传感器原理及应用期末复习

合集下载

传感器原理及应用复习资料

传感器原理及应用复习资料

传感器原理及应用复习资料1.传感器由敏感元件、转换元件、基本电路三部分组成; 被测量 敏感元件 转换元件 基本电路 电量输出①敏感元件感受被测量;②转换元件将响应的被测量转换成电参量(电阻、电容、电感);③基本电路把电参量接入电路转换成电量;④核心部分是转换元件,决定传感器的工作原理。

2. 传感器的基本特性:①静态特性:当输入量(X )为静态或变化缓慢的信号时,输入输出关系称静态特性。

静态特性主要包括:线性度、迟滞、重复性、灵敏度、漂移和稳定性②动态特性:当输入量随时间(频率)变化时,输入输出关系称动态特性。

影响传感器动态特性除固有因素外,还与输入信号的形式有关,在对传感器进行动态分析时一般采用标准的正弦信号和阶跃信号。

A.输入信号按正弦变化时,分析动态特性的相位、振幅、频率,称频率响应;B.输入信号为阶跃变化时,对传感器随时间变化过程进行分析,称阶跃响应(瞬态响应).频率响应 阶跃响应3.电阻应变式传感器是将被测的非电量转换成电阻值的变化,再经转换电路变换成电量(电流、电压)输出。

金属电阻应变片的基本原理基于电阻应变效应:即导体在外力作用下产生机械形变时阻值发生变化。

通过弹性元件可将位移、压力、振动等物理量通过应力变化,并转换为电阻的变化进行测量,这是应变式传感器测量应变的基本原理。

4.直流电桥总结:单臂电桥输出电压11R R 4E U ∆•= 电压灵敏度4E K u =半桥差动电路全桥差动电路5. 电桥线路补偿:被测试件位置上安装一个补偿片处于相同的温度场;等臂电桥输出U0 与桥臂参数的关系为()2B 310R R -R R A U=。

如果 R1R3 = RBR4,电桥平衡时输出为零;若R1、RB 温度系数相同,当无应变而温度变化时ΔR1 = ΔRB ,电桥为平衡状态;当有应变时,R1有增量ΔR1,ΔR1=R1k0ε,补偿片无变化,ΔRB = 0;电桥输出为 U0 ∝R1R3 k0ε;可见此时电桥的输出电压与温度无关。

传感器原理与应用期末考试试卷

传感器原理与应用期末考试试卷

07
期末考试试卷结构 与内容
期末考试试卷结构组成
考试内容:涵盖传感器原理、 应用、性能指标、选型等方 面的知识点
试卷结构:包括选择题、填 空题、简答题、计算题等题 型
考试时间:一般为2小时
试卷分值:满分一般为100 分
期末考试试卷内容分布
传感器原理及应 用基础知识
传感器原理及应 用实验操作
传感器原理及应 用综合应用
模数转换:将模拟信号转换 为数字信号,便于计算机处

数据采集:通过数据采集卡 或模块,将传感器信号采集 到计算机中进行处理和分析
传感器的数据采集系统组成
数据采集硬件:包括传感器、放大器、滤波器等,用于将传感器输出的信号转换 为数字信号
数据采集软件:用于控制数据采集硬件,对采集到的数据进行处理、分析和存 储
压电式传感器
传感器的测量电路
电压输出型电路
电阻输出型电路
电流输出型电路 电容输出型电路
03
传感器的应用
传感器在工业自动化中的应用
传感器在生产线上的应用:通过传感器检测产品的数量、位置和状态,实现自动化生产。
传感器在机器人领域的应用:通过传感器感知环境信息,实现机器人的自主导航和操作。
传感器在能源管理领域的应用:通过传感器监测能源的消耗和浪费,实现能源的有效利 用和管理。
传感器的校准与标定方法
校准与标定的定义和目的 校准与标定的原理和方法 校准与标定过程中的注意事项 校准与标定对传感器性能的影响
05
传感器的信号处理 与数据采集
传感器的信号处理方法
滤波:去除信号中的噪声和 干扰,提高信号的纯净度
信号放大:通过放大电路对 传感器输出的微弱信号进行 放大,以便后续处理

