高频实验报告(一)单调谐回路谐振放大器
单调谐回路谐振放大器

单调谐回路谐振放大器图6-3 单调谐回路谐振放大器实验电路【实验步骤】1)AS1637函数信号发生器用作扫频仪时的参数预置频率定标的目的是为频率特性设定频标。
每一频标实为某一单频正弦波的频谱图示。
(1)频率定标个数:共设8点频率,并存储于第0~7存储单元内。
存储频率依次为:0单元—7.2 MHz,1单元—8.2 MHz,2单元—9.2 MHz,3单元—10.2 MHz,4单元—11.2 MHz,5单元—12.2 MHz,6单元—13.2 MHz,7单元—14.2 MHz。
(2)频率定标方法:A.准备工作:对频率范围、工作方式、函数波形作如下设置。
●频率范围:2~20MHz范围(按“频段手动递增/减”按键调整);●工作方式:内计数(“工作方式”按键左边5个指示灯皆暗);●函数波形:正弦波;●输出幅度设置为80mV。
设置方法为:使-40dB衰减器工作,再调“输出幅度调节(AMPL)”旋钮,使输出显示为80mV(峰-峰值),并在定标过程中保持不变。
B.第0单元频率定标与存储●调“频率调谐”旋钮,使频率显示为7200(与此同时,kHz灯点亮,标明频率为7.2MHz);●单击STO键,相应指示灯点亮,再调“频率调谐”旋钮,使存储单元编号显示为0;●再单击STO键,相应指示灯变暗,表明已把7.2 MHz频率存入第0单元内。
C.第1单元频率定标与存储●调“频率调谐”旋钮,使频率显示为8200(与此同时,kHz灯点亮,标明频率为8.2MHz);●单击STO键,相应指示灯点亮,再调“频率调谐”旋钮(只需顺时针旋转1格),使存储单元编号显示为1;●再单击STO键,相应指示灯变暗,表明已把8.2 MHz频率存入第1单元内。
D.依此类推,直到把14.2 MHz频率存入第7单元内为止。
除了频率定标,还包括其他参数设置。
(1)扫描时间设置为20ms,即示波器上显示的横坐标(频率)的扫描时间为20ms。
设置方法为按“工作方式”键,使TIME灯点亮;再调“频率调谐(扫描时间)”旋钮,使扫描时。
202X年高频实验报告(一)单调谐回路谐振放大器

202X年高频实验报告(一)单调谐回路谐振放大器一、实验目的1. 掌握单调谐回路的工作原理和谐振放大器的特点。
2. 能够熟练测量单调谐回路的谐振频率和带宽,并能够计算回路品质因数。
3. 能够使用单调谐回路组装谐振放大器,并观察其输出波形和增益特性。
二、实验原理1. 单调谐回路单调谐回路由电感L、电容C和电阻R串联而成,如下图所示:当串联谐振回路中的电感L、电容C和电阻R的数值满足以下条件时,回路将在某一频率处产生谐振现象,电压幅度将增大。
其中,L为电感,单位为亨,C为电容,单位为法拉,R为电阻,单位为欧姆。
谐振频率f0为:谐振频率f0与电感L和电容C有关,当L或C的数值改变时,谐振频率f0会相应改变。
谐振频率f0与电阻R有关,当电阻R变化时,谐振频率f0也会发生变化。
带宽BW为:品质因数Q为:品质因数Q与电阻R、电感L、电容C有关,当电阻R、电感L或电容C的数值改变时,品质因数Q也会发生变化。
2. 谐振放大器谐振放大器是一种利用谐振回路进行放大的电子电路,其基本原理为,将输入信号加到谐振回路的输入端,由于回路在谐振频率处有较大的放大,因此放大后的信号输出到输出端将比输入信号增加一个较大的幅度。
三、实验内容四、实验器材与设备1. 示波器2. 汽笛发生器3. 电感L4. 电容C5. 变阻器8. 喇叭9. 电源10. 万用表五、实验步骤1. 使用汽笛发生器产生一个频率为500Hz的信号。
2. 将信号输入到单调谐回路中,同时使用万用表测量回路的电压。
3. 调节变阻器的电阻,找到回路谐振频率。
4. 测量谐振频率f0,并记录下数值。
5. 测量谐振频率两侧的电压幅值,计算出回路的带宽BW,并记录下数值。
6. 计算回路品质因数Q,并记录下数值。
9. 使用示波器观察输出波形,并记录下输出幅度。
