切公式以及同角三角函数的关系,得出所求的比值,考查学生逻辑推理能力和计算能力,属于中档题.23.(1)()4,1=-AB ,17;=AB (2)25,5⎛= ⎝⎭e ,或25.5⎛=- ⎝⎭e 【详解】试题分析:(I )利用向量的坐标运算直接求AB 的坐标及AB ; (II )利用向量的垂直,数量积为0,结合单位向量求解即可. 试题(I )()()AB 13,214,1=---=-,(AB =-=(Ⅱ)设单位向量(),e x y =, 所以221x y +=,即221x y += 又(),1,2⊥=-e OB OB , 所以20x y -+=即2x y =由2221x y x y =⎧⎨+=⎩,解得5x y ⎧=⎪⎪⎨⎪=⎪⎩或者5x y ⎧=-⎪⎪⎨⎪=⎪⎩ 所以25,5⎛= ⎝⎭e ,或25.5⎛=- ⎝⎭e 24.(1)3BC =;7BE =2)是定值,78.【分析】(1)由()22BC AC AB =-,()2212BE BO BC ⎡⎤=+⎢⎥⎣⎦,结合数量积公式得出BC 和BE ;(2)取BE 的中点N ,连接MN ,由ME MB =,得出MN BE ⊥,由BM BN NM =+,结合数量积公式计算BE BM ⋅,即可得出定值.【详解】(1)∵BC AC AB =-∴222211211cos1203BC AC AB AB AC =+-⋅=+-⨯⨯⨯︒= ∴3BC=又()12BE BO BC =+ ∴()22211721321444BE BO BC BO BC ⎛=++⋅=++⨯= ⎝⎭ ∴72BE =(2)取BE 的中点N ,连接MN∵ME MB =,∴MN BE ⊥,且BM BN NM =+∴()BE BM BE BN NM BE BN BE NM ⋅=⋅+=⋅+⋅211177022248BE BE BE =⋅+==⨯= ∴78BE BM ⋅=(为定值)【点睛】本题主要考查了利用定义计算数量积以及模长,涉及了向量加减法的应用,属于中档题. 25.(1)()cos(2)6f x x π=+;(2)见解析. 【分析】(1)根据图象求出周期,再根据最低点可求ϕ,从而得到函数解析式.(2)求出()g x 的解析式,故方程可化为cos 206m x π⎛⎫---= ⎪⎝⎭,可通过直线y m =-与cos 26y x π⎛⎫=- ⎪⎝⎭ 的图象的交点的个数解决方程的解的个数. 【详解】(1)由函数的图象可得()f x 的周期为2236πππ⎛⎫⨯-= ⎪⎝⎭,故22πωπ==, 又26312f ππ⎛⎫+ ⎪=- ⎪ ⎪⎝⎭,故5cos 2+112πϕ⎛⎫⨯=- ⎪⎝⎭, 所以526k πϕππ+=+即2,6k k Z πϕπ=+∈, 因为02πϕ<<,故6π=ϕ,所以()cos(2)6f x x π=+. (2)()cos(2)cos 266g x x x ππ=-+=,故()3()cos(2)3cos 26f x g x m x x m π-⋅-=+--cos 2cos sin 2sin 3cos 2cos 2666x x x m m x πππ⎛⎫=---=--- ⎪⎝⎭ 故方程在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数即为y m =-与cos 26y x π⎛⎫=- ⎪⎝⎭图象交点的个数,cos 26y x π⎛⎫=- ⎪⎝⎭在,2ππ⎡⎤-⎢⎥⎣⎦上的图象如图所示,由图象可得:当1m -=-或312m <-<即1m =或312m -<<-时,方程有2个不同的解; 当31m -<-≤31m ≤<时,方程有4个不同的解; 当33m <-≤33m ≤<时,方程有3个不同的解; 【点睛】方法点睛:(1)平移变换有“左加右减”(水平方向的平移),注意是对自变量x 做加减.(2)与余弦型函数有关的方程的解的个数的讨论,一般可转化为动直线与确定函数的图象的交点个数来讨论.26.(1)96π平方米;(2)1443sin 262S θ+- ⎪⎝⎭=,且最小值为2883. 【分析】(1)根据题中条件,由扇形面积公式,即可计算出结果;(2)过点A 作AE BD ⊥于点E ,由题中条件,得到12AE =,再由θ分别表示出BE 和DE ,得出BD ,进而可得出平行四边形ABCD 的面积S 关于θ的函数解析式,由三角函数的性质,即可求出最小值.【详解】(1)因为两扇形所在圆的半径均为12米,扇形的圆心角为23π, 所以两块花卉景观扇形的面积为112212129623S ππ=⨯⨯⨯⨯=平方米; (2) 过点A 作AE BD ⊥于点E ,因为圆弧均与BD 相切,所以E 即为切点,则12AE =, 又BDA θ∠=,23BAD π∠=,所以3DBA πθ∠=-,π0θ3, 在Rt ADE △中,tan AE DE θ=,所以1212cos tan sin DE θθθ==; 在Rt ABE △中,tan 3AE BE πθ⎛⎫=- ⎪⎝⎭,所以12cos 123tan sin 33BE πθππθθ⎛⎫- ⎪⎝⎭==⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭, 则12sin cos cos sin 12cos 3312cos 3sin sin sin sin 33BD BE DE πππθθθθθθππθθθθ⎡⎤⎛⎫⎛⎫⎛⎫-+-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=+=+=⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭12sin63631233131131sin sin sin 2sin 2cos 2sin cos sin 362πππθθθθθθθθ====⎛⎫⎛⎫⎛⎫-+-+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因此平行四边形绿地ABCD 占地面积14431sin 216222S BD AE πθ⎛⎫+- ⎝⨯⨯⎪⎭=⨯=, 因为π0θ3,所以52666πππθ<+<, 因此当262ππθ+=,即6πθ=时,14431sin 262S πθ⎛⎫+- ⎪⎝⎭=取得最小值,且最小值为min 2883S =.【点睛】关键点点睛:=⨯,得出平行四边形的面积S关于求解本题的关键在于用θ表示出BD,再由S BD AEθ的函数解析式,利用正弦函数的性质,即可求解最值.。

2019—2020年最新北师大版高中数学必修四《三角函数》章末综合测评及答案解析.docx

2019—2020年最新北师大版高中数学必修四《三角函数》章末综合测评及答案解析.docx

(新课标)2017-2018学年北师大版高中数学必修四章末综合测评(一) 三角函数(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若α=-6,则角α的终边在( )A.第一象限B.第二象限C.第三象限D.第四象限【解析】∵-2π<-6<-3π2,∴角α在第一象限,故选A.【答案】 A2.已知点P(tan α,cos α)在第三象限,则角α的终边在( )A.第一象限B.第二象限C.第三象限D.第四象限【解析】由条件可知,tan α<0且cos α<0,∴α是第二象限角.【答案】 B3.已知角α的终边经过点(3a,-4a)(a<0),则sin α+cos α等于( )A.15B.75C .-15D .-75【解析】 r =(3a )2+(-4a )2=-5a ,∴sin a =-4a -5a =45,cos a =3a -5a =-35,∴sin a +cos a =45-35=15.【答案】 A4.(2016·阜阳高一检测)已知扇形的半径为r ,周长为3r ,则扇形的圆心角等于( )【导学号:66470036】A .π3B .1C.2π3D .3【解析】 因为弧长l =3r -2r =r , 所以圆心角α=lr=1.【答案】 B5.已知函数f (x )=3sin ⎝ ⎛⎭⎪⎪⎫π2x +π3,则下列不等式中正确的是( )A .f (1)<f (2)<f (3)B .f (2)<f (3)<f (1)C .f (3)<f (2)<f (1)D .f (2)<f (1)<f (3)【解析】 ∵f (x )=3sin ⎝ ⎛⎭⎪⎪⎫π2x +π3,∴f (1)=3sin 5π6=32,f (2)=3sin ⎝ ⎛⎭⎪⎪⎫π+π3=-3sin π3=-332,f (3)=3sin ⎝ ⎛⎭⎪⎪⎫32π+π3=-3cos π3=-32.