传感器原理与应用复习范围

传感器原理与应用复习范围

绪论一、传感器:将各种非电量(包括物理量、化学量、生物量等),按照一定的规律转换成便于处理和传输的另一种物理量(一般为电量)的装置。

二、传感技术:是利用各种功能材料实现信息检测的一门应用技术,是检测(传感)原理、材料科学、工艺加工等三要素的最佳结合。

三、传感器的组成:传感器一般有敏感元件、转换原件和测量电路三部分组成,有事还需要加辅助电源。

四、传感器分类:1.按输入量分类如输入量分别为温度、压力、位移、速度、加速度、湿度等非电量时,则相应的传感器称为温度传感器、压力传感器、位移传感器、速度传感器、加速度传感器、湿度传感器等。

2.按测量原理分类现有传感器的测量原理主要是基于电磁原理和固体物理学理论。

如根据变电阻的原理,相应的有电位器式、应变式传感器;根据变磁阻的原理,相应的有电感式、差动变压器式、电涡流式传感器;根据半导体有关理论,则相应的有半导体力敏、热敏、光敏、气敏等固态传感器。

3.按结构型和物性型分类所谓结构型传感器,主要是通过机械结构的几何形状或尺寸的变化,将外界被测参数转换成相应的电阻、电感、电容等物理量的变化,从而检测出被测信号,这种传感器目前应用的最为普遍。

物性型传感器则是利用某些材料本身物理性质的变化而实现测量,它是以半导体、电介质、铁电体等作为敏感材料的固态器件。

五、传感器的发展趋向1.传感器的固态化,2、传感器的集成化和多功能化3.传感器的图像化4.传感器的智能化第1章传感器的一般特性§1-1 传感器的静态特性传感器在被测量的各个值处于稳定状态时,输出量和输入量之间的关系称为静态特性。

传感器静态特性的主要指标有以下几点:一、线性度(非线性误差)在规定条件下,传感器校准曲线与拟合直线间最大偏差与满量程(F·S)输出值的百分比称为线性度。

二、灵敏度传感器的灵敏度指到达稳定工作状态时输出变化量与引起此变化的输入变化量之比。

线性传感器校准曲线的斜率就是静态灵敏度K。

传感器及应用复习

传感器及应用复习

传感器及应用复习名词解释:10道第1章传感器的基本知识传感器:传感器就是利用物理效应、化学效应、生物效应,把被侧的物理量、化学量、生物量等非电量转换成电量的器件或装置。

应力:截面积为S的物体受到外力F的作用并处于平衡状态时,在物体单位截面积上引起的内力称为应力。

应变:应变是物体受外力作用时产生的相对变形。

εl:纵向应变,εr:横向应变110-6ε胡克定律与弹性模量:胡克定律:当应力未超过某一限值时,应力与应变成正比;E为弹性模量或杨氏模量,单位为N/m2;G为剪切模量或刚性模量,τ为切应力第2张线性位移传感器及应用应变式传感器由弹性敏感元件、电阻应变片和应变电桥组成。

电感式传感器原理:把可移动的铁心称为衔铁,通过测杆与被侧运动物体接触,就可把运动物体的位移转换成电感或互感的变化。

电涡流式传感器原理:电涡流式传感器是一个绕在骨架上的导线所构成的空心线圈,它与正弦交流电源接通,通过线圈的电流会在线圈的周围空间产生交变磁场。

压电效应:当某些电介质受到一定方向外力作用而变形时,其内部便会产生极化现象,在他们的上下表面会产生符号相反的等量电荷;当外力的方向改变时,其表面产生的电荷极性也随之改变;当外力消失后又恢复不带电状态,这种现象称为压电效应。

霍尔效应:在通有电流的金属板上加一匀强磁场,当电流方向与磁场方向垂直时,在与电流和磁场都垂直的金属板的两表面间出现电势差,这个现象称为霍尔效应。

光电效应:当物质受光照射后,物质的电子吸收了光子的能量所产生的电现象称为光电效应。

①外光电效应:外光电效应即光电子发射效应,在光的作用下使电子逸出物体表面;②内光电效应:内光电效应有光电导效应、光电动势效应及热电效应。

第3章位移传感器在制造业中的应用第4章力与运动学量传感器及应用第5章压力、流量和物位传感器及应用第6章温度传感器及应用热电效应(赛克威尔效应):将两种不同导体A、B两端连接在一起组成闭合回路,并使两端处于不同温度环境,在回路中会产生热电动势而形成电流,这一现象称为热电效应。

