离子交换器设计手册

合集下载

离子交换器的设计计算

离子交换器的设计计算

离子交换器的设计计算1、交换器直径:F=Q/(T×N×V)F---交换器截面积(m2);Q---产水量(T/D);T---工作时间(H/D)N---交换器台数;V-交换流速(M/H).2、交换器高度: H=Hp+Hr+Hs+Ht(米)Hp---交换器下部排水高度,一般为0.3—0.7m;Hr---交换剂层高度,一般在1.0—2.0之间选择。

Hs---反洗膨胀高度,树脂层高50%左右。

Ht---顶部封头高度。

3、交换器连续工作时间:t=V r×Eg/《q×(H1-H2)》 (小时)V r---交换剂体积;q---交换器流量;Eg---交换剂的工作交换容量,一般阳树脂取1000mol/m3。

H1---原水中硬度,mmol/L.H2---出水残留硬度,mmol/L.4、再生剂用量:G z=V r×Eg×Bz/(1000×ε)Gz---再生剂用量;Bz---再生剂实际耗率,g/mol.ε---再生剂纯度,对NaCL,可取0.95。

常用再生剂的实际耗率顺流再生逆流再生再生剂:NaCL ;HCL NaCL ; HCL耗率:120-150 ;60-90 70-90; 30-60混合离子交换器设计计算:Q=3.14R2×VQ--混床的处理能力;单位m3/hR--混床的半径;单位mV--过滤流速,一般普通混床20-30m3/h精致混床30-40m3/h抛光混床40-60m3/h取石英砂10-12m/h;V=3.14R2×H×1000V--树脂的体积;单位kgR--混床的半径;单位mH--树脂的有效高度;单位m注:树脂总装高不小于1m阴阳离子交换树脂比例(阳:阴=1:1.3-2)混床的再生周期:阳树脂再生周期=(单台阳树脂体积/阳树脂工作交换容量)/(工作设备数量)/(阳离子含量)阴树脂再生周期=(单台阴树脂体积/阴树脂工作交换容量)/(工作设备数量)/(阴离子含量)阴阳树脂的再生周期中取较小值作为混床的再生周期水管管径和流量的关系:Q=3.14×(D/2)2×V×3600Q--流量;m3/hD--管道内径;mV--水在管中的流速;m/s无压力是V取1.5m/s;有泵提供压力时V取2.5m/s交换器再生条件的计算:1)利用计量箱液位差进行计算耗用30%浓度再生剂重量 = 计量箱截面积×计量箱液位差×30%浓度再生剂密度2)利用再生剂流量进行计算耗用30%浓度再生剂重量 = 再生剂流量×进再生剂时间×30%浓度再生剂密度3)利用再生液的浓度进行计算耗用30%浓度再生剂重量 = 喷射器工作水流量×再生液浓度÷30%×进再生剂时间再生液浓度的计算方法主要有:1)用计量箱液位下降速度进行计算再生液浓度(%)= 液位下降高度(m)×计量箱截面积(m2)×再生剂密度×30%÷喷射器工作水流量(m3/h)×102)用再生剂流量计进行计算再生液浓度(%)= 再生剂流量(m3/h)×30%×密度÷喷射器工作水流量(m3/h)×10现场交换器再生条件的确定1,阳床再生条件1)阳床再生用酸量的计算① 阳床正常再生时耗用浓度为30%的盐酸重量的计算用酸重量 = 树脂体积×树脂平均工交容量×36.5×再生剂比耗÷0.3÷1000000= 3.2m3×1200 mol/m3×36.5g/mol×1.25÷0.3÷1000000 = 0.58(吨)② 阳床大反洗后再生周期耗用浓度为30%的盐酸重量的计算用酸重量= 2×正常再生用酸量= 2×0.58 = 1.16吨采用1.2吨2)阳床的进酸时间的计算① 阳床正常再生时再生液浓度 = 3.5%再生时工作水流量 = 7.2m3/h按再生液浓度 = 3. 