地层测试在油田勘探开发中应用
油气井测试工艺原理及应用

油气井测试工艺原理及应用一、引言油气井测试工艺是油气田勘探开发中的重要环节,它通过测定油气井的产能、压力、流体性质等参数,为油气田勘探开发提供了重要的数据支撑。
油气井测试工艺是一项复杂的技术活动,需要运用多种工艺手段和设备进行相应的实验、分析和数据处理,以确保获得准确、可靠的测试结果。
本文将从油气井测试工艺的原理和应用方面进行深入探讨,以期为相关技术人员提供一定的参考和指导。
二、油气井测试工艺原理1. 压力测试原理油气井的压力是评价油气藏储集性能的重要指标,通过对油气井的压力测试可以获得油气藏内部的压力分布情况,进而评价储层的渗透率、孔隙度等参数。
压力测试通常采用临界状态下的闭合式测试方法,即通过封闭井口、增加注入流体压力,观察井底压力的变化情况来获取井底地层的初始压力及渗透率等参数。
2. 产能测试原理产能测试是评价油气井产能的关键手段,通过对油气井进行产能测试可以获得井口产量、产能指数、产液比等参数,为合理开发油气田提供重要的参考依据。
产能测试通常采用射流式测试方法,即通过不同的活塞速度和流速,测量流体的流量、井水头等参数,从而获得井的产能指标。
3. 流体性质测试原理油气井的流体性质是影响采油工艺的重要因素,通过对油气井的流体性质进行测试可以获得油气的密度、粘度、相对渗透率等参数,为确定合理的采油方法提供重要数据支撑。
流体性质测试通常采用实验室测试和现场测试相结合的方式,通过对流体样品进行物性实验和现场采样测试,获得相应的流体性质参数。
三、油气井测试工艺应用1. 油气田勘探开发油气井测试工艺在油气田勘探开发中起着至关重要的作用,通过对油气井进行压力、产能、流体性质测试,可以了解地层性质、储集层渗透性、油气藏开发潜力等重要信息,为油气田勘探开发提供重要的技术支撑。
2. 油井改造优化油气井测试工艺可以为油井的改造优化提供重要数据支撑,通过对油井产能、压力、流体性质等参数进行测试,可以评估油井的开发潜力、确定合理的改造优化方案,提高油井的产能和采收率。
油气井测试工艺原理及应用

油气井测试工艺原理及应用一、引言油气田是地球深处埋藏着的宝贵资源,油气的开采与生产对于一个国家的能源安全和经济发展至关重要。
在油气田开发的初期阶段,为了了解油气层的性质和产能,需要进行井下测试工艺。
本文将重点介绍油气井测试工艺的原理及应用,以期对相关工作者有所帮助。
二、油气井测试工艺原理1. 井下测试简介井下测试是指在油气井钻井、完井或生产过程中,通过井下测试工艺探测井底情况,了解井底流体的性质、产量和流态特征等关键参数的一种技术手段。
通过井下测试,可以准确地获得有关井底及岩层流体的参数,为油气田的开发与生产提供重要的依据。
2. 井下测试的原理井下测试的原理主要基于压力传递与流体性质的基本规律。
当地下水力压力与地层内部流体压力处于平衡状态时,井底的压力称为静态地层压力。
在井下测试中,通过井底气压测量装置、流量计、油气采集器等设备,监测地层流体在产能试井和试压过程中的压力、温度、产量等参数,并结合产量曲线和时间来评价地层压力、地层渗透率、流体产能等关键参数。
三、油气井测试工艺应用1. 产能试井产能试井是井下测试的一种重要形式,通过控制升降汲液速率,记录相应的井底压力和流体产量数据,并绘制出产能试井曲线,由此来评价油气层的产能情况。
通过产能试井可以评价地层产能和压力分布情况,为合理开发油气田提供了重要的依据。
2. 试压测试试压测试是油气井测试中的一项重要工艺,通过试压测试可以确定油气层的静态地层压力、动态最大吸水压力,以及地层渗透率等参数。
