电力系统主接线

合集下载

工厂供配电系统主接线方案

工厂供配电系统主接线方案

工厂供配电系统主接线方案工厂供配电系统主接线方案一、概述工厂供配电系统是指将电源送到工厂各个用电设备的电气系统。

主接线方案是工厂供配电系统的基础,决定了电力传输的可靠性和安全性。

在设计工厂供配电系统主接线方案时,需要考虑到工厂用电需求、电源容量、用电设备位置等因素,以确保供电正常运行。

二、方案设计1. 供电负荷分析首先需要对工厂用电设备进行调查和测算,确定整个工厂的电力需求。

根据测算结果,估算工厂的最大负荷和平均负荷,并预留适当的负荷余量。

2. 供电方案选择根据工厂的用电需求和供电负荷,选择合适的供电方案。

一般可选择以下几种供电方案:(1)单电源供电方案:采用一条主干线将电源供给到整个工厂,适用于负荷较小的工厂。

(2)双电源供电方案:采用两条主干线,分别接入两个独立的电源,实现冗余供电。

当一个电源出现故障时,另一个电源可以继续供电,提高供电可靠性。

(3)环网供电方案:采用环形接线路网,多个电源供电到环网,具有良好的冗余供电和均衡负载的特点,适用于大型工厂。

3. 主接线设计主接线是将电源供给到工厂各个用电设备的电缆或导线。

主接线的选择要根据工厂的负荷、电源容量、线路长度和安全指标等要素综合考虑。

一般可选择以下几种主接线设计方案:(1)单级主接线:即将电源通过主干线供给到各个用电设备的接线箱,适用于负荷分布较为均匀的工厂。

(2)级联主接线:即将电源通过主干线供给到多个接线箱,再由接线箱供给到用电设备,适用于负荷集中的工厂区域。

(3)阶梯主接线:即将电源通过主干线供给到多个接线箱,再由接线箱供给到用电设备。

每个接线箱的线路容量逐渐减小,以实现负荷均衡,适用于负荷分布不均匀的工厂。

(4)环形主接线:即采用环形结构的主干线,通过环网将电源供给到各个用电设备,具有良好的冗余供电和均衡负载的特点,适用于大型工厂。

三、安全保护为确保供配电系统的安全性,还需要在主接线方案中考虑相应的安全保护措施:1. 过载保护:在主接线上设置过载保护装置,当负荷超过额定电流时,自动切断电源,避免电线过热引发火灾和损坏设备。

电力系统电气主接线(其他形式)

电力系统电气主接线(其他形式)

电力系统电气主接线(其他形式)4.一个半断路器接线一个半断路器接线可归属于双母线类接线。

在两组母线之间,每三个断路器形成一串。

每串连接两条回路。

相当于每一个半断路器带一条回路,故称之为一个半断路器接线,也称为3/2接线。

在一个半接线的每串断路器中,位于中间的断路器称为联络断路器。

运行中两母线及全部断路器都投入工作,形成多重环状供电。

5.双母线单(双)分段带旁路接线为进一步缩小母线故障的影响范围,对于可靠性要求较高的330~500kV超高压系统,当进出线达到6回以上时,可采用双母线单段或双分段带旁路接线。