5%计算,浓度为30%的盐酸的流量= 7.2×3.5%÷0.3 = 0.84吨/小时阳床再生总进酸重 = 0.58吨总进酸时间= 0.58÷0. 84×60 = 41分钟在固定进酸量为0.58吨时,当采用不同再生液浓度时的进酸时间也应作必要的调整:实测浓度 % 3.2 3.3 3.4 3.5 3.6 进酸时间分钟 45 44 43 41 40 每分钟进酸量顿 0.013 0.013 0.0135 0.014 0.0145② 阳床大反洗后周期再生液浓度 = 5%再生工作水流量 = 7.2m3/h按再生液浓度 = 5%计算,浓度为30%的盐酸的流量= 7.2×5%÷0.3 = 1.20吨/小时阳床大反洗后周期再生总进酸重 = 1.2吨总进酸时间= 1.2÷1.2×60 = 60分钟不同再生液浓度时的进酸时间调整为:实测浓度 % 4.5 4.6 4.7 4.8 4.9 5.0 进酸时间分钟 67 65 64 63 61 60 每分钟进酸量顿 0.018 0.0185 0.019 0.019 0.02 0.02 2,阴床再生条件1)阴床的用碱量计算阴床内弱碱树脂及强碱树脂的总体积 = 4.8m3阴床弱碱树脂及强碱树脂的平均工交容量设定为700mol/m3总用碱重量 = 树脂体积×树脂平均工交容量×40×再生剂比耗÷0.3÷1000000= 4.8m3×700 mol/m3×40g/mol×1.20÷0.3÷1000000 = 0.54(吨)2)阴床根据再生液浓度计算两步进碱的时间① 阴床悬浮进碱时间计算悬浮进碱的再生液浓度设定 = 1.2%工作水流量 = 6m3/h按再生液浓度 = 1.2%计算,浓度为30%的液碱的流量= 6×1.2%÷0.3 = 0.24吨/小时悬浮进碱时间按60分钟计算悬浮进碱重量 = 0. 24 吨进碱时间按再生液浓度的调整为:实测浓度 % 1.0 1.1 1.2 1.3进碱时间分钟 72 65 60 55每分钟进碱量吨0.003 0.004 0.004 0.0045② 阴床逆流进碱时间的计算逆流进碱再生液浓度设定为2.6%工作水流量 = 6m3/h按再生液浓度 = 2.6%计算,浓度为30%的液碱的流量= 6×2.6%÷0.3 = 0.52吨/小时逆流进碱重量 = 总碱量-悬浮进碱时已进的碱液重量 = 0.54-0.24 = 0.30吨逆流进碱时间= 0.30÷0.52×60 = 35分钟进碱时间按再生液浓度的调整为:实测浓度 % 2.3 2.4 2.5 2.6进碱时间分钟 39 38 36 35每分钟进碱量吨 0.008 0.008 0.0085 0.0085。

国际通用离子交换技术手册

国际通用离子交换技术手册

国际通用离子交换技术手册摘要:一、离子交换技术概述1.离子交换的定义2.离子交换技术的作用和应用二、离子交换系统组成及工作原理1.离子交换柱2.阳树脂和阴树脂3.离子交换过程三、离子交换技术的分类1.强酸阳离子交换剂2.弱酸阳离子交换剂3.强碱阴离子交换剂4.弱碱阴离子交换剂四、离子交换技术的应用领域1.水质净化2.医药工业3.化工行业4.电子工业5.食品饮料行业五、离子交换技术的优缺点1.优点2.缺点六、离子交换技术的操作与维护1.操作注意事项2.维护保养七、离子交换技术的发展趋势1.环保型离子交换剂的研究2.智能化离子交换系统3.绿色水处理技术正文:一、离子交换技术概述离子交换技术是一种广泛应用于水处理、医药、化工、电子和食品饮料等领域的高效分离技术。

