2018高考理科数学全国三卷试题及答案

合集下载

2018新课标全国卷3高考理科数学试题及答案解析

2018新课标全国卷3高考理科数学试题及答案解析

绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣=A .12B .22C .2D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A.3B.3C.3D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP u u u r=λAB u u u r +μAD u u u r,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。

2018年高考理科数学试题(含全国1卷、2卷、3卷)带参考答案

2018年高考理科数学试题(含全国1卷、2卷、3卷)带参考答案


种. (用数字填写答案)
16. 已知函数 f( x) =2sinx+sin2x ,则 f(x)的最小值是
.
三 . 解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题, 每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。
(一)必考题:共 60 分。 17. ( 12 分)
A、-12 B 、-10 C 、10 D 、12 5、设函数 f (x)=x3+(a-1 ) x2+ax . 若 f(x)为奇函数,则曲线 y= f(x)在点( 0,0)处的Biblioteka 切线方程为( )2
A.y= -2x
B.y= -x C.y=2x D.y=x
6、在 ? ABC中, AD为 BC边上的中线, E 为 AD的中点,则 =( )
5
如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取 20 件产品作检验,再根
据检验结果决定是否对余下的所有产品做检验,设每件产品为不合格品的概率都为
P
( 0<P<1),且各件产品是否为不合格品相互独立。
( 1)记 20 件产品中恰有 2 件不合格品的概率为 f(P),求 f(P)的最大值点
A.
-
B.
-
C.
+
D.
+
7、某圆柱的高为 2,底面周长为 16,其三视图如右图。圆柱表面上的点 M在正视图上的对应 点为 A,圆柱表面上的点 N 在左视图上的对应点为 B,则在此圆柱侧面上, 从 M到 N 的路径中, 最短路径的长度为( )
A. 2 B. 2 C. 3 D. 2 8. 设抛物线 C:y2=4x 的焦点为 F,过点( -2 ,0)且斜率为 的直线与 C 交于 M,N 两点,则 · =( ) A.5 B.6 C.7 D.8

2018年高考理科数学试题及答案详细解析(全国卷1、2、3卷).doc

2018年高考理科数学试题及答案详细解析(全国卷1、2、3卷).doc
为B.
5. 设函数 321
fxxaxax 若 fx为奇函数 则曲线 yfx 在点 0,0处的
切线方程为
A. 2
yx B. yx C. 2yx D. yx
解析 由 fx为奇函数得1
a 2()31,fxx
所以切线的方程
为yx
.故答案为D.
6. 在ABC
中 AD为BC边上的中线 E为AD的中点 则 EB
- 3 - A.AC
FNFM8 故答案为D.
9.已知函数
,0,
ln,0,xex
fx
xx
gxfxxa
.若 gx存在2个零点 则a的取值
范围是
A.
1,0 B. 0, C. 1, D. 1,
解析 ∵()()
gxfxxa 存在2个零点 即()yfx 与yxa 有两个交点 )(xf的图象如M
N
2
4
- 4 - 图 要使得yxa
与)(xf有两个交点 则有1a 即1a 故答案为 C.
(22)~(23)题为选考题 考生根据要求作答.
二、填空题 本题共4小题 每小题5分.
13.若x y满足约束条件220
10
0
xy
xy
y
则32
zxy 的最大值为_______________.
解析
画出可行域如图所示 可知目
标函数过点(2,0)时取得最大
值 max32206
z . 故答案为6.
14.记nS为数列
- 5 - A. 4
33 B. 332 C.423 D. 23
解析 由于截面与每条棱所成的角都相等 所以
平面 中存在平面与平面11ABD平行 如图 而
在与平面11ABD平行的所有平面中 面积最大的