试压测试对于评估油气层的产能和压力表现十分重要,能够为后期的油气田的开发与生产提供重要的数据支撑。
四、油气井测试工艺的意义1. 为油气层的开发提供重要数据通过井下测试工艺,能够获得地层的产能、渗透率、压力等关键参数,为油气层的开发提供了重要的数据支持。
这些数据对于合理选择开发方式、确定开发规模、制订开发方案等具有重要的指导作用。
2. 为油气田的生产提供重要参考通过井下测试可以真实反映油气层的流态特征、产能、压力等参数,为油气田的生产运行提供了重要参考。
石油地质石油勘探论文(5篇范文)

石油地质石油勘探论文(5篇范文)第一篇:石油地质石油勘探论文第一篇1石油地质分析测试所使用的技术在石油地质分析中所使用的技术主要分为有机地化方面和沉积及储盖层方面的的分析技术,其中在有机地化方面所使用的分析技术主要有:岩石超临界提取技术、烃源岩模拟实验技术、有机岩石学分析测试技术、有机同位素分析技术等,通过以上这些分析技术可以有效的对样本中有机质的烃含量及形成烃的能力等进行分析。
沉积及储盖层方面的分析技术主要有:储层地球化学研究方法、成岩作用于模拟实验技术、油藏地球化学及油藏注入史研究等,以上这些技术通过对油气资源的存储环境以及岩石的地质分析从而得出油气资源存储的重要信息。
2新的石油地质分析测试技术的发展应用2.1同位素分析测试技术通过对勘探样本进行同位素进行分析可以有效的得出沉积有机质母质的类型,从而对油气源的分析对比有着重要意义。
在原先的分析中,由于受到时代和技术的限制,造成分析只能局限于烃类及碳类物质的某一方面,但是随着科技的进步以及油气运移过程中的物质分异及同位素的分馏作用,可以使得单体烃同位素的分析得到更为广发的应用,同使用此种技术可以极大的提升在油气资源的划分、油气源对比工作中的精度。
而通过使用新技术可以对气态烃的碳同位素特征进行热解模拟实验从而模拟油气资源在地下的存储情况。
2.2轻烃分析测试技术轻烃分析主要是指对于天然气、原油等的轻烃分析,对于轻烃的成因和开采得益于轻烃测试技术的应用,随着科技的进步和广大科技工作者的不懈努力,现今对于轻烃的分析技术已经较为完善,现今已经形成了油—气—源岩三位一体的对比分类研究能力。
其中对于天然气轻烃的指纹分析可以有效的对天然气的来源进行分析,通过对天然气干气使用低温或吸附的方法来得出轻烃,通过对轻烃进行分析可以得出较普通的天然气烃更为全面的数据。
而对于原油的轻烃指纹分析则主要是通过对原油轻烃的资料进行分类对比,从而可以对烃类的运移进行研究和对油层的连通性进行对比分析。
油田开发知识点总结归纳

油田开发知识点总结归纳一、勘探1. 地质勘探:地质勘探是油田开发的第一步,其目的是找到油气藏的地质条件,包括地层构造、岩性、含油气层的位置、厚度和分布。
勘探方法一般包括露天勘探、堆积层勘探、隧道勘探和海底勘探等。
在地质勘探中,需要运用地质勘探仪器、测量仪器和地质勘探软件。
2. 地震勘探:地震勘探是一种通过地震波在地下传播和反射来勘探地下油气藏的方法。
可以通过地震地震勘探仪器捕获地下地质结构和油气藏分布的信息,为后续的开采工作提供重要的依据。
3. 测井勘探:测井勘探是用测井仪器在井下对地下地层的物理性质进行测试,包括孔隙度、渗透率、含水饱和度等。
测井数据对于油气地质的研究和含油气层评价起着重要的作用,可以为后续的开采工作提供重要的依据。
二、开采1. 压裂技术:压裂技术是一种通过注入高压液体来破裂岩石层,并使含油气层的孔隙度增加,以提高油气产量的方法。
压裂技术可以有效地改善含油气层的渗透率,提高储层透明性,增加开采效率。
2. 注水开采:注水开采是一种通过向含油气层注入水来增加地下压力,促进油气的流动,提高油气采收率的方法。