它通过离子交换柱,使水中的阳离子和阴离子与交换柱中的阳树脂和阴树脂发生交换,达到脱盐、除碱、软化水等目的。

二、离子交换系统组成及工作原理离子交换系统主要由离子交换柱、阳树脂和阴树脂组成。

离子交换柱是一种装有阳树脂和阴树脂的柱状容器,水通过交换柱时,其中的阳离子和阴离子与树脂中的H离子和OH离子进行交换,从而实现水质的改善。

三、离子交换技术的分类根据离子交换剂的特性,离子交换技术可分为强酸阳离子交换剂、弱酸阳离子交换剂、强碱阴离子交换剂和弱碱阴离子交换剂。

其中,强酸阳离子交换剂主要用于去除水中的钙、镁离子;弱酸阳离子交换剂主要用于去除水中的重金属离子;强碱阴离子交换剂主要用于去除水中的有机酸和阴离子;弱碱阴离子交换剂主要用于去除水中的碳酸氢根离子。

四、离子交换技术的应用领域离子交换技术在水质净化、医药工业、化工行业、电子工业和食品饮料行业等领域具有广泛的应用。

例如,在水质净化方面,离子交换技术可以用于去除水中的钙、镁、铁、锰等硬度和有害离子;在医药工业中,离子交换技术可以用于纯化药物成分和提纯生物制品;在化工行业中,离子交换技术可以用于废水处理和产品分离提纯;在电子工业中,离子交换技术可以用于半导体器件的制造和清洗;在食品饮料行业中,离子交换技术可以用于水软化、脱盐和提纯果汁等。

除盐离子交换器(顺流再生)设计数据

除盐离子交换器(顺流再生)设计数据
HC1
NaOH
HC1
NaOH
H2SO4
HC1
NaOH
再生剂(kg/kgCaCO3)
2-3
1.4-1.6
2-2.4
-
-
-1.2
-0.8
0.8-1
耗量(kg/m3R)
-
-
-
70-120
40-80
-
-
-
浓度(%)
一步再生1±0.2
3-4
2-3
5
4
1
2-2.5
2
流速(m/h)
一步再生8-10
4-6
4-6
5
5
>10
4-5
4-5
置换
流速(m/h)
同再生流速
时间(min)
计算确定
正洗
水耗(m3/m3R)
5-6
10-12
-
2-2.5
2.5-5
流速(m/h)
15-20
15-20
20-30
15-20
15-20
工作交换容量(kgCaCo3/m3R)
25-32.5
60-50
12.5-15
-
75-90
40-60
其他
-
再生时间不少于30min
正洗前空气混合,空气压力0.098-0.142MPa(1-1.5kg1/cm2),空气流量2-3标准m3/min,混合时间0.5-1min
-
注:1.当水质较好或采用自动控制时,强酸阳、强碱阴离子交换器运行滤速可按30m/h左右计算。
2.混合离子交换器系指体内再生设备。
设备名称
强酸阳离子交换器
强碱阴离子交换器
除盐离子交换器(顺流再生)设计数据

混合离子交换器说明书

混合离子交换器说明书

南通海容热能环境工程有限公司NAN TONG HAI RONG RE NENG HUAN JING GONG CHENG产品使用说明书CHAN PIN SHI YONG SHUO MING SHU混合离子交换器一、概述阴、阳混合离子交换器,俗称混床,是用于初级纯水的进一步精制。