2018新课标全国卷3高考理科数学试题及答案解析

2018新课标全国卷3高考理科数学试题及答案解析

WORD格式整理绝密★启用前2017 年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12 小题,每小题 5 分,共60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合 A= ( x,y│)x2y21 ,B= ( x,y│) y x ,则 A B 中元素的个数为A .3 B.2C. 1 D. 02.设复数 z满足 (1+i) z=2i ,则∣ z∣ =1B.2C. 2 D. 2A .2 23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014 年 1 月至2016 年 12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A .月接待游客量逐月增加B .年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8 月份D .各年 1 月至 6 月的月接待游客量相对7 月至 12 月,波动性更小,变化比较平稳专业技术参考资料WORD格式整理4. ( x + y )(2 x - y )5的展开式中 x 3y 3的系数为A .-80 B. -40 C. 40D. 805 .已知双曲线C: x2y2 1 (a > 0,b > 0) 的一条渐近线方程为y5 x , 且与椭圆a2b2 2x2y21有公共焦点,则 C 的方程为12 3A .x2y 2B.x2y2x2y 2x2y28141 C. 1 D. 110 5 5 4 4 36.设函数 f(x)=cos(x+ ),则下列结论错误的是3A .f(x)的一个周期为 -2π B . y=f(x)的图像关于直线x= 8对称3C. f(x+π)的一个零点为x=D .f(x)在 ( , π)单调递减6 27.执行下面的程序框图,为使输出S 的值小于 91,则输入的正整数N 的最小值为A .5B . 4 C. 3 D. 28.已知圆柱的高为1,它的两个底面的圆周在直径为 2 的同一个球的球面上,则该圆柱的体积为A .π3πππB .C.D.4 2 49.等差数列 a n 的首项为 1,公差不为0.若 a2, a3, a6成等比数列,则a n前 6 项的和为A .-24 B.-3 C. 3 D. 8专业技术参考资料WORD格式整理x2y 2 1,( a>b>0)的左、右顶点分别为A1, A2,且以线段 A1A2 为10.已知椭圆 C:b2a2直径的圆与直线bx ay 2ab 0 相切,则 C 的离心率为A . 6 B. 3 C. 2 D.13 3 3 311.已知函数f( x) x22x a(e x 1e x 1 ) 有唯一零点,则a=A . 1 B.1C.1D. 12 3 212.在矩形 ABCD 中,AB=1 ,AD=2 ,动点 P 在以点 C 为圆心且与BD 相切的圆上.若 AP =AB + AD ,则+ 的最大值为A .3B. 2 2 C. 5 D. 2二、填空题:本题共4 小题,每小题5 分,共 20分。

2018年新课标I、II、III数学(文)(理)高考真题试卷(Word版含答案)

2018年新课标I、II、III数学(文)(理)高考真题试卷(Word版含答案)

