2013年北京中考西城一模数学(含答案)电子版

合集下载

北京市西城实验学校2013—2014学年度第一学期初一数学期中考试参考答案_题型归纳

北京市西城实验学校2013—2014学年度第一学期初一数学期中考试参考答案_题型归纳

北京市西城实验学校2013—2014学年度第一学期初一数学期中考试参考答案_题型归纳
小编导语:期中考试是为了检验学生半个学期所学的知识而进行的一次考试,有利于学生比较正式地检验自己平时的学习水平,根据这个成绩,学生可以及时的调整学习心态和方法,更有效率的进行下一阶段的学习。

下面是有关北京市西城实验学校2013—2014学年度第一学期初一数学期中考试参考答案的内容,供大家参考。

北京市西城实验学校2013—2014学年度第一学期初一数学期中考试参考答案
以上“北京市西城实验学校2013—2014学年度第一学期初一数学期中考试参考答案”的全部
内容是由数学网整理的,更多相关内容请查看数学网。

2013年北京中考一模数学压轴题汇总

2013年北京中考一模数学压轴题汇总

2013年北京中考一模数学压轴题汇总一、选择题海淀8. 如图,△ABC 是等边三角形,6AB 厘米,点从点B 出发,沿BC 以每秒1厘米的速度运动到点C 停止;同时点M 从点B 出发,沿折线BA -AC 以每秒3厘米的速度运动到点C 停止.如果其中一个点停止运动,则另一个点也停止运动.设点的运动时间为t 秒,、M 两点之间的距离为y 厘米,则表示y 与t 的函数关系的图象大致是A. B. C. D.西城8. 如图,在矩形ABCD 中,AB=2,BC=4.将矩形ABCD 绕点C 沿顺时针方向旋转90°后,得到矩形FGCE (点A 、B 、D 的对应点分别为点F 、G 、E ).动点P 从点B 开始沿BC-CE 运动到点E 后停止,动点Q 从点E 开始沿EF -FG 运动到点G 后停止,这两点的运动速度均为每秒1个单位.若点P 和点Q 同时开始运动,运动时间为x (秒),△APQ 的面积为y ,则能够正确反映y 与x 之 间的函数关系的图象大致是P P P东城8. 如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD 方向运动,当P运动到B点时,P,Q两点同时停止运动.设P点运动的时间为t,△APQ 的面积为S,则S与t的函数关系的图象是朝阳8.如图,将一张三角形纸片ABC折叠,使点A落在BC边上,折痕EF∥BC,得到△EFG;再继续将纸片沿△BEG的对称轴EM折叠,依照上述做法,再将△CFG折叠,最终得到矩形EMNF,折叠后的△EMG和△FNG的面积分别为1和2,则△ABC的面积为A. 6B. 9C. 12D. 18二、填空题海淀12. 如图1所示,圆上均匀分布着11个点12311,,,,A A A A .从A 1起每隔k 个点顺次连接,当再次与点A 1连接时,我们把所形成的图形称为“k +1阶正十一角星”,其中18k ≤≤(k 为正整数).例如,图2是“2阶正十一角星”,那么1211A A A ∠+∠++∠= °;当1211A A A ∠+∠++∠= 900°时,k = .图1 图2西城12.在平面直角坐标系xOy 中,有一只电子青蛙在点A (1,0)处.第一次,它从点A 先向右跳跃1个单位,再向上跳跃1个单位到达点A 1; 第二次,它从点A 1先向左跳跃2个单位,再向下跳跃2个单位到达点A 2; 第三次,它从点A 2先向右跳跃3个单位,再向上跳跃3个单位到达点A 3; 第四次,它从点A 3先向左跳跃4个单位,再向下跳跃4个单位到达点A 4; ……依此规律进行,点A 6的坐标为 ;若点A n 的坐标为(2013,2012), 则n = .东城12. 在平面直角坐标系中,正方形ABCD 的位置如右图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于 点A 2,作正方形A 2B 2C 2C 1,…按这样的规律进行下去,第2013个正方形的面积为 .朝阳12. 在平面直角坐标系xOy中,动点P从原点O出发,每次向上平行下一次平移.例如第1次平移后可能到达的点是(0,1)、(2,0),第2次平移后可能到达的点是(0,2)、(2,1)、(4,0),第3次平移后可能到达的点是(0,3)、(2,2)、(4,1)、(6,0),依此类推…….我们记第1次平移后可能到达的所有点的横、纵坐标之和为l1,l1=3;第2次平移后可能到达的所有点的横、纵坐标之和为l2,l2=9;第3次平移后可能到达的所有点的横、纵坐标之和为l3,l3=18;按照这样的规律,l4= ;l n= (用含n的式子表示,n是正整数).三、解答题 海淀22.问题:如图1,a 、b 、c 、d 是同一平面内的一组等距平行线(相邻平行线间的距离为1).画出一个正方形ABCD ,使它的顶点A 、B 、C 、D 分别在直线a 、b 、d 、c 上,并计算它的边长.图1 图2小明的思考过程:他利用图1中的等距平行线构造了33⨯的正方形网格,得到了辅助正方形EFGH ,如图2所示, 再分别找到它的四条边的三等分点A 、B 、C 、D ,就可以画出一个满足题目要求的正方形.请回答:图2中正方形ABCD 的边长为 . 请参考小明的方法,解决下列问题:(1)请在图3的菱形网格(最小的菱形有一个内角为60︒,边长为1)中,画出一个等边△ABC ,使它的顶点A 、B 、C 落在格点上,且分别在直线a 、b 、c 上;(3)如图4,1l 、2l 、3l 是同一平面内的三条平行线,1l 、2l 之间的距离是215,2l 、3l 之间的距离是2110,等边△ABC 的三个顶点分别在1l 、2l 、3l 上,直接写出△ABC 的边长.图3 图4西城22.先阅读材料,再解答问题:小明同学在学习与圆有关的角时了解到:在同圆或等圆中,同弧(或等弧)所对的圆周角相等.如图,点A、B、C、D均为⊙O上的点,则有∠C=∠D.小明还发现,若点E在⊙O外,且与点D在直线AB同侧,则有∠D>∠E.请你参考小明得出的结论,解答下列问题:(1) 如图1,在平面直角坐标系xOy中,点A的坐标为(0,7),点B的坐标为(0,3),点C的坐标为(3,0).①在图1中作出△ABC的外接圆(保留必要的作图痕迹,不写作法);②若在x轴的正半轴上有一点D,且∠ACB =∠ADB,则点D的坐标为;(2) 如图2,在平面直角坐标系xOy中,点A的坐标为(0,m),点B的坐标为(0,n),其中m>n>0.点P为x轴正半轴上的一个动点,当∠APB达到最大时,直接写出此时点P的坐标.东城22. 如图,在菱形纸片ABCD中,AB=4cm,∠ABC=120°,按下列步骤进行裁剪和拼图:第一步:如图1,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图2,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图3,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,再与三角形纸片EGH拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)(1)请你在图3中画出拼接成的四边形;(2)直接写出拼成的四边形纸片周长的最小值为________cm,最大值为________cm.朝阳22.阅读下面材料:小雨遇到这样一个问题:如图1,直线l1∥l2∥l3,l1与l2之间的距离是1,l2与l3之间的距离是2,试画出一个等腰直角三角形ABC,使三个顶点分别在直线l1、l2、l3上,并求出所画等腰直角三角形ABC的面积.小雨是这样思考的:要想解决这个问题,首先应想办法利用平行线之间的距离,根据所求图形的性质尝试用旋转的方法构造全等三角形解决问题.具体作法如图2所示:在直线l1任取一点A,作AD⊥l2于点D,作∠DAH=90°,在AH上截取AE=AD,过点E作EB⊥AE交l3于点B,连接AB,作∠BAC=90°,交直线l2于点C,连接BC,即可得到等腰直角三角形ABC.请你回答:图2中等腰直角三角形ABC的面积等于.参考小雨同学的方法,解决下列问题:如图3,直线l1∥l2∥l3,l1与l2之间的距离是2,l2与l3 之间的距离是1,试画出一个等边三角形ABC,使三个顶点分别在直线l1、l2、l3上,并直接写出所画等边三角形ABC的面积(保留画图痕迹).l1l2l3图3l1l2l3图1123图2海淀24.在△ABC 中,∠ACB =90︒.经过点B 的直线l (l 不与直线AB 重合)与直线BC 的夹角等于ABC ∠,分别过点C 、点A 作直线l 的垂线,垂足分别为点D 、点E .(1)若45ABC ∠=︒,CD =1(如图),则AE 的长为 ; (2)写出线段AE 、CD 之间的数量关系,并加以证明; (3)若直线CE 、AB 交于点F , 56CF EF =,CD =4,求BD 的长.西城24.在Rt △ABC 中,∠ACB =90°,∠ABC =α,点P 在△ABC 的内部.(1) 如图1,AB =2AC ,PB =3,点M 、N 分别在AB 、BC 边上,则cos α=_______, △PMN 周长的最小值为_______;(2) 如图2,若条件AB =2AC 不变,而P A =2,PB =10,PC =1,求△ABC 的面积; (3) 若P A =m ,PB =n ,PC =k ,且cos sin k m n αα==,直接写出∠APB 的度数.东城24. 问题1:如图1,在等腰梯形ABCD 中,AD ∥BC ,AB =BC =CD ,点M ,N 分别在AD ,CD 上,若∠MBN =12∠ABC ,试探究线段MN ,AM ,CN 有怎样的数量关系?请直接写出你的猜想,不用证明;问题2:如图2,在四边形ABCD 中,AB =BC ,∠ABC +∠ADC =180°,点M ,N 分别在DA ,CD 的延长线上,若∠MBN =12∠ABC 仍然成立,请你进一步探究线段MN ,AM ,CN 又有怎样的数量关系?写出你的猜想,并给予证明.朝阳24.在Rt △ABC 中,∠A =90°,D 、E 分别为AB 、AC 上的点.(1)如图1,CE =AB ,BD =AE ,过点C 作CF ∥EB ,且CF =EB ,连接DF 交EB 于点G ,连接BF ,请你直接写出EBDC 的值;(2)如图2,CE =kAB ,BD =kAE ,12EB DC ,求k 的值.图2B 图1FB海淀25. 在平面直角坐标系xOy 中,抛物线222y x mx m m =-++的顶点为C .(1) 求点C 的坐标(用含m 的代数式表示);(2) 直线2y x =+与抛物线交于A 、B 两点,点A 在抛物线的对称轴左侧.①若P 为直线OC 上一动点,求△APB 的面积;②抛物线的对称轴与直线AB 交于点M ,作点B 关于直线MC 的对称点'B . 以M 为圆心,MC 为半径的圆上存在一点Q ,使得'QB 的值最小,则这个最小值为 .西城25.如图1,在平面直角坐标系xOy 中,直线l :34y x m =+与x 轴、y 轴分别交于点A 和点B (0,-1),抛物线212y x bx c =++经过点B ,且与直线l 的另一个交点为C (4,n ).(1) 求n 的值和抛物线的解析式;(2) 点D 在抛物线上,且点D 的横坐标为t (0< t <4).DE ∥y 轴交直线l 于点E ,点F 在直线l 上,且四边形DFEG 为矩形(如图2).若矩形DFEG 的周长为p ,求p 与t 的函数关系式以及p 的最大值;(3) M 是平面内一点,将△AOB 绕点M 沿逆时针方向旋转90°后,得到△A 1O 1B 1,点A 、O 、B 的对应点分别是点A 1、O 1、B 1.若△A 1O 1B 1的两个顶点恰好落在抛物线上,请直接写出点A 1的横坐标....图1 图2东城25.在平面直角坐标系xOy 中,抛物线2229y x mx m =-+-与轴交于A ,B 两点(点A 在点B 的左侧,且OA <OB ),与y 轴的交点坐标为(0,-5).点M 是线段AB 上的任意一点,过点M (a ,0)作直线MC ⊥x 轴,交抛物线于点C ,记点C 关于抛物线对称轴的对称点为D (C ,D 不重合),点P 是线段MC 上一点,连结CD ,BD ,PD .(1)求此抛物线的解析式;(2)当1a =时,问点P 在什么位置时,能使得PD ⊥BD ;(3)若点P 满足14MP MC =,作PE ⊥PD 交x 轴于点E ,问是否存在这样的点E ,使得PE =PD ,若存在,求出点E 的坐标;若不存在,请说明理由.朝阳25.如图,二次函数y =ax 2+2ax +4的图象与x 轴交于点A 、B ,与y 轴交于点C ,∠CBO 的正切值是2.(1)求此二次函数的解析式.(2)动直线l 从与直线AC 重合的位置出发,绕点A 顺时针旋转,与直线AB 重合时终止运动,直线l 与BC 交于点D ,P 是线段AD 的中点.①直接写出点P 所经过的路线长.②点D 与B 、C 不重合时,过点D 作DE ⊥AC 于点E 、作DF ⊥AB 于点F ,连接PE 、PF ,在旋转过程中,∠EPF 的大小是否发生变化?若不变,求∠EPF 的度数;若变化,请说明理由.③在②的条件下,连接EF ,求EF 的最小值.x。