一般设置于阴、阳离子交换器之后,也可设置在电渗析或反渗透后串联后使用。

当进水水质在一般含盐量下,出水含盐量可降至0.1毫克/升以下,含硅根≤0.02毫克/升,导电度≤0.02微姆/厘米。

处理后的高纯水可供高压锅炉、电子、医药、造纸、化工等工业部门应用。

二、工作原理混合离子交换法,就是把阴、阳离子交换树脂放置在同一个交换器中,在运行前将它们均匀混合,所以可看做是无数阴、阳交换树脂交错排列的多级式复床。

水中所含盐类的阴、阳离子通过该交换器,则被树脂交换,而得到高度纯水。

在混床中,由于阴、阳树脂是相互混匀的,所以其阴、阳离子交换反应几乎是同时进行。

或者说,水的阳离子交换和阴离子交换是多次交错进行的。

经H型交换所产生的H+和经OH交换所产生的OH-都不能积累起来,基本上消除了反离子的影响,交换进行得比较彻底。

其反应式为:Na 1/2SO4 Na 1/2SO4 RH+R′ OH+1/2C2 CL R 1/2Ca+R′ CL +H2OHCO3 HCO31/2Mg HSiO3 1/2Mg HSiO3由于进入混床的初级纯水的水质较好,交换器的负载较轻,树脂的交换能力很长时间才被耗竭。

本混床采用体内再生法。

再生时首先利用两种树脂的比重不同,用反洗使阴、阳离子交换树脂完全分离,阳树脂沉积在下,阴树脂浮在上面,然后阳树脂用盐酸再生,阴树脂用烧碱再生。

三、主要技术数据四、结构简述(1)再生装置阴离子交换树脂再生烧碱液在高于阴离子交换树脂面300毫米处母管进液,母管上分布绕丝支管进行布液。

阳离子交换树脂再生酸液由底部排水装置的多孔板上排水帽进入。

(2)中排装置中排装置设置在阴、阳树脂的分界面上,用于再生时排泄酸、碱还原液和冲洗液。

离子交换设计计算书(有公式)

离子交换设计计算书(有公式)

全自动软水器设计指导手册(附设计公式)目录一、总述 (1)1. 锅炉水处理监督管理规则 (1)2. 离子交换树脂内部结构 (1)3. 钠离子交换软化原理及特性: (2)4. 水质分析测试内容 (2)•PH值(Potential of Hydrogen) (2)•总溶解固体(TDS --TOTAL DISSOLVED SOLIDS) (2)•铁含量(IRON) (2)•锰........................................................•硬度值(HARDNESS) (3)•碱度 (3)•克分子(mol) (3)•当量 (4)•克当量 (4)•硬度单位 (4)•我国江河湖泊水质组成 (6)二、全自动软水器 (6)三、影响软水器交换容量的因素 (8)1. 流速(gpm/ft,m/h) (8)2. 水与树脂的接触时间:(gpm/ft3) (8)3. 树脂层的高度 (9)4. 进水含盐量 (10)5. 温度 (12)6. 再生剂质量(NaCl) (12)7. 再生液流量 (13)8. 再生液浓度 (14)9. 再生剂用量 (15)10. 树脂 (15)四、自动软水器设计 (15)1. 软水器设备应遵循的标准 (15)2. 全自动软水器主要参数计算 (16)1) 反洗流速的计算: (16)2) 系统压降计算 (16)3. 软水器设计计算步骤 (16)计算示例 (18)一、总述1.锅炉水处理监督管理规则第三条锅炉及水处理设备的设计、制造、检验、修理、改造的单位,锅炉及水处理药剂、树脂的生产单位,锅炉房设计单位,锅炉水质监测单位、锅炉水处理技术服务单位及锅炉清洗单位必须认真执行本规则。

第九条锅炉水处理是保证锅炉安全经济运行的重要措施,不应以化学清洗代替正常的水处理工作。

第十条生产锅炉水处理设备、药剂和树脂的单位,须取得省级以上(含省级)安全监察结构注册登记后,才能生产。

杜邦超纯水离子交换技术手册

杜邦超纯水离子交换技术手册

杜邦超纯水离子交换技术手册第一部分:引言杜邦超纯水离子交换技术手册是一本极具价值的工具书,它广泛涵盖了超纯水处理领域的相关知识和技术,对于超纯水制备、应用和质量控制至关重要。