2018 年一般高等学校招生全国一致考试( Ⅰ卷 )文科数学注意事项:1.答卷前,考生务势必自己的九名、考生号等填写在答题卡和试卷指定地点上.2.回答选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需变动,用橡皮擦洁净后,再选涂其余答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(此题共 12 小题,每题 5 分,共60 分.在每题给出的四个选项中,只有一项是切合题目要求的.)1.已知会合 A 0,2 ,B 2 , 1,0 ,1,2 ,则AIB ()A. 0,2 B. 1,2 C. 0 D. 2, 1,0 ,1,21 i,则 z ()2.设z 2i1 iA.0 B.1C. 1 D. 2 23.某地域经过一年的新乡村建设,乡村的经济收入增添了一倍.实现翻番.为更好地认识该地域乡村的经济收入变化状况,统计了该地域新乡村建设前后乡村的经济收入组成比率.获得以下饼图:则下边结论中不正确的选项是()A.新乡村建设后,栽种收入减少B.新乡村建设后,其余收入增添了一倍以上C.新乡村建设后,养殖收入增添了一倍D.新乡村建设后,养殖收入与第三家产收入的总和超出了经济收入的一半4.记 S n为等差数列a n的前n项和.若 3S3 S2 S4, a1 2 ,则 a3 ()A.12 B.10 C.10 D. 125.设函数 f x x 3a 1 x 2ax .若 f x 为奇函数, 则曲线 yf x 在点 0 ,0 处的切线方程为()A . y2xB . y xC . y 2xD . y x6.在 △ ABC 中, AD 为 BC 边上的中线,uuurE 为 AD 的中点,则 EB ()A . 3 uuur1 uuurB . 1 uuur 3 uuur4 AB4 AC 4 AB AC4 C . 3 uuur 1 uuur D . 1 uuur 3 uuur 4 AB4 AC4 AB AC47.某圆柱的高为 2,底面周长为 16,其三视图以下图,圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱 侧面上,从 M 到 N的路径中,最短路径的长度为( )A .2 17B .2 5C .3D .28.设抛物线 C :y24 x 的焦点为 F ,过点2 ,0 且斜率为2的直线与 C 交于 M , N 两点,3uuuur uuur ()则FM FNA .5B . 6C .7D . 89.已知函数 f xx, ≤0 , f xf x x a (),若 g x 存在 2 个零点, 则 a 的exln x ,x 0取值范围是A . 1,0B . ,C . 1,D . 1,10.下列图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆组成,三个半圆的直径分别为直角三角形ABC 的斜边 BC ,直角边 AB , AC , △ ABC 的三边所围成的地区记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1 , p 2 , p 3 ,则( )A . p 1 p 2B . p 1 p 3C . p 2 p 3D . p 1 p 2p 3211.已知双曲线 C :xy 2 1 , O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的两条渐 3近线的交点分别为 M , N .若 △ OMN 为直角三角形,则 MN () A .3B . 3C .2 3D . 4212.设函数 f x2 x, ≤ 0,则知足 f x 1f 2x 的 x 的取值范围是()x 01,yA .,1B . 0,C . 1,0D . ,0二、填空题(此题共 4 小题,每题 5 分,共 20 分)13.已知函数 f xlog 2 x 2 a ,若 f 31 ,则 a________.x 2 y 2 ≤ 014.若 x ,y 知足拘束条件x ≥ 0 ,则 z3x 2 y 的最大值为 ________.y 1y ≤ 015.直线 y x 1 与圆 x 2y 2 2 y 3 0 交于 A ,B 两点,则 AB________ .16. △ ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,已知 b sinC csin B4asin Bsin C ,b 2c 2 a 2 8 ,则 △ ABC 的面积为 ________.三、解答题(共70 分。