∴f (2)<f (3)<f (1). 【答案】 B6.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π<φ<π)的部分图像如图1所示,则函数f (x )的解析式为( )图1A .f (x )=2sin ⎝ ⎛⎭⎪⎪⎫12x +π4B .f (x )=2sin ⎝ ⎛⎭⎪⎪⎫12x +3π4C .f (x )=2sin ⎝ ⎛⎭⎪⎪⎫12x -π4D .f (x )=2sin ⎝ ⎛⎭⎪⎪⎫12x -3π4【解析】 由图像知A =2,T =2⎝ ⎛⎭⎪⎪⎫32π+π2=4π,∴ω=2π4π=12.∵函数在x =-π2时取到最大值,∴12×⎝ ⎛⎭⎪⎪⎫-π2+φ=π2, 即φ=34π,∴f (x )=2sin ⎝ ⎛⎭⎪⎪⎫12x +34π.【答案】 B7.已知函数y =sin(ωx +φ)⎝⎛⎭⎪⎪⎫ω>0,|φ|<π2的部分图像如图2所示,则( )图2A .ω=2,φ=π6B .ω=1,φ=-π6C .ω=1,φ=π6D .ω=2,φ=-π6【解析】 由题图可知T =4⎝ ⎛⎭⎪⎪⎫712π-π3=π.又T =2πω,ω=2ππ=2,∴y =sin(2x +φ),代入点⎝ ⎛⎭⎪⎪⎫π3,1,得sin ⎝ ⎛⎭⎪⎪⎫23π+φ=1,又|φ|<π2,∴φ=-π6.【答案】 D8.(2016·宿州高一检测)函数y =tan ⎝ ⎛⎭⎪⎪⎫π2-x ⎝ ⎛⎭⎪⎪⎫x ∈⎣⎢⎢⎡⎦⎥⎥⎤-π4,π4且x ≠0的值域为( )A .[-1,1]B .(-∞,-1]∪[1,+∞)C .(-∞,1]D .[-1,+∞)【解析】 ∵x ∈⎣⎢⎢⎡⎦⎥⎥⎤-π4,π4且x ≠0,∴π2-x ∈⎣⎢⎢⎡⎦⎥⎥⎤π4,3π4且π2-x ≠π2, 即π2-x ∈⎣⎢⎢⎡⎭⎪⎪⎫π4,π2∪⎝ ⎛⎦⎥⎥⎤π2,3π4,当π2-x ∈⎣⎢⎢⎡⎭⎪⎪⎫π4,π2时,y ≥1; 当π2-x ∈⎝ ⎛⎦⎥⎥⎤π2,3π4时,y ≤-1, ∴函数y 的值域是(-∞,-1]∪[1,+∞). 【答案】 B9.(2016·蜀山高一检测)设函数f (x )=cos ωx (ω>0),将y =f (x )的图像向右平移π3个单位长度后,所得的图像与原图像重合,则ω的最小值等于( )A .13B .3C .6D .9【解析】 由题可知π3=2πω·k (k ∈Z ),解得ω=6k ,令k =1,即得ωmin =6. 【答案】 C10.(2016·合肥高一检测)函数y =sin x2的图像沿x 轴向左平移π个单位长度后得到函数的图像的一个对称中心是( )A .(0,0)B .(π,0) C.⎝ ⎛⎭⎪⎪⎫π2,0 D .⎝ ⎛⎭⎪⎪⎫-π2,0【解析】 函数y =sin x2的图像沿x 轴向左平移π个单位后得到函数y =sin ⎣⎢⎢⎡⎦⎥⎥⎤12(x +π)=sin ⎝ ⎛⎭⎪⎪⎫12x +π2=cos 12x 的图像,它的一个对称中心是(π,0).【答案】 B11.已知函数f (x )=sin ⎝ ⎛⎭⎪⎪⎫x -π2(x ∈R ),下面结论错误的是( )A .函数f (x )的最小正周期为2πB .函数f (x )在区间⎣⎢⎢⎡⎦⎥⎥⎤0,π2上是增函数C .函数f (x )的图像关于直线x =0对称D .函数f (x )是奇函数【解析】 因为y =sin ⎝⎛⎭⎪⎪⎫x -π2=-cos x ,所以T =2π,A 正确;y =cos x 在⎣⎢⎢⎡⎦⎥⎥⎤0,π2上是减函数,y =-cos x 在⎣⎢⎢⎡⎦⎥⎥⎤0,π2上是增函数,B 正确;由图像知y =-cos x 关于直线x =0对称,C 正确;y =-cos x 是偶函数,D 错误.故选D. 【答案】 D12.已知函数f (x )=⎩⎪⎨⎪⎧sin x ,sin x ≥cos x ,cos x ,sin x <cos x ,下列说法正确的是( )A .该函数值域为[-1,1]B .当且仅当x =2k π+π2(k ∈Z )时,函数取最大值1C .该函数是以π为最小正周期的周期函数D .当π+2k π<x <2k π+3π2(k ∈Z )时,f (x )<0【解析】 画出函数y =f (x )图像如图:由图像可知,值域为⎣⎢⎢⎡⎦⎥⎥⎤-22,1,A 错;当x =2k π或x =2k π+π2,(k ∈Z )时,f (x )取最大值1,B 错;周期T =5π4-⎝ ⎛⎭⎪⎪⎫-3π4=2π,C 错.故选D.【答案】 D二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.函数f (x )=sin ⎝⎛⎭⎪⎪⎫2x +π4的最小正周期为________.【解析】 由题意知,ω=2,所以f (x )=sin ⎝ ⎛⎭⎪⎪⎫2x +π4的最小正周期为T =2π2=π.【答案】 π14.设f (x )=2sin ωx (0<ω<1)在闭区间⎣⎢⎢⎡⎦⎥⎥⎤0,π3上的最大值为2,则ω的值为________.【导学号:66470037】【解析】 ∵0<ω<1,∴T =2πω,∴T 4=π2ω>π2,∴f (x )=2sin ωx 在⎣⎢⎢⎡⎦⎥⎥⎤0,π3上为增函数,∴f (x )max =f ⎝ ⎛⎭⎪⎪⎫π3=2sin π3ω=2,∴sin π3ω=22,即π3ω=π4,∴ω=34.【答案】 3415.已知函数f (x )=3sin ⎝ ⎛⎭⎪⎪⎫ωx -π6(ω>0)和g (x )=2 cos(2x +φ)+1的图像的对称轴完全相同,若x ∈⎣⎢⎢⎡⎦⎥⎥⎤0,π2,则f (x )的取值范围是________.【解析】 如果两个函数的图像对称轴完全相同,那么它们的周期必须相同,∴ω=2,即f (x )=3sin ⎝⎛⎭⎪⎪⎫2x -π6,∴x ∈⎣⎢⎢⎡⎦⎥⎥⎤0,π2,∴2x -π6∈⎣⎢⎢⎡⎦⎥⎥⎤-π6,56π,∴sin ⎝ ⎛⎭⎪⎪⎫2x -π6∈⎣⎢⎢⎡⎦⎥⎥⎤-12,1,故f (x )∈⎣⎢⎢⎡⎦⎥⎥⎤-32,3.【答案】 ⎣⎢⎢⎡⎦⎥⎥⎤-32,316.将函数f (x )=2sin ⎝ ⎛⎭⎪⎪⎫ωx -π3(ω>0)的图像向左平移π3ω个单位得到函数y=g (x )的图像,若y =g (x )在⎣⎢⎢⎡⎦⎥⎥⎤-π6,π4上为增函数,则ω的最大值为________.【解析】 由题意得y =g (x )=2sin ⎣⎢⎢⎡⎦⎥⎥⎤ω⎝⎛⎭⎪⎪⎫x +π3ω-π3=2sin ωx (ω>0).∵y =g (x )在⎣⎢⎢⎡⎦⎥⎥⎤-π6,π4上递增,且ω>0,∴-ω6π≤ωx ≤ωπ4且有⎣⎢⎢⎡⎦⎥⎥⎤-ω6π,ωπ4⊆⎣⎢⎢⎡⎦⎥⎥⎤-π2,π2,∴⎩⎪⎨⎪⎧-ω6π≥-π2,ω4π≤π2,解得⎩⎪⎨⎪⎧ω≤3,ω≤2,∴ω≤2,∴ω的最大值为2. 【答案】 2三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知角x 的终边过点P (1,3).求:(1)sin(π-x )-sin ⎝ ⎛⎭⎪⎪⎫π2+x 的值;(2)写出角x 的集合S . 【解】 ∵x 的终边过点P (1,3),∴r =|OP |=12+(3)2=2,∴sin x =32,cos x =12.(1)原式=sin x -cos x =3-12.(2)由sin x =32,cos x =12.若x ∈[0,2π],则x =π3,由终边相同角定义,∴S =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x =2k π+π3,k ∈Z. 18.(本小题满分12分)已知f (x )=sin ⎝ ⎛⎭⎪⎪⎫2x +π6+32,x ∈R .(1)求函数f (x )的最小正周期和单调增区间;(2)函数f (x )的图像可以由函数y =sin 2x (x ∈R )的图像经过怎样的变换得到? 【解】 (1)T =2π2=π,由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),知k π-π3≤x ≤kπ+π6(k ∈Z ).所以所求函数的最小正周期为π,所求的函数的单调递增区间为⎣⎢⎢⎡⎦⎥⎥⎤k π-π3,k π+π6(k ∈Z ). (2)变换情况如下:19.(本小题满分12分)(2016·北海高一检测)函数f (x )=A sin ⎝ ⎛⎭⎪⎪⎫ωx -π6+1(A >0,ω>0)的最大值为3,其图像相邻两条对称轴之间的距离为π2.