传感器原理及应用复习

传感器原理及应用复习

检测技术是实验科学的一部分,主要研究各种物理量的测量原理和测量信号分析处理方法。

一般来说,检测系统由:输入装置、中间变换装置、输出装置三个部分组成。

如下图所示:(1)输入装置的关键部件是传感器,它将被测量(通常为非电量)转换为电量,负责采集信号的任务。

(2)中间变换装置(信号处理电路)的主要作用是把传感器输出的电量变成具有一定功率的模拟电压(或电流)信号或数字信号,以推动后级的输出显示或记录设备、数据处理装置及执行机构。

(3)输出装置常见的有各种指示仪表、记录仪、显示器等。

其主要作用是使人们了解检测数值的大小或变化过程。

传感器的定义能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。

①传感器是测量装置,能完成检测任务;②输入量是某一被测量,可能是物理量,也可能是化学量、生物量等;③输出量是某种物理量,便于传输、转换、处理、显示等,可以是气、光、电物理量,主要是电物理量; 被测对象 输入装置 非电量 中间变换输出装置电量 有用电信号④输出输入有对应关系,且应有一定的精确程度。

结构型传感器物性型传感器能量控制型传感器能量转换型传感器传感器的发展动向❖开发新型传感器❖开发新材料❖新工艺的采用❖集成化、多功能化❖智能化静态特性技术指标1.线性度2.灵敏度3、精确度4.迟滞5.重复性6.零点漂移7.温漂二、传感器的动态特性动态特性指传感器对随时间变化的输入量的响应特性。

(一)零阶传感器的数学模型第二章电阻式传感器电阻式传感器的工作原理1)应变效应:当金属丝在外力作用下发生机械变形时,其电阻值将发生变化,这种现象称为金属的电阻应变效应。

(3)主要特性①灵敏度系数当金属丝做成应变片后,其电阻—应变特性,及金属单丝情况不同。

K为金属应变片的灵敏系数。

应变片的灵敏系数K恒小于线材的灵敏系数KS。

②横向效应4、温度误差及其补偿(1)温度误差因环境温度改变而引起电阻变化的两个主要因素:①应变片的电阻丝(敏感栅)具有一定温度系数;②电阻丝材料及测试材料的线膨胀系数不同。

传感器原理及应用 复习重点

传感器原理及应用 复习重点

第2章电阻应变式传感器2.1 电阻应变片的工作原理——金属的电阻-应变效应金属丝的电阻随着它所受的机械变形的大小而发生相应的变化的现象称为金属的电阻应变效应。

R=ρL/s金属丝受拉时,l变长、r变小,导致R变大。

对敏感栅的材料的要求:①应变灵敏系数大,并在所测应变范围内保持为常数;②电阻率高而稳定,以便于制造小栅长的应变片;③电阻温度系数要小;④抗氧化能力高,耐腐蚀性能强;⑤在工作温度范围内能保持足够的抗拉强度;⑥加工性能良好,易于拉制成丝或轧压成箔材;⑦易于焊接,对引线材料的热电势小。