注水开采需要考虑注水井的位置和布局、注水管道的布置、注水量的控制等因素。
3. 水平井开采:水平井开采是一种通过向地下地层水平钻探和开采油气的方法。
水平井开采可以增加油气的储量和产量,提高开采效率,减少开采成本。
4. 溶解气开采:溶解气开采是一种通过向含油气层注入溶解气体来溶解油气并抽出地面的开采方法。
溶解气开采可以对高粘油田进行高效开采,降低油气的粘性,提高采收率。
三、储存1. 地下储存:地下储存是一种通过在地下贮存油气,以便长期使用和输送的方法。
地下储存通常包括注入井、储气库和地下油气储藏库等设施。
在地下储存中,需要考虑地下储藏层的物理性质、地质条件、储藏设施的设计和施工等因素。
2. 地面储存:地面储存是一种通过在地面上建设油气储罐、油气储藏库等设施进行油气的储存和保存的方法。
地面储存需要考虑油气的存储量、储藏设施的贮存能力、储藏方法等因素。
地质录井在油田勘探工作中的应用分析

地质录井在油田勘探工作中的应用分析一、引言地质录井是在油田勘探过程中应用最为广泛的一种技术手段,通过利用地质录井技术,可以获取到井内岩层的各项参数数据,从而帮助地质工程师进行地层分析、油气资源评价和勘探实验等工作。
本文将从地质录井技术的原理、应用范围、优势以及存在的问题等方面进行分析,以期更好地了解地质录井在油田勘探工作中的应用。
二、地质录井技术原理地质录井的原理是根据地层中不同岩性的电性、放射性、声波属性等差异,利用相应的测井仪器进行测量,获得地层的物性、裂缝特征、孔隙度、密度等各项参数的数据。
地质录井的基本过程是将一根测井仪器装入油井井筒中,在下放到井底后通过测井电缆(或绳索)传回地面,由计算机进行数据处理和解释,最终得到地层的测井曲线。
通过这些曲线,可以判别不同地层的类型、厚度、孔隙度、渗透率、岩性、流体性质等重要参数。
三、地质录井的应用范围1. 地层解释与储量评价:地质录井技术可以用于解释地层的特征,包括地层岩性、构造、构造古地磁等,进而评估储层的储集条件、分布规律和储量评价。
2. 裂缝识别与评价:地质录井可以辅助识别和测定地层的微细裂隙、天然裂缝和水平裂缝等裂缝特征,为油气藏评价提供重要依据。
3. 岩性识别与分析:地质录井可以用于确定岩石的孔隙度、渗透率、密度、粘度等参数,从而为岩性的识别和分析提供了重要数据。
4. 钻井过程监测与控制:地质录井可以用于监测井壁稳定状况、注采工艺、水平井导向、水平段位置控制等钻井过程的监控和控制。
四、地质录井的优势1. 无损检测:地质录井是一种无损检测方法,可以实现对地层参数的准确测量,而不会对地层造成破坏。
2. 实时数据:地质录井技术可以实时监测井下地层物性参数,能够及时反映出地层的变化状况。
3. 高精度:通过地质录井技术获取的地层参数数据,具有较高的准确性和精度,能够为勘探开发提供可靠的地质依据。
4. 多参数测试:地质录井技术可同时测量多个地层参数,能够满足不同阶段的勘探需求。
MDT测试技术及其在浅海油气勘探中的应用

层, 而且油层厚度不薄 、 发现的储量规模也很可观。 特别是大港油 田在张海 5 1 、 0 井 港深 6 x 井 通过 1l
MDT测试 , 发现 测井解 释为水 层 的大 段地层 实际 为
油层 , 从而使油层厚度较测井解释增加了 1 。 倍
维普资讯
油
气
井
测
试
20 0 7年 6月
围的光谱吸收测定法来区分油 和水 , 通过不同反射 角的测定结果来探测天然气。
胜利、 华北、 吉林 、 大港 等油 田利用 MD T测试 技术在浅海探区发现 了以前没有认 识到的低 阻油