(完整版)2018年全国卷理科数学真题及答案

(完整版)2018年全国卷理科数学真题及答案

•选择题(共12小题) 1 .设 z =+2i ,则 |z|=( )1+1则 |z|= 1 . 故选:C . 2.已知集合 A ={x|x 2-x - 2> 0},则?R A =( )A . {x|- 1 v x v 2}B . {x|- 1 w x w 2}C . {xX <- 1} U {x|x > 2}D . {xX <- 1} U {x|x > 2}【解答】解:集合A = {x|x 2- x -2>0}, 可得 A = {x|x <- 1 或 x >2}, 则:?RA = {x|— 1w x W 2}. 故选:B . 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解 该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 【解答】解:设建设前经济收入为 a ,建设后经济收入为 2a . A 项,种植收入 37% x 2a -60%a = 14%a >0,A . 0 【解答】解:C . 11-1 +2i =1+i+2i =- i+2i = i ,种植收入則也收入建设前经济收入构成比例建设后经济收入构成比例 義瘡帧入第三庐11收入沖植收入第三产业收入耳他收入盖殖收入第1页(共16页)故建设后,种植收入增加,故A项错误.B项,建设后,其他收入为5%x 2a= 10%a,建设前,其他收入为4%a,故10%a - 4%a= 2.5 > 2,故B项正确.C项,建设后,养殖收入为30% x 2a= 60%a,建设前,养殖收入为30%a,故60%a-30%a = 2,故C项正确.D项,建设后,养殖收入与第三产业收入总和为(30%+28% )x 2a= 58%x 2a,经济收入为2a,故(58% x 2a)- 2a = 58% > 50%,故D项正确.因为是选择不正确的一项,故选:A.4. 记S n为等差数列{a n}的前n项和.若3S3= S2+S4, a i= 2,贝U a5=( )A . - 12B . - 10 C. 10 D. 12【解答】解:••• S n为等差数列{a n}的前n项和,3S3= S2+S4, a1= 2,. 3X2 、4X3•••沁S] r-d) = a1+a1+d+4a1+^^d,把a1 = 2,代入得d=- 3••• a5= 2+4X( - 3)=- 10.故选:B.3 25. 设函数f (x)= x + (a- 1) x +ax.若f (x)为奇函数,则曲线y= f (x)在点(0, 0)处的切线方程为( )A . y=- 2xB . y=- x C. y= 2x D. y= x【解答】解:函数 f (x)= x3+ (a - 1) x2+ax,若f (x)为奇函数,f (- x)=- f (x),-x3+ (a- 1) x2- ax=-( x3+ (a - 1) x +ax) =- x3_( a - 1) x2- ax.所以:(a - 1) /=—( a- 1) x2可得 a = 1,所以函数 f (x )= x 3+x ,可得 f '( x )= 3X 2+1, 曲线y = f (x )在点(0, 0)处的切线的斜率为:1, 则曲线y = f (x )在点(0, 0)处的切线方程为:y = x . 故选:D .【解答】解:在△ ABC 中,AD 为BC 边上的中线,E 为AD 的中点,7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点 M 在正视图上的对应路径中,最短路径的长度为(直观图以及侧面展开图如图:圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到N 的路径中, 最短路径的长度:&设抛物线C : y 2= 4x 的焦点为F ,过点(-2, 0)且斜率为2的直线与C 交于M , N 两3点,则丨F'? N=( )6.在△ ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则 ■ '■=(点为A ,圆柱表面上的点 N 在左视图上的对应点为B ,则在此圆柱侧面上,从 M 到N 的C .【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,)故选:A .A BNA . 5B . 6 C. 7 D. 8【解答】解:抛物线C : y2= 4x的焦点为F ( 1, 0),过点(-2, 0)且斜率为2的直线|3为:3y= 2x+4,联立直线与抛物线C: y2= 4x,消去x可得:y2-6y+8 = 0,解得y i = 2, y2= 4,不妨M (1, 2) , N ( 4, 4),丽二2),丽=(百4)•则山?;;」=(0, 2)?( 3, 4)= 8.故选:D.9.已知函数f (x)=| °, g (x)= f (x) +x+a.