常用材料有:康铜、镍铬合金、铁铬铝合金、铁镍铬合金、铂、铂钨合金等,如下表。

2.基底材料基底用于保持敏感栅、引线的几何形状和相对位置,盖片既保持敏感栅和引线的形状和相对位置,还可保护敏感栅。

基底的全长称为基底长,其宽度称为基底宽。

基底材料有纸基和胶基。

胶基由环氧树脂、酚醛树脂和聚酰亚胺等制成胶膜,厚度约0.03~0.05mm3.黏合剂材料用于将敏感栅固定于基底上,并将盖片与基底粘贴在一起。

使用金属应变片时,也需用粘结剂将应变片基底粘贴在构件表面某个方向和位置上。

以便将构件受力后的表面应变传递给应变计的基底和敏感栅。

常用的粘结剂分为有机和无机两大类。

有机粘结剂用于低温、常温和中温。

常用的有聚丙烯酸酯、酚醛树脂、有机硅树脂,聚酰亚胺等。

无机粘结剂用于高温,常用的有磷酸盐、硅酸、硼酸盐等。

4.引线材料是从应变片的敏感栅中引出的细金属线。

对引线材料的性能要求:电阻率低、电阻温度系数小、抗氧化性能好、易于焊接。

大多数敏感栅材料都可制作引线。

应变片的灵敏系数(K)金属应变丝的电阻相对变化与它所感受的应变之间具有线性关系,用灵敏度系数KS表示。

当金属丝做成应变片后,其电阻—应变特性,与金属单丝情况不同。

因此,须用实验方法对应变片的电阻—应变特性重新测定。

实验表明,金属应变片的电阻相对变化与应变ε在很宽的范围内均为线性关系。

即4.机械滞后应变片粘贴在被测试件上,当温度恒定时,其加载特性与卸载特性不重合,即为机械滞后。

传感器原理及应用_复习总结

传感器原理及应用总结➢传感器一般由敏感元件、转换元件、转换电路三部分组成。

➢传感器的基本特性通常用其静态特性和动态特性来描述。

➢电阻传感器的基本原理是将各种被测非电量转为对电阻的变化量的测量,从而达到测量的目的。

➢金属丝电阻应变片与半导体应变片的工作原理主要区别在于前者利用导体形变引起电阻变化、后者利用半导体电阻率变化引起电阻变化。

➢金属丝在外力作用下发生机械形变时它的电阻值将发生变化,这种现象称应变效应;半导体或固体受到作用力后电阻率要发生变化,这种现象称压阻效应。

直线的电阻丝绕成敏感栅后,长度相同但应变不同,圆弧部分使灵敏度K下降了,这种现象称为横向效应。

➢光电开关和光电断续器是开关式光电传感器的常用器件,主要用来检测物体的靠近、通过等状态。

➢光电式传感器由光源、光学元器件和光电元器件组成光路系统,结合相应的测量转换电路而构成。

➢硅光电池的光电特性中,光照度与其短路电流呈线性关系。

➢光敏二极管的结构与普通二级管类似。

它是在反向电压下工作的。

➢压电传感元件是一种力敏感元件,它由压电传感元件和测量转换电路组成。

➢压电式传感器的工作原理是基于某些电介质材料的压电效应。

它是典型的有源传感器。

➢压电材料在使用中一般是两片以上,在以电荷作为输出的地方一般是把压电元件并联起来,而当以电压作为输出的时候则一般是把压电元件串联起来。

➢差动电感式传感器与单线圈电感式传感器相比,线性好、灵感度提高一倍、测量精度高。

➢螺线管式差动变压器式传感器理论上讲,衔铁位于中心位置时输出电压为零,而实际上差动变压器输出电压不为零,我们把这个不为零的电压称为零点残余电压;利用差动变压器测量位移时如果要求区别位移方向(或正负)可采用相敏检波电路。

➢差动变压器式传感器理论上讲,衔铁位于中心位置时输出电压为零,而实际上差动变压器输出电压不为零,我们把这个不为零的电压称为零点残余电压;利用差动变压器测量位移时如果要求区别位移方向(或正负)可采用相敏检波电路。

传感器期末复习题2

一、填空题(每题3分)1、传感器通常由直接响应于被测量的敏感元件、产生可用信号输出的转换元件、以及相应的信号调节转换电路组成。

3、半为压阻效应。

4、金属丝应变片和半导体应变片比较其相同点是受到压力时应变,从而导致材料的电阻发生变化。

5、金属丝应变片和半导体应变片比较其不同点是灵敏度金属材料的应变效应以机械形变为主,材料的电阻率相对变化为辅;而半导体材料则正好相反,其应变效应以机械形变导致的电阻率的相对变化为主,而机械形变为辅。