本文将从不同角度探讨杜邦超纯水离子交换技术手册,帮助您更全面、深入地了解其中涉及的内容和应用。

第二部分:全面评估杜邦超纯水离子交换技术手册涵盖了超纯水处理的各个方面,包括工艺流程、设备选择、质量控制等。

这些内容涉及到离子交换树脂的选择与运用、超纯水的产生和处理、水质分析与监测等。

从生产实践的角度,该手册提供了详细的技术指导和操作流程,帮助人们更好地理解超纯水处理的关键环节。

第三部分:主题探讨在杜邦超纯水离子交换技术手册中,离子交换树脂的选择与运用是一个重要的主题。

该手册详细介绍了不同类型离子交换树脂的性能和特点,以及其在超纯水处理中的应用。

手册还探讨了离子交换树脂的再生与回收利用技术,为超纯水处理提供了可行的解决方案。

第四部分:总结回顾通过全面评估和主题探讨,我们深入了解了杜邦超纯水离子交换技术手册涉及的内容和应用。

该手册不仅提供了详细的技术资料和操作流程,还分享了丰富的生产实践经验。

在实际应用中,我们可以根据该手册提供的指导,制定合理的超纯水处理方案,确保超纯水的高质量和稳定供应。

第五部分:个人观点和理解作为一名超纯水处理领域的专业人士,我对杜邦超纯水离子交换技术手册有着深刻的理解和认识。

该手册的丰富内容和实用性让我受益匪浅,我相信在未来的工作中,能够更好地应用其中的技术指导,提升超纯水处理的效率和质量。

总结:杜邦超纯水离子交换技术手册是一本对超纯水处理领域具有重要价值的工具书,其内容涵盖了超纯水制备、应用和质量控制的方方面面。

通过本文的探讨,相信您对该手册的价值和意义有了更深入的了解,期待您能够在实践中充分利用其中的技术指导,为超纯水处理做出更大的贡献。

超纯水在许多领域都有着广泛的应用,特别是在半导体、电子、医药等行业。

离子交换器设计手册(内部资料)

离子交换器设计手册(内部资料)

石油化工有限公司炼油乙烯项目除盐水处理系统计算书设计原则1工艺流程的设计由于原水水质较好,水中TDS含量较低。

因此,本项目推荐选用传统的成熟工艺离子交换器作为系统的主脱盐设备;系统初期投资成本低、易于实现自动化。

离子交换器采用双床浮动床工艺,它具有处理水量大、占地面积小、交换容量高等优点。

根据计算,一级阳阴离子脱盐后的产水尚未达到生产工艺用水的要求,所以,在一级除盐装置之后,设置混合离子交换器,其出水水质完全满足设备采购方出水要求。

为保证关键设备离子交换器的长期可靠稳定运行,则必须设置符合水质特点的预处理系统,满足离子交换器进水指标:SS<3mg/L。

2工艺流程总述2.1工艺流程:由净化水场来的原水经过水处理系统后到达超高压锅炉给水的要求后,通过管道送到除氧水站供超高压和高压锅炉使用。

原水由全厂新鲜水管网送入除盐水站后,部分去凝结水换热后进生水罐,生水经新鲜水泵加压后,先经过滤器后进入阳离子交换器,因原水中HCO3-含量为20-42.1mg/L,为减少后级阴离子交换器的负荷,经过除CO2器除去重碳酸根后,由中间水泵经阴离子交换器和混合离子交换器后,去除盐水罐,最后由除盐水泵加压进除盐水管网供各用户使用。

主体设备为单元式运行排列,同时也考虑母管式的连接组合。

为了减少设备的台数、减少再生次数和酸碱耗量,增加运行时间。

工艺如下:(原水箱)→原水泵→多介质过滤器→阳离子交换器→脱塔碳→中间水箱→阴离子交换器→混合离子交换器→除盐水箱→除盐水泵→使用点2.2为了保证除盐水系统供应的可靠性,选择了五个系列;正常情况下,三个系列运行,一个系列再生,一个系列备用。

其中设备包括:10台150吨/小时的纤维球过滤器(Ø2600mm),5套300吨/小时阳离子交换器(Ø3000mm),5套300吨/小时阴离子交换器(Ø3000mm),5套300吨/小时混合离子交换器(Ø2800mm)及其它辅助设备等组成。