(1)求函数f (x )的解析式;(2)设α∈⎝ ⎛⎭⎪⎪⎫0,π2,f ⎝ ⎛⎭⎪⎪⎫α2=2,求α的值.【解】 (1)∵函数f (x )的最大值为3, ∴A +1=3,即A =2.∵函数图像的相邻两条对称轴之间的距离为π2,∴最小正周期T =π,∴ω=2,∴函数f (x )的解析式为y =2sin ⎝ ⎛⎭⎪⎪⎫2x -π6+1.(2)∵f ⎝ ⎛⎭⎪⎪⎫α2=2sin ⎝ ⎛⎭⎪⎪⎫α-π6+1=2,∴sin ⎝⎛⎭⎪⎪⎫α-π6=12.∵0<α<π2,∴-π6<α-π6<π3,∴α-π6=π6,∴α=π3.20.(本小题满分12分)函数f 1(x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的一段图像过点(0,1),如图3所示.图3(1)求函数f 1(x )的表达式;(2)将函数y =f 1(x )的图像向右平移π4个单位长度,得函数y =f 2(x )的图像,求y =f 2(x )的最大值,并求出此时自变量x 的集合.【解】 (1)由题图知,T =π,于是ω=2πT=2.将y =A sin 2x 的图像向左平移π12,得y =A sin(2x +φ)的图像,于是φ=2·π12=π6. 将(0,1)代入y =A sin ⎝ ⎛⎭⎪⎪⎫2x +π6,得A =2.故f 1(x )=2sin ⎝⎛⎭⎪⎪⎫2x +π6.(2)依题意,f 2(x )=2sin ⎣⎢⎢⎡⎦⎥⎥⎤2⎝⎛⎭⎪⎪⎫x -π4+π6=-2cos ⎝⎛⎭⎪⎪⎫2x +π6,当2x +π6=2k π+π,即x =k π+5π12(k ∈Z )时,y max =2,x 的取值集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x =k π+5π12,k ∈Z .21.(本小题满分12分)设函数f (x )=3 sin ⎝ ⎛⎭⎪⎪⎫ωx +π6,ω>0,x ∈R 的最小正周期为π2.(1)求f (x )的解析式;(2)画出f (x )在长度为一个周期的闭区间上的简图; (3)已知f ⎝ ⎛⎭⎪⎪⎫α4+π12=95,求cos α的值.【解】 (1)∵T =2πω=π2⇒ω=4.∴f (x )=3sin ⎝ ⎛⎭⎪⎪⎫4x +π6.(2)列表:4x +π60 π2 π 3π22πx -π24π125π24 π311π24 f (x )0 3 0-3图像如图所示:(3)由f ⎝ ⎛⎭⎪⎪⎫α4+π12=3sin ⎣⎢⎢⎡⎦⎥⎥⎤4⎝ ⎛⎭⎪⎪⎫α4+π12+π6=3sin ⎝⎛⎭⎪⎪⎫α+π2=95⇒cos α=35.22.(本小题满分12分)已知某地一天从4~16时的温度变化曲线近似满足函数y =10sin ⎝ ⎛⎭⎪⎪⎫π8x -5π4+20,x ∈[4,16].(1)求该地区这一段时间内温度的最大温差;(2)若有一种细菌在15°C 到25°C 之间可以生存,那么在这段时间内,该细菌最多能生存多长时间?【解】 (1)由函数易知,当x =14时函数取最大值,此时最高温度为30°C ,当x =6时函数取最小值,此时最低温度为10 °C ,所以最大温差为30 °C -10°C =20°C.(2)令10sin ⎝ ⎛⎭⎪⎪⎫π8x -5π4+20=15,可得sin ⎝ ⎛⎭⎪⎪⎫π8x -5π4=-12,而x ∈[4,16],所以x =263.令10sin ⎝ ⎛⎭⎪⎪⎫π8x -5π4+20=25,可得sin ⎝ ⎛⎭⎪⎪⎫π8x -5π4=12,而x ∈[4,16],所以x=343. 故该细菌能存活的最长时间为343-263=83(小时).。

【北师大版】高中数学必修四期末试题(及答案)(1)

【北师大版】高中数学必修四期末试题(及答案)(1)

一、选择题1.已知3cos 25α=,()0,2απ∈,则sin 4απ+⎛⎫=⎪⎝⎭( ) A .10 B .10-C .310D .310-2.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 3cos 23b A a B b c -=-,则A =( )A .3π B .4π C .6π D .23π 3.函数()log 42a y x =++(0a >,且1a ≠)的图象恒过定点A ,且点A 在角θ的终边上,则2sin 2θ=( ) A .1213-B .1213C .2413-D .24134.已知角α满足1cos()63πα+=,则sin(2)6πα-=( ) A .429-B .429C .79-D .795.如图,在ABC 中,AD AB ⊥,2AD =,3DC BD =,则AC AD ⋅的值为( )A .3B .8C .12D .166.过点()3,1P 的直线l 与函数21()26x f x x -=-的图象交于A ,B 两点,O 为坐标原点,则()OA OB OP +⋅=( )A 10B .10C .10D .207.已知ABC 中,3AB AC ==,且||||AB AC AB AC +=-,点D ,E 是BC 边的两个三等分点,则AD AE ⋅=( ) A .3B .4C .5D .68.在边长为2的菱形ABCD 中,60BAD ∠=︒,点E 是AB 边上的中点,点F 是BC 边上的动点,则DE DF ⋅的取值范围是( )A .⎡⎣B .2⎣C .⎤⎦D .[]0,39.下列结论正确的是( ) A .sin1cos1< B .2317cos cos 54ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭C .()()tan 52tan 47->-D .sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭10.使函数())cos(2)f x x x θθ=+++是偶函数,且在0,4⎡⎤⎢⎥⎣⎦π上是减函数的θ的一个值是( ) A .6πB .3π C .23π D .56π 11.已知曲线1C :sin y x =,2C :cos 23y x π⎛⎫=-⎪⎝⎭,则下面结论正确的是( ) A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12π个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移12π个单位长度,得到曲线2C 12.设函数()tan 3f x x π=-,()sin 3g x x π⎛⎫=-⎪⎝⎭,则函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是( ) A .4B .5C .12D .13二、填空题13.已知函数1()sin 2222f x x x =-+,对于任意的0,2a ⎡∈⎢⎣⎭,方程()2(0)f x a x m -=≤<仅有一个实数根,则m 的最大值为__________.14.已知(0,)θπ∈,且sin 4πθ⎛⎫-= ⎪⎝⎭,则sin 2θ=__________. 15.已知tan 3α=-,则cos2=α_____________.16.已知向量(2,1)a =,(,1)b x y =-,且a b ⊥,若x ,y 均为正数,则21x y+的最小值是__________.17.已知ABC ∆中,3AB =,5AC =,7BC =,若点D 满足1132AD AB AC =+,则DB DC ⋅=__________.18.在ABC △中,已知4CA =,CP =23ACB π∠=,点P 是边AB 的中点,则CP CA ⋅的值为_____.19.函数()2sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭在区间[0,20]上有50个最大值,则ω的范围__________.20.函数3()2sin 34f x x π⎛⎫=- ⎪⎝⎭的图象为C ,以下说法: (1)其中最小正周期为23π; (2)图象关于点(,0)4π对称;(3)由2sin3y x =的图象向右平移34π个单位长度可以得到图象C ; (4)直线4πx =-是其图象的其中一条对称轴. 其中正确命题的序号是__________.三、解答题21.已知函数()2sin cos 144f x x x ππ⎛⎫⎛⎫=+--⎪ ⎪⎝⎭⎝⎭. (1)求函数()f x 的最小正周期;(2)若函数()()2g x f x x =-,求函数()g x 的单调增区间.22.