7、固体受到作用力后电阻率要发生变化,这种现象称压阻效应。

8、应变式传感器是利用电阻应变片将应变/变形转换为电阻变化的传感器。

9、应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器。

14、要把微小应变引起的微小电阻变化精确地测量出来,需采用特别设计的测量电路,通常采用电桥电路。

16、变极距型电容传感器做成差动结构后,灵敏度提高原来的 2 倍。

22、电涡流传感器可用于位移测量、振幅测量、转速测量和无损探伤。

26、电涡流传感器从测量原理来分,可以分为高频扫射式和低频透射两大类。

28、也可等效为一个与电容相串联的电压源。

33、热电动势来源于两个方面,一部分由两种导体的接触电势构成,另一部分是单一导体的温差电势。

34补偿导线法常用作热电偶的冷端温度补偿它的理论依据是中间导体律。

35、常用的热电式传感元件有热电偶和热敏电阻。

36、热电偶是将温度变化转换为电动势变化的测温元件,热电阻和热敏电阻是将温度转换为电动势变化的测温元件。

38、热电阻最常用的材料是铂和铜,工业上被广泛用来测量中低温区的温度,在测量温度要求不高且温度较低的场合,铜热电阻得到了广泛应用。

40、霍尔效应是指垂直于电流方向加上磁场,由于载流子受到洛伦磁力的作用,则在平行于电流和磁场的两端的现象。

41、制作霍尔元件应采用的材料是 N型半导体,因为半导体材料能使截流子的迁移率与电阻率的乘积最大,而使两个端面出现电势差最大。

传感器及检测技术期末复习

看前注意:红色为老师上课提到的,可能不全。

蓝色仅作参考,黄色加亮是期末A卷考过的,补考不一定会考。

一.简答整理:【11】气敏传感器使用前为什么要预热?(10’)【问答Q:气敏传感器为什么工作在高温?】1.烧去附着在敏感元件上的尘埃、油雾。

2.加速气体的吸附,提高其灵敏度与响应速度。

【7】磁电式传感器与电感式传感器的异同?(10’)电磁感应的磁电式感应器与电感式传感器相似点是都有线圈,不同点是基于电磁感应的磁电式传感器有永磁体,而电感式的磁路中没有永磁体,因此两者原理和应用上有不同。

磁电感应式传感器是有源传感器。

【10】医学临床用B超的工作原理?(10’)【填空Q:B超使用的传感器?(超声波传感器)】超声波向一定方向传播时可以穿透物体,若碰到障碍物会产生回声,且不同障碍物产生回声不同,人们通过仪器将这种回声收集并显示在屏幕上,可用于了解物体部结构。

【1】解释什么是传感器?传感器的基本组成包括哪两大部分?这两大部分各自起什么作用?【问答Q:我国国标(GB/T7665-2005)定义传感器?】传感器是能感受被测量并按照一定规律转换成可用输出信号的器件或装置。

传感器的基本组成包括敏感元件和转换元件两部分。

敏感元件是传感器中能直接感受(或响应)被测信息(非电量)的元件,起检测作用。

转换元件则是指传感器中能将敏感元件的感受(或响应)信息转换为电信号的部分,起转换作用。

【1】传感器技术的发展趋势?1.提高与改善技术性能。

(途径:差动技术、平均技术、补偿与修正技术、屏蔽隔离与干扰抑制、稳定性处理)2.开展基础理论研究。

3.集成化。

4.智能化。

5.网络化。

6.微型化。

【4】零点残余电压的产生原因?1.传感器的两个二次绕组几何尺寸和线圈电气参数不对称,导致其产生的感应电动势不一样,构成零点残余电压的基波。

2.由于磁性材料磁化曲线的非线性,产生了零点残余电压的高次谐波。

3.励磁电压本身含高次谐波。

【4】零点残余电压的消除方法?1.尽可能保证传感器的几何尺寸、线圈电气参数和磁路的对称。

传感器原理及应用复习题

一、判断题(在正确的后面划√,错误的后面划×)1. 传感器是获取信息的重要途径和手段,它相当于人的五官。

传感器技术是构成现代信息技术的三大支柱之一,在一定程度上它决定着机器人水平的高低。

()2. 传感器正从传统的分立式朝着集成化、微型化、多功能化、智能化、网络化、光机电一体化的方向发展。

()3. 物联网是将各种信息传感器设备按约定的协议与互联网结合起来,形成一个巨大的网络,进行信息交换和通信,以实现智能化的识别、定位、跟踪、监控和管理的一种网络。