后, 在不拆开仪器的情况下 , 以很容易从仪器上卸 可 下取 样桶 , 到实 验 室 分析 。除表 皮 系 数 及井 口压 送 力外 , T可 以提供 用 于产 能 预测 的大部 分地 层参 MD
MD T具 有多 个探测 器 , 具有 流量 控制模 块 和泵
排系统 ( 图 1 。 见 )
发现油气层的 目的。对于判断油气层 , 除试油外 , 没 有任何一种测井方法 比 MD T更直接 、 更准 确。因 为在 MD T的探 针模块 中设 有 电阻率 与温度传感 器, 可以连续测量管线 中的流体 电阻率和温度 。流 体电阻率 的测量可 以区分 出天然气、 石油和水 。然 而在有些情况下 , 例如地层有污染 时可 以用光学流 体分析模块来区分油气水 , 该模块用接近红外线范
维普资讯
2 0 年 6月 07
油
气期
MD T测试技术及其在浅海油气勘探 中的应 用
高喜龙 李照延 时丕 同
( 胜利油 田分公司海洋采油厂 山东东 营 2 7 3 ) 5 2 7
摘 要 MD T是斯伦 贝谢 公 司第 三代 电缆地 层测 试仪 , 以对 流体 性质 、 层 的渗透 率 和产 能 可 地
电缆地层测试技术的发展及其在地层和油藏评价中的角色演变

电缆地层测试技术的发展及其在地层和油藏评价中的角色演变孙华峰;陶果;周艳敏;陈宝;杜瑞芳【摘要】分析了电缆地层测试技术的现状和发展,探讨其在国内外的应用前景和我国电缆地层测试技术的发展目标.电缆地层测试器(WFT)可以完成地层流体取样、储层压力以及地层压力梯度测试、确定储层油水界面以及进行储层渗透率解释和产能评价,能够将测井评价提升到油藏评价.井底流体分析仪器(DAF)可以实时测量井下流体详细的组分、pH值、温度压力和密度黏度等;人工神经网络(ANN)、NMR 测井和实验室PVT测量同井底流体分析(DAF)技术结合可以得到更准确更详细的地下流体的信息;双封隔器的改进可以使得2个流体进入口同时监测流体污染情况,以便快速取得较纯净地层流体;管线过滤器可以有效阻止细小颗粒进入仪器管线,避免了探针阻塞和仪器毁坏;探针形状的改进增加了测试区域,提高了测试的成功率.新的测试方法及其应用可以在一些当前认为比较复杂的储层如碳酸盐储层、裂缝性储层和薄互层等进行测试.新的方法和技术节省了时间和成本,其测量精度也明显提高.【期刊名称】《测井技术》【年(卷),期】2010(034)004【总页数】9页(P314-322)【关键词】测井技术;电缆地层测试;油藏评价;方法;应用;进展【作者】孙华峰;陶果;周艳敏;陈宝;杜瑞芳【作者单位】中国石油大学油气资源与探测国家重点实验室,北京102249;中国石油大学北京市地球探测与信息技术重点实验室,北京,102249;中国石油大学油气资源与探测国家重点实验室,北京102249;中国石油大学北京市地球探测与信息技术重点实验室,北京,102249;中国石油大学油气资源与探测国家重点实验室,北京102249;中国石油大学北京市地球探测与信息技术重点实验室,北京,102249;中国石油集团测井有限公司技术中心,陕西,西安,710021;中国石油集团测井有限公司技术中心,陕西,西安,710021【正文语种】中文【中图分类】P631.83电缆地层测试可以完成地层流体取样、储层压力以及地层压力梯度测试、确定储层油水界面以及进行储层渗透率解释和产能评价。
井下作业试油和地层测试

第二节 试油主要工序与资料录取
事故处理与分析
互6井抽汲管柱砂卡
三、原因分析: 1.该层吐砂严重,导致喷砂器及卡瓦封隔器被 堵被卡。 2.卡点距离油层过远,沉砂口袋过大。 3.因底部带有监测压力计,没有接沉砂尾管。 四、经验教训: 针对地层严重吐砂,施工时要采取防砂卡措施。
第二节 试油主要工序与资料录取