10. 测量谐振放大器的增益特性,即输入信号与输出信号之比的对数值,记录下数值。
11. 连接喇叭到谐振放大器输出端,观察喇叭的声音变化。
高频单调谐回路放大器

实验报告课程名称高频电子线路专业班级电子0941姓名金志超刘衡牛超朱光明学号18号21号27号42号电气与信息学院和谐勤奋求是创新一、实验目的1.熟悉谐振放大器的幅频特性、通频带和选择性;2.熟悉信号源内阻及负载对谐振回路的影响,了解展宽频带的方法;3.掌握放大器的动态范围及其测试方法。
二.实验仪器1.示波器2.高频信号发生器3.万用表4. 高频电子线路试验箱三、实验原理1.调谐放大器的基本原理调谐放大器的作用是有选择地对某一频率范围的高频小信号进行放大。
由于信号小,从而可以认为放大器工作在晶体管的线性范围内。
所谓“调谐”,主要是指放大器的集电极负载为调谐回路。
这种放大器对谐振频率f及附近频率的信号具有较强的放大作用,而对其它远离f的频率信号,放大作用很差。
高频小信号调谐放大器是我主要质量指标如下:1.增益:放大器输出电压与输入电压之比,用来表示高频小信号调谐放大器放大微弱信号的能力。
2.通频带:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带,用B0.7表示。
3.选择性:从含有各种不同频率的信号总和(有用和有害的)中选出有用信号排除有害(干扰)信号的能力,称为放大器的选择性。
衡量选择性的基本指标一般有两个:表示,且矩形系数越小,选择性越好,其抑制邻近矩形系数和抑制比。
矩形系数通常用K0.1无用信号的能力就越强。
抑制比见末尾附录,此处略。
4.稳定性:指放大器的工作状态(直流偏置)、晶体管的参数、电路元件参数等发生可能的变化时,放大器的主要特性的稳定程度。
5.噪声系数:高频放大器由多级组成,降低噪声系数的关键在于减小前级电路的内部噪声。
因此,在设计前级放大器时,要求采用低噪声器件,合理地设置工作电流等,使放大器在尽可能高的功率增益下噪声系数最小。
越接近1越说明噪声越小,电路的性能越好。
2.实验箱电路图如下:图l-l高频单调谐回路放大器实验原理图四.实验内容及步骤实验电路如图 l-l所示,按电路图接好地线、12V线。
线路 单调谐回路谐振放大器

实验一单调谐回路谐振放大器一、实验目的1.熟悉电子元器件和高频电路实验箱。
2.熟悉谐振回路的幅频特性—通频带与选择性。
3.熟悉信号源内阻及负载对谐振回路的影响,从而了解频带的扩展方法。
4.熟悉和了解单调谐回路谐振放大器的性能指标和测量方法。
二、实验仪器1.双踪示波器2.扫频仪3.高频信号发生器4.数字频率计5.万用表6.实验板G1三、预习要求1.复习谐振回路的工作原理。
2.了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间的关系。
3.实验电路中,若电感量L=1μh,回路总电容C=220pf(分布电容包括在内),计算回路中心频率f0。
四、实验内容及步骤1.实验电路见图1-l(1)按图1-1所示连接电路(注意接线前先测量+12V电源电压,无误后,关断电源再接线)。
(2)接线后仔细检查,确认无误后接通电源。
2.静态测量实验电路中选R e=1K测量各静态工作点,计算并填表1.1。
表1.1原因:当加在三极管发射结的电压大于PN结的导通电压,并处于某一恰当的值时,三极管的发射结正向偏置,集电结反向偏置,这时基极电流对集电极电流起着控制作用,使三极管具有电流放大作用,其电流放大倍数β=ΔIc/ΔIb,这时三极管处放大状态。
*V B,V E是三极管的基极和发射极对地直流电压。
3. 动态研究(l)测量放大器(谐振时)V O的动态范围(Vi的数值见表中所示)选R=10K,R e=IK。
把高频信号发生器接到电路输入端,电路输出端接示波器,选择正常放大区的输入电压Vi,调节频率f使其为10.7MHz,调节C T使回路谐振,使输出电压幅度为最大。
此时调节Vi由峰峰值10毫伏变到210毫伏,逐点记录入V O电压,并填入表1.2。