已知ABC 中C ∠是直角,CA CB =,点D 是CB 的中点,E 为AB 上一点.(1)设CA a =,CD b =,当12AE AB =,请用a ,b 来表示AB ,CE . (2)当2AE EB =时,求证:AD CE ⊥. 23.已知函数21()3cos cos 2222x x x f x =++. (1)求函数()f x 的最小正周期;(2)将函数()y f x =的图象上的各点________;得到函数()y g x =的图象,求函数()y g x =的最大值及取得最大值时x 的取值集合.你需要在①、②中选择一个,补在(2)中的横线上,并加以解答. ①向左平移32π个单位,再保持纵坐标不变,横坐标缩短到原来的一半; ②纵坐标保持不变,横坐标缩短到原来的一半,再向右平移4π个单位. 24.已知(cos ,sin )a αα=,(cos ,sin )b ββ=,其中0αβπ<<<. (1)求向量a b +与a b -所成的夹角; (2)若k a b +与a k b -的模相等,求2αβ-的值(k 为非零的常数).25.已知函数()()()f x g x h x =,其()22g x x =,()h x =_____. (1)写出函数()f x 的一个周期(不用说明理由); (2)当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的最大值和最小值. 从①cos 4x π⎛⎫+⎪⎝⎭,②2sin 24x π⎛⎫- ⎪⎝⎭这两个条件中任选一个,补充在上面问题中并作答, 注:如果选择多个条件分别解答.按第一个解答计分. 26.已知712sin cos 2225ππαα⎛⎫⎛⎫---+= ⎪ ⎪⎝⎭⎝⎭,其中0,4πα⎛⎫∈ ⎪⎝⎭.(1)求tan α的值;(2)求3sin sin 3cos ααα-的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据2α是4α的二倍角求出sin α的值,再求cos 4α和sin 4απ+⎛⎫⎪⎝⎭的值. 【详解】因为2α是4α的二倍角,所以2311cos 152sin 4225αα--===, 又()0,2απ∈,所以0,42a π⎛⎫∈ ⎪⎝⎭,所以sin 44αα===cos所以sin sin sin cos cos sin 4444445252104απαπαπαπ+⎛⎫⎛⎫=+=+=+= ⎪ ⎪⎝⎭⎝⎭. 故选:C. 【点睛】 本题考查了二倍角的余弦公式,考查了同角公式,考查了两角和的正弦公式,属于中档题.2.C解析:C 【分析】由正弦定理,两角和的正弦函数公式化简已知等式,结合sin 0B ≠,可得2sin 23A π⎛⎫+= ⎪⎝⎭,根据题意可求范围(0,)A π∈,根据正弦函数的图象和性质即可求解A 的值. 【详解】解:∵ bsin cos 2A B b -=,∴由正弦定理可得:sin sin cos 2sin B A A B B C =,∴sin sin cos 2sin B A A B B C =2sin cos cos sin )B A B A B =-+,∴sin sin 2sin sin B A B A B =, 又∵sin 0B ≠,∴sin 2A A +=,∴2sin 23A π⎛⎫+= ⎪⎝⎭,可得232A k πππ+=+,Z k ∈, 又(0,)A π∈,∴6A π=.故选:C . 【点睛】本题考查正弦定理和三角恒等变换的运用,考查运算求解能力,求解时注意角的范围.3.C解析:C 【分析】先根据对数函数性质得()3,2A -,进而根据正弦的二倍角公式和三角函数的定义求解即可得答案. 【详解】解:根据对数函数的性质得函数()log 42a y x =++(0a >,且1a ≠)的图象恒过()3,2A -,由三角函数的定义得:13r ==,sinθθ==, 所以根据二倍角公式得:242sin 24sin cos 413θθθ⎛===- ⎝. 故选:C. 【点睛】本题考查对数函数性质,三角函数定义,正弦的二倍角公式,考查运算能力,是中档题.4.D解析:D 【分析】由已知利用诱导公式可求133sin πα⎛⎫-= ⎪⎝⎭,sin 2263cos ππαα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,再由二倍角公式化简,即可得结果. 【详解】162633cos sin sin ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,2sin 2cos 2cos 2262633cos πππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴-=--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦22171212()339sin πα⎛⎫=--=-⨯= ⎪⎝⎭.故选D .本题主要考查了诱导公式,二倍角公式在三角函数化简求值中的应用,属于基础题.三角函数求值有三类,(1)“给角求值”;(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种系;(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.5.D解析:D 【分析】利用AB 、AD 表示向量AC ,再利用平面向量数量积的运算性质可求得AC AD ⋅的值. 【详解】()3343AC AD DC AD BD AD AD AB AD AB =+=+=+-=-,AD AB ⊥,则0⋅=AD AB ,所以,()224344216AC AD AD AB AD AD ⋅=-⋅==⨯=. 故选:D. 【点睛】方法点睛:求两个向量的数量积有三种方法: (1)利用定义:(2)利用向量的坐标运算; (3)利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.6.D解析:D 【分析】判断函数()f x 的图象关于点P 对称,得出过点()3,1P 的直线l 与函数()f x 的图象交于A ,B 两点时,得出A ,B 两点关于点P 对称,则有 2OA OB OP +=,再计算()OA OB OP +⋅的值.【详解】()52121263x f x x x -==+-- ,∴函数21()26x f x x -=-的图象关于点()3,1P 对称,∴过点()3,1P 的直线l 与函数()2126x f x x -=-的图象交于A ,B 两点,且A ,B 两点关于点()3,1P 对称,∴ 2OA OB OP +=,则()()222223120OA OB OP OP +⋅==⨯+=.【点睛】本题主要考查了函数的对称性,以及平面向量的数量积运算问题,是中档题.7.B解析:B 【分析】由||||AB AC AB AC +=-知,0AB AC ⋅=,根据平面向量的线性运算可推出2133AD AB AC =+,1233AE AB AC =+,故21123333AD AE AB AC AB AC ⎛⎫⎛⎫⋅=+⋅+ ⎪ ⎪⎝⎭⎝⎭,展开后代入数据进行运算即可.【详解】解:∵||||AB AC AB AC +=-,∴0AB AC ⋅=, ∵点D 是BC 边的三等分点, ∴11()33AD AB BD AB BC AB AC AB =+=+=+-2133AB AC =+.同理可得,1233AE AB AC =+, ∴()2221122(3339)3AD AE AB AC AB AC AB AC ⎛⎫⋅=+⋅+=+ ⎪⎝⎭2(99)49=⨯+=. 故选:B. 【点睛】本题考查平面向量数量积运算、模的运算、平面向量基本定理,考查转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意基底的选择.8.D解析:D 【分析】把DE 用,DA DB 表示,由三点共线把DF 用,DC DB 表示,然后计算数量积,利用函数的知识得取值范围. 【详解】∵菱形ABCD 边长为2,60BAD ∠=︒,2BD =,∴22cos602DA DB DB DC ⋅=⋅=⨯⨯︒=,22cos1202DA DC ⋅=⨯⨯︒=-, ∵E 是AB 边上的中点,∴1()2DE DA DB =+, 点F 是BC 边上,设BF xBC =(01x ≤≤),则()(1)DF DB BF DB xBC DB x DC DB xDC x DB =+=+=+-=+-,DE DF ⋅1()(1)2DA DB xDC x DB ⎡⎤=+⋅+-⎣⎦21(1)(1)2xDA DC x DA DB xDB DC x DB ⎡⎤=⋅+-⋅+⋅+-⎢⎥⎣⎦ []122(1)24(1)3(1)2x x x x x =-+-++-=-, ∵01x ≤≤,∴03(1)3x ≤-≤. 