2013年北京市各城区中考一模数学——选择题第8题汇总

2013年北京市各城区中考一模数学——选择题第8题汇总

2013年北京市各城区中考一模数学——选择题第8题汇总1、(2013年门头沟一模)8.如图1,从矩形纸片AMEF 中剪去矩形BCDM 后,动点P 从点B 出发,沿BC 、CD 、DE 、EF 运动到点F 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则图形ABCDEF 的面积是A .28B .32C .2、(2013年丰台一模)8.如图,在ABC △中,1AB AC ==,20BAC ∠=.动点P 、Q 分别在直线BC 上运动,且始终保持100PAQ ∠= .设BP x =,CQ y =,则y 与x 的函数关系的图象大致可以表示为3、(2013年平谷一模)8.如图,等腰直角三角形ABC 位于第一象限,AB=AC=2,直角顶点A 在直线y =x 上,其中A 点的横坐标为1,且两条直角边AB 、AC 分别平行于x 轴、y 轴,若双曲线ky x =(k ≠0)与ABC ∆有交点,则k 的取值范围是A .12k <<B .13k ≤≤ C .14k ≤≤D .14k <≤图1E DMB A FC PA B C D8.如图,AB 为半圆的直径, 点P 为AB 上一动点,动点P 从点A 出发,沿AB 匀速运动到点B ,运动时间为t ,分别以AP 和PB 为直径作半圆,则图中阴影部分的面积S 与时间t 之间的函数图象大致为A .B .C .D .5、(2013年石景山一模)8.已知:如图,正方形ABCD 的边长为2,E 、F 分别为AB 、AD 的中点, G 为线段CE 上的一个动点,设x CECG=,y S GDF =∆,则y 与x 的函数关系图象大致是A B C DGDEFABC第8题图AB 厘米,点P从点B出发,沿BC以每秒8.如图,△ABC是等边三角形,61厘米的速度运动到点C停止;同时点M从点B出发,沿折线BA-AC以每秒3厘米的速度运动到点C停止.如果其中一个点停止运动,则另一个点也停止运动.设点P的运动时间为t秒,P、M两点之间的距离为y厘米,则表示y与t 的函数关系的图象大致是A. B. C. D.7、(2013年西城一模)8.如图,在矩形ABCD中,AB=2,BC=4.将矩形ABCD绕点C沿顺时针方向旋转90°后,得到矩形FGCE(点A、B、D的对应点分别为点F、G、E).动点P从点B开始沿BC-CE运动到点E后停止,动点Q从点E开始沿EF-FG运动到点G后停止,这两点的运动速度均为每秒1个单位.若点P和点Q同时开始运动,运动时间为x(秒),△APQ的面积为y,则能够正确反映y与x之间的函数关系的图象大致是A B C D8、(2013年通州一模)8. 如图,在直角坐标系xoy 中,已知()01A ,,)B ,以线段AB 为边向上作菱形ABCD ,且点D 在y 轴上.若菱形ABCD 以每秒2个单位长度的速度沿射线AB 滑行,直至顶点D 落在x 轴上时停止.设菱形落在x 轴下方部分的面积为S ,则表示S 与滑行时间的函数关系的图象为第8题图(1) 第8题图(2)9、(2013年东城一模)8. 如图,在边长为4的正方形ABCD 中,动点P 从A 点出发,以每秒1个单位长度的速度沿AB 向B 点运动,同时动点Q 从B 点出发,以每秒2个单位长度的速度沿BC →CD 方向运动,当P 运动到B 点时,P ,Q 两点同时停止运动.设P 点运动的时间为t ,△APQ 的面积为S ,则S 与t 的函数关系的图象是SSSDCBAtO 1234213tO1234213tO12342133124321OtS第8题图(1)DCBA Oxy8.如图,将一张三角形纸片ABC 折叠,使点A 落在BC 边上,折痕EF ∥BC ,得到△EFG ;再继续将纸片沿△BEG 的对称轴EM 折叠,依照上述做法,再将△CFG 折叠,最终得到矩形EMNF ,折叠后的△EMG 和△FNG 的面积分别为1和2,则△ABC 的面积为A. 6B. 9C. 12D. 1811、(2013年密云一模)8.如图,一只蚂蚁从点出发,沿着扇形的边缘匀速爬行一周,设蚂蚁的运动时间为,蚂蚁到点的距离为,则关于的函数图象大致为( )12、(2013年延庆一模)8. 在如图所示的棱长为1的正方体中, A 、B 、C 、D 、E 是正 方体的顶点,M 是棱CD 的中点. 动点P 从点D 出发,沿着D→A→B 的路线在正方体的棱上运动,运动到点B 停止运动. 设点P 运动的路程是x , y=PM +PE ,则y 关于x 的函数图象大致为( )A B C DDCBA8.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A →D →C →B →A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是14、(2013年昌平一模)8.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =6cm ,动点P 从点A 出发,沿AB 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P '.设Q 点运动的时间为t 秒,若四边形QP CP '为菱形,则t 的值为 A. B. 2 C. D. 3CB PH E (F)ABCD 题图88. 如图,四边形ABCD 是边长为1 的正方形,四边形EFGH 是边长为2的正方形,点D 与点F 重合,点B ,D (F ),H 在同一条直线上,将正方形ABCD 沿F→H 方向平移至点B 与点H 重合时停止,设点D 、F 之间的距离为x ,正方形ABCD 与正方形EFGH 重叠部分的面积为y ,则能大致反映y 与 x 之间函数关系的图象是( )16、(2013年大兴一模)8. 如图,已知A 、B 是反比例函数y = k x (k >0,x >0)图象上的两点,BC ∥x 轴,交y 轴于点C .动点P 从坐标原点O 出发,沿O→A→B→C 匀速运动,终点为C .过点P作PM ⊥x轴,PN ⊥y 轴,垂足分别为M 、N .设四边形OMPN 的面积为S ,点P 运动的时间为t ,则S 关于t 的函数图象大致为。