这种接线是把工作母线分为两段,在两段工作母线之间,两工作母线与备用母线之间都设置有母联断路器。

6.变压器—母线接线各出线经过断路器分别接在母线上,变压器直接经隔离开关接到母线上,组成变压器—母线接线。

电源和负荷可以自由调配。

由于变压器是高可靠性设备,所以直接接在母线上,对母线的运行并不产生严重影响,一旦变压器故障时,接在母线上的各断路器开断,这时不会影响对用户的供电。

在出线数目很多时也可以用一台半断路器接线形式。

这种接线在远距离大容量输电系统中应用时,对系统稳定与可靠性均有良好的效果。

7.无母线接线(1)桥式接线对于具有双电源进线、两台变压器终端式的总降压变电所,可采用桥式接线。

它实质是连接两个35~110kV“线路─变压器组”的高压侧,其特点是有一条横联跨桥的“桥”。

根据跨接桥横连位置不同,分为内桥接线和外桥接线。

1)内桥接线的跨接桥靠近变压器侧,桥开关装在线路开关之内,变压器回路仅装隔离开关,不装断路器。

采用内桥接线可以提高改变输电线路运行方式的灵活性。

内桥接线适用于:对一、二级负荷供电;供电线路较长;变电所没有穿越功率;负荷曲线较平稳,主变压器不经常退出工作;终端型工业企业总降压变电所。

2)外桥接线跨接桥靠近线路侧,桥开关装在变压器开关之外,进线回路仅装隔离开关,不装断路器。

外桥接线适用于:对一、二级负荷供电;供电线路较短;允许变电所有较稳定的穿越功率;负荷曲线变化大,主变压器需要经常操作;中间型工业企业总降压变电所,宜于构成环网。

电力系统主接线图讲解

电力系统主接线图讲解

桥式连接
外桥接线
线路——变压器单元接线

不分段双母线接线
母 单元连接 发电机——变压器单元接线
线
分段双母线接线
双母线 双母线带旁路母线接线
线
发电机——变压器扩大单元接线
多角形连接
双断路器双母线接线
金品一台质半断•高路器追接线求
我们让你更放心!
返回
◆语文•选修\中国小说欣赏•(配人教版)◆ 有汇流母线
金品质•高追求 我们让你更放心!
返回
◆语文•选修\中国小说欣赏•(配人教版)◆
电气主接电线气图主的接基线的本基形本式形式:有母线接线和无母线接线。母线
是汇流线,用以汇集电能和分配电能的,是发电厂和变电所的
重要装置。电气主接线的类型如下:
不分段单母线接线
内桥接线
单母线 分段单母线接线

无 分段单母线带旁路母线接线
在接通电路时,应先合断路器两侧的隔离开关,再合 断路器;切断电路时,应先断开断路器,在断开两侧的隔 离开关。
金品质•高追求 我们让你更放心!
返回
◆语文•选修\中国小说欣赏•(配人教版)◆
不分段单母线接线的优点是:接线简单、操作方便、 设备少、经济性好;并且,母线便于向两端延伸,扩建方 便。
缺点是(1)可靠性差。出现回路的断路器进行检修 时,该回路要停电,直至断路器修好,也可能是长期停电 ;母线或母线隔离开关检修或故障时,所有回路都要停止 工作,也就是造成全厂或全所长期停电。
如果正常运行时,QFd是接通的,则当任一端母线 出现故障时,母线继电器保护会断开连在母线上的断 路器和分段断路器QFd。这样另一段母线仍能继续工作 。如果一条母线上的电源断开了,那么该母线上的出 线可以通过分段断路器从另一条母线上得到供电。

电力系统主接线图讲解

电力系统主接线图讲解
(2)调度不方便。电源只能并列运行,不能分列运行。并 且线路侧发生短路时,有较大的电流。
诚联电源制造有限公司
引出线
1
2

有汇流母线 ——分段单母线接线
3
4




线


线
电源1
电源2
诚图联电2源-2制造有限公司
分段单母线接线
为了克服不分段单母线的一些缺点,我们可以 用断路器将母线分段,可根据电源数目和功率分段 。分段断路器两侧应装有隔离开关,供该断路器检 修用。
电力系统主接线图
电气主接线的基本要求 电气主接线的基本形式次主接线的要求
对主接线的基本要求就是:安全、可靠、经济、方
便。
一、安全性
对电气主接线的安全性,主要体现在:隔离开关的
正确配置和隔离开关接线的正确绘制。
隔离开关的主要用途是将检修部分与电源隔离,以
诚联电源制造有限公司
分段单母线接线的运行方式
分段断路器QFd在正常工作时可以投入使用,也可 以断开。
如果正常运行时,QFd是接通的,则当任一端母线 出现故障时,母线继电器保护会断开连在母线上的断 路器和分段断路器QFd。这样另一段母线仍能继续工作 。如果一条母线上的电源断开了,那么该母线上的出 线可以通过分段断路器从另一条母线上得到供电。
在接通电路时,应先合断路器两侧的隔离开关,再合断 路器;切断电路时,应先断开断路器,在断开两侧的隔离开关 。
诚联电源制造有限公司
不分段单母线接线的优点是:接线简单、操作方便、设 备少、经济性好;并且,母线便于向两端延伸,扩建方便。
缺点是(1)可靠性差。出现回路的断路器进行检修时, 该回路要停电,直至断路器修好,也可能是长期停电;母线或 母线隔离开关检修或故障时,所有回路都要停止工作,也就是 造成全厂或全所长期停电。