故选:D. 【点睛】本题考查平面向量的数量积,解题关键是对动点F 引入参数x :BF xBC=(01x ≤≤),这样所求数量积就可表示为x 的函数,从而得到范围.本题考查了向量共线的条件,属于中档题.9.D解析:D 【分析】利用正弦函数的单调性可判断AD 选项的正误;利用正切函数的单调性可判断C 选项的正误;利用余弦函数的单调性可判断B 选项的正误. 【详解】对于A 选项,因为正弦函数sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增, 且01122ππ<-<<,则sin1sin 1cos12π⎛⎫>-=⎪⎝⎭,A 选项错误; 对于B 选项,因为余弦函数cos y x =在()0,π上为减函数,23233cos cos cos 555πππ⎛⎫-== ⎪⎝⎭,1717cos cos cos 444πππ⎛⎫-== ⎪⎝⎭, 3045πππ<<<,则3cos cos 54ππ<,即2317cos cos 54ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,B 选项错误; 对于C 选项,当900x -<<时,正切函数tan y x =单调递增, 因为9052470-<-<-<,所以,()()tan 52tan 47-<-,C 选项错误;对于D 选项,因为正弦函数sin y x =在,02π⎛⎫- ⎪⎝⎭上单调递增,因为021018πππ-<-<-<,所以,sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,D 选项正确. 故选:D. 【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间;(2)利用函数的单调性直接解答.10.B解析:B 【解析】1())cos(2)2()cos(2))2sin(2)226f x x x x x x πθθθθθ=+++=+++=++,由于()f x 为偶函数,则(0)2sin()26f πθ=+=±,sin()1,662k πππθθπ+=±+=+,3k πθπ=+,当0k =时,3πθ=,()2sin(2)2sin(2)362f x x x πππ=++=+2cos2x =,当[0,]4x π∈时,2[0,]2x π∈,()2cos2f x x =为减函数,符合题意,所以选B.11.C解析:C 【分析】由题意利用诱导公式得1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,根据函数()cos y A x ωϕ=+的图象变换规律,得出结论. 【详解】已知曲线1sin cos :2C y x x π⎛⎫==-⎪⎝⎭,2cos 23:C y x π⎛⎫=-⎪⎝⎭, ∴把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,可得cos 22y x π⎛⎫=- ⎪⎝⎭的图象,再把得到的曲线向左平移 12π个单位长度,得到曲线2cos 2cos 263:2C x x πππ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭的图象,故选C .【点睛】本题主要考查函数()cos y A x ωϕ=+的图象变换规律,属于基础题.12.A解析:A 【分析】由题意知函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=- ⎪⎝⎭图象在区间[]2,2ππ-上交点的个数,作出两个函数图象,数形结合即可求解. 【详解】令()()()0h x f x g x =-=可得()()f x g x =,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于 函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象在区间[]2,2ππ-上交点的个数. 分别作出()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象,由图知两个函数图象在区间[]2,2ππ-上有4个交点,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是4, 故选:A 【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点; (2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()()()0f x h x g x =⇔=,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.二、填空题13.【分析】化简原题等价于函数与函数的图象的交点个数为1做出图像数形结合即可得答案【详解】利用辅助角公式化简可得方程仅有一个实数根等价于函数与函数的图象的交点个数为1结合图象可知当时m 的最大值为故答案为 解析:23π 【分析】化简()cos 226f x x π⎛⎫=++ ⎪⎝⎭,原题等价于函数()2y f x =-与函数y a =的图象的交点个数为1,做出图像,数形结合,即可得答案. 【详解】利用辅助角公式,化简可得()cos 226f x x π⎛⎫=++ ⎪⎝⎭,方程()2(0)f x a x m -=≤<仅有一个实数根,等价于函数()2y f x =-与函数y a =的图象的交点个数为1,结合图象可知, 当30,a ⎡⎫∈⎪⎢⎣⎭时,m 的最大值为23π.故答案为:23π. 【点睛】本题考查辅助角公式的应用,三角函数的图像与性质,考查分析理解,数形结合的能力,属中档题.14.【分析】根据利用诱导公式和二倍角公式转化为求解【详解】因为所以故答案为:【点睛】本题主要考查二倍角公式及诱导公式的应用还考查了转化求解问题的能力属于中档题 解析:2425根据sin 410πθ⎛⎫-= ⎪⎝⎭,利用诱导公式和二倍角公式转化为2sin 2cos 2122sin 4πθθπθ⎛⎫=-=- ⎪⎛⎫- ⎪⎝⎝⎭⎭求解.【详解】因为sin 410πθ⎛⎫-= ⎪⎝⎭, 所以224sin 4sin 2cos 2co 25s 21224πππθθθθ⎡⎤⎛⎫⎛⎫=-=-=- ⎪⎛⎫-= ⎪⎝⎭ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 故答案为:2425【点睛】本题主要考查二倍角公式及诱导公式的应用,还考查了转化求解问题的能力,属于中档题.15.【分析】由题意根据二倍角公式同角三角函数的基本关系求得的值【详解】故答案为:【点睛】本题主要考查二倍角公式同角三角函数的基本关系在三角函数化简求值中的应用属于基础题解析:45-【分析】由题意,根据二倍角公式、同角三角函数的基本关系求得2cos α的值. 【详解】3tan α=-,222222cos sin 1tan 1942cos sin 1tan 195cos ααααααα---∴====-+++. 故答案为:45-. 【点睛】本题主要考查二倍角公式、同角三角函数的基本关系在三角函数化简求值中的应用,属于基础题.16.9【分析】根据可得然后根据利用基本不等式可求出最小值【详解】解:向量且又均为正数当且仅当即时取等号的最小值为故答案为:【点睛】本题考查了向量垂直和利用基本不等式求最值考查了方程思想和转化思想属于中档题解析:9 【分析】根据a b ⊥,可得21x y +=,然后根据()21212x y x y x y ⎛⎫+=++ ⎪⎝⎭利用基本不等式可求出最【详解】 解:向量(2,1)a =,(,1)b x y =-,且a b ⊥∴21(1)0a b x y =+-=,21x y ∴+=,又x ,y 均为正数,∴()222255292121y x y x y x y x y x y x ⎛⎫+=++=+++ ⎪⎝⎭, 当且仅当22y x x y =,即13x y ==时取等号, ∴21x y+的最小值为9. 