2013北京中考一模数学第23题代数综合汇编 教师版

2013北京中考一模数学第23题代数综合汇编  教师版

2013北京中考一模数学第23题代数综合汇编海淀一模23.在平面直角坐标系xOy 中,抛物线22y mx mx n =-+与x 轴交于A 、B 两点,点A 的坐标为(2,0)-. (1)求B 点坐标; (2)直线y =12x +4m +n 经过点B . ①求直线和抛物线的解析式;②点P 在抛物线上,过点P 作y 轴的垂线l ,垂足为(0,)D d .将抛物线在直线l 上方的部分沿直线l 翻折,图象的其余部分保持不变,得到一个新图象G .请结合图象回答:当图象G 与直线y =12x +4m +n 只有两个公共点时,d 的取值范围是 .23.解:(1)依题意,可得抛物线的对称轴为212mx m-=-=.………………………1分 ∵抛物线与x 轴交于A 、B 两点,点A 的坐标为(2,0)-, ∴点B 的坐标为 (4,0).………………………2分(2)∵点B 在直线y =12x +4m +n 上, ∴024m n =++①.∵点A 在二次函数2-2y mx mx n =+的图象上, ∴044m m n =++②. ………………………3分 由①、②可得12m =,4n =-. ………………………4分 ∴ 抛物线的解析式为y =2142x x --,直线的解析式为y =122x -. ……………5分(3)-502d <<. ………………………7分西城一模23.已知关于x 的一元二次方程22(4)0x a x a +++=. (1) 求证:无论a 为任何实数,此方程总有两个不相等的实数根;(2) 抛物线21:2(4)C y x a x a =+++与x 轴的一个交点的横坐标为2a ,其中0a ≠,将抛物线1C 向右平移14个单位,再向上平移18个单位,得到抛物线2C .求抛物 线2C 的解析式;(3) 点A (m ,n )和B (n ,m )都在(2)中抛物线C 2上,且A 、B 两点不重合,求代数式33222m mn n -+的值.23.(1)证明:∵22(4)4216a a a ∆=+-⨯=+, …………………………………1分 而20a ≥,∴2160a +>,即0∆>.∴无论a 为任何实数,此方程总有两个不相等的实数根. …………2分 (2)解:∵当2ax =时,0y =, ∴22()(4)022a aa a ⨯++⨯+=.∴230a a +=,即(3)0a a +=.∵0a ≠,∴3a =-. ………………………………………………………… 3分∴抛物线1C 的解析式为22125232()48y x x x =+-=+-. ∴抛物线1C 的顶点为125(,)48--. ∴抛物线2C 的顶点为(0,3)-.∴抛物线2C 的解析式为223y x =-. …………………………4分(3)解:∵点A (m ,n )和B (n ,m )都在抛物线2C 上,∴223n m =-,且223m n =-. ∴222()n m m n -=-. ∴2()()n m m n m n -=-+. ∴()[2()1]0m n m n -++=. ∵A 、B 两点不重合,即m n ≠, ∴2()10m n ++=. ∴12m n +=-. ……………………………………………………… 5分 ∵223m n =+,223n m =+, ∴33222m mn n -+22222m m mn n n =⋅-+⋅ n m mn m n ⋅++-⋅+=)3(2)3().(3n m += ………………………………………………………………6分32=-. ………………………………………………………………7分东城一模23. 已知关于x 的一元二次方程x 2+(m +3)x +m +1=0.(1)求证:无论m 取何值,原方程总有两个不相等的实数根;(2)当m 为何整数时,原方程的根也是整数. 23.(本小题满分7分)解:(1)证明: Δ=23)4(1)m m +-+( =26944m m m ++-- =225m m ++ =2(1)4m ++.∵ 2(1)m +≥0, ∴ 2(1)4m ++>0.∴ 无论m 取何实数时,原方程总有两个不相等的实数根. …………2分(2) 解关于x 的一元二次方程x 2+(m +3)x +m +1=0,得 x =. ………………3分要使原方程的根是整数,必须使得2(1)4m ++是完全平方数. 设22(1)4m a ++=,则(1)(1)4a m a m ++--=. ∵ a +1m +和1a m --的奇偶性相同, 可得12,1 2.a m a m ++=⎧⎨--=⎩或12,1 2.a m a m ++=-⎧⎨--=-⎩解得2,1.a m =⎧⎨=-⎩或2,1.a m =-⎧⎨=-⎩. ………………5分将m =-1代入x =,得122,0x x =-=符合题意.……6分∴ 当m =-1 时 ,原方程的根是整数. ……………7分石景山一模23. 如图,直线33y x =-+交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线1C 交x 轴于另一点M(-3,0).(1)求抛物线1C 的解析式;(2)直接写出抛物线1C 关于y 轴的对称图形2C 的解析式;(3)如果点'A 是点A 关于原点的对称点,点D 是图形2C 的顶点,那么在x 轴上是否存在点P ,使得△PAD 与△'A BO 是相似三角形?若存在,求出符合条件的P 点坐标;若不存在,请说明理由.23.解:(1)设抛物线的解析式为:2(0)y ax bx c a =++≠ ∵直线33y x =-+交x 轴于A 点,交y 轴于B 点,∴A 点坐标为(1,0)、B 点坐标为(0,3). ………………1分 又∵抛物线经过A 、B 、M 三点, ∴0,930,3.a b c a b c c ++=⎧⎪-+=⎨⎪=⎩ 解得:123a b c =-⎧⎪=-⎨⎪=⎩. ∴抛物线1C 的解析式为:223y x x =--+.………………2分(2)抛物线1C 关于y 轴的对称图形2C 的解析式为:223y x x =-++. ……3分 (3)'A 点的坐标为(-1,0),∵223y x x =-++=2(1)4x --+, ∴该抛物线的顶点为(1,4)D .………………………………4分 若△PAD 与△'A BO 相似, ①当DA AP =3'BO OA =时,43AP =,P 点坐标为1(,0)3-或7(,0)3……………5分②当DA AP =1'3BO OA =时,12AP =,P 点坐标为(11,0)-或(13,0)…………6分 ∴当△PAD 与△'A BO 是相似三角形时,P 点坐标为1(,0)3-或7(,0)3或(11,0)-或(13,0) ………………7分顺义一模23.已知关于x 的方程2(32)220mx m x m -+++= (1)求证:无论m 取任何实数时,方程恒有实数根.(2)若关于x 的二次函数2(32)22y mx m x m =-+++的图象与x 轴两个交点的横坐标均为正整数,且m 为整数,求抛物线的解析式.23.(1)证明:①当0m =时,方程为220x -+=,所以 1x =,方程有实数根.…… 1分 ②当0m ≠时, []2(32)4(22)m m m ∆=-+-+ =22912488m m m m ++-- =244m m ++=2(2)0m +≥ ………………………………2分 所以,方程有实数根综①②所述,无论m 取任何实数时,方程恒有实数根 …………3分(2)令0y =,则2(32)220mx m x m -+++=解关于x 的一元二次方程,得11x = ,222x m=+……………………5分 二次函数的图象与x 轴两个交点的横坐标均为正整数,且m 为整数, 所以m 只能取1,2所以抛物线的解析式为254y x x =-+或2286y x x =-+………………7分通州一模23. 已知二次函数()2214y x k x k =-++的图象与x 轴分别交于点()1,0A x 、()2,0B x ,且32-<1x <12-. (1)求k 的取值范围;(2)设二次函数()2214y x k x k =-++的图象与y 轴交于点M ,若OM OB =,求二次函数的表达式;(3)在(2)的条件下,若点N 是x 轴上的一点,以N 、A 、M 为顶点作平行四边形,该平行四边形的第四个顶点F在二次函数()2214y x k x k =-++的图象上,请直接写出满足上述条件的平行四边形的面积.23.解:(1)令0y =,则()22140x k x k -++=解方程得:2x k =或2x =, ……………… 1分;由题意得:()20A k ,,()20B ,,∴ 31222-k <<-, ∴3144k -<<-. ……………… 2分;(2)令0x =,则4y k =, ∴()04M k ,, ∵O M O B =,∴ 42k -=, ……………… 3分; ∴ 12k =-, ∴22y x x =--. ……………… 4分; 或∵O M O B =,()20B ,, ∴()0M ,-2,把点M 的坐标分别代入()2214y x k x k =-++中,∴42k =-, ……………… 3分; ∴ 12k =-, ∴22y x x =--. ……………… 4分;(3)2,5+,5(每个答案各1分) ……………… 7分.密云一模2323.(1)当2k =-时,(1,2)A -A 在反比例函数图像上∴设反比例函数为ky x =,代入A 点坐标可得2k =-2...........................2y x-∴=分(2)要使得反比例函数与二次函数都是y 随着x 的增大而增大,0.....................k ∴<分 而对于二次函数2y kx kx k =+-,其对称轴为12x =-,要使二次函数满足上述条件,在0k <的情况下, 则x 必须在对称轴的左边,即12x <-时,才能使得y 随着x 的增大而增大………………..4分∴ 综上所述,则0k <,且12x <-(3)由(2)可得15(,)24Q k --ABQ ∆是以AB 为斜边的直角三角形A 点与B 点关于原点对称,所以原点O 平分AB又直角三角形中斜边上的中线是斜边的一半...........................5OQ OA OB ∴==分 作AD OC ⊥,QC OC ⊥O Q k=而OA ==则k =k =分平谷一模23. 已知关于m 的一元二次方程221x mx +-=0. (1)判定方程根的情况;(2)设m 为整数,方程的两个根都大于1-且小于32,当方程的两个根均为有理数时,求m 的值.23.解:(1)2242(1)8.m m ∆=-⨯⨯-=+ …….…………………………………………….1分 ∵ 20,m ≥∴ 280.m ∆=+>所以无论m 取任何实数,方程221x mx +-=0都有两个不相等的实数根. ………..2分(2)设221y x mx =+-.∵ 2210x mx +-=的两根都在1-和32之间, (图为一种可能的情况)∴ 当1x =-时,0y >,即:210m --> .当32x =时,0y >,即:931022m +->. ∴ 1213m -<<. ………………………..………..………………………………3分∵ m 为整数, ∴ 210m =--,,. …………………………………………………………….. 4分① 当2m =-时,方程222104812x x --=∆=+=,, 此时方程的根为无理数,不合题意.②当0m =时,方程2210x -=,x =③当1m =-时,方程212121012x x x x --==-=,,,符合题意.综合①②③可知,1m =-.………………………………………..………………7分门头沟一模23.已知关于x 的一元二次方程21(2)2602x m x m +-+-=. (1)求证:无论m 取任何实数,方程都有两个实数根;(2) 当<3m 时,关于x 的二次函数21(2)262y x m x m =+-+-的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,且2AB =3OC ,求m 的值;(3)在(2)的条件下,过点C 作直线l ∥x 轴,将二次函数图象在y 轴左侧的部分沿直线l 翻折,二次函数图象的其余部分保持不变,得到一个新的图象,记为G .请你结合图象回答:当直线13y x b =+与图象G 只有一个公共点时,b 的取值范围.23.解:(1)根据题意,得221Δ(2)4(26)(4)2m m m =--⨯⨯-=-.∵无论m 为任何实数时,都有(m -4)2≥0,即Δ≥0,∴方程有两个实数根.…………………………………………………………2分(2)令y =0,则21(2)2602x m x m +-+-=. 解得 x 1=6-2m ,x 2=-2.∵ m <3,点A 在点B 的左侧, ∴ A (-2,0),B (26m -+,0).……………………………………………3分∴ OA=2,OB =26m -+. 令x =0,得y =2m -6. ∴C (0,2m -6).∴OC =-(2m -6)=-2m +6. ∵ 2AB =3 OC ,∴ 2(226)3(26)m m -+=-+.解得1m =(3)当1m =时,抛物线的解析式为2142y x x =--,点C 的坐标为(0,-4).当直线13y x b =+经过C 点时,可得b =-4.当直线13y x b =+(b <-4)与函数2142y x x =--(x >0)的图象只一个公共点时, 得211432x b x x +=--. 整理得2386240.x x b ---=由()()2Δ8436240b =--⨯⨯--=,解得449b =-. 结合图象可知,符合题意的b 的取值范围为b >-4或<9b -.………………7分房山一模23.已知,抛物线2y x bx c =-++,当1<x <5时,y 值为正;当x <1或x >5时,y 值为负. (1)求抛物线的解析式.(2)若直线y kx b =+(k ≠0)与抛物线交于点A (32,m )和B (4,n ),求直线的解析式. (3)设平行于y 轴的直线x=t 和x=t+2分别交线段AB 于E 、F ,交二次函数于H 、G.①求t 的取值范围②是否存在适当的t 值,使得EFGH 是平行四边形?若存在,求出t 值;若不存在,请说明理由. 23.解:(1)根据题意,抛物线2y x bx c =-++与x 轴交点为(1,0)和(5,0)----1分∴102550b c b c -++=⎧⎨-++=⎩,解得65b c =⎧⎨=-⎩.∴抛物线的解析式为265y x x =-+-. --------------------2分(2)∵265y x x =-+-的图象过A (32,m )和B (4,n )两点 ∴ m =74,n =3 , ∴A (32,74)和B (4,3) ------------ 3分∵直线y kx b =+(k ≠0)过A (32,74)和B (4,3)两点∴372443k b k b ⎧+=⎪⎨⎪+=⎩,解得121k b ⎧=⎪⎨⎪=⎩. ∴直线的解析式为112y x =+. -------------------4分 (3)①根据题意3224t t ⎧⎪⎨⎪+⎩><,解得32≤t ≤2 -------------------5分②根据题意E (t ,1t 12+),F (t +2,1t 22+) H (t ,2t 6t 5-+-),G (t +2,2t 2t 3-++),∴EH =211t t 62-+-,FG =23t t 12-++. 若EFGH 是平行四边形,则EH =FG ,即211t t 62-+-=23t t 12-++解得t =74, - ---------------------6分∵t =74满足32≤t ≤2.∴存在适当的t 值,且t =74使得EFGH 是平行四边形.----------7分23.(7分)(2013•丰台区一模)二次函数y=x 2+bx+c 的图象如图所示,其顶点坐标为M (1,﹣4). (1)求二次函数的解析式;(2)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合新图象回答:当直线y=x+n 与这个新图象有两个公共点时,求n 的取值范围.(2013朝阳一模23.)二次函数2134y x x n =++-的图象与x 轴只有一个交点;另一个二次函数2222(1)46y nx m x m m =--+-+的图象与x 轴交于两点,这两个交点的横坐标都是整数,且m 是小于5的整数. 求(1)n 的值;(2)二次函数2222(1)46y nx m x m m =--+-+的图象与x 轴交点的坐标.(2013朝阳一模23.) 解:(1)∵2134y x x n =++-的图象与x 轴只有一个交点, ∴令10y =,即2304x x n ++-=.……………………………………………1分 ∴131404n ⎛⎫∆=--= ⎪⎝⎭. 解得n =1. ………………………………………………………………………2分 (2)由(1)知,()2222146y x m x m m =--+-+.∵()2222146y x m x m m =--+-+的图象与x 轴有两个交点,∴[]2222(1)4(46)m m m ∆=----+820m =-.∵20∆>,∴52m >.……………………………………………………………………………3分 又∵5m <且m 是整数,∴m =4或3. …………………………………………………………………………5分当m =4时,2266y x x =-+的图象与x 轴的交点的横坐标不是整数;当m =3时,2243y x x =-+,令20y =,即2430x x -+=,解得11x =,23x =.综上所述,交点坐标为(1,0),(3,0). ………………………………………7分(2013北京大兴一模23.)如图,已知抛物线y=﹣x 2+bx+c 与一直线相交于A (﹣1,0),C (2,3)两点,与y 轴交于点N .其顶点为D .(1)抛物线及直线AC 的函数关系式; (2)设点M (3,m ),求使MN+MD 的值最小时m 的值;(3)若抛物线的对称轴与直线AC 相交于点B ,E 为直线AC 上的任意一点,过点E 作EF ∥BD 交抛物线于点F ,以B ,D ,E ,F 为顶点的四边形能否为平行四边形?若能,求点E 的坐标;若不能,请说明理由.(2013北京大兴一模23.) 解:(1)由抛物线y=﹣x 2+bx+c 过点A (﹣1,0)及C (2,3)得,,解得.∴ 抛物线为y=﹣x 2+2x+3 . ………………………………………1分 又设直线为y=kx+n 过点A (﹣1,0)及C (2,3)得,,解得.∴ 直线AC 为y=x+1 . ………………………………………2分 (2)作N 点关于直线x=3的对称点N ′,则N ′(6,3),由(1)得D (1,4), ∴ 直线DN ′的函数关系式为y=﹣x+当M (3,m )在直线DN ′上时,MN+MD 的值最小 则m=﹣×=………………………………………4分(3)由(1)、(2)得D (1,4),B (1,2) ∵点E 在直线AC 上,设E (x ,x+1)① 当点E 在线段AC 上时,点F 在点E 上方,则F (x ,x+3) ∵F 在抛物线上, ∴x+3=﹣x 2+2x+3 解得,x=0或x=1(舍去),∴E (0,1)② 当点E 在线段AC (或CA )延长线上时,点F 在点E 下方,则F (x ,x ﹣1) 由F 在抛物线上,∴x ﹣1=﹣x 2+2x+3解得x=或x=,∴ E (,32)或(,)满足条件的点E 为E (0,1)、()或(,). ……………………………………7分(2013北京延庆24.)(本题满分7分)如图,已知平面直角坐标系xOy ,抛物线y =-x 2+bx +c 过点A(4,0)、B(1,3) . (1)求该抛物线的解析式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,设抛物线上的点P(m,n)在第四象限,点P 关于直线l 的对称点为E ,点E 关于y 轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值.(2013北京延庆24.) 解:(1)将2244b 013c b c ⎧-++=⎪⎨-++=⎪⎩…………………………1解之得:b=4,c=0 …………………2所以抛物线的解析式为:24y x x =-+……将抛物线的表达式配方得:24y x x =-+=所以对称轴为x=2,顶点坐标为(2,4(2)点p (m ,n )关于直线x=2(4-m,-n ),……………………………………5分 则四边形的面积OAPF=4n =20所以n =5,因为点P 为第四象限的点,所以n<0,所以n= -5 ………6分 代入抛物线方程得m=5 …………………………………………………7分(2013怀柔区数学初三一模23.)已知关于x 的方程03)13(2=+++x k kx .(1)求证:无论k 取任何实数时,方程总有实数根;(2)若二次函数3)13(2+++=x k kx y 的图象与x 轴两个交点的横坐标均为整数,且k 为正整数,求k 值; (3)在(2)的条件下,设抛物线的顶点为M ,直线y=-2x +9与y 轴交于点C ,与直线OM 交于点D .现将抛物线平移,保持顶点在直线OD 上.若平移的抛物线与射线CD (含端点C )只有一个公共点,求它的顶点横坐标的值或取值范围.23. (1)证明:①当k=0时,方程为x+3=0,所以x=-3,方程有实数根.…… 1分 ②当k≠0时, ()34132⋅-+=∆k k=k k k 121692-++ =1692+-k k=()0132≥-k ………………………………2分所以,方程有实数根综上所述,无论k 取任何实数时,方程总有实数根 (2)令0y =,则03)13(2=+++x k kx 解关于x 的一元二次方程,得x 1=-3 ,x 2=k1-……………………3分 ∵ 二次函数的图象与x 轴两个交点的横坐标均为整数,且k 为正整数, ∴k =1………………4分(3)由(2)得抛物线的解析式为342++=x x y 配方得y=(x +2)2-1∴抛物线的顶点M (-2,-1) ∴直线OD 的解析式为y=21x于是设平移后的抛物线的顶点坐标为(h ,21h ), (5)分∴平移后的抛物线解析式为y=(x -h )2+21h .①当抛物线经过点C 时,∵C(0,9),∴h 2+21h=9,解得h=41451-±. ∴ 当4145-1-≤h<41451-+ 时,平移后的抛物线与射线CD 只有一个公共点. ………………………………………………………………6分②当抛物线与直线CD 只有一个公共点时, 由方程组y=(x -h )2+21h ,y=-2x +9.得 x 2+(-2h +2)x +h 2+21h -9=0,∴△=(-2h +2)2-4(h 2+21h -9)=0,解得h=4.此时抛物线y=(x -4)2+2与射线CD 唯一的公共点为(3,3),符合题意…………………………………………………………………………7分综上:平移后的抛物线与射线CD 只有一个公共点时,顶点横坐标的值或取值范围是 h=4或4145-1-≤h<41451-+.(昌平区2013年一模23.)已知抛物线22y x kx k =-+-+.(1)求证:无论k 为任何实数,该抛物线与x 轴都有两个交点; (2)在抛物线上有一点P (m ,n ),n <0,OP =103,且线段OP 与x 轴正半轴所夹锐角的正弦值为45,求该抛物线的解析式;(3)将(2)中的抛物线x 轴上方的部分沿x 轴翻折,与原图象的另一部分组成一个新的图形M ,当直线y x b =-+与图形M 有四个交点时,求b 的取值范围.23.(1)证明:当y =0时,得220x kx k -+-=.∵22244(2)(2)4b ac k k k -=--=-+. ∵2(2)0k -≥, ∴2(2)40k -+>.∴无论k 为任何实数,该抛物线与x 轴都有两个交点. …………………… 3分(2)解:如图,过点P 作P A ⊥x 轴于A ,则∠OAP =90°,依题意得:104,sin 35OP POA =∠=.∴8,23AP OA ==.∵n <0,∴8(2,)3P -.∵P 在抛物线上, ∴84223k k -=-+-+.∴23k =-.∴抛物线解析式为22833y x x =--+. ………………………………………5分 (3)当y =0时,228033x x +-=. ∴1242,3x x =-=,∴抛物线与x 轴相交于点4(2,0),(,0)3.B C -当直线y = - x + b 经过点C (-2,0)时,b = -2. ………………………………………6分 当直线y = - x + b 与抛物线228+-33y x x =相切时,22833x +x-x b =-+,∴△ =2584()093b ++=. ∴ b = 12136-. ……………………………………………………………………7分∴ 当12136-<b <-2时,直线与图形M 有四个交点. ………………………………………8分。