Septor离子交换手册

Septor离子交换手册

P1连续离子交换技术原理离子交换技术是基于树脂功能基团与物料中特定离子的吸附作用进行的交换过程,离子交换是可逆的等当量交换反应。

传统的离子交换应用时采用固定床实现的,我们对固定床的工作过程进行分析发现,在交换过程中树脂床将分为三段,即饱和区、活性区(传质区)和新鲜树脂区。

随着交换进行,传质区不断下移直至底部交换完全。

整个过程只有传质区处于工作状态,饱和区和新鲜树脂区闲置,因此树脂利用率低。

为了提高树脂利用率,我们把传质区进行抽象分割成几个小单元,一旦上面的小单元饱和后就移出来进行洗水及再生操作,处理用的新鲜树脂单元又回到传质区底部循环使用,这样大大提高树脂的利用率。

为了能够实现树脂单元自动高效的运作,我们采用了全新的系统设计理念,把树脂柱小单元放到一个转盘上,通过转盘的转动来实现切换,而物料通过一个自动旋转分配法控制,把树脂柱分成交换、水洗、再生、漂洗等功能区域,当树脂单元到达指定区域就执行相应的工艺过程,这样可以实现每个过程独立进行,而整体工艺成连续运行。

P2 连续离子交换系统特点连续离子交换工艺应用适宜采用SepTor IX转盘式系统,此系统具有独特的结构设计:SepTor IX转盘式系统特点:1、此系统由三部分组成:绿色的地面固定部分作为整个系统的支撑结构;红色的指示部分作为旋转阀的固定阀板,用于连接外部物料进出,实现功能分区;蓝色的转盘及旋转阀板部分,旋转阀板与转盘同步旋转,转盘上的树脂柱进出口与阀板中的开口一一对应,经由程序控制每次顺序旋转一定角度。

2、系统主要部件为系统中间的旋转分配阀和树脂柱转盘,转盘用于摆放树脂柱,一般为10个一圈排列,每个柱体分成两层或三层,从而组成20柱或30柱系统;旋转阀板和指示阀板相应的阀口对应连通,保证物料在适当的时间进入相应的树脂柱,旋转分配阀通过液压实现平面密封,保证多孔阀门不泄露不串料。

3、系统提高了树脂利用率,可以节省大量树脂,因此总树脂用量少,结构紧凑占地面积小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离子交换器设计手册
离子交换器是一种将水中的离子与其他离子交换的设备。

它们广泛用于水处理、食品加工、制药、化学工业等领域。

离子交换器的设计需要考虑许多因素,例如操作条件、流量要求、材料选择等。

以下是离子交换器设计的一些基本步骤和注意事项:
1. 确定工作条件和要求
首先需要确定设备的工作条件和要求,例如水源的水质、需要去除或交换的离子种类和浓度、流量要求、操作温度和压力等。

2. 选择适当的离子交换树脂
根据需要交换的离子种类选择合适的离子交换树脂。

不同的离子交换树脂对不同的离子有不同的选择性,因此选择正确的树脂非常重要。

3. 设计交换器的尺寸和形状
交换器的尺寸和形状应该考虑到流动性能和操作效率。

通常情况下,为了达到所需的流量和交换效率,交换器应越大越好。

4. 选择材料
交换器的材料需要能够承受操作条件下的温度和压力,并且不
与水或其他介质发生化学反应。

常用的材料包括聚丙烯、I型玻璃钢等。

5. 设计操作模式
可以采用连续和间歇操作两种模式。

连续操作适用于流量较大的情况,间歇操作适用于流量较小的情况。

6. 考虑后处理
离子交换后的水可能含有一些有害物质,如二氧化碳、氯化物等,因此需要考虑后处理步骤,例如加气、过滤等。

综上所述,离子交换器设计需要综合考虑多个因素,例如操作条件、材料选择、流量要求等,才能设计出高效、稳定和可靠的设备。

相关文档
最新文档