故答案为:9. 【点睛】本题考查了向量垂直和利用基本不等式求最值,考查了方程思想和转化思想,属于中档题.17.【分析】根据以为一组基底由得到再由求解【详解】因为又因为所以所以故答案为:-12【点睛】本题主要考查平面向量基本定理和向量的线性运算还考查了运算求解的能力属于中档题 解析:12-【分析】 根据1132AD AB AC =+,以,AB AC 为一组基底,由2222()2BC AC AB AC AB AB AC =-=+-⋅,得到152AB AC ⋅=-,再由2111()()3223⎛⎫⎛⎫⋅=-⋅-=-⋅- ⎪ ⎪⎝⎭⎝⎭DB DC AB AD AC AD AB AC AC AB 求解.【详解】因为2222()2BC AC AB AC AB AB AC =-=+-⋅ 又因为3AB =,5AC =,7BC = 所以152AB AC ⋅=-, 所以2111()()3223DB DC AB AD AC AD AB AC AC AB ⎛⎫⎛⎫⋅=-⋅-=-⋅-= ⎪⎪⎝⎭⎝⎭22211251521294244AB AC AB AC --+⋅=---=-. 故答案为:-12 【点睛】本题主要考查平面向量基本定理和向量的线性运算,还考查了运算求解的能力,属于中档题.18.6【分析】根据平方处理求得即可得解【详解】在中已知点是边的中点解得则故答案为:6【点睛】此题考查平面向量的基本运算关键在于根据向量的运算法则求出模长根据数量积的运算律计算求解解析:6 【分析】 根据()12CP CA CB =+,平方处理求得2CB =,()12CP CA CA CB CA ⋅=+⋅即可得解. 【详解】在ABC △中,已知4CA =,3CP 23ACB π∠=,点P 是边AB 的中点, ()12CP CA CB =+ ()222124CP CA CB CA CB =++⋅ 211316842CB CB ⎛⎫⎛⎫=++⨯- ⎪ ⎪⎝⎭⎝⎭,解得2CB = 则()()21111162462222CP CA CA CB CA CA CB CA ⎛⎫⎛⎫⋅=+⋅=+⋅=+⨯⨯-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:6 【点睛】此题考查平面向量的基本运算,关键在于根据向量的运算法则求出模长,根据数量积的运算律计算求解.19.【分析】根据函数在区间上有50个最大值由第50个和第51个最大值满足求解【详解】因为函数在区间上有50个最大值第一个最大值为:第二个最大值为:第三个最大值为:…第50个最大值为:第51个最大值为:所解析:589601,120120ππ⎡⎫⎪⎢⎣⎭【分析】根据函数()2sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭在区间[0,20]上有50个最大值,由第50个和第51个最大值满足49220502232ππππωπ+⨯≤+<+⨯求解.【详解】因为函数()2sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭在区间[0,20]上有50个最大值, 第一个最大值为: 32x ππω+=,第二个最大值为: 232x ππωπ+=+,第三个最大值为: 432x ππωπ+=+,…第50个最大值为: 49232x ππωπ+=+⨯, 第51个最大值为: 50232x ππωπ+=+⨯, 所以 49220502232ππππωπ+⨯≤+<+⨯,解得49512010120πππωπ+≤<+, 综上:ω的范围是589601,120120ππ⎡⎫⎪⎢⎣⎭.故答案为:589601,120120ππ⎡⎫⎪⎢⎣⎭【点睛】易错点点睛:本题容易忽视第50个和第51个最大值要满足49220502232ππππωπ+⨯≤+<+⨯.20.(1)(2)(4)【分析】根据正弦型函数周期公式正弦型函数对称中心坐标正弦型函数对称轴等知识逐项验证即可求得答案【详解】对于(1)根据正弦型函数周期公式:可得:函数最小正周期为:故(1)正确;对于(解析:(1)(2)(4) 【分析】根据正弦型函数周期公式,正弦型函数对称中心坐标,正弦型函数对称轴等知识,逐项验证,即可求得答案. 【详解】对于(1),根据正弦型函数周期公式:2T ωπ=可得:函数3()2sin 34f x x π⎛⎫=-⎪⎝⎭最小正周期为:2233T ππ==,故(1)正确; 对于(2),根据正弦函数sin ()y x x R =∈的图象的对称中心为(0),k π 正弦型函数3()2sin 34f x x π⎛⎫=-⎪⎝⎭∴令334,k Z x k ππ=∈-,解得4,3k k Z x ππ=+∈ ∴其对称中心坐标为(,0),34k k Z ππ+∈ 当0k =时,对称中心坐标为(,0)4π,故(2)正确;对于(3),将2sin3y x =的图象向右平移34π个单位长度 可得:392sin 32sin 344y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭92sin 322sin 344x x πππ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭∴将2sin3y x =的图象向右平移34π个单位长度不能得到图象C ,故(3)错误; 对于(4),根据正弦函数sin ()y x x R =∈的图象的对称轴方程为,2x k k Z ππ=+∈,正弦型函数3()2sin 34f x x π⎛⎫=-⎪⎝⎭∴令,2334Z x k k πππ=+∈-,解得51,32k k x Z ππ=+∈ 当2k =-时,512342x πππ=+=--, ∴3()2sin 34f x x π⎛⎫=- ⎪⎝⎭一条对称轴4πx =-,故(4)正确;故答案为:(1)(2)(4). 【点睛】本题解题关键是掌握整体法求正弦函数图象的对称中心和对称轴的方法,考查了分析能力和计算能力,属于中档题.三、解答题21.(1)最小正周期为π;(2)5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,. 【分析】(1)由三角函数恒等变换化简函数得()sin 2f x x =,由三角函数的周期公式可得答案;(2)由余弦的二倍角公式和辅助角公式得()g x 2sin23x π=-(),再由正弦函数的性质可求得函数的单调增区间. 【详解】 解:(1)函数()22sin cos 12cos 1cos 2sin 24444f x x x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+--=--=⨯-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,所以函数()f x 的最小正周期为22ππ=.(2)()()22sin 22cos 1sin 2g x f x x x x x x =-=-=)2sin 23x π=-(),令222232k x k k Z πππππ-≤-≤+∈,,得51212k x k k Z ππππ-≤≤+∈,, 所以函数()g x 的单调增区间为51212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,,. 【点睛】方法点睛:解决三角函数的周期和单调性等相关问题,先利用三角函数的恒等变换化简函数为一个角一个三角函数,再运用整体思想代入是常用的方法. 22.(1)2AB b a =-,12CE a b =+;(2)证明见解析. 【分析】(1)求出2CB b =,利用AB CB CA =-与12CE CA AB =+化简可得答案; (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a , 求出,2a AD a ⎛⎫=- ⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 可得0AD CE ⋅=,进而可得答案.