2013年北京一模试题分类解析——导数理

2013年北京一模试题分类解析——导数理
0

0

极大值

极小值

所以函数 的单调递增区间为 ;单调递减区间为 ,……………………………………………………………………………6分
故 在区间 内单调递增,在区间 内单调递减,
从而函数 在区间 内恰有两个零点,当且仅当
解得 ,
所以 的取值范围是 .…………………………………………………9分
(III)记 ,当 时,
(Ⅱ)①当 时,由(Ⅰ)可知,函数 的单调递减区间为 , 在 单调递增.
所以 在 上的最小值为 ,
由于 ,
要使 在 上有且只有一个零点,
需满足 或 解得 或 .
②当 时,由(Ⅰ)可知,
(ⅰ)当 时,函数 在 上单调递增;
且 ,所以 在 上有且只有一个零点.
(ⅱ)当 时,函数 在 上单调递减,在 上单调递增;
所以 在 上恒减
( )当 时, 的情况如下表
+
0
极大值
所以 在 为增函数,在 为减函数
综上:当 时, 在定义域上恒减
当 时, 在 为增函数,在 为减函数
( )由( )可得,当 时, 在定义域上无极值,当 时, 在 处取得极值,所以 ,解得
所以 , 即 解得
令 ,
易得 在 上递减,在 上递增。
所以;
即:
6 C(西城一模)已知函数 , ,其中 .
(Ⅰ)求 的极值;
(Ⅱ)若存在区间 ,使 和 在区间 上具有相同的单调性,求 的取值范围.
解:( ) 的定义域为 ,………………1分
.………………2分
当 时, ,故 在 上单调递减.
从而 没有极大值,也没有极小值.………………3分
② 当 时,令 ,得 .