第一节 油气井分类及试油目的与任务
油、气井分类
四、开发井 油、气田开发生产所部署的井统称为开发 井,包括滚动井、投产井、注水井、观察井等。 滚动井是在尚未认识清楚的区块所部署的井, 兼有详探井的任务;对于开发井的试油主要目 的是确定油、气、水产能、性质。
第一节 油气井分类及试油目的与任务
试油的定义
套管外径,mm 127 139.7 177.8 244.5 增压压力,MPa 15 15 12 10 观察时间,min 30 30 30 30 压力降落,MPa 0.2 0.2 0.2 0.2
第二节 试油主要工序与资料录取
试油工序
五、射孔 目的:是沟通地层和井筒,产生流体流 通通道。 监督内容:
1、采用负压射孔的井液面深度; 2、射孔压井液类型、密度、数量; 3、射孔枪型、弹型、弹书、孔密、夹层厚度; 4、每米射孔发射率低于80%时补射孔; 5、射孔施工时是否落物; 6、射孔深度误差是否达标。
第二节 试油主要工序与资料录取
抽ቤተ መጻሕፍቲ ባይዱ管柱图
油管
油管
筛管 压力计托筒 丝堵
已试层
P-T封隔器
待试层
筛管
待试层
油管 压力计托筒
光油管抽汲结构图:只 适用井内只有一层
单级封隔器闭式抽汲管柱图: 只适用上部有已试层的层段
第二节 试油主要工序与资料录取
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关键词:地层测试;新技术;石油勘探;应用
伴随着我国石油勘探开发产业深入发展,面临的勘探条件越来越复杂,遇到的勘探问题也越来越多,传统的地层测试技术已经难以满足实际油田勘探开发的要求。
在这一背景下,加强对地层测试新技术的应用非常重要,从而能够克服各种困难的勘探条件,提高地层资料获取的完整性与准确性,这对于推动石油勘探开发产业实现可持续发展有着重要意义。
1地层测试技术作用价值
在油田勘探开发过程中应用地层测试技术,简单来说就是借助钻杆或者油管,将一些专门工具运输至井下,比如分隔器、开关井工具等,从而在井下建立一个临时的完井系统,并从中获取一些地层信息,比如压力响应、油气层产量、流体样品等资料,从而为后续油田勘探看法提供非常关键的信息技术支持。
相较于一般的试油技术,地层测试技术有着更为显著的优势,比如测试成本低、获取的信息全面完整、测试效率高等。
总而言之,地层测试在油田勘探开发过程中有着以下几点重要作用价值:①能够在短时间内高效获取一些地层数据信息,从而便于相关人员对地层中所含油气进行一个相对更准确地评估。
②该技术在实施过程中不需要太多套管,整体应用效率更高,且有效节约了勘测成本。
③地层测试技术的测试范围非常广阔,能够探测到地层边界的具体位置[1]。
④能够对油田开发增产措施效果进行一个合理的预测,同时在进行增产措施施工中,该技术对相应施工也能够起到一定的指导作用。
⑤能够对单井以及地层内部信息进行评价,从而为后续油田勘探开发提供良好的依据。
2油田勘探开发过程中地层测试新技术的应用
2.1高温高压测井技术应用
高温高压井是一种比较特殊的油气井,如何对该井进行地层测试,一直以来都是国内外油田勘探开发者共同面临的一项难题。
比如在国内,由于相关设备、条件尚未发展成熟,从而导致测试技术在高温高压井测试中应用依然受到诸多的限制,存在很多技术难题尚未解决,难以达到预期勘探目标。
比如常见的技术难题有井下阀门无法彻底关闭、压力计受高温高压影响容易损坏等,但近些年随着我国一些勘探单位从国外引入了一些先进的勘探设备,再加上结合实际国情,自主进行相关专用测试设备的研发,比如新型减震压力计托管、井下关井阀等,从而在针对高温高压测井过程中,有效解决了上述技术难题。