电气主接线种类及原理

电气主接线种类及原理

电气主接线种类及原理电气主接线是指在电气系统中,将各种电气设备连接起来的一种布线方式。

根据不同的电气设备和电路特点,主接线可以分为星形接线、三角形接线、Y-△接线、Y-△变压器接线等多种类型。

本文将就这些主接线种类及其原理进行详细介绍。

一、星形接线星形接线又称为Y型接线,是一种常见的电气主接线方式。

在星形接线中,电源的每一相都与负载的一端相连,而负载的另一端则通过连接器连接在一起,形成一个共同的节点。

这种方式可以使电流分配到各个负载上,实现平衡负载的效果。

星形接线适用于需要稳定供电的场合,如住宅、商业建筑等。

二、三角形接线三角形接线又称为△型接线,是另一种常见的电气主接线方式。

在三角形接线中,负载的每一端都与电源的一相相连,而电源的另一相则通过连接器连接在一起,形成一个共同的节点。

这种方式可以使电流在负载之间形成环路流动,实现相互之间的能量传递。

三角形接线适用于需要高功率输出的场合,如工业机械、发电机等。

三、Y-△接线Y-△接线是将星形接线和三角形接线结合起来的一种特殊接线方式。

在Y-△接线中,负载的一端通过星形接线连接在一起,而负载的另一端通过三角形接线连接在一起。

这种方式既能实现平衡负载,又能实现高功率输出。

Y-△接线适用于既需要稳定供电又需要高功率输出的场合,如大型机械设备、大型发电厂等。

四、Y-△变压器接线Y-△变压器接线是一种特殊的电气主接线方式,适用于将高压电网与低压电网相连的场合。

在Y-△变压器接线中,高压侧采用星形接线,低压侧采用三角形接线。

通过变压器的转化作用,实现高压电能向低压电网的转换。

Y-△变压器接线广泛应用于电力系统中,起到了平衡电能传输和供电稳定的作用。

总结起来,电气主接线种类及其原理有星形接线、三角形接线、Y-△接线和Y-△变压器接线。

不同的接线方式适用于不同的场合,能够满足不同的电气设备和电路的需求。

通过合理选择和应用主接线方式,可以实现电能的平衡分配和稳定供电,保证电气系统的正常运行。

电气主接线的设计与设备选择

电气主接线的设计与设备选择

电气主接线的设计与设备选择概述电气主接线是电力系统中最关键的一部分,它连接各种电气设备,起到传输电能的作用。

合理的设计与设备选择可以提高系统的可靠性、安全性和效率。

本文将介绍电气主接线的设计原则和常用设备的选择。

设计原则1. 安全性安全是电气主接线设计的首要考虑因素。

主接线系统应满足以下安全要求:•承载能力:主接线系统的电流容量应满足电气设备的需求,避免过载导致火灾或设备损坏。

•绝缘:主接线系统应具备足够的绝缘能力,以减少触电风险。

•短路保护:主接线系统应配备合适的短路保护装置,能够及时切断故障电流,防止短路事故。

2. 可靠性主接线系统应具备良好的可靠性,以保证电力供应的连续性。

以下因素需要考虑:•设备选择:选择具有高可靠性的设备,如合格的电缆、开关和断路器等。

•设备维护:定期检查和维护电气设备,及时发现故障并修复。

•多重回路:在主接线系统中设置多个回路,以便当一个回路出现故障时,其他回路仍能正常工作。

3. 适用性主接线系统的设计应根据实际使用情况进行合理选择,满足电气负荷的需求。

以下因素需要考虑:•电流容量:主接线系统的电流容量应根据电气负荷的大小来确定,避免过载或电压降低过大的问题。

•环境适应性:主接线系统应能够适应环境的温度、湿度和腐蚀等特点,确保长期稳定运行。

设备选择1. 电缆电缆是主接线系统中常用的电气设备之一,它用于连接变电站、配电装置和负载设备。

选择合适的电缆需要考虑以下因素:•电流容量:根据负荷电流确定电缆的截面积,确保电缆的承载能力满足要求。

•绝缘材料:选择具有良好绝缘性能的电缆材料,如PVC、XLPE等。