()4. 传感器实际输入输出曲线偏离理想拟合直线的程度称为线性度,通常用最大偏差与满量程输出之比的百分数来表示。

()5. 在稳定工作条件下,传感器的灵敏度是一个无单位的常数,它与外加电源电压无关。

()6. 在相同条件下,传感器在正行程(输入量由小到大)和反行程(输入量由大到小)期间,所得输入、输出曲线不重合的现象称重复性。

()7. 一阶传感器系统的动态响应主要取决于时间常数,越小越好,减少时间常数可以改善传感器频率特性,加快响应过程。

()8. 二阶传感器对阶跃信号响应和频率响应特性的好坏很大程度上取决于阻尼系数和固有频率。

()9. 直线电阻丝绕成敏感栅后,虽然长度相同,但应变不同,圆弧部分使灵敏度下降,这种现象称为横向效应。

敏感栅越窄,基片越长的应变片,横向效应越小。

()10. 压阻式传感器是利用半导体材料压阻效应制作的电阻式应变传感器,其性能优于金属应变效应制作的电阻式应变传感器,主要用于压力测量。

()11.电容传感器本身电容量较大,连接电缆的电容量很小(每米几百皮法),这样在低频时电缆的容抗较大,对传感器灵敏度影响就较大,因此低频工作时的电容传感器连接电缆的长度不能任意变化。

()12.脉冲宽度调制电路适用于任何形式的电容传感器,并有理论线性度。

该电路不需解调、检波,对电源也没有什么严格要求,是电容传感器的常用电路。

()13.根据电涡流效应制作的传感器称电涡流传感器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。 1.什么是传感器? 广义:传感器是一种能把特定的信息按一定规律转换成某种可用信号输出的器件和装置。 狭义:能把外界非电信息转换成电信号输出的器件。 国家标准:定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。 2.传感器由哪几个部分组成?分别起到什么作用? 传感器一般由敏感元件、转换原件和基本电路组成。敏感元件感受被测量,转换原件将其响应的被测量转换成电参量,基本电路把电参量接入电路转换成电量。传感器的核心部分是转换原件,转换原件决定传感器的工作原理。 3.传感器的总体发展趋势是什么?传感器的应用情况。 传感器正从传统的分立式朝着集成化、数字化、多功能化,微型化、智能化、网络化和光机电一体化的方向发展,具有高精度、高性能、高灵敏度、高可靠性、高稳定性、长寿命、高信噪比、宽量程和无维护等特点。未来还会有更新的材料,如纳米材料,更有利于传感器的小型化。发展趋势主要体现在这几个方面:发展、利用新效应;开发新材料;提高传感器性能和检测范围;微型化与微功耗;集成化与多功能化;传感器的智能化;传感器的数字化和网络化。 4.了解传感器的分类方法。所学的传感器分别属于哪一类? 按传感器检测的范畴分类:物理量传感器、化学量传感器、生物量传感器 按传感器的输出信号分类 :模拟传感器、数字传感器 按传感器的结构分类:结构型传感器、物性型传感器、复合型传感器 按传感器的功能分类:单功能传感器、多功能传感器、智能传感器 按传感器的转换原理分类:机—电传感器、光—电传感器、热—电电传感器、磁—电传感器 电化学传感器 按传感器的能源分类:有源传感器、无源传感器 国标制定的传感器分类体系表将传感器分为:物理量、化学量、生物类传感器 含12个小类:力学量、热学量、光学量、磁学量、电学量、声学量、射线、气体、离子、温度传感器以及生化量、生理量传感器。 1.传感器的性能参数反映了传感器的输入输出关系 2.传感器的静态特性是什么?由哪些性能指标描述?主要性能参数的意义是什么