并且经过多次技术应用实验,如今已经形成了一套比较成熟且测试效果较好的高温高压测井技术。
该技术在实际应用过程中,需要做好以下几点工作:①做好高温高压测试前的准备工作,由于高温高压井内的条件比较恶劣,存在诸多的影响因素,因此在正式对该井进行测试时,需要做好以下准备工作:首先,在测井前,需要对用到的井简安全性进行评估,确保其不会在测试中发生安全故障问题。
其次,针对井下管柱与套管,同样需要将其置于不同工况条件下,做好安全稳定性评估工作,保证其能够安全稳定运行。
最后,在正式进行高温高压井测试前,还需要先模拟一遍整个测试过程,确保正式测试时万无一失。
②科学合理选择测试工艺与管柱结构。
针对高温高压井的地层测试,通常会选择采用射孔测试联作工艺。
而针对井下管柱,则会选择全通径管柱工具,要求管柱结构不能太过复杂,具体可由射孔枪、筛管、高减震电子压力计托管、RTTS分隔器、井下关井阀等构件组成[2]。
③准备试油设备。
相较于传统试油而言,针对高温高压井的试油更加系统复杂,因此需要做好充足的设备准备工作,确保一次性试油成功。
首先,针对地上设备,要求井口控制装置可选择高压采油树,严格遵循相关要求,做好试压工作。
同时以实际的试油要求为依据,针对地面分离计量设备,可以设计两条求产流程,第一个流程为主要流程,第二个流程则起到辅助作用。
同时还需要做好以下地面设备的准备:比如“高压分离器”、“金属密封线管”、“法兰连接”等,最后将上述设备做好组装,并以地面测试流程为依据,做好试压实验。
其次,针对井下测试设备准备,则主要做好传统橡胶密封件的更换,通过将其替换为耐高温高压比较强的橡胶密封件,从而更好地适应井下环境,并且相关工具设备在替换前,都需要事先经过压力试验与探伤工作,从而确保工具设备不存在“隐疾”,能够正常稳定发挥功能。
最后,还应准备专门的射孔器材,要求准备的器材能够适应井下最高压与最高温度。
④在实际应用方面,比如针对某高温高压井,在实际进行地层测试时,遇到的一种比较常见的问题便是井下阀门受高温高压影响,无法彻底关闭,导致自身所获取的压力恢复资料不够真实,无法将地层中实际的压力、有效渗透效率等关键信息反映出来。
基于此,我们可以在高温高压井测试技术中应用一种新型井下关井阀门,并且在压力超出106MPa的深井中进行测试应用,该新型阀门凭借强大的抗压抗高温能力,彻
底关闭自身,处于一个良好的密封状态,最终获得了真实完整的地层资料,成功完成了本次高温高压井地层测试。
2.2含硫化氢井地层测试技术应用
含硫化氢井是在后续进行深度油田勘探中常见的一种油气井,因此加强该井的地层测试也越来越重要。
在实际进行该地层测试技术应用方面,需要我们做好以下几点工作:①明确施工方案,在实际测试含硫化氢井时,一般会产生测试—射孔联作工艺,由于含硫化氢井内部存在大量硫化氢,在实际测试时,很容易污染压井液,并对上述油层管造成腐蚀影响,该项工艺在实际应用过程中能有效避免出现上述问题。
在测试工作制度方面,应严格遵循保证地层资料准确性的原则,可采用一开一关井工作制度,将开关井时间尽可能地压缩,同时尽力避免管柱在井下进行长时间浸泡,从而能够减轻硫化氢对管柱带来的腐蚀。
②科学合理选择测试设备。
针对地面计量设备,要求所有的设备、管线、闸门等均具有防硫功能,同时在设备运行的周边,还需要配置专门的硫化氢监测仪,从而能够实时把握硫化氢的浓度变化。
同时做好地面流程设计,要求能够随时进行关井、压井等测试,并保证上述测试的安全性,同时还要能够及时进行消除硫化氢。
为达到上述流程设计目标,应注意做好中和装置、火把喷淋装置的准备工作,从而更好保证地面设备运转安全,及时消除硫化氢带来的危害。