•引线方式:根据实际情况选择单芯、多芯、屏蔽或非屏蔽等引线方式。

2. 开关开关是主接线系统中起到控制和保护作用的重要设备。

选择合适的开关需要考虑以下因素:•电流容量:根据电气负荷的大小确定开关的额定电流,确保开关能够安全可靠地进行导通和断开操作。

•动作特性:根据实际应用需求选择合适的开关动作特性,如常开、常闭、防爆等。

简述电气主接线的基本形式。

简述电气主接线的基本形式。

简述电气主接线的基本形式。

电气主接线是电力系统中电力设备进行电气互联所采用的一种重要的方式,主要是通过将不同电气设备之间的电气信号进行连接,以实现设备之间的数据和能量传输。

电气主接线的基本形式主要有三种,分别是单线制、电气柜式和集中控制柜式。

其中,单线制是最简单的一种电气主接线方式,它是通过将电气设备直接与电缆或导线连接,实现设备之间的电气互联。

它的缺点是线路复杂,难以维护,不易管理。

因此,在大型电力系统中使用比较少。

电气柜式是一种较为常见的电气主接线方式,它是通过将所有的电气设备的电缆或导线连接到一个电气柜中,并在电气柜中完成信号转换、集中控制和电流保护等功能。

电气柜式电气主接线具有结构简单、灵活性好、可靠性高、易于维护等优点,被广泛应用在各类工业和民用电力设施中。

集中控制柜式是一种高端的电气主接线方式,它是通过将所有的电气设备连接到一个集中控制柜中,并在该控制柜中实现电气信号转换、数据采集、集中控制和电流保护等功能。

集中控制柜式电气主接线具有传输速度快、可靠性高、控制灵活、操作简便等特点,通常应用于大型的物流、制造业、石化和航空等领域。

综上所述,不同的电气主接线方式各有优缺点,需要根据具体的电气系统规模、应用需求和技术要求来选择最适合的方式,以提高电气设备的效率和可靠性,确
保电力系统的安全稳定运行。

电力系统的接线

电力系统的接线

2.1 电气主接线--双母线接线
为了克服双母接线的缺点:
2.1 电气主接线--双母线接线
特点:
兼具单母分段和双母接线的特点; 运行方式多样、灵活; 但母联、分段断路器均随分段数目而增加。
分段数目:取决于主母线负荷大小及出线回路数
(如220KV回路数,若10~14回,双母三分段; 15回及以上,双母四分段)。
2.1 电气主接线--发电机--变压器单元接线
发电机与变压器 直接串联成一个 单元(亦称发变 组),其间没有 横向联系,称为 发电机--变压器 单元接线(简称 单元接线)。
2.1 电气主接线--发电机--变压器单元接线
适用:将发电机发出的全部电能以升高
电压(35KV以上)输入电网的大中型 电厂中。
2.1 电气主接线--单母线接线
--检修出线L3的断路器时: 先检查旁母(合QF2,试充电); 旁母无故障的话,带上旁母(合 上QS3)----出线此时能从主母线 和旁母同时获得电源; 最后退出要检修的断路器QF1, 接着断开QS2、QS1; 整个倒闸过程中,用户不会停电。
(示例:单母带旁母接线,不停电检修出线断路 器的倒闸操作过程演示。)
2.1 电气主接线
2.1 电气主接线
电气主接线图
--采用国家规定
的设备图形符号及文 字符号,按电能产生、 汇集和分配的顺序, 表示出各设备的连接 关系的电路接线图。
即电气主接线的 图形表示,一般 用单线图----简单、 明了。
2.1 电气主接线
断路器QF:
具有专用灭弧装置,可开断或闭合负荷电流和 自动开断短路电流,主要用作接通或切断电路 的控制开关。
2.1 电气主接线--一台半断路器接线
--( “特殊的双母线接线”)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章前言1.1电气主接线系统设计的意义电气主接线主要指发电厂、变电所及电力系统中传送电能的通路, 这些通路中有发电机、变压器、母线、断路器、隔离开关、电抗器、线路等设备。