Vi的各点测量值可根据(各自)实测情况来确定。
(2)当Re分别为500Ω、2K时,重复上述过程,将结果填入表1.2。
在同一坐标纸上画出R不同时V0的动态范围曲线,并进行比较和分析。
(3)用扫频仪调回路谐振曲线。
《高频电子线路》实验指导书

弯点 V0 定义为放大器动态范围),讨论 IC 对动态范围的影响。
五、预习要求、思考题 1.复习谐振回路的工作原理。了解谐振放大器的电压放大
倍数、动态范围、通频带及选择性相互之间关系。
-3-
2.谐振放大器的工作频率与哪些参数有关? 3.实验电路中, 若电感量 L=1μH,回路总电容 C=220pf (分布电容包括在内),计算回路中心频率 f0 。
-1-
表 1.1
实测
VB
VE
实测计算
根据 VCE 判断 V 是否工作在 放大区
IC
VCE
是
否
原因
* VB,VE 是三极管的基极和发射极对地电压。
3.动态研究 (1). 测放大器的动态范围 Vi~V0(在谐振点) 选 R=10K,Re=1K。把高频信号发生器接到电路输入端,电 路输出端接毫伏表,选择正常放大区的输入电压 Vi,调节频率 f 使其为 10.7MHz,调节 CT 使回路谐振,使输出电压幅度为最 大。此时调节 Vi 由 0.03 伏变到 0.6 伏,逐点记录VO 电压,并 填入 表 1.2。Vi 的各点测量值可根据(各自)实测情况来振荡器
实验项目名称:LC 电容反馈式三点式振荡器 实验项目性质:验正性实验 所属课程名称:高频电子线路 实验计划学时:2 学时
一、实验目的 1.掌握 LC 三点式振荡电路的基本原理,掌握 LC 电容反馈
式三点振荡电路设计及电参数计算。 2.掌握振荡回路 Q 值对频率稳定度的影响。 3.掌握振荡器反馈系数不同时,静态工作电流 IEQ 对振荡器
《高频电子线路》 实验指导书
桂玉屏
广东工业大学信息工程学院 二0一五年十一月印刷
实验一调谐放大器实验报告

实验一调谐放大器实验报告实验一调谐放大器实验报告一、实验目的1.熟悉电子元器件和高频电路实验箱。
2.练习使用示波器、信号发生器和万用表。
3.熟悉谐振电路的幅频特性分析——通频带与选择性。
4.熟悉信号源内阻及负载对谐振电路的影响,从而了解频带扩展。
5.熟悉和了解放大器的动态范围及其测试方法。
二、实验仪器1.双踪示波器2.高频信号发生器3.万用表4.实验板G1三、实验内容及步骤单调谐回路谐振放大器1.实验电路见图1-1L1图1-1 单调谐回路谐振放大器原理图(1)按图1-1所示连接电路,使用接线要尽可能短(注意接线前先测量+12V电源电压,无误后,关断电源再接线,注意接地)(2)接线后仔细检查,确认无误后接通电源。
2.静态测量实验电路中选Re=1K,测量各静态工作点,并计算完成表1-1表1-1*Vb,Ve是三极管的基极和发射极对地电压。
3.动态研究(1)测量放大器的动态范围Vi ~ V o(在谐振点上)a.选R=10K ,Re=1K 。
把高频信号发生器接到电路输入端,电路输出端接示波器。
选择正常放大区的输入电压Vi,调节频率f使其为10.7MHz,调节Ct,使回路“谐振”,此时调节Vi由0.02V变到0.8V,逐点记录V o电压,完成表1-2的第二行。
(Vi的各点测量值也可根据情况自己选定)b.当Re分别为500Ω,2KΩ时,重复上述过程,完成表1-2的第三、四行。
在同一坐标纸上画出Ic不同时的动态范围曲线Vo—Vi,并进行比较与分析。
*Vi , V o可视为峰峰值(2)测量放大器的频率特性a.当回路电阻R=10k时,选择正常放大区的输入电压V i,将高频信号发生器的输出端接至电路的输入端,调节频率f,使其为10.7MHz,调节Ct使回路谐振,使输出电压幅度为最大,此时的回路谐振频率f0=10.7MHz为中心频率,然后保持输入电压V i不变,改变频率f由中心频率向两边逐点偏离(在谐振频率附近注意测量V o变化快的点),测得在不同频率f时对应的输出电压V o,完成表1-3的第一行(频率偏离范围自定,可以参照3dB带宽来确定,即信号的幅值为信号最大幅值的0.707倍的两个频率之差为放大器的3dB带宽)。