若g (x)存在2 个零点,贝U ax>0的取值范围是( )A . [ - 1 , 0)B . [0 , + s) C. [ - 1, + s) D . [1 , + s)【解答】解:由g (x)= 0得f (x)=- x - a,作出函数f (x)和y=- x- a的图象如图:当直线y=- x- a的截距-a< 1,即a>- 1时,两个函数的图象都有2个交点,即函数g (x)存在2个零点,故实数a的取值范围是[-1, + s),故选:C.第5页(共i6页)10•如图来自古希腊数学家希波克拉底所研究的几何图形. 的直径分别为直角三角形 ABC 的斜边BC ,直角边AB , AC . △ ABC 的三边所围成的区.S I = S n ,.P i = P 2,故选:A .渐近线的交点分别为 M , N .若厶OMN 为直角三角形,则|MN|=( )此图由三个半圆构成, 三个半圆域记为I ,黑色部分记为n,其余部分记为川.在整个图形中随机取一点,此点取自I,A . p i = p 2B . p i = p 3C . p 2= p 3D . p i = P 2+P 3 【解答】解:如图:设 BC = 2r i , AB = 2r 2,AC = 2r 3,2 2 2r i 2=「22+「31 2Sn = 一 x 冗r32+S I =x 4「2r 3= 2r 2r 3, S m = 2X 冗r 2 —2 2 22n i 2- 2r 2r 3,2 L 2冗「2 -— x n i +2r 2r 3= 2r 2r 3,ii .已知双曲线C : -y 2= i , O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条5n,川的概率分别记为 p i , p 2, p 3,则(I C. 2. ■:66【解答】解:双曲线C :虽_-y 2= 1的渐近线方程为:360°,不妨设过F (2, 0)的直线为:y =.上-_ ,\-2y-2< 0x-y+l>0,则z = 3x+2y 的最大值为 y<o【解答】解:作出不等式组对应的平面区域如图: 由 z = 3x+2y 得 y = — - — x+__z ,2 2y= ■,,渐近线的夹角为:12.已知正方体的棱长为 1,每条棱所在直线与平面a 所成的角都相等,则a 截此正方体所得截面面积的最大值为( )【解答】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时, a 截此正方体所得截面面积的最大, 此时正六边形的边长 _ ',a 截此正方体所得截面最大值为:6孚爭普.13•若x , y 满足约束条件),第9页(共16页)平移直线y =- . -x+- -z ,2 2由图象知当直线y =-3x+丄z 经过点A (2, 0 )时,直线的截距最大,此时z 最大,\2\ \2\最大值为z = 3 X 2= 6,故答案为:614.记S n 为数列{a n }的前n 项和.若 S n = 2a n +1,则S s = - 63 【解答】解:Si 为数列{a n }的前n 项和,S n = 2a n +1,①当 n = 1 时,a i = 2a i +1,解得 a i =- 1, 当 n >2 时,S n -1 = 2a n -1+1 ,②, 由①-②可得a n = 2a n - 2a n - 1,--a n = 2a n -1,二{a n }是以-1为首项,以2为公比的等比数列,故答案为:-6315•从2位女生,4位男生中选3人参加科技比赛,且至少有 1位女生入选,则不同的选法 共有16种.(用数字填写答案)【解答】解:方法一:直接法,1女2男,有C 21C 42= 12, 2女1男,有C 22C 』=4 根据分类计数原理可得,共有12+4= 16种,S 6=-IX (1-26)1-2=-63,2 —方法二,间接法: C 63 - C 43= 20 - 4= 16 种, 故答案为:16f (x )= 2sinx+sin2x ,则 f (x )的最小值是【解答】解:由题意可得 T = 2 n 是f (x )= 2sinx+sin2x 的一个周期, 故只需考虑f (x )= 2sinx+sin2x 在[0 , 2 n)上的值域,先来求该函数在[0, 2n)上的极值点,16.已知函数 求导数可得f '( x )= 2cosx+2cos2x=2cosx+2 2(2cos x - 1) = 2 (2cosx - 1) (cosx+1),令 f '( x )=0可解得 cosx = 丄或 cosx =- 1,2可得此时x =-l••• y = 2sinx+sin2x 的最小值只能在点 x =计算可得f (—)= ;,f (n)3/3=0, f (5兀)=-^-, f (0)= o ,2和边界点x = 0中取到, 三•解答题(共5小题)17.在平面四边形 ABCD 中,/ ADC = 90°,/ A = 45°, AB = 2, BD = 5.(1 )求 cos / ADB ; (2 )若 DC = 2 .役求 BC .【解答】 解:(1)v/ ADC = 90°,/ A = 45°, AB = 2, BD = 5. •••由正弦定理得: ——些——=一,即 ---- 1——=——》^,SIEL Z ADB sinZ : A sinZ^AEB sin45• sin /ADB =二亠」=」5 5• BC = " ■ :- ■ H : " : 「:I ■■: . .