它们的连接方式, 对供电可靠、运行灵活、检修方便以及经济合理等起着决定性的作用,它反映出电厂的整个供电系统全貌和其所选用的电气设备、元件型号规格和数量以及它们之间的相互关系。

它不仅是初步设计审查的重要内容之一, 同时也是将来电气值班运行人员进行各种操作的重要依据。

电气主接线的设计是否合理, 将直接影响到电厂基本建设投资效益和今后的安全及可靠运行,同时也是做好发电厂电气设计的关键。

同时,电气主接线的设计也是变电所电气设计的主体。

它与电力系统、电厂功能参数、基本原始资料以及电厂的运行可靠性、经济性的要求等密切相关,并对电器选择和布置,继电保护和控制方式等都有较大的影响。

因此,主接线的设计显得尤为重要。

针对发电厂而言,电气主接线已经成为电气设计最为关键的环节,关系着电能的安全输送,关系着居民用电的可靠保障和自身运行的安全性、稳定性。

合理的设计能够有效节省基建投资,方便以后的操作和检修,减少机组因电气原因造成停机等。

本文依托某2×30MW公用热电厂进行设计主接线,通过技术经济比较,达到技术先进、经济合理、安全适用的目的。

1.2厂用电系统设计的意义厂用电系统是火力发电厂的重要组成部分,厂用电系统的任何故障都会影响正常生产,严重的会直接造成停产。

火力发电厂有大量的辅机设备,大部分辅机均由电动机拖动,厂用电量巨大,一般热电厂的厂用电率为8%~10%甚至更高,且对电源的可靠性要求高,一般情况不允许突然中断。

厂用电供电的可靠性和经济性不仅与发电厂的运行操作、维护检修和设备质量等有着密切的关系,其很大程度上取决于厂用电接线设计是否正确、合理,厂用电的电压等级和厂用电源的引接方式是否合适,备用电源与工作电源切换是否灵活可靠等。

由此可见,厂用电系统的设计直接关系到整个电厂以后运行的安全、可靠性,它的确定就代表着电厂基本轮廓的确定,基本组成设备的确定,投资成本的确定,因此合理的厂用电接线,适当的电压等级,对于保证机组的安全连续满发、降低厂用电率、方便操作和维护、节约投资、缩短建设工期、控制造价等有着重要的意义。

1.3 本文的主要工作1.3.1 学习关于电气主接线和厂用电接线的设计方法和流程。

1.3.2 根据各设计规范选择各主要设备、导体的型式,并了解校核方法。

1.3.3 通过设计和探讨,加深对所学知识的掌握,为以后运用于实践中打好基础。

第2章电气主接线设计要求及方案确定2.1电气主接线设计的要求发电厂的主接线设计要求非常严格,在设计时不仅要按照国家相关的法律法规严格执行外,其经济性、合理性、可靠性等都直接关系到以后的运行安全和经济效益。