高频小信号调谐放大器实验报告
高频小信号调谐放大器实验报告姓名:学号:班级:日期:高频小信号调谐放大器实验一、实验目的1.掌握小信号调谐放大器的基本工作原理;2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算;3.了解高频小信号放大器动态范围的测试方法;二、实验仪器与设备高频电子线路综合实验箱;扫频仪;高频信号发生器;双踪示波器三、实验原理(一)单调谐放大器小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。
其实验单元电路如图1-1所示。
该电路由晶体管Q1、选频回路T1二部分组成。
它不仅对高频小信号放大,而且还有一定的选频作用。
本实验中输入信号的频率f S=12MHz。
基极偏置电阻R A1、R4和射极电阻R5决定晶体管的静态工作点。
可变电阻W3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。
表征高频小信号调谐放大器的主要性能指标有谐振频率f0,谐振电压放大倍数A v0,放大器的通频带BW及选择性(通常用矩形系数Kr0.1来表示)等。
放大器各项性能指标及测量方法如下: 1.谐振频率放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1-1所示电路(也是以下各项指标所对应电路),f 0的表达式为∑=LCf π210式中,L 为调谐回路电感线圈的电感量;∑C为调谐回路的总电容,∑C的表达式为ie oe C P C P C C2221++=∑式中, C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。
谐振频率f 0的测量方法是:用扫频仪作为测量仪器,用扫频仪测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。
2.电压放大倍数放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。
A V0的表达式为Gg p g p y p p g y p p v v A ie oe fe fei V ++-=-=-=∑2221212100 式中,g Σ为谐振回路谐振时的总电导。
高频小信号单调谐与双调谐放大器实验报告
高频小信号单调谐与双调谐放大器
实验报告
14044012 孙胤邦
14级电子一班
一、实验表格及图像
单调谐放大器的电压幅值
如图所示(纵坐标为幅值mV,横坐标为频率MHZ)单调谐的峰值为8.08mV,下降到0.707倍时的值为5.71mv。
双调谐回路谐振放大器的电压幅值
如图所示(纵坐标为幅值mV,横坐标为频率MHZ)双调谐的峰值为7.40mV 和7.40mv,下降到0.707倍时的值为5.23mV和5.23mV。
这样看来,单调谐放大器优点是电路简单,缺点是通频带窄、选择性差、增益低。
双调谐放大器具有良好的选择性、较宽的通频带。
而且由图可以看出双调谐的选择性明显优于单调谐放大器。
三、(纵坐标为输出电压V,横坐标为输入电压mV)。
当放大器的输入电压增加到一定的程度之后,输出的波形会失真,和输入波形不再一模一样。
二、实验结论及感想
这是这一学期的第一次高频实验,通过低频放大的和高频所学内容,使我更真切地了解了高频小信号调谐放大器的工作原理,尤其是单级单调谐放大器和双级单调谐放大电路的原理,更是巩固了通电理论课上学到的谐振放大器电压增益、通频带、选择性的相关知识和计算方法,并在实验中测试了各组数据,验证了理论知识。
当然了,通过在实验室调试各种高频仪器,我基本上学会了使用高频中的扫频仪、示波器、万用表、直流稳压电源和信号源,以及消除自激的方法。