1线性度:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比, 线性度RL是表征实际特性与拟合直线不吻合的参数 拟合方法:理论线性度(理论拟合)、 c、端基线性度(端点连线拟合)d、独立线性度(端点平移) 最小二乘法线性度 2迟滞 :传感器在正、反行程期间输入、输出曲线不重合的现象称迟滞(迟环)。 3重复性 :传感器输入量按同一方向作多次测量时输出特性不一致的程度。 4灵敏度: 在稳定条件下输出微小增量与输入微小增量的比值 传感器输出曲线的斜率就是其灵敏度。 灵敏度 S 反映输入变量能引起的输出变化量 ① 纯线性传感器灵敏度为常数,与输入量大小无关;② 非线性传感器灵敏度与x有关。 5分辨率和阈值:分辨率 —— 传感器能够检测到的最小输入增量; 阈值 —— 输入小到某种程度输出不再变化的值 6 漂移是指传感器的输入被测量不变,而其输出量却发生了改变。包括零点漂移与灵敏度漂移, 7稳定性:传感器在一较长时间内保持性能参数的能力 3.传递函数的定义是什么? 初始条件为零时输出的拉氏变换与输入的拉氏变换之比。 4.电涡流传感器有较好的线性和灵敏度 4.什么是传感器的动态特性? 其特性参数有那些?其意义是什么? 动态特性:输入量随时间变化时输出和输入之间的关系。固有频率:越大曲线上升越快,时间常数:达到稳定的时间越小,阻尼比:越大过冲现象越小。 1.什么是应变效应?什么是压阻效应?什么是横向效应? 应变效应:导体产生机械形变时电阻值会发生变化。 压阻效应:某一轴向上的外力会引起扳道器电阻率发生变化。 横向效应:直线电阻丝绕成敏感栅后,虽然长度相同,但应变不同,圆弧部分使灵敏度下降了,这种现象称为横向效应。 2.什么是应变片的灵敏系数?半导体应变片灵敏系数范围是多少,金属应变片灵敏系数范围是多少?说明金属丝电阻应变片与半导体应变片的相同点和不同点。 应变片单位变化引起电阻值的改变;50-100;1.5-2;金属应变片:电阻应变效应,优,受温度影响小、性能稳定、精度比半导体高,缺,不易集成;半导体:半导体材料压阻效应,优,灵敏度高,体积小,耗电小,动态响应好,精度高,测量范围宽,易于微型化和集成化。缺点,受温度影响较大,制造工艺复杂。 4. 在传感器测量电路中,直流电桥与交流电桥有什么不同,如何考虑应用场合? 直流电桥的电源稳定,结构简单,但存在零漂和工频干扰,要求有较高的灵敏度,实际应用中输出端通常会接入放大电路;交流电桥放大电路简单,无零漂,不易受干扰,但不易取得高精度,需专用的测量仪器或电路。 1.电容传感器有哪些类型?分别适合检测什么参数?叙述变极距型电容传感器的工作原理、输出特性。 1)变面积型电容传感器:测量范围大,多用于测线位移、角位移; 2)变极距型电容式传感器:适宜做小位移测量; 3)变介质型电容传感器:普遍用于液面高度测量、介质厚度测量,可制成料位计等。 变极距工作原理,通过改变两极板间距离引起电容量的变化,因此,只要测得电筒两的变化量就可测得极板间距变化量。 2.为什么电感式和电容式传感器的结构多采用差动形式,差动结构形式的特点是什么? 电感两端的电压与通过的电流的变化量成正比,流过电容的位移电流与 其两端电压的变化量成正比,而差分方式正好放大的是电压或电流的变 化量,故一般采用这种结构。 3.电容传感器的测量电路有哪些?差动脉冲调宽电路用于电容传感器测量电路具有什么特点? 交流电桥、二极管双T型电路、差动脉冲调宽电路、运算放大器电路, 适用于任何差动电容传感器,并有理论线性度,与双T型相似,该电路 不需加解调、检波,由滤波器直接获得直流输出,而且对矩形波纯度要 求不高,只需稳定的电源即可。 4.