所以,对发电厂电气主接线设计一般应满足以下几点:2.1.1保证必要的供电可靠性供电可靠性是电力生产和电能分配的首要任务,电气主接线应首先满足这一要求。

电力系统的发电、送电和用电是同时完成的,并且在任何时刻都保持着平衡关系,无论那部分故障,都将影响整个电力系统的正常运行。

事故停电不仅会造成损失,若在系统中担负基本负荷的电厂解列,可能会造成电网崩溃等恶性事故。

因此,保证供电可靠性是电力生产头等重要的任务。

电气主接线的可靠性是其各组成元件(包括一次部分和二次部分)的综合。

因此,在设计时除了尽可能选用工作可靠的一次设备和二次设备外,还应设计这些设备元件的合理连接方式。

特别要注意择优选用那些经过长期运行被认为可靠性比较高的接线方式。

电气主接线的可靠性并不是绝对的,而是相对比较而言。

同样的主接线对某些发电厂或变电所来说是可靠地,而对另一些重要的发电厂或变电所来说可能还不够可靠。

因此,分析和评价主接线的可靠性,不能脱离发电厂和变电所在电力系统中的地位和作用。

2.1.2保证电能质量电压、频率和波形是表征电能质量的基本指标。

电气主接线的设计是否合理对电压和频率有着重要影响。

例如有些接线方案坑内在某一单元故障时,迫使其他元件一同退出运行,或使回路阻抗增大,或造成发电厂一部分容量受阻,从而造成电力系统频率或某一部分电压下降,甚至出现电压和频率的崩溃。

因此,在拟定主接线方案时必须注意研究如何保证电能质量。

2.1.3具有一定的灵活性和方便性电力系统是一个紧密联系的整体。

发电厂和变电所由中心调度所和地区调度所统一调度指挥。

发电厂和变电所电气主接线的运行方式随整个电力系统的运行要求而改变。

因此,所设计的电气主接线应能灵活地投入和切除某些机组、变压器或线路,从而达到调配电源盒负荷的目的;并能满足电力系统在事故运行方式、检修运行方式和特殊运行方式下的调度要求。

当需要检修时,应能很方便的使断路器、母线及继电保护设备退出运行进行检修,而不致影响电力网的运行或停止对用户供电。

此外,电气主接线方案还必须能够容易地从初期接线过渡到最终接线,以满足扩建的要求。

该工程受外部条件影响,前期只能单回出线,待外部条件满足时要过渡到双回出线,因此能够在不全厂停电条件下完成线路过渡显得尤为重要,在设计时必须优先考虑。

2.1.4具有一定的经济性电气主接线的经济性是指投资省、占地面积小、电能损耗少三个方面。

因此,在满足可靠性、灵活性要求的前提下,电气主接线应力求简单,以节省断路器、隔离开关、电流互感器、电压互感器及避雷器等一次设备的投资;要尽可能的简化继电保护和二次回路,以节省二次设备和控制电缆;应采取限制短路电流的措施,以便选择轻型的电器和小截面的载流导体;同时,设计电气主接线要为配电装置的布置创造条件,以节约用地和材料。

此外,还应经济合理地选择主变压器的型式、容量和台数,要避免出现两次变压,以减少变压器的电能损耗。

2.2电气主接线方案的确定电气主接线的接线形式种类繁多,但常用的基本形式只有几种,包括单母线接线,双母线接线、带旁路母线的接线、桥形接线、多角形接线盒单元接线等。

鉴于该工程为小容量机组,为节省投资,简化系统,本文仅讨论单母线的接线型式。

本期2台发电机均以“发电机-变压器组”型式接入110kV 系统。

对单母线的几种接线型式分析如下:2.2.1不分段单母线接线型式不分段单母线接线型式是有母线接线中最简单的型式,这种接线方式投资最省,操作方便,便于扩建和采用成套配电装置,缺点是接线不够灵活,一旦设备故障极易造成全厂供、用电中断。

这种接线方式一般用于用户重要性等级较低的配电装置中,现代电厂中一般较少采用这种接线方式。

见图2.1。

2.2.2单母线分段接线单母线分段接线较不分段母线接线具有更高的可靠性,在检修其中一条母线时也不会中断另一段的运行。

缺点是处于检修期间的母线上所有回路均要停电,扩建时需向两个方向均衡扩建,这种接线方式较多应用于中小容量发电厂的主接线。

见图2.2。

图2.1 不分段单母线接线图2.2 单母线分段接线 2.2.3 单母线分段带旁路接线为进一步克服单母线接线在检修时造成回路停电的缺点,确保供电可靠,可以再增设一条旁路母线,如图2.3。