总体说来,本次实验是一次很好的尝试,让我对高频电路有了进一步了解,激发了学习通信电子电路的兴趣。
实验报告
实验1 单调谐回路谐振放大器实验步骤1.单调谐回路谐振放大器幅频特性测量测量幅频特性通常有两种方法,即扫频法和点测法。
扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。
本实验采用点测法,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路揩振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。
步骤如下:(1)1K02置“off“位,即断开集电极电阻1R3,调整1W01使1Q01的基极直流电压为2.5V左右,这样放大器工作于放大状态。
高频信号源输出连接到单调谐放大器的输入端(1P01)。
示波器CH1接放大器的输入端1TP01,示波器CH2接单调谐放大器的输出端1TP02,调整高频信号源频率为6.3MHZ (用频率计测量),高频信号源输出幅度(峰——峰值)为200mv (示波器CH1监测)。
调整单调谐放大器的电容1C2,使放大器的输出为最大值(示波器CH2监测)。
此时回路谐振于6.3MHZ。
比较此时输入输出幅度大小,并算出放大倍数。
(2)按照表1-2改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度为200mv(示波器CH1监视),从示波器CH2上读出与频率相对应的单调谐放大器的电压幅值,并把数据填入表1-2。
表1-2(3)以横轴为频率,纵轴为电压幅值,按照表1-2,画出单调谐放大器的幅频特性曲线。
3.观察静态工作点对单调谐放大器幅频特性的影响。
顺时针调整1W 01(此时1W 01阻值增大),使1Q 01基极直流电压为1.5V ,从而改变静态工作点。
按照上述幅频特性的测量方法,测出幅频特性曲线。
逆时针调整1W 01(此时1W 01阻值减小),使1Q 01基极直流电压为5V ,重新测出幅频特性曲线。
可以发现:当1W 01加大时,由于I CQ 减小,幅频特性幅值会减小,同时曲线变“瘦”(带宽减小);而当1W 01减小时,由于I CQ 加大,幅频特性幅值会加大,同时曲线变“胖”(带宽加大)。
实验一高频单调谐回路放大器
*电子电路实验补充讲义电子电路实验室编目录实验一、高频电子仪表的使用∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2 实验二、高频单调谐回路放大器∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4 实验三、电容反馈LC振荡器∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7 实验四、乘法器振幅调制器∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10 实验五、乘法器同步检波器∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙13 实验六、压控振荡器调频器∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙15 买验七、相位鉴频器∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙18 实验八、波形转换器∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙21实验一高频电子仪表的使用一.实验目的1.掌握示波器、BT—3C频率特性测试仪的使用方法。
2.弄清高频电子实验箱的结构;掌握实验箱自带仪表的使用方法。