-:■ 'T第8页(共16页)•/ AB < BD ,•/ ADB </ A ,•/ DC = 2 :':,【解答】(1)证明:由题意,点 E 、F 分别是AD 、BC 的中点,11 1则扯tAD ,B 卩号BC ,由于四边形 ABCD 为正方形,所以 EF 丄BC . 由于PF 丄BF , EF A PF = F ,贝U BF 丄平面 PEF . 又因为BF?平面ABFD ,所以:平面 PEF 丄平面 ABFD . (2)在平面PEF 中,过P 作PH 丄EF 于点H ,连接DH , 由于EF 为面ABCD 和面PEF 的交线,PH 丄EF , 贝U PH 丄面ABFD ,故PH 丄DH .在三棱锥P - DEF 中,可以利用等体积法求 PH , 因为DE // BF 且PF 丄BF , 所以PF 丄DE , 又因为△ PDFCDF ,所以/ FPD = Z FCD = 90F 分别为AD , BC 的中点,以DF 为折痕把厶DFC折起,使点C 到达点P 的位置,且PF 丄BF .(1)证明:平面 PEF 丄平面ABFD ;(1 )当I 与x 轴垂直时,求直线 AM 的方程; (2)设0为坐标原点,证明:/ OMA = Z OMB . 【解答】解:(1) c = ' = 1, 二 F (1, 0), •/ I 与x 轴垂直, x = 1,所以PF 丄PD ,由于DE A PD = D ,贝U PF 丄平面PDE ,因为BF II DA 且BF 丄面PEF ,所以DA 丄面PEF , 所以DE 丄EP .设正方形边长为 2a ,贝U PD = 2a , DE = a所以 h/3 3 又因为故 V F -PDE 'V PDV 322所以在△ PHD 中,sin / PDH =PD过F 的直线I 与C 交于A , B 两点,点 M 的坐标故 V F -PDE =■'.二■'!「,所以PH 即/ pDH 为DP 与平面A BFD 所成角的正弦值为::2证明:(2)当I 与x 轴重合时,/ OMA = Z OMB = 0° ,当I 与x 轴垂直时,0M 为AB 的垂直平分线,•/ OMA = Z OMB , 当I 与x 轴不重合也不垂直时,设 I 的方程为y = k (x - 1), k z 0 , A (X 1 , y 1), B (X 2, y 2),则 X 1V 近 ,X 2V . | , 从而 k MA +k MB = 0,x=lX=1 _ V2 'V- -----2 •直线AM 的方程为y =-世2x 忖㊁,y=±Z x-#E ,直线MA , MB 的斜率之和为 k MA , k MB 之和为k MA +k MB丫H 1 -2 七-2由 y i = kx i - k , y 2= kx 2- k 得 k MA +k MB2kx | s 2-3k (jc L +x 2)(誉厂 2)Gg-2)将y = k (x - 1)代入+/= 1 可得(2^+1) x 2 - 4k 2x+2k 2- 2 = 0 ,…X 1+x 2 = ,X 1X 2 =2t 2+l二 2kx x2k 2+13‘..33(4k - 4k - 12k +8k +4k )= 0••• A (1.,或(1,-故MA , MB的倾斜角互补,•••/ OMA = Z OMB ,综上/ OMA = Z OMB .20. 某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品•检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验•设每件产品为不合格品的概率都为p ( 0v p v 1),且各件产品是否为不合格品相互独立.(1 )记20件产品中恰有2件不合格品的概率为f( p),求f ( p)的最大值点P0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1 )中确定的p0作为p的值•已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.X,求(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为EX;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【解答】解:(1)记20件产品中恰有2件不合格品的概率为f( p),则f3)=够吓々1-戸)退•••(p)二C务[邓18-lSp£(l-p )门]=2C和(1-p ) 17(l-10p),令f'( p)= 0,得p= 0.1,当p € ( 0, 0.1)时,f'( p)> 0,当p € ( 0.1, 1)时,f'( p)v 0,••• f (p)的最大值点p o= 0.1.(2) (i )由(1 )知p = 0.1,令Y表示余下的180件产品中的不合格品数,依题意知丫〜B (180, 0.1),X = 20X 2+25Y,即X= 40+25Y,E (X)= E ( 40+25Y)= 40+25E (Y)= 40+25 X 180 X 0.1 = 490.