利用旁路断路器切换各母线的运行和检修方式,可以大大提高供、用电的可靠性。

但缺点也是显而易见的,设备多,投资和占地面积增大。

2.3电气主接线方案的论证三种接线方式各有优劣,针对本工程的实际情况应充分考虑自身厂用电的可靠性,且当前只能有单回出线,远期再增加一回出线,并再扩建3台发电机。

单母线分段带旁路接线方式是三种方案里最可靠和运行最灵活的,但设备多,初投资大,分段单母线接线方式介于其他两种接线方式之间,且能够满足将来扩建的需求,其供、用电可靠性也能够保证,故本次选择分段单母线接线方式作为该厂的主接线方式。

单母线分段的数目取决于电源的数目、电网的接线及主接线的运行方式,一般以2-3段为宜;其连接的回路数一般比不分段的单母线接线增加一倍,但仍不宜过多。

主接线图见附录1,图2.4电气主接线图。

第3章厂用电系统的方案选择及论证3.1 厂用电源方案设计3.1.1厂用电压等级的选择在DL5000-2000《火力发电厂设计技术规程》中,当有发电机电压直配线时,应根据地区网络的需要,采用6.3kV 或10.5kV。

火力发电厂中,厂用电一般采用高压和低压两种电压等级供电,高压厂用电电压常采用3、6、10kV,低压厂用电电压一般采用380/220V。

为减少变压器数量,简化系统及减少投资,高压厂用电电压直接采用发电机出口电压等级10kV,低压厂用电通过低压厂用变压器变为380/220V。

3.1.2 高压厂用电接线方案本工程高压厂用电电压选用10kV等级,根据《火力发电厂厂用电设计规定》(DL/T5153-2002)采用按炉分段原则,每台炉设一段高压厂用段,每台机组对应的高压电动机分别接在对应10KV母线上。

对于公用系统高压电动机平衡分布在不同机组的高压段上。

高压厂用电源通过发电机出口分支电抗器引接,以限制短路电流。

启动、备用电源设置一台高备变,其高压侧取自110kV母线,低压侧接入1 0kV备用段,10kV备用段至三段工作段均设置联络线,可在工作段失电后自动切换至备用段工作。

3.1.3低压厂用电接线设计本工程低压厂用电电压为380/220V,采用与高压段一致的分段原则。

共设三台低压厂用工作变,厂用工作变压器电源取自对应的10KV厂用工作段。

全厂设一台低压厂用备用变做为明备用,其电源取自10KV备用段,通过低压侧联络线分别接至三段工作段。

3.1.4全厂辅助系统厂用电接线根据《火力发电厂厂用电设计规定》(DL/T5153-2002)要求,距离主厂房较远的附属车间均设置低压动力中心,全厂输煤、化水、灰库均设置就地动力中心,电源分别取自厂用主厂房10kVⅠ段、Ⅱ段及备用段。

距离主厂房或就地动力中心较近的附属车间设置就地MCC柜,为保证可靠供电,就地MCC柜均为双电源进线,在工作电源失电后备用电源自动投入运行。

3.2 厂用电接线方案的论证该接线方案较简单,选择的电压与工业用电一致,节省了设备投资及占地面积。

对于多台的公用设备分别接在不同的工作段上,能有效保障机组正常运行,减少因某段失电造成停机的概率。

距离主厂房较远的附属车间设置动力中心,能有效减少电压降,保证电能质量。

厂用电接线图见附录2,厂用电接线图。

第4章主要设备选型4.1 发电机的选择发电机型号:QF-30-2额定容量 37.5MVA 额定功率 30MW 功率因数 0.8(滞后)额定电压 10.5 kV 额定电流: 2062A 额定转速 3000r/min 短路比(保证值)≥0.5 瞬变电抗(饱和)X’d 0.218 超瞬变电抗(饱和)X’’d 0.1274其中1号容量为1250KVA,2号、3号容量为1000KVA 1250KVA4.2 主变压器的选择 4.2.1主变压器容量的选择DL5000-2000《火力发电厂设计技术规程》规定:单元接线中的主变压器容量SN应按发电机额定容量扣除本机组的厂用电负荷后,留有10%的裕度选择,即:SN≈1.1PNG(1-KP)/cosφG (MVA)PNG ——发电机容量,在扩大单元接线中为两台发电机容量之和,MW; co sφG——发电机额定功率因数;KP——厂用电率。

相关文档
最新文档