二.实验仪器1.示波器2.BT—3C频率特性测试仪3.高频电子电路实验箱4.万用表三.实验内容1.高频实验箱的使用由于高频电子电路对实验电路的走线、元件排列等有较高要求,所以采用实验箱开设高频实验。
SAC—GDS高频电子电路实验箱是根据“高频电子线路”课程设计的,它可以满足和完成“高频电子线路”课程多种实验要求,共可开设十三个实验项目。
本机还自带部分仪表,现将其介绍如下:(1)电源的使用本机设有供实验使用的五种电源:+5 v ;- 5v; +12v; - 12v; +8V;- 8v,最大输出电流0.3mA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳大学实验报告
课程名称:高频电路
实验项目名称:实验一单调谐回路谐振放大器
学院:信息工程学院
专业:电子信息
指导教师:陈田明
报告人:学号:班级:电子1班
实验时间:2016.3.23 实验报告提交时间:2016.4.20
二、方法、步骤:
1.AS1637函数信号发生器用作扫频仪时的参数予置
⑴频率定标
频率定标的目的是为频率特性设
定频标。
每一频标实为某一单频正
弦波的频谱图示。
1)频率定标个数:共设8点频率,
并存储于第0~7存储单元内。
若把
中心频率10.7MHz置于第3单元
内,且频率间隔取为1MHz,则相
应地有:0单元—7.7 MHz,1单元
—8.7 MHz,…,7单元—14.7
图1-2 单调谐回路谐振放大器实验电路
MHz。
2)频率定标方法
①准备工作:对频率范围、工作方式、函数波形作如下设置。
(ⅰ) 频率范围:2MHz~16MHz范围(按“频段手动递增/减”按键调整);
(ⅱ)工作方式:内计数(“工作方式”按键左边5个指示灯皆暗);
(ⅲ)函数波形:正弦波。
②第0单元频率定标与存储
(ⅰ) 调“频率调谐”旋钮,使频率显示为7700(与此同时,“kHz”灯点亮,标明频率为7.7 MHz);(ⅱ)按“STO”键,相应指示灯点亮,再调“频率调谐”旋钮,使存储单元编号显示为0;
(ⅲ)再按“STO”键,相应指示灯变暗,表明已把7.7 MHz频率存入第0单元内。
③第1单元频率定标与存储
(ⅰ) 调“频率调谐”旋钮,使频率显示为8700(与此同时,“kHz”灯点亮,标明频率为8.7 MHz);(ⅱ)按“STO”键,相应指示灯点亮,再调“频率调谐”旋钮(只需顺时针旋转1格),使存储单元编号显示为1;
(ⅲ)再按“STO”键,相应指示灯变暗,表明已把8.7 MHz频率存入第1单元内。
④依此类推,直到把14.7 MHz频率存入第7单元内为止。
三、实验过程及内容:
1.用万用表测量晶体管各点(对地)电压V B、V E、V C,并计算放大器静态工作点。
2.采用扫频法(以AS1637作为扫频仪)测量单调谐放大器的幅频特性。
3.用示波器观察静态工作点对单调谐放大器幅频特性的影响。
4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。
四、数据处理分析:
1. 用万用表测量晶体管各点(对地)电压V B、V E、V C,并计算放大器静态工作点
表1.1
射极偏置电阻实测(V) 计算(V,mA)
晶体管工作
于放大区?
理由V B V E V C V BE V CE I C是否
R4=1kΩ 3.48 2.85 11.98 0.63 9.13 2.75 是集电结反偏,发射结正偏
R4=510Ω 3.45 2.80 11.97 0.65 9.17 5.32 是集电结反偏,发射结正偏
R4=2kΩ 3.50 2.88 11.99 0.62 9.11 1.387 是集电结反偏,发射结正偏
3.示波器观察静态工作点对于单调谐放大器幅频特性的影响当射极偏置电阻减小时,中心频率左移,幅值变小,BW0.7变宽;
当射极偏置电阻增大时,中心频率右移,幅值变大,BW0.7变窄。
4.用示波器观察集电极负载对单调谐放大器幅频特性的影响
当集电极负载减小时,中心频率不变,幅值变小,BW0.7变宽;
当集电极负载增大时,中心频率不变,幅值变大,BW0.7变窄。