工程材料学(第8章 铝合金)
合集下载
铝及其合金超强ppt

(4)形成稳定θ相 时效后期,过渡相θ'从铝基固溶体中完全脱溶, 形成与基体有明显相界面的独立的稳定相 CuAl2,称为θ相,此时θ相与基体的共格关系 完全破坏,共格畸变也随之消失。并随时效温 度的提高或时间的延长,θ相的质点聚集长大 合金的强度、硬度进一步降低。 以上讨论表明,4%Cu-Al合金时效的基本过程 可以概括为:过饱和固溶体→形成铜原子富集 区(GP区)→铜原子富集区有序化形成θ“相→形 成过渡相θ„→析出稳定相θ(CuAl2)+平衡的α固 溶体(图8-5)。
防锈铝合金包括铝-镁系合金、铝-锰系合金。 防锈铝用“铝”和“防”二字的汉语拼音第一个字母
“L”和“F”加顺序号表示,如五号防锈铝用LF5表示。
1、铝锰防锈铝合金
锰在铝中的最大溶解度为1.82%。锰和铝形成的金属
间化合物MnAl6的沉淀强化效应小,但其弥散析出质 点可阻止晶粒长大,细化合金的晶粒。锰溶于α相起固 溶强化作用,减慢扩散速度,提高再结晶温度。 常用的铝锰合金为LF21合金,含锰1.0-1.6%,显微组 织为含锰的α固溶体和弥散分布的MnAl6质点,有较高 的强度和优良的塑性。 LF21合金在大气和海水中与纯铝的耐蚀性相当,有良 好的工艺性能,在航空工业中用于承受深冲加工而受 力不大的零件,如油箱、润滑油导管、铆钉等零件, 以及建筑构件。 表8-2为LF21合金的力学性能。
(2)固溶处理(淬火)工艺
(3)时效温度 合金的时效过程亦是一种固态相变过程,析出 相的生核与长大伴随着溶质原子的扩散过程, 在不同温度时效时,析出相的临界晶核大小、 数量、分布以及聚集长大的速度不同,因而表 现出不同的时效强化曲线。各种不同合金都有 最适宜的时效温度。 若时效温度过低,由于扩散困难,GP区不易 形成,时效后强度、硬度低;当时效温度过高 时,扩散易于进行,则过饱和固溶体中析出相 临界晶核尺寸大、数量少,化学成分更接近平 衡相,结果在时效强化曲线上达到最大强度值 所需的时间短,强度峰值低(图8-6)。
金属材料学第8章铝及铝合金

凡是未在铝合金国际牌号注册协议组织注册命名的, 采用国际四位字符体系牌号:XAXX 第1、3和4位为数字,其意义与在国际四位数字体系 牌号命名方法中的相同;
第2位用英文大写字母,表示合金的改型
第 八章
铝及铝合金
第一节 铝及铝合金的分类 二、变形铝合金体系
(二)中国牌号
2. 新牌号(1997年开始使用)
低镁的防锈铝如LF2, LF3等在日常生活中用得较多, b=200MPa左右
高镁的防锈铝如LF5, LF6等在航空航天工业中用得 较多,b=315MPa左右
第 八章
铝及铝合金
第三节 几种典型的变形铝合金 二、硬铝合金
主要介绍Al-Cu-Mg系硬铝合金:LY1, LY2…LY11,…LY13
典型热处理为固溶淬火后自然时效4昼夜 淬火后半小时内很软,可以加工成任意形状
应用:在航空航天领域得到广泛应用,如制作飞机蒙皮、框 架等
第 八章
铝及铝合金
第三节 几种典型的变形铝合金 三、超硬铝合金 Al-Zn-Mg-Cu系,典型代表:LC6(强度最高的铝合金) 化学成分: 7.6~8.6%Zn , 2.5~3.2%Mg, 2.2~2.8%Cu 显微组织:主要强化相为(MgZn2),其它还有
以有色重金属为基的合金称为重有色合金。
有色金属有许多优良的性能,如密度小、比强度大、比模量高、耐热、耐腐蚀 以及良好的导电性和导热性, 同时许多有色金属又是制造各种优质合金钢和耐热钢所必需的合金元素,因此 有色金属在金属材料中占有重要的地位,是现代航天、航空、原子能、计算机、 电子、汽车、船舶、石油化工等工业必不可少的材料。
S´(Al2CuMg), ´(Al2Cu), T(Al2Mg3Zn)等
力学性能: b 600 MPa, =4% பைடு நூலகம் 性能特点:
第2位用英文大写字母,表示合金的改型
第 八章
铝及铝合金
第一节 铝及铝合金的分类 二、变形铝合金体系
(二)中国牌号
2. 新牌号(1997年开始使用)
低镁的防锈铝如LF2, LF3等在日常生活中用得较多, b=200MPa左右
高镁的防锈铝如LF5, LF6等在航空航天工业中用得 较多,b=315MPa左右
第 八章
铝及铝合金
第三节 几种典型的变形铝合金 二、硬铝合金
主要介绍Al-Cu-Mg系硬铝合金:LY1, LY2…LY11,…LY13
典型热处理为固溶淬火后自然时效4昼夜 淬火后半小时内很软,可以加工成任意形状
应用:在航空航天领域得到广泛应用,如制作飞机蒙皮、框 架等
第 八章
铝及铝合金
第三节 几种典型的变形铝合金 三、超硬铝合金 Al-Zn-Mg-Cu系,典型代表:LC6(强度最高的铝合金) 化学成分: 7.6~8.6%Zn , 2.5~3.2%Mg, 2.2~2.8%Cu 显微组织:主要强化相为(MgZn2),其它还有
以有色重金属为基的合金称为重有色合金。
有色金属有许多优良的性能,如密度小、比强度大、比模量高、耐热、耐腐蚀 以及良好的导电性和导热性, 同时许多有色金属又是制造各种优质合金钢和耐热钢所必需的合金元素,因此 有色金属在金属材料中占有重要的地位,是现代航天、航空、原子能、计算机、 电子、汽车、船舶、石油化工等工业必不可少的材料。
S´(Al2CuMg), ´(Al2Cu), T(Al2Mg3Zn)等
力学性能: b 600 MPa, =4% பைடு நூலகம் 性能特点:
工程材料学(第8章 铝合金)