2013年北京市数学中考一、二模拟题分类汇编:四边形

2013年北京市数学中考一、二模拟题分类汇编:四边形

A
D
F E
B
C
6. ( 2013 密云一模 19)如图,已知菱形 AE、 CF
( 1)证明:四边形 AECF是矩形; ( 2)若 AB=8,求菱形的面积。
ABCD,AB=AC, E、 F 分别是 BC、 AD的中点,连接
D
7. ( 2013 门头沟一模 19)如图,在四边形 ABCD中,∠ A=∠ ADC=120o,
( 2) DE的长.
B A
F
C
E
D
A
D
13. ( 2013 昌平一模 21)已知:如图,在 □ABCD中,∠ BAD,∠ ADC的平分线 AE, DF分别与线段 BC相交于点 E, F,AE与 DF相交于点 G. ( 1)求证: AE⊥ DF; ( 2)若 AD=10,AB=6, AE=4,求 DF的长.
在 Rt△ AED 中, AD 2
B
E
∴ AE
1 AD
1
2
C
由勾股定理得: DE 3
……………………………… 3 分
在 Rt△ AEB 中, ABD 45
∴ BE AE 1
∴ AB 2
……………………………… 4 分
∴ BD 1 3
∴ DC BC BD 1 3
∴ AB BC CD AD 2 2 2 2 3 4 2 2 3 ………… 5 分
∠ AED=2∠ CED,点 G是 DF的中点. ( 1)求证: ∠ CED=∠ DAG; ( 2)若 BE=1, AG=4,求 sin AEB 的值.
16. ( 2013 燕山一模 19)如图,四边形 ABCD 中,∠ ADC =∠ B = 90°,∠ C = 60°,
AD = 3 , E 为 DC 中点, AE∥ BC.求 BC 的长和四边形 ABCD 的面积.

2013年北京市数学中考一、二模拟题分类汇编:操作探究

操作探究1.(2013.昌平一模22)(1)人教版八年级数学下册92页第14题是这样叙述的:如图1,□ABCD中,过对角线BD上一点P作EF∥BC,HG∥AB,图中哪两个平行四边形的面积相等?为什么?根据习题背景,写出面积相等的一对平行四边形的名称为和;(2)如图2,点P为□ABCD内一点,过点P分别作AD、AB的平行线分别交□ABCD的四边于点E、F、G、H. 已知S□BHPE = 3,S□PFDG = 5,则;(3)如图3,若①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重复、无缝隙).已知①②③④四个平行四边形面积的和为14,四边形ABCD的面积为11,则菱形EFGH的周长为.2.(2013.燕山一模22)阅读下列材料:问题:如图⑴,已知正方形ABCD中,E、F分别是BC、CD边上的点,且∠EAF =45°.判断线段BE、EF、FD之间的数量关系,并说明理由.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△DAF绕点A顺时针旋转90°,得到△BAH,然后通过证明三角形全等可得出结论.请你参考小明同学的思路,解决下列问题:⑴图⑴中线段BE、EF、FD之间的数量关系是;⑵如图⑵,已知正方形ABCD边长为5,E、F分别是BC、CD边上的点,且∠EAF=45°,AG⊥EF于点G,则AG的长为,△EFC的周长为;⑶如图⑶,已知△AEF中,∠EAF=45°,AG⊥EF于点G,且EG=2,GF=3,则△AEF的面积为.3.(2013.朝阳一模22)阅读下面材料:小雨遇到这样一个问题:如图1,直线l1∥l2∥l3,l1与l2之间的距离是1,l2与l3之间的距离是2,试画出一个等腰直角三角形ABC,使三个顶点分别在直线l1、l2、l3上,并求出所画等腰直角三角形ABC的面积.小雨是这样思考的:要想解决这个问题,首先应想办法利用平行线之间的距离,根据所求图形的性质尝试用旋转的方法构造全等三角形解决问题.具体作法如图2所示:在直线l1任取一点A,作AD⊥l2于点D,作∠DAH=90°,在AH上截取AE=AD,过点E作EB⊥AE交l3于点B,连接AB,作∠BAC=90°,交直线l2于点C,连接BC,即可得到等腰直角三角形ABC.请你回答:图2中等腰直角三角形ABC的面积等于.参考小雨同学的方法,解决下列问题:如图3,直线l1∥l2∥l3,l1与l2之间的距离是2,l2与l3之间的距离是1,试画出一个等边三角形ABC,使三个顶点分别在直线l1、l2、l3上,并直接写出所画等边三角形ABC的面积(保留画图痕迹).4.(2013.海淀一模22)问题:如图1,、、、是同一平面内的一组等距平行线(相邻平行线间的距离为1).画出一个正方形,使它的顶点、、、分别在直线、、、上,并计算它的边长.图1 图2小明的思考过程:他利用图1中的等距平行线构造了的正方形网格,得到了辅助正方形,如图2所示, 再分别找到它的四条边的三等分点、、、,就可以画出一个满足题目要求的正方形.请回答:图2中正方形的边长为 .请参考小明的方法,解决下列问题:(1)请在图3的菱形网格(最小的菱形有一个内角为,边长为1)中,画出一个等边△,使它的顶点、、落在格点上,且分别在直线a、b、c上;(3)如图4,、、是同一平面内的三条平行线,、之间的距离是,、之间的距离是,等边△的三个顶点分别在、、上,直接写出△的边长.图3 图45.(2013.东城一模22)如图,在菱形纸片ABCD中,AB=4cm,∠ABC=120°,按下列步骤进行裁剪和拼图:第一步:如图1,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图2,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图3,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,再与三角形纸片EGH拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)(1)请你在图3中画出拼接成的四边形;(2)直接写出拼成的四边形纸片周长的最小值为________cm,最大值为________cm.6.(2013.怀柔一模22)理解与应用:我们把对称中心重合、四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.....一条直线l与方形环的边线有四个交点、、、.小明在探究线段与的数量关系时,从点、向对边作垂线段、,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:(1)直线l与方形环的对边相交时(22题图1),直线l分别交、、、于、、、,小明发现与相等,请你帮他说明理由;(2)直线l与方形环的邻边相交时(22题图2),l分别交、、、于、、、,l与的夹角为,请直接写出的值(用含的三角函数表示).7.(2013.门头沟一模22)操作与探究:在平面直角坐标系xOy中,点P从原点O出发,且点P只能每次向上平移2个单位长度或向右平移1个单位长度.(1)实验操作:在平面直角坐标系xOy中,点P从原点O出发,平移1次后可能到达的点的坐标是,;点P从原点O出发,平移2次后可能到达的点的坐标是,,;点P从原点O出发,平移3次后可能到达的点的坐标是;(2)观察发现:任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数的图象上;平移2次后在函数的图象上,….若点P平移5次后可能到达的点恰好在直线上,则点P的坐标是;(3)探究运用:点P从原点O出发经过次平移后,到达直线上的点Q,且平移的路径长不小于30,不超过32,求点Q的坐标.8.(2013.平谷一模22)对于平面直角坐标系中的任意两点,我们把叫做两点间的直角距离,记作.(1)已知点,那么两点间的直角距离=_____________;(2)已知O为坐标原点,动点满足,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有满足条件的图形;(3)设是一定点,是直线上的动点,我们把的最小值叫做点到直线的直角距离.试求点到直线的直角距离..9.(2013.石景山一模22)问题解决:已知:如图,为上一动点,分别过点、作于点,于点,联结、.(1)请问:点满足什么条件时,的值最小?(2)若,,,设.用含的代数式表示的长(直接写出结果).拓展应用:参考上述问题解决的方法,请构造图形,并求出代数式的最小值.来源:学,科,网]10.(2013.顺义一模22)如图1,在四边形中,,分别是的中点,连结并延长,分别与的延长线交于点,则(不需证明).小明的思路是:在图1中,连结,取的中点,连结,根据三角形中位线定理和平行线性质,可证得.问题:如图2,在中,,点在上,,分别是的中点,连结并延长,与的延长线交于点,若,连结,判断的形状并证明.11.(2013.通州一模22)如图所示,在4×4的菱形斜网格图中(每一个小菱形的边长为1,有一个角是60°),菱形的边长为2,是的中点,沿将菱形剪成①、②两部分,用这两部分可以分别拼成直角三角形、等腰梯形、矩形,要求所拼成图形的顶点均落在格点上.(1)在下面的菱形斜网格中画出示意图;(2)若所拼成的直角三角形、等腰梯形、矩形的面积分别记为、、,周长分别记为、、,判断所拼成的三种图形的面积、周长的大小关系(用“=”、“>”、“<”、“≤”或“≥”连接):面积关系是;周长关系是.12.(2013.西城一模22)先阅读材料,再解答问题:小明同学在学习与圆有关的角时了解到:在同圆或等圆中,同弧(或等弧)所对的圆周角相等.如图,点A、B、C、D均为⊙O上的点,则有∠C=∠D.小明还发现,若点E在⊙O外,且与点D在直线AB同侧,则有∠D>∠E.请你参考小明得出的结论,解答下列问题:(1) 如图1,在平面直角坐标系xOy中,点A的坐标为(0,7),点B的坐标为(0,3),点C的坐标为(3,0) .①在图1中作出△ABC的外接圆(保留必要的作图痕迹,不写作法);②若在轴的正半轴上有一点D,且∠ACB =∠ADB,则点D的坐标为;(2) 如图2,在平面直角坐标系xOy中,点A的坐标为(0,m),点B的坐标为(0,n),其中m>n>0.点P为轴正半轴上的一个动点,当∠APB达到最大时,直接写出此时点P的坐标.13.(2013.延庆一模22)阅读下面材料:将正方形ABCD(如图1)作如下划分:第1次划分:分别联结正方形ABCD对边的中点(如图2),得线段HF和EG,它们交于点M,此时图2中共有5个正方形;第2次划分:将图2左上角正方形AEMH按上述方法再作划分,得图3,则图3中共有_______个正方形;若每次都把左上角的正方形依次划分下去,则第100次划分后,图中共有_______个正方形;继续划分下去,能否将正方形ABCD划分成有2013个正方形的图形?需说明理由.14.(2013.昌平二模22)(1)【原题呈现】如图,要在燃气管道l上修建一个泵站分别向A、B两镇供气. 泵站修在管道的什么地方,可使所用的输气管线最短?解决问题:请你在所给图中画出泵站P的位置,并保留作图痕迹;(2)【问题拓展】已知a>0,b>0,且a+b=2,写出的最小值;(3)【问题延伸】已知a>0,b>0,写出以、、为边长的三角形的面积.15.(2013.朝阳二模22)阅读下列材料:小华遇到这样一个问题,如图1, △ABC中,∠ACB=30º,BC=6,AC=5,在△ABC内部有一点P,连接PA、PB、PC,求PA+PB+PC的最小值.小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将△APC绕点C顺时针旋转60º,得到△EDC,连接PD、BE,则BE的长即为所求.(1)请你写出图2中,PA+PB+PC的最小值为;(2)参考小华的思考问题的方法,解决下列问题:①如图3,菱形ABCD中,∠ABC=60º,在菱形ABCD内部有一点P,请在图3中画出并指明长度等于PA+PB+PC最小值的线段(保留画图痕迹,画出一条即可);②若①中菱形ABCD的边长为4,请直接写出当PA+PB+PC值最小时PB的长.16.(2013.大兴二模22)在三角形纸片ABC中,已知∠ABC=90°,AB=6,BC=8.过点A作直线平行于BC,折叠三角形纸片ABC,使直角顶点B 落在直线上的T处,折痕为MN.当点T 在直线上移动时,折痕的端点M、N也随之移动.若限定端点M、N分别在AB、BC边上移动(点M可以与点A重合,点N可以与点C重合),求线段AT长度的最大值与最小值的和(计算结果不取近似值).17.(2013.东城二模22)阅读并回答问题:数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:作法:①在OA,OB上分别截取OD,OE,使OD=OE.②分别以D,E为圆心,以大于为半径作弧,两弧在内交于点C.③作射线OC,则OC就是的平分线小聪只带了直角三角板,他发现利用三角板也可以作角平分线,方法如下:作法: ①利用三角板上的刻度,在OA ,OB 上分别截取OM ,ON ,使OM =ON .②分别过以M ,N 为OM ,ON 的垂线,交于点P.③作射线OP ,则OP 就是的平分线.小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:(1) 小聪的作法正确吗?请说明理由;(2) 请你帮小颖设计用刻度尺作平分线的方法.(要求:不与小聪方法相同,请画出图形,并写出画图的方法,不必证明).18.(2013.房山二模22)如图1,在矩形MNPQ 中,点E ,F ,G ,H 分别在边NP ,PQ ,QM ,MN 上,当时,我们称四边形EFGH 为矩形MNPQ 的反射四边形.已知:矩形ABCD 的四个顶点均为边长为1的正方形网格的格点,请解决下列问题: (1)在图2中,点E ,F 分别在BC ,CD 边上,请作出矩形ABCD 的反射四边形EFGH ,并求出反射四边形EFGH 的周长.(2)在图3中作出矩形ABCD 的所有反射四边形,并判断它们的周长之间的关系.19.(2013.密云二模22)实践与操作:如图1是以正方形两顶点为圆心,边长为半径,画两段相等的圆弧而成的轴对称图形,图2是以图1为基本图案经过图形变换拼成的一个中心对称图形.(1)请你仿照图1,用两段相等圆弧(小于或等于半圆),在图3中重新设计一个不同的轴对称图形.(2)以你在图3中所画的图形为基本图案,经过图形变换在图4中拼成一个中心对称图形.20.(2013.石景山二模22)如图,在矩形ABCD中,AB=3,BC=4,点M、N、分别在BC、AB上,将矩形ABCD沿MN折叠,设点B的对应点是点E.(1)若点E在AD边上,BM=,求AE的长;(2)若点E在对角线AC上,请直接写出AE的取值范围:.解:21.(2013.丰台二模22)操作探究:一动点沿着数轴向右平移5个单位,再向左平移2个单位,相当于向右平移3个单位.用实数加法表示为 5+()=3.若平面直角坐标系xOy中的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移个单位),则把有序数对{a,b}叫做这一平移的“平移量”.规定“平移量”{a,b}与“平移量”{c,d}的加法运算法则为.(1)计算:{3,1}+{1,2};(2)若一动点从点A(1,1)出发,先按照“平移量”{2,1}平移到点B,再按照“平移量”{-1,2}平移到点C;最后按照“平移量”{-2,-1}平移到点D,在图中画出四边形ABCD,并直接写出点D的坐标;(3)将(2)中的四边形ABCD以点A为中心,顺时针旋转90°,点B旋转到点E,连结AE、BE若动点P从点A出发,沿△AEB的三边AE、EB、BA 平移一周.请用“平移量”加法算式表示动点P的平移过程.22.(2013.海淀二模22)如图1,四边形ABCD中,、为它的对角线,E为AB边上一动点(点E不与点A、B重合),EF∥AC交BC于点F,FG∥BD交DC于点G,GH∥AC交AD于点H,连接HE.记四边形EFGH的周长为,如果在点的运动过程中,的值不变,则我们称四边形ABCD为“四边形”,此时的值称为它的“值”.经过探究,可得矩形是“四边形”.如图2,矩形ABCD中,若AB=4,BC=3,则它的“值”为.图1 图2 图3(1)等腰梯形(填“是”或“不是”)“四边形”;(2)如图3,是⊙O的直径,A是⊙O上一点,,点为上的一动点,将△沿的中垂线翻折,得到△.当点运动到某一位置时,以、、、、、中的任意四个点为顶点的“四边形”最多,最多有个.23.(2013.怀柔二模22)探究与应用已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y = 的图象上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有..两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限.(1)如图,若反比例函数解析式为y= ,P点坐标为(1, 0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1;(2)请你通过改变P点坐标,对直线M1 M的解析式y﹦kx+b进行探究可得 k﹦,若点P的坐标为(m,0)时,则b﹦;(3)依据(2)的规律,如果点P的坐标为(6,0),请你直接写出点M1和点M的坐标.解:(1)如图(2)k﹦,b﹦;(3)M1的坐标为(,),M的坐标为(,).24.(2013.西城二模22)在平面直角坐标系xOy中,点经过变换得到点,该变换记作,其中为常数.例如,当,且时,.(1) 当,且时,= ;(2) 若,则= ,= ;(3) 设点是直线上的任意一点,点经过变换得到点.若点与点重合,求和的值.第七章操作探究参考答案1.(2013.昌平一模22)解:(1)□AEPH 和□PGCF或□ABGH 和□EBCF 或□AEFD 和□HGCD . … 1分(2)1. ……………………………… 2分(3)24.……………………………… 4分2.(2013.燕山一模22)⑴线段BE、EF、FD之间的数量关系是EF=BE+FD; (1)分⑵AG的长为 5 ,△EFC的周长为 10 ;………………………3分⑶△AEF的面积为 15 .………………………5分3.(2013.朝阳一模22)解: 5;……………………………………………2分如图;………………………………………3分. ………………………………………5分4.(2013.海淀一模22)(1).………………………2分(2)①如图:(答案不唯一) …4分②.………………………5分5.(2013.东城一模22)解:(1)拼接成的四边形所图虚线所示;………………2分(2);. …………………………5分(注:通过操作,我们可以看到最后所得的四边形纸片是一个平行四边形,其上下两条边的长度等于原来菱形的边AB=4,左右两边的长等于线段MN的长,当MN垂直于BC时,其长度最短,等于原来菱形的高的一半,于是这个平行四边形的周长的最小值为2(+4)=;当点E与点A重合,点M与点G重合,点N与点C重合时,线段MN最长,等于,此时,这个四边形的周长最大,其值为.)6.(2013.怀柔一模22)理解与应用:…………………1分=∠N’NF……………………2分………………3分)……………………………5分7.(2013.门头沟一模22)解:(1)(0,6),(1,4),(2,2),(3,0).………………………2分(2)平移5次后P在y=-2x+10上,又在y=3x上,联立方程组即可。