【详解】(1)∵CA a =,CD b =,点D 是CB 的中点, ∴2CB b =,∴2AB CB CA b a =-=-,∵()1112222CE CA AE a AB a b a a b =+=+=+-=+. (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a ,∴B 点坐标为(),0a ,另设点E 坐标为(),x y ,∵点D 是CB 的中点, ∴点D 坐标为,02a ⎛⎫⎪⎝⎭, 又∵2AE EB =,∴()(),2,x y a a x y -=--,∴23a x =,3ay =, 所以,2a AD a ⎛⎫=- ⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭,所以()20233a a aAD CE a ⋅=⨯+-⨯=, ∴AD CE ⊥.【点睛】方法点睛:平面向量数量积的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.23.(1)函数的周期为2π;(2)条件选择见解析,max ()2g x =,使函数()g x 取得最大值的集合为5|,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 【分析】(1)用正弦余弦的二倍角公式整理()f x 可得正弦函数标准型,可得函数最小正周期; (2)选①先平移变换后周期变换可得对应的()g x ,可得()g x 的最值; 选②先周期变换后平移变换得对应的()g x ,由此可求得最值. 【详解】 (1)∵函数31cos 1()sin()1226x f x x x π+=++=++, 所以函数的周期为2π;(2)<选择①>依题意:()cos(2)16g x x π=-++,令226x k πππ+=+,即5()12x k k Z ππ=+∈. 使函数()g x 取得最大值2,即max ()2g x =,使函数()g x 取得最大值的集合为5|,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭; <选择②>依题意:()cos(2)16g x x π=-++,令226x k πππ+=+,即5()12x k k Z ππ=+∈,使函数()g x 取得最大值2,即max ()2g x =使函数()g x 取得最大值的集合为5|,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 【点睛】关键点点睛:在解决正弦型函数的周期,最值,单调性等性质时,关键在于利用三角恒等变换将函数化成正弦型函数的标准形,再利用整体代换的思想求解. 24.(1)90;(2)4π-. 【分析】(1)先求出1a b ==,利用数量积运算法则可求得()()0a b a b +⋅-=,从而证得结论;(2)利用向量坐标运算求得ka b +和a kb -,利用模长相等可求得cos()0αβ-=,根据角的范围可确定最终取值.【详解】(1)由已知得:1a b ==, 则:()()22·0a b a b a b +-=-=, 因此:()()a b a b +⊥-,因此,向量a b +与a b -所成的夹角为90; (2)由(cos ,sin )a αα=,(cos ,sin )b ββ=, 可得()cos cos ,sin sin k a b k k αβαβ+=++,()cos cos ,sin sin a k b k k αβαβ-=--,(cos ka b k +=, (cos a kb α-=∴==即:()4cos 0k βα-=,0k ≠ ,()cos 0βα∴-=,即()cos 0αβ-=,00αβππαβ<<<∴-<-<,因此:2παβ-=-, 即:24αβπ-=-. 【点睛】本题主要考查了向量的数量积运算,根据向量模长相等关系求解参数值的问题;关键是能够熟练掌握向量的坐标运算,属于中档题.25.若选①(1)T π=;(2)最小值2-1;若选②(1)2T π=,(2,最小值1--. 【分析】(1)结合所选选项,然后结合二倍角公式及辅助角公式进行化简,然后结合周期公式可求;(2)由已知角x 的范围,然后结合正弦函数的性质即可求解.【详解】解:选①,(1)因为()()cos 2sin cos sin 4f x x x x x x π⎛⎫=+=- ⎪⎝⎭, 22sin cos 2sin sin 2cos 21x x x x x =-=+-214x π⎛⎫=+- ⎪⎝⎭, 故函数的周期T π=;(2)因为,44x ππ⎡⎤∈-⎢⎥⎣⎦,所以32,444x πππ⎡⎤+∈-⎢⎥⎣⎦, 当244x ππ+=-即4πx =-时,函数取得最小值2-,当242x ππ+=即8x π=时,函数取得1,选②,(1)()2sin 24x f x x π⎛⎫=- ⎪⎝⎭1cos 2x x π⎡⎤⎛⎫=-- ⎪⎢⎥⎝⎭⎣⎦,)2sin sin x x =-,故函数的一个周期2T π=,(2)由,44x ππ⎡⎤∈-⎢⎥⎣⎦可得sin 22x ⎡∈-⎢⎣⎦, 1sin 2x =时即6x π=当sin x =时即4πx =-时,函数取得最小值12--. 【点睛】 此题考查二倍角公式及辅助角公式的应用,考查正弦函数性质的应用,考查计算能力,属于中档题26.(1)3tan 4α=;(2)3sin 3sin 3cos 25ααα=--. 【分析】(1)利用诱导公式可得出12cos sin 25αα=,根据题意可得出关于cos α、sin α的值,求出cos α、sin α的值,利用同角三角函数的商数关系可求得tan α的值; (2)将所求代数式变形为()()3322sin sin sin 3cos sin 3cos sin cos αααααααα=--+,在分式的分子和分母中同时除以3cos α,利用弦化切可求得所求代数式的值.【详解】(1)712sin cos 2225ππαα⎛⎫⎛⎫---+= ⎪ ⎪⎝⎭⎝⎭, 由诱导公式可得123sin cos cos sin 2522ππαααα⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭, 0,4πα⎛⎫∈ ⎪⎝⎭,cos sin 0αα∴>>,由已知可得2212cos sin 25cos sin 1cos sin 0αααααα⎧=⎪⎪+=⎨⎪>>⎪⎩,解得4cos 53sin 5αα⎧=⎪⎪⎨⎪=⎪⎩,因此,sin 3tan cos 4ααα==; (2)()()3322sin sin sin 3cos sin 3cos sin cos αααααααα=--+()()332223sin tan 325sin sin tan 3tan 131cos cos cos ααααααααα===-⎛⎫-+⎛⎫-+ ⎪⎪⎝⎭⎝⎭. 【点睛】方法点睛:三角函数求值问题中已知tan α,求关于sin α、cos α的代数式的值时,一般利用弦化切公式后直接代入tan α的值,在关于sin α、cos α的齐次式中,常常利用弦化切的方程转化为含tan α的代数式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高中数学必修四 第一章《三角函数》单元测试题一、 选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个是符合要求的,把正确答案的代号填在括号内.) 1、600sin 的值是( ))(A ;21 )(B ;23 )(C ;23- )(D ;21-2、下列说法中正确的是( ) A .第一象限角都是锐角B .三角形的内角必是第一、二象限的角C .不相等的角终边一定不相同D .},90180|{},90360|{Z k k Z k k ∈︒+︒∙==∈︒±︒∙=ββαα3、已知cos θ=cos30°,则θ等于( )A. 30°B. k ·360°+30°(k ∈Z)C. k ·360°±30°(k ∈Z)D. k ·180°+30°(k ∈Z) 4、若θθθ则角且,02sin ,0cos <>的终边所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限( )5、已知21tan -=α,则αααα22cos sin cos sin 2-的值是( ) A .34- B .3 C .34 D .3-6.若函数x y 2sin =的图象向左平移4π个单位得到)(x f y =的图象,则( )A .x x f 2cos )(=B .x x f 2sin )(=C .x x f 2cos )(-=D .x x f 2sin )(-=7、9.