针对井下设备,同样要求所有设备均具有防硫功能,相应的工具在下井前,必须要先做好探伤,保证设备安全。
同时针对井下测试工具的选择,同样使其具备防硫功能。
③在实际进行应用过程中,针对某含硫化氢井,该井钻深为5425m,需要进行地层测试的井段为4854~4868m井段,在钻井是,通过借助综合录井仪,测得井内硫化氢含量为110~485ppm,通过借助地面硫化氢监测仪,测得井口的硫化氢含量为650~4000ppm。
在实际进行测试过程中,通过采用射孔测试联作工艺,并采用了全体防硫测试工具及设备,测试工作制度为一开一关,同时还配置了火把喷淋装置、碱式压井液等装置,从而更好地预防硫化氢带来的污染与腐蚀危害,最终顺利我水泥厂本次地层测试任务。
2.3低渗透储层测试技术应用
针对低渗透储层,在实际进行地层测试时,所获取的测试资料常出现一些问题,比如压力测试稳定性不足,液性没有得到稳定落实等,最终导致地层测试失败。
而之所以会造成这一问题,主要原因就在于忽略了低渗储层的低渗流特征,从而导致井筒很容易受到储集效应的影响,压力很难短时间内恢复,只能够收取少量的测试回收液,最终导致地层样品不合格,缺乏实际参考分析价值。
为有效解决这一问题,我们一方面需要充分考虑低渗储层本身所具备的特征,另一方面,还应加强新设备的引入,并进一步改进传统的管柱结构,成功将MFE 测试工具与APR测试工具组合在一起,形成一套有效的低渗透测试工具,解决传统低渗透测试遇到的难题。
在实际应用方面,以某评价井为例,该井深度为2685m,测井井段为2475~2513m,为了更好地适应低渗透储层的特点,在具体进行管柱结构设计方面,采用了如下结构配置,安装从下到上的顺序,相关结构配置具体为油管、循环接头、MFE、高量层电子压力计、RD取样器、RD循环阀、RTTS分隔器。
之所以进行上述结构设计,主要是因为其具有以下几点明显的优势,比如通过应用RTTS封隔器,主要是因为该封隔器能够承受非常大的测试压差,这是一种非常明显的优势,在这一优势作用下,能够为后续低渗地层生产带来非常大的生产压差。
不仅如此,对RTTS分隔器而言,一般自带水锚,当油管压力比环空压力高时,水力锚会自动张开,从而能够有效阻止管柱出现上移问题,从而防止对采集的地层资料造成不利的影响[3]。
同时采用RD循环阀门,用其替代传统的裸眼旁通,当再次遇到油管压力比环空压力高的情况时,阀门能够轻松承受,不会出现渗漏问题,从而有效提升测试的成功率。
在实际设计时,选择将RD取样器与分隔器上部进行连接,能够有效缩短其与地层的距离,从而能够提升地层流体样品获取的准确性。
除此之外,在实际设计过程中,还采用了量程与精度均比较高的电子压力计,因此能够更好地满足资料录取的要求,从根本上提升低渗储层测试的准确性,获得了完整的地层质量,比如通过获得的半对数曲线和双对数曲线资料来看,具体如图1、图2所示,可知该测试层属特低渗透储层,且具有增产潜能。
因此我们向甲方建议增加射孔段长度,采取酸压措施对地层进行改造,在随后进行的酸压完井测试中,测试气产量由酸压前820m3/d上升至40000m3/d,彰显了测试结果的作用价值。
3总结
综上所述,地层测试技术是一项较为系统复杂的技术,并且该技术在实际应用过程中,一般会面临各种复杂的条件。
比如低渗储层、高温高压井等,上述这些测试场景均比较特殊,
实际面临的测试条件也比较恶劣,因此采用传统的地层测试技术很难保证测试的效果。
基于此,需要加强新型地层测试技术的应用,一般是通过在原本测试技术的基础,引入一些先进的测试工具设备,加强对现有设备的设计改进等,从而更好地适应地层测试复杂的环境,有效提升地层测试的成功率,为石油勘探开发顺利开展提供有力保障。