(ii)如果对余下的产品作检验,由这一箱产品所需要的检验费为400元,•/ E (X)= 490 > 400,• ••应该对余下的产品进行检验.21. 已知函数f (x)=2 - x+alnx.x(1)讨论f (x)的单调性;(2)右f (x)存在两个极值点X1, X2,证明:^ " v a- 2.【解答】解:(1)函数的定义域为(0, + R),函数的导数f'( x)=-—-- 1+乂,2 v2X X设g (x)= x2- ax+1,当a w 0时,g (x)> 0恒成立,即f'( x)v 0恒成立,此时函数f( x)在(0, +^)上是减函数,当a>0时,判别式厶=a2- 4,①当O v a w 2时,0,即g (x )> 0, 即卩f '( x )< 0恒成立,此时函数+ m)上是减函数,)上是增函数.(2)由(i )知 a >2, 0v x i v i v x 2, x i x 2= i ,则问题转为证明 即证明 Inx i — Inx 2>x i — x 2,1 If (幻在(0, ②当a >2时,x , f ' (x ) , f ( X )的变化如下表:f '( X ) f ( X )(0,((+ m)递减递增递减综上当a w 2时,f (X )在(0, +m)上是减函数,当a > 2时,在(0, ~T),和(,+m)上是减函数,则( 则 f (X i ) — f ( X 2) = ( X 2 — X i ) ( i +)+a (Inx i - InX 2) =2 (X 2 - X 1) +a (Inx i - InX 2),=—2+a.tin 苴iv 1即可,即 Inx i +Inx i >x i — ---- ,设 h (x )= 2lnx — x+— ,(0V x v i ),其中 h (i )= 0,2 — i —1K ^-2Z -I -12 I2 Xv 0,则 Inx i — I> x i —即证 2lnx i >x i(0, i ) 上恒成立,求导得h '( x )• h (乂)在(1, + g )上单调递减, ••• h (x )v h (1)= 0,••• 2alnx - ax+-L v 0 成立,即 2alnx 2 - ax 2v a - 2成立.四、选做题22. 在直角坐标系 xOy 中,曲线C 1的方程为y = k|x|+2 .以坐标原点为极点, 一 2极轴建立极坐标系,曲线 C 2的极坐标方程为 p +2 pcosQ- 3= 0. (1 )求C 2的直角坐标方程;(2 )若C 1与C 2有且仅有三个公共点,求 C 1的方程.则h (乂)在(0, 1)上单调递减, /• h (x )> h (1),即 2lnx - x > 0,故 2lnx >x -v a - 2成立.(2)另解:注意到f (丄)=x - -alnx =- f (x ),即 f (x ) +f (二)=0, k由韦达定理得X 1x 2 = 1, X 1+X 2= a >2,得 0v x 1 v 1 v x 2, x 1 = 可得 f (x 2)+f ()=0,即 f ( x 1 ) +f (x 2)= 0,要证v a - 2,只要证-f Cx 2)-f (即证 2alnx 2 - ax 2+-v 0, ( x 2> 1 ),2构造函数 h (x )= 2alnx - ax+—x 轴正半轴为v 0, ( x 2> 1)成立.第20页(共16页)【解答】解:(1)曲线C2的极坐标方程为p2+2 pCOs B-3 = 0. 转换为直角坐标方程为:x2+y2+2x- 3= 0,转换为标准式为:(x+1 )2+y2= 4.第15页(共16页)(2)由于曲线C 1的方程为y = k|x|+2,则:该射线关于 y 轴对称,且恒过定点(0, 2). 由于该射线与曲线 C 2的极坐标有且仅有三个公共点. 所以:必有一直线相切,一直线相交. 则:圆心到直线 y = kx+2的距离等于半径 2. 当k = 0时,不符合条件,故舍去,23. 已知 f (x )= |x+1| - |ax - 1|.(1 )当a = 1时,求不等式f (x )> 1的解集;(2)若x € (0, 1 )时不等式f (x )> x 成立,求a 的取值范围. \(2, «>1【解答】解:(1)当 a = 1 时,f (x )=x+1|-|x - 1| = -1 , —占 x<-l由 f (x )> 1,.f2x>l J2>1或(Ql ,解得x>—, [2故不等式f (x )> 1的解集为(亍,+m),(2 )当x € (0, 1 )时不等式f (x )> x 成立,/• |x+1| - |ax - 1| - x > 0, 即 x+1 - |ax - 1|- x >0,即 |ax - 1| v 1,同理解得: 一或0解得:k =上或0,经检验,直线 与曲线C 2.有两个交点.故C i 的方程为:第22页(共16页)/• 0 v ax v 2,x€ (0, 1),••• a > 0,• 0 v x v「a• 0v a w 2,故a的取值范围为(0, 2].。