北京市海淀区2013年中考一模数学答案-word版本-完美编辑直接打印

EDCBA海淀区九年级第二学期期中测评数学试卷答案及评分参考一、选择题(本题共32分,每小题4分)三、解答题(本题共30分,每小题5分) 130112cos301)()8-︒+- .解:原式218=-- ………………………4分 7=.………………………5分解:由①得 2x >-.………………………2分 由②得 1x ≤.………………………4分则不等式组的解集为12≤<-x .………………………5分 15.先化简,再求值:4212112--÷⎪⎭⎫ ⎝⎛-+x x x ,其中3=x . 解:原式2212421x x x x -+-=⋅-- ………………………2分 )1)(1()2(221+--⋅--=x x x x x ………………………3分 12+=x . ………………………4分 当3=x 时,原式=2112=+x .………………………5分16.证明:AB ∥EC ,∴.A DCE ∠=∠ ………………………1分 在△ABC 和△CDE 中,,,,B EDC A DCE AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CDE .………………………4分 ∴.BC DE = ………………………5分17.解:(1)∵ 点A (1,)n -在反比例函数xy 2-=的图象上, ∴ 2n =. ………………………1分 ∴ 点A 的坐标为12-(,). ∵ 点A 在一次函数y kx k =-的图象上, ∴2k k =--.∴1-=k .………………………2分∴ 一次函数的解析式为1+-=x y .………………………3分 (2)点P 的坐标为(-3,0)或(1,0).………………………5分 (写对一个给1分)18.解:设原计划每天加工x 顶帐篷. ………………………1分1500300150030042x x---=.………………………3分 解得 150x =. ………………………4分 经检验,150x =是原方程的解,且符合题意. 答:原计划每天加工150顶帐篷. ………………………5分 四、解答题(本题共20分,每小题5分)19. 解:过点A 作AF ⊥BD 于F . ∵∠CDB =90°,∠1=30°,∴∠2=∠3=60°. ………………………1分 在△AFB 中,∠AFB =90°.∵∠4=45°,AB =∴AF =BF ………………………2分 在△AFE 中,∠AFE =90°.∴1,2EF AE ==.………………………3分 在△ABD 中,∠DAB =90°.∴DB =∴1DE DB BF EF =--=-.………………………4分∴1131)222ADE S DE AF ∆-=⋅=-=.………………………5分 20.(1)证明:连接OD . ………………………1分∵AB =AC , ∴B C ∠=∠. 又∵OB OD =, ∴1B ∠=∠.∴1C ∠=∠. ∴OD ∥AC .∵DE ⊥AC 于E , ∴DE ⊥OD .∵点D 在⊙O 上,∴DE 与⊙O 相切. ………………………2分 (2)解:连接AD .∵AB 为⊙O 的直径,∴∠ADB =90°. ∵AB =6,sin B =55, ∴sin AD AB B =⋅=556.………………3分 ∵123290∠+∠=∠+∠=︒, ∴13∠=∠. ∴ 3.B ∠=∠在△AED 中,∠AED =90°.∵sin 3AE AD ∠==∴65AE AD ===. ………………………4分 又∵OD ∥AE ,∴△FAE ∽△FOD .∴FA AEFO OD =. ∵6AB =,∴3OD AO ==.∴235FA FA =+. ∴2AF =. ………………………5分21.(1)13.………………………1分(2)∵(3318)80%30++÷=,∴被小博同学抽取的监测点个数为30个. ………………………2分………………………3分(3)设去年同期销售x 万箱烟花爆竹.(135%)37x -=.解得125613x =.………………………4分 ∴1212563719201313-=≈.答:今年比去年同期少销售约20万箱烟花爆竹. ……………………… 5分22.(1.………………………2分 (2)①如图:(答案不唯一) ………………………4分………………………5分 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)依题意,可得抛物线的对称轴为212mx m-=-=.………………………1分 ∵抛物线与x 轴交于A 、B 两点,点A 的坐标为(2,0)-, ∴点B 的坐标为 (4,0).………………………2分(2)∵点B 在直线y =12x +4m +n 上, ∴024m n =++①.∵点A 在二次函数2-2y mx mx n =+的图象上, ∴044m m n =++②. ………………………3分 由①、②可得12m =,4n =-. ………………………4分 ∴ 抛物线的解析式为y =2142x x --,直线的解析式为y =122x -. ……………5分(3)-502d <<. ………………………7分 24.(1)2AE =.………………………1分(2)线段AE 、CD 之间的数量关系为2AE CD =.………………………2分 证明:如图1,延长AC 与直线l 交于点G .依题意,可得∠1=∠2. ∵∠ACB =90︒, ∴∠3=∠4. ∴BA BG =.∴CA =CG .………………………3分 ∵AE ⊥l ,CD ⊥l , ∴CD ∥AE . ∴△GCD ∽△GAE . ∴12CD GC AE GA ==. ∴2AE CD =.………………………4分 (3)解:当点F 在线段AB 上时,如图2, 过点C 作CG ∥l 交AB 于点H ,交AE 于点G . ∴∠2=∠HCB . ∵∠1=∠2, ∴∠1=∠HCB . ∴CH BH =. ∵∠ACB =90︒,∴∠3+∠1=∠HCB +∠4 =90︒. ∴∠3=∠4. ∴CH AH BH ==. ∵CG ∥l ,∴△FCH ∽△FEB . ∴56CF CH EF EB ==. 设5,6CH x BE x ==,则10AB x =.∴在△AEB 中,∠AEB =90︒,8AE x =. 由(2)得,2AE CD =. ∵4CD =, ∴8AE =. ∴1x =.∴10,6,5AB BE CH ===. ∵CG ∥l ,∴△AGH ∽△AEB . ∴12HG AH BE AB ==.图3图2∴3HG =.………………………5分 ∴8CG CH HG =+=. ∵CG ∥l ,CD ∥AE , ∴四边形CDEG 为平行四边形. ∴8DE CG ==.∴2BD DE BE =-=.……………………6分 当点F 在线段BA 的延长线上时,如图3, 同理可得5CH =,3GH =,6BE =. ∴DE =2CG CH HG =-=. ∴ 8BD DE BE =+=.∴2BD =或8.……………………7分 25.解:(1)()2222y x mx m m x m m =-++=-+,……………………1分∴顶点坐标为C m ,m ().……………………2分 (2)①2y x =+与抛物线222y x mx m m =-++交于A 、B 两点,∴2222x x mx m m +=-++.解方程,得121,2x m x m =-=+.……………………4分A 点在点B 的左侧,∴(1,1),(2,4).A m m B m m -+++∴AB =……………………5分直线OC 的解析式为y x =,直线AB 的解析式为2y x =+,∴AB ∥OC ,两直线AB 、OC 之间距离h =∴11322APBSAB h =⋅=⨯=.………………………6分……………………8分(注:本卷中许多问题解法不唯一,请老师根据评分标准酌情给分)。