为什么高频工作时的电容式传感器连接电缆的长度不能任意变化? 低频时容抗XC较大,传输线的等效电感电阻可忽略,高频时容抗减小,不可忽略。等效电感接在传感器输出端相当于串联谐振电路,当工作频率等于谐振频率时,串联谐振阻抗最小,电流最大,谐振对传感器的输出起破坏作用,使电路不能正常工作。 1. 变磁阻式传感器的工作原理和主要应用。 传感器运动部分与衔铁部分相连接,衔铁移动时间隙厚度发生变化,仪器磁路的磁阻Rm变化,使电感线圈的电感量发生变化。应用于压力传感器和测量工具中。 2. 什么是零点残余电压?说明差动变压器式传感器产生零点残余电压的原因及减少此电压的有效措施。 差动变压器传感器的铁心处于中间位置是输出电压并不等于零,在零点附近总有一个最小输出电压ΔUo ,将这个铁心处于中间位置是最小不为零电压称为零点残余电压。原因,两个次级线圈绕组的电气系数不完全相同,几何尺寸也不完全相同,工艺上很难保持完全一致。措施,除工艺补偿外,一般要进行电路补偿:串联电阻,并联电阻、电容,加反馈支路,相敏检波。 3. 差动自感传感器和差动变压器有什么区别?采用哪种转换电路既能直接输出与位移成正比的电压,又能根据电压的正负区别位移的方向? 自感的线圈必须相同,但不绕在同一铁心上,而差动变压器必须要绕在同一铁心上,线圈可以不同。 4. 什么是电涡流效应?涡流的分布范围。电涡流传感器可以进行哪些非电量参数测量? 一个块状金属导体置于变化的磁场中或在磁场中切割磁力线运动时,导体内部会产生闭合的电流,这种现象称为涡流效应。范围,径向,线圈外径金属涡流密度最大;线圈中心为零。轴向,只在表面薄层。非接触式测量,位移、振动、转速、厚度、材料、温度、电涡流探伤。 5. 电涡流传感器是由哪种电参量转换实现电量输出的?电涡流传感器可以检测金属材料,也可以检测非金属材料吗?电流、不可以检测非金属 1.为什么说磁电感应式传感器是一种有源传感器?常用的结构形式有哪些? 工作时不需外加电源,导体和磁场发生相对运动是会在导体两端输出感应电动势。恒磁通式、变磁通式。 2.磁电式传感器是速度传感器,它如何通过测量电路获得相对应的位移和加速度信号? 前置放大器分别接积分电路或微分电路,接入积分电路时,感应电动势输出正比于位移信号;接入微分电路时,感应电动势输出正比于加速度信号。 3.什么是霍尔效应?霍尔电势的大小与方向和哪些因素有关?霍尔元件不等位电势产生的原因有哪些? 通电的导体放在磁场中,电流方向与磁场方向垂直,在导体另外两侧会产生感应电动势,这种现象称为 ,原因:霍尔引出电极安装不对称,不在同一等位面上;激励电极接触不良,半导体材料不均匀造成电阻率不均匀。 4.霍尔元件的温度补偿方法有哪些?霍尔元件的常见应用。 外界温度敏感元件进行补偿:两种连接方式,恒流源激励,恒压源激励。测位移:极性相反磁极共同作用,形成梯度磁场;磁电编码器:金属齿轮计算脉冲数测转速;测压力压差;交流直流钳形数字电流表。 5.半导体磁敏元件有哪些?它们有哪些相同之处和不同之处?它们的电路符号怎样?磁敏电阻:只能测大小不能测方向,磁敏二极管、磁敏三极管:既大小又方向 1.什么是压电效应?压电传感器能否用于静态测量?为什么? 某些晶体,当沿着一定方向施加力时,内部产生极化现象,两个表面会产生符号相 反地电荷,外力去掉后又恢复不带电状态。作用力方向改变电荷极性也改变。 2.压电陶瓷极化过程是怎样的?若施加一个与极化方向相同的拉力,压电现象是怎样的?给压电陶瓷施加外加电场使电畴规则排列。 3. 石英晶体和压电陶瓷的压电效应有何不同之处?比较几种常用压电材料的优缺点,说出它们各自适用的场合。 压电陶瓷的纵向压电常数要比石英晶体大得多。压电晶体适用

相关文档
最新文档