若︒++︒90cos()180sin(αa -=+)α,则)360sin(2)270cos(αα-︒+-︒的值是( )A .32a -B .23a -C .32aD .23a 8、圆弧长度等于圆内接正三角形的边长,则其圆心角弧度数为 ( )A.3π B.32π C. 3 D. 29、若x x f 2cos 3)(sin -=,则)(cos x f 等于( )A .x 2cos 3-B .x 2sin 3-C .x 2cos 3+D .x 2sin 3+10、已知tan(α+β)=25,tan(α+4π)=322, 那么tan(β-4π)的值是( )A .15B .14 C .1318 D .132211已知函数>><+=ωϕω,0)sin()(A x A x f )2||,0πϕ<在一个周期内的图象如图所示.若方程m x f =)(在区间],0[π上有两个不同的实数解21,x x ,则21x x +的值为( )A .3π B .π32 C .π34 D .3π或π3412.已知函数f (x )=f (π-x ),且当)2,2(ππ-∈x 时,f (x )=x +sin x ,设a =f (1),b =f (2),c =f (3),则( ) A.a<b<c B.b<c<a C.c<b<a D.c<a<b二、填空题(本大题共4小题,每小题3分,共12分,把最简单结果填在题后的横线上.13.比较大小 (1)0508cos 0144cos ,)413tan(π- )517tan(π-。

14.已知32sin =α,),2(ππα∈,则-αsin(=)2π_______.15.将函数)421sin(2)(π+=x x f 的图象向左平移2π个单位得到函数)(x g 的图象,则)(x g 的解析式为_________.16.已知θ_____ _______。

三、解答题(本大题共6小题,52分,解答应写出必要的文字说明、证明过程或演算步骤.) 17.(8分)(1)已知tan 3α=-,且α是第二象限的角,求αsin 和αcos ;(2)已知sin cos ,2,tan 5ααπαπα-=-求的值。

18.(8分) 已知3tan =α,计算ααααsin 3cos 5cos 2sin 4+- 的值 。

19.(8分) 已知函数1)cos (sin cos 2)(+-=x x x x f . (1)求函数)(x f 的最小正周期、最小值和最大值; (2)画出函数)(x f y =区间],0[π内的图象.20.(8分)已知)(x f 是定义在),(+∞-∞上的奇函数,且当0>x 时,x x x f cos sin )(+=.当R x ∈时,求)(x f .21.(10分) 已知函数=)(x f <>>+0,0,0)(sin(ωϕωA x A ),R x ∈<πϕ在一个周期内的图象如图,求直线=y 3与函数)(x f 图象的所有交点的坐标.参考答案一、 选择题CDCDA CCBDB AD 二、 填空题13. < , > 14.63223+ 15. 12±16.in cos s θθ==- 三、 解答题17. (1)sin ,cos αα== (2)tan 2α=18.解、∵3tan =α ∴0cos ≠α∴原式=ααααααcos 1)sin 3cos 5(cos 1)cos 2sin 4(⨯+⨯- =ααtan 352tan 4+- =335234⨯+-⨯ =7519. 解:)42sin(22cos 2sin 1)cos (sin cos 2)(π-=-=+-=x x x x x x x f(1)函数)(x f 的最小正周期、最小值和最大值分别是π,2-,2;(2)列表,图像如下图示20.解:因为)(x f 是定义在R 上的奇函数,所以0)0(=f . 因为当0>x 时,x x x f cos sin )(+=, 所以若0<x ,则0>-x .所以x x x x xf sin cos )cos()sin()(-=-+-=-. 又因为)()(x f x f -=-,即x x x f sin cos )(-=-, 所以x x x f cos sin )(-=.所以⎪⎩⎪⎨⎧<-=>+=.0,cos sin ,0,0,0,cos sin )(x x x x x x x x f21.解:由图象可知函数)(x f 的振幅A=2,周期-=27πT ππ4)2(=-. 因为||2ωπ=T ,0>ω,所以21=ω, 所以)21sin(2)(ϕ+=x x f .又πϕπk 2)2(21=+-,Z k ∈,πϕ<<0,所以4πϕ=.所以)421sin(2)(π+=x x f .由3)421sin(2=+πx ,即23)421sin(=+πx ,得32421πππ+=+k x 或322421πππ+=+k x ,Z k ∈. 所以64ππ+=k x 或654ππ+=k x ,Z k ∈.所以所求交点的坐标为)3,64(ππ+k 或)3,654(ππ+k ,其中Z k ∈必修4第二章平面向量教学质量检测姓名: 班级: 学号: 得分:一.选择题(5分×12=60分): 1.以下说法错误的是( )A .零向量与任一非零向量平行 B.零向量与单位向量的模不相等 C.平行向量方向相同 D.平行向量一定是共线向量 2.下列四式不能化简为AD 的是( )A .;)++(BC CD AB B .);+)+(+(CM BC M B ADC .;-+BM AD M B D .;+-CD OA OC3.已知=(3,4),=(5,12),与 则夹角的余弦为( )A .6563B .65C .513 D .134. 已知a 、b 均为单位向量,它们的夹角为60°,那么|a + 3b | =( )A .7B .10C .13D .45.已知ABCDEF 是正六边形,且−→−AB =→a ,−→−AE =→b ,则−→−BC =( ) (A ))(21→→-b a (B ))(21→→-a b (C ) →a +→b 21(D ))(21→→+b a6.设→a ,→b 为不共线向量,−→−AB =→a +2→b ,−→−BC =-4→a -→b ,−→−CD = -5→a -3→b ,则下列关系式中正确的是 ( )(A )−→−AD =−→−BC (B )−→−AD =2−→−BC (C )−→−AD =-−→−BC (D )−→−AD =-2−→−BC7.设→1e 与→2e 是不共线的非零向量,且k →1e +→2e 与→1e +k →2e 共线,则k 的值是( ) (A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数8.在四边形ABCD 中,−→−AB =−→−DC ,且−→−AC ·−→−BD =0,则四边形ABCD 是( ) (A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形9.已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且−→−PN =-2−→−PM ,则P 点的坐标为( )(A ) (-14,16)(B ) (22,-11)(C ) (6,1) (D ) (2,4)10.已知→a =(1,2),→b =(-2,3),且k →a +→b 与→a -k →b 垂直,则k =( ) (A ) 21±-(B ) 12±(C ) 32±(D ) 23±11、若平面向量(1,)a x =和(23,)b x x =+-互相平行,其中x R ∈.则a b -=( )A. 2-或0;B.C. 2或D. 2或10. 12、下面给出的关系式中正确的个数是( )① 00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a ⋅=⋅⑤b a b a ⋅≤⋅(A) 0 (B) 1 (C) 2 (D) 3二. 填空题(5分×5=25分):13.若),4,3(=AB A点的坐标为(-2,-1),则B点的坐标为 . 14.已知(3,4),(2,3)=-=a b ,则2||3-⋅=a a b . 15、已知向量)2,1(,3==b a,且b a ⊥,则a 的坐标是_________________。

16、ΔABC 中,A(1,2),B(3,1),重心G(3,2),则C 点坐标为________________。

17.如果向量 与b 的夹角为θ,那么我们称 ×b 为向量 与b 的“向量积”, ×b 是一个向量,它的长度| ×b|=| ||b|sin θ,如果| |=4, |b|=3, ·b=-2,则| ×b|=____________。

相关文档
最新文档