2013北京各区县文科数学理科数学一模题汇编:平面几何证明

PBCDA OOP DFE 2013北京模拟:平面几何证明 1、(2013海淀期末,理5)如图,PC 与圆O 相切于点C ,直线PO 交圆O 于A ,B 两点,弦CD 垂直AB 于E ,则下面结论中,错误的是( )A 、BEC DEA △∽△B 、ACE ACP ∠=∠C 、2DE OE EP =⋅ D 、2PC PA AB =⋅第1题图 第2题图 第3题图 第4题图2、(2013朝阳期末,理10)如图,AB ,CD 是半径为a 的圆O 的两条弦,它们相交于AB 中点P ,若23aPD =,30OAP ∠=°,则AB = ;CP = 。

(用a 表示) 3、(2013西城期末,理10)如图,Rt △ABC ,90ABC ∠=°,3AC =,4BC =,以AC 为直径的圆交AB 于点D ,则BD = ;CD = 。

4、(2013石景山期末,理10)如图,从圆O 外一点P 引圆O 的割线PAB 和PCD ,PCD 过圆心O ,已知1PA =,2AB =,3PO =,则圆O 的半径等于 。

5、(2013丰台一模,理11)如图,直线PD 切圆O 与点D ,直线PO 交圆O 于点E ,F ,若23PF =+,1PD =,则圆O 的半径为 ,EFD ∠= 。

第5题图 第6题图 第7题图6、(2013石景山,理5)如图,直线AM 与圆相切于点M ,ABC 与ADE 是圆的两条割线,且BD AD ⊥,连结MD 、EC ,则下面结论中,错误的是( )A 、90ECA ∠=°B 、CEM DMA DBA ∠=∠+∠C 、2AM AD AE =⋅ D 、AD DE AB BC ⋅=⋅ 7、(2013海淀一模,理11)如图,AP 与圆O 切于点A ,交弦BD 延长线于点P ,过点B 作圆O 的切线交AP 于点C ,若90ACB ∠=°,3BC =,4CP =,则弦BD 的长为 。

2013年北京市中考各城区一模数学24题汇总

2013年北京市中考各城区一模数学24题汇总1、(2013年门头沟)24.已知:在△ABC 中,AB =AC ,点D 为BC 边的中点,点F 是AB 边上一点,点E 在线段DF 的延长线上,点M 在线段DF 上,且∠BAE =∠BDF ,∠ABE =∠DBM .(1) 如图1,当∠ABC =45°时,线段 DM 与AE 之间的数量关系是 ; (2) 如图2,当∠ABC =60°时,线段 DM 与AE 之间的数量关系是 ;(3)① 如图3,当ABC α∠=(0<<90α︒︒)时,线段 DM 与AE 之间的数量关系是 ; ② 在(2)的条件下延长BM 到P ,使MP =BM ,连结CP ,若AB =7,AE= 求sin ∠ACP 的值.2、(2013年丰台区)24.在ABC △中,∠ACB =90°,AC >BC ,D 是AC 边上的动点,E 是BC 边上的动点,AD =BC ,CD =BE . (1) 如图1,若点E 与点C 重合,连结BD ,请写出∠BDE 的度数;(2)若点E 与点B 、C 不重合,连结AE 、BD 交于点F ,请在图2中补全图形,并求出∠BFE 的度数.3、(2013年平谷)AB CDEF M MFED CBA ACD EF M 图1图2图324.(1)如图(1),△ABC 是等边三角形,D 、E 分别是AB 、BC 上的点,且BD CE =,连接AE 、CD 相交于点P .请你补全图形,并直接写出∠APD 的度数;=(2)如图(2),Rt △ABC 中,∠B =90°,M 、N 分别是AB 、BC 上的点,且,AM BC =BM CN =,连接AN 、CM 相交于点P . 请你猜想∠APM = °,并写出你的推理过程.4、(2013年顺义)24.如图1,将三角板放在正方形ABCD 上,使三角板的直角顶点E 与正方形ABCD 的顶点A 重合.三角板的一边交CD 于点F ,另一边交CB 的延长线于点.G (1)求证:EF EG =;(2)如图2,移动三角板,使顶点E 始终在正方形ABCD 的对角线AC 上,其他条件不变, (1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)如图3,将(2)中的“正方形ABCD ”改为“矩形ABCD ”,且使三角板的一边经过点B ,其他条件不变,若AB a =,BC b =,求EFEG的值.5、(2013年石景山)24.如图,△ABC 中,∠90ACB =︒, 2=AC ,以AC 为边向右侧作等边三角形ACD .(1)如图24-1,将线段AB 绕点A 逆时针旋转︒60,得到线段1AB ,联结1DB , 则与1DB 长度相等的线段为 (直接写出结论);(2)如图24-2,若P 是线段BC 上任意一点(不与点C 重合),点P 绕点A 逆时针旋转︒60得到点Q ,求ADQ ∠的度数;(3)画图并探究:若P 是直线BC 上任意一点(不与点C 重合),点P 绕点A 逆时针旋转︒60得到点Q ,是否存在点P ,使得以A 、 C 、 Q 、 D 为顶点的四边形是梯形,若存在,请指出点P 的位置,并求出PC 的长;若不存在,请说明理由.6、(2013年海淀)24.在△ABC 中,∠ACB =90︒.经过点B 的直线l (l 不与直线AB 重合)与直线BC 的夹角等于ABC ∠,分别过点C 、点A 作直线l 的垂线,垂足分别为点D 、点E .(1)若45ABC ∠=︒,CD =1(如图),则AE 的长为 ; (2)写出线段AE 、CD 之间的数量关系,并加以证明; (3)若直线CE 、AB 交于点F , 56CF EF =,CD =4,求BD 的长.7、(2013年西城)图24-1 图24-2B 1ABCD备用图AD备用图AD24.在Rt △ABC 中,∠ACB =90°,∠ABC =α,点P 在△ABC 的内部.(1) 如图1,AB =2AC ,PB =3,点M 、N 分别在AB 、BC 边上,则cos α=_,△PMN 周长的最小值为__; (2) 如图2,若条件AB =2AC 不变,而PA =2,PB =10,PC =1,求△ABC 的面积; (3) 若PA =m ,PB =n ,PC =k ,且cos sin k m n αα==,直接写出∠APB 的度数.8、(2013年通州)24.已知:2AD =,4BD =,以AB 为一边作等边三角形ABC .使C 、D 两点落在直线AB 的两侧.(1)如图,当∠ADB=60°时,求AB 及CD 的长;(2)当∠ADB 变化,且其它条件不变时,求CD 的 最大值,及相应∠ADB 的大小.9、(2013年东城)24. 问题1:如图1,在等腰梯形ABCD 中,AD ∥BC ,AB =BC =CD ,点M ,N 分别在AD ,CD 上,若∠MBN =12∠ABC ,试探究线段MN ,AM ,CN 有怎样的数量关系?请直接写出你的猜想,不用证明; 问题2:如图2,在四边形ABCD 中,AB =BC ,∠ABC +∠ADC =180°,点M ,N 分别在DA ,CD 的延长线上,若∠MBN =12∠ABC 仍然成立,请你进一步探究线段MN ,AM ,CN 又有怎样的数量关系?写出你的猜想,并给予证明.10、(2013年朝阳)ADBC24.在Rt △ABC 中,∠A =90°,D 、E 分别为AB 、AC 上的点.(1)如图1,CE =AB ,BD =AE ,过点C 作CF ∥EB ,且CF =EB ,连接DF 交EB 于点G ,连接BF ,请你直接写出EBDC的值; (2)如图2,CE =kAB ,BD =kAE ,12EB DC =,求k 的值.11、(2013年密云)24.如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,, 60B =︒∠. (1)点E 到BC 的距离为 ;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①点N 在线段AD 上时(如图2),P M N △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.12、(2013年延庆)图2B 图1FB图1图2 图3A D EB FC ADE BFC (备用)A D E BF C(备用)A DEBFC P NMA DE BF CP N M25. (本题满分8分) 如图1,在四边形ABCD 中,AB CD =,E F 、分别是BC AD 、的中点,连结EF 并延长,分别与BA CD 、的延长线交于点M N 、,则BME CNE ∠=∠(不需证明). (温馨提示:在图1中,连结BD ,取BD 的中点H ,连结HE HF 、,根据三角形中位线定理,证明HE HF =,从而12∠=∠,再利用平行线性质,可证得BME CNE ∠=∠.)问题一:如图2,在四边形ADBC 中,AB 与CD 相交于点O ,AB CD =,E F 、分别是BC AD 、的中点,连结EF ,分别交DC AB 、于点M N 、,判断OMN △的形状,请直接写出结论. 问题二:如图3,在ABC △中,AC AB >,D 点在AC 上,AB CD =,E F 、分别是BC AD 、的中点,连结EF 并延长,与BA 的延长线交于点G ,若60EFC ∠=°,连结GD ,判断AGD △的形状并证明.13、(2013年房山)24(1)如图1,△ABC 和△CDE 都是等边三角形,且B 、C 、D 三点共线,联结AD 、BE 相交于点P ,求证: BE = AD .(2)如图2,在△BCD 中,∠BCD <120°,分别以BC 、CD 和BD 为边在△BCD 外部作等边三角形ABC 、等边三角形CDE 和等边三角形BDF ,联结AD 、BE 和CF 交于点P ,下列结论中正确的是 (只填序号即可)①AD=BE=CF ;②∠BEC=∠ADC ;③∠DPE=∠EPC=∠CPA =60°; (3)如图2,在(2)的条件下,求证:PB+PC+PD=BE .14、(2013年昌平一模)FAB 第24题图1第24题图2AD24.在△ABC 中,AB =4,BC =6,∠ACB =30°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1. (1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数; (2)如图2,连接AA 1,CC 1.若△CBC 1的面积为3,求△ABA 1的面积;(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转的过程中,点P 的对应点是点P 1,直接写出线段EP 1长度的最大值与最小值.C1C BA 1A图2A 1C 1ABC图1图3PP 1E A 1A C 115、(2013年怀柔一模)24. 如图,△ABC 中,∠ACB=90°,AD=AC,AB=AN,连结CD 、BN,CD 的延长线交BN 于点F .(1)当∠ADN 等于多少度时,∠ACE=∠EBF,并说明理由; (2)在(1)的条件下,设∠ABC=α,∠CAD =β,试探索α、β满足什么关系时,△ACE ≌△FBE ,并说明理由.16、(2013年大兴一模)24. 如图所示,现有一张边长为4的正方形纸片ABCD ,点P 为正方形AD 边上的一点(不与点A 、点D 重合)将正方形纸片折叠,使点B 落在P 处,点C 落在G 处,PG 交DC 于H ,折痕为EF ,连接BP 、BH .(1)求证:∠APB=∠BPH ;(2)当点P 在边AD 上移动时,△PDH 的周长是否发生变化?并证明你的结论; (3)设AP 为x ,四边形EFGP 的面积为S ,请直接写...出.S 与x 的函数关系式,并求出..S 的最小值 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