全国三卷高考理科试卷全套(2018年精校Word版含答案)语文理科数学英语理综试卷

全国三卷高考理科试卷全套(2018年精校Word版含答案)语文理科数学英语理综试卷

全国三卷理科全套试题及答案汇总2018年普通高等学校招生全国统一考试目录2018年普通高等学校招生全国统一考试全国三卷语文试题................ 2018年普通高等学校招生全国统一考试全国三卷语文试题答案............ 2018年普通高等学校招生全国统一考试全国三卷理科数学................ 2018年普通高等学校招生全国统一考试全国三卷理科数学答案............ 2018年普通高等学校招生全国统一考试全国三卷英语试题................ 2018年普通高等学校招生全国统一考试全国三卷英语试题答案............ 2018年普通高等学校招生全国统一考试全国三卷理科综合试题............ 2018年普通高等学校招生全国统一考试全国三卷理科综合试题答案........绝密★启用前2018年普通高等学校招生全国统一考试语文试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。

对城市而言,文明弹性是一个城市体在生存、创新、适应、应变等方面的综合状态、综合能力,是公共性与私人性之间、多样性与共同性之间、稳定性与变迁性之间、柔性与刚性之间的动态和谐,过于绵柔、松散,或者过于刚硬、密集,都是弹性不足或丧失的表现,是城市体出现危机的表征。

当代城市社会,尤其需要关注以下文明弹性问题。

其一,空间弹性。

城市具有良好空间弹性的一个重要表现,是空间的私人性与公共性关系能够得到较为合理的处理。

任何城市空间都是私人性与公共性的统一,空间弹性的核心问题,就是如何实现空间的公共性与私人性的有机统一、具体转换。

2018年高考理科数学试题及答案-全国卷3(K12教育文档)

2018年高考理科数学试题及答案-全国卷3(K12教育文档)

(直打版)2018年高考理科数学试题及答案-全国卷3(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)2018年高考理科数学试题及答案-全国卷3(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)2018年高考理科数学试题及答案-全国卷3(word版可编辑修改)的全部内容。

2018 年普通高等学校招生全国统一考试(全国卷3)理科数学2018 年普通高等学校招生全国统一考试(全国卷3)理科数学一、选择题:本题共12 小题,每小题 5 分,共 60 分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合 A x | x 1≥0 , B 0,1,2 ,则 A BA.0 B. 1 C.1,2D.0,1,22. 1 i 2 iA. 3 i B. 3 i C. 3 iD. 3 i3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若sin 13,则cos 2A.89B.79C.79D.5. 2 2xx 5的展开式中4x 的系数为A.10 B.20 C.40D.8022 6.直线x y 2 0 分别与x 轴,y 轴交于A,B两点,点P 在圆xy上,则△ABP面积的取值范围22是A.2,6 B.4,8 C. 2 ,32 D. 2 2 ,3 27.函数 4 2 2y x x 的图像大致为2018 年普通高等学校招生全国统一考试(全国卷 3)理科数学8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10 位成员中使用移动支付的人数,DX 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档