市西城区2013年初三一模试卷 数 学 2013. 5

一、选择题(本题共32分,每小题4分) 下面各题均有四个选项,其中只有一个..是符合题意的.

1.3的相反数是 A.31 B.31 C.3 D.3 2.原世博园区最大单体建筑“世博轴”被改造成一个综合性商业中心,该项目营业面积约130 000平方米,130 000用科学记数法表示应为 A.1.3×105 B.1.3×104 C.13×104 D.0.13×106 3.如图,AF是∠BAC的平分线,EF∥AC交AB于点E. 若∠1=25°,则BAF的度数为 A.15° B.50° C.25° D.12.5° 4.在一个不透明的盒子中装有3个红球、2个黄球和1个绿球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到黄球的概率为

A.21 B.31 C.61 D.1 5.若菱形的对角线长分别为6和8,则该菱形的边长为 A.5 B.6 C.8 D.10 6.某中学篮球队12名队员的年龄情况如下: 年龄(单位:岁) 14 15 16 17 18 人数 1 4 2 3 2 则该队队员年龄的众数和中位数分别是 A.16,15 B.15,15.5 C.15,17 D.15,16 7.由一些大小相同的小正方体搭成的一个几何体的三视图如图所示,则构成这个几何体 的小正方体共有 A.6个 B.7个 C.8个 D.9个

8.如图,在矩形ABCD中,AB=2,BC=4.将矩形ABCD绕点C沿顺时针方向旋转90°后,得到矩形FGCE(点A、B、D的对应点分别为点F、G、E).动点P从点B开始沿BC-CE运动到点E后停止,动点Q从点E开始沿EF-FG运动到点G后停止,这两点的运动速度均为每秒1个单位.若点P和点Q同时开始运动,运动时间为x(秒),△APQ的面积为y,则能够正确反映y与x之间的函数关系的图象大致是

A B C D 二、填空题(本题共16分,每小题4分) 9.函数3yx中,自变量x的取值围是 . 10.分解因式:32816aaa= . 11.如图,在梯形ABCD中,AD∥BC,BD⊥DC,∠C=45°. 若AD=2,BC=8,则AB的长为 . 12.在平面直角坐标系xOy中,有一只电子青蛙在点A(1,0)处. 第一次,它从点A先向右跳跃1个单位,再向上跳跃1个单位到达点A1; 第二次,它从点A1先向左跳跃2个单位,再向下跳跃2个单位到达点A2; 第三次,它从点A2先向右跳跃3个单位,再向上跳跃3个单位到达点A3; 第四次,它从点A3先向左跳跃4个单位,再向下跳跃4个单位到达点A4; …… 依此规律进行,点A6的坐标为 ;若点An的坐标为(2013,2012), 则n= .

三、解答题(本题共30分,每小题5分) 13.计算:10345sin2)13(8.

14.解不等式组 4(1)78,25,3xxxx并求它的所有整数解.

15.如图,点C在线段AB上,△DAC和△DBE都是等边三角形. (1) 求证:△DAB≌△DCE; (2) 求证:DA∥EC.

≤ 16.已知3=yx,求22222()xyxyxyxyy的值. 17.如图,在平面直角坐标系xOy中,正比例函数错误!未指定书签。32yx与反比例函数kyx的图象在 第二象限交于点A,且点A的横坐标为 .

(1) 求反比例函数的解析式; (2) 点B的坐标为(-3,0),若点P在y轴上, 且△AOB的面积与△AOP的面积相等, 直接写出点P的坐标.

18.列方程(组)解应用题: 某工厂原计划生产2400台空气净化器,由于天气的影响,空气净化器的需求量呈上升趋势,生产任务的数量增加了1200台.工厂在实际生产中,提高了生产效率,每天比原计划多生产10台,实际完成生产任务的天数是原计划天数的1.2倍.求原计划每天生产多少台空气净化器.

19.如图,平行四边形ABCD的对角线AC、BD交于点O, AC⊥AB,AB=2,且AC︰BD=2︰3. (1) 求AC的长; (2) 求△AOD的面积.

-2 北京市2008-2012年农业观光园 经营年收入统计图 北京市2009-2012年农业观光园

经营年收入增长率统计表

20.如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于 点D,过点D作FE⊥AB于点E,交AC的延长线于点F. (1) 求证:EF与⊙O相切;

(2) 若AE=6,sin∠CFD=35,求EB的长.

21.近年来,郊区依托丰富的自然和人文资源,大力开发建设以农业观光园为主体的多类型休闲旅游项目,京郊旅游业迅速崛起,农民的收入逐步提高.以下是根据市统计局2013年1月发布的“市主要经济社会发展指标”的相关数据绘制的统计图表的一部分.

请根据以上信息解答下列问题: (1) 市2010年农业观光园经营年收入的年增长率是 ;(结果精确到1%) (2) 请补全条形统计图并在图中标明相应数据;(结果精确到0.1) (3) 如果从2012年以后,市农业观光园经营年收入都按30%的年增长率增长,请 你估算,若经营年收入要不低于2008年的4倍,至少要到 年.(填写年份)

22.先阅读材料,再解答问题: 小明同学在学习与圆有关的角时了解到:在同圆或等圆中, 同弧(或等弧)所对的圆周角相等.如图,点A、B、C、D均 为⊙O上的点,则有∠C=∠D. 小明还发现,若点E在⊙O外,且与点D在直线AB同侧,

年份 年增长率(精确到1%) 2009年 12% 2010年 2011年 22% 2012年 24% 则有∠D>∠E. 请你参考小明得出的结论,解答下列问题: (1) 如图1,在平面直角坐标系xOy中,点A的坐标为(0,7),点B的坐标为(0,3), 点C的坐标为(3,0) . ①在图1中作出△ABC的外接圆(保留必要的作图痕迹,不写作法); ②若在x轴的正半轴上有一点D,且∠ACB =∠ADB,则点D的坐标为 ; (2) 如图2,在平面直角坐标系xOy中,点A的坐标为(0,m),点B的坐标为(0,n), 其中m>n>0.点P为x轴正半轴上的一个动点,当∠APB达到最大时,直接写出此时点P的坐标.

五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x的一元二次方程22(4)0xaxa. (1) 求证:无论a为任何实数,此方程总有两个不相等的实数根;

(2) 抛物线21:2(4)Cyxaxa与x轴的一个交点的横坐标为2a,其中0a,将抛物线1C向

右平移14个单位,再向上平移18个单位,得到抛物线2C.求抛物 线2C的解析式; (3) 点A(m,n)和B(n,m)都在(2)中抛物线C2上,且A、B两点不重合,求代数式 33222mmnn

的值.

24.在Rt△ABC中,∠ACB=90°,∠ABC=,点P在△ABC的部. (1) 如图1,AB=2AC,PB=3,点M、N分别在AB、BC边上,则cos=_______, △PMN周长的最小值为_______; (2) 如图2,若条件AB=2AC不变,而PA=2,PB=10,PC=1,求△ABC的面积; (3) 若PA=m,PB=n,PC=k,且cossinkmn,直接写出∠APB的度数. 25.如图1,在平面直角坐标系xOy中,直线l:34yxm与x轴、y轴分别交于点A和点B(0,-1),抛物线212yxbxc经过点B,且与直线l的另一个交点为C(4,n). (1) 求n的值和抛物线的解析式; (2) 点D在抛物线上,且点D的横坐标为t(0< t <4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值; (3) M是平面一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标....

图1 图2 市西城区2013年初三一模试卷

数学答案及评分参考

2013. 5

一、选择题(本题共32分,每小题4分) 题号 1 2 3 4 5 6 7 8 答案 C A C B A D C A 二、填空题(本题共16分,每小题4分) 9 10 11 12 x≥3 2)4(-aa 52 (-2, -3),4023 (各2分)

三、解答题(本题共30分,每小题5分)

13.解:原式=21221223. ………………………………………………4分 =423. ………………………………………………… 5分 14.解:

由①得4x. …………………………………………………………1分 由②得132x. …………………………………………………………3分

∴ 原不等式组的解集是1342x. ………………………………… 4分 ∴ 它的整数解为4,5,6. ………………………………………… 5分 15. 证明:(1)如图1. ∵△DAC和△DBE都是等边三角形, ∴DA=DC,DB=DE, …………1分 ∠ADC=∠BDE=60º . ∴∠ADC+∠CDB=∠BDE+∠CDB, 即∠ADB=∠CDE. ……………2分 在△DAB和△DCE中,

,,,DEDBCDEADBDCDA ∴ △DAB≌△DCE. ………………………………………… 3 分

(2)∵△DAB≌△DCE, ∴ ∠A=∠DCE=60° . ……………………………………… 4分 ∵∠ADC=60°, ∴ ∠DCE =∠ADC. ∴DA∥EC. ………………………………………………… 5分

16. 解:原式=2()()2yxyxyxyxyxy ..….….….…. …..…………..……………………2分 =2xyx. ………………………………………………………… 3分

① ② 4(1)78253xxxx





ABC

D

E

图1

相关文档
最新文档