第二相称作过剩相。 2)过剩相对合金性能的影响 : 过剩相一般为强硬脆的 金属间化合物,当其数量一定且分布均匀,对铝合金有较 好的强化作用,但会使合金塑性韧性下降;数量过多还会
脆化合金,其强度也会下降。
3)变质处理 :以铝硅合金为例(如图所示),共晶组织中 的硅晶体呈初针状或片状,此时共晶的强度和塑性很低, 若使共晶硅细化成颗 粒,可以显著改善组 织的塑性。通常采用
变质处理,加入钠盐
变质剂,使共晶合金 变成α固溶体和细小的 共晶组成的亚共晶组 织,共晶中硅呈细粒
状。
4、细晶强化:
通过向合金中加入微量合金元素,或改变加工工艺及 热处理工艺,使合金基体及沉淀相和过剩相细化,既提高 合金的强度,还会改善合金的塑性和韧性。 如:变形铝合金的形 变再结晶退火,铸造铝合 金通过改变铸造工艺(如
3、导电,导热性好(纯铝的导电性仅次于Ag、Cu、Au 而位居第四位,约为纯铜导电率的60%); 4、耐蚀性好(Al2O3膜的存在,只有在卤素离子及碱离子 的强烈作用下氧化膜才会遭到破坏); 5、优良的工艺性能(极好的铸造性能,良好的可塑性)。
工业纯铝
物理性能
工业纯铝有银白色光泽,密度小( 2.72g/cm3 ),熔点低(660℃),
原子无法一一匹配,界面能大,晶格不发生弹性变形。
3、脱溶的一般序列:
凡是有固溶度变化的相图,从单相区进行两相区时都会 发生脱溶沉淀。 现以Al-Cu合金为例说明脱溶转变的过程:从Al-Cu 合金相图可知,该合金室温组织由 α固溶体和 θ相( CuAl2)
构成,加热到550℃保温,使θ溶入α,得单相α固溶体,如
2)脱溶时的能量变化: 若脱溶过程能够进行,则必有△G<0(其中△G表示 新相和母相的自由能差)。 △G=-V△GV+Sσ+V△Ge
脆化合金,其强度也会下降。
3)变质处理 :以铝硅合金为例(如图所示),共晶组织中 的硅晶体呈初针状或片状,此时共晶的强度和塑性很低, 若使共晶硅细化成颗 粒,可以显著改善组 织的塑性。通常采用
变质处理,加入钠盐
变质剂,使共晶合金 变成α固溶体和细小的 共晶组成的亚共晶组 织,共晶中硅呈细粒
状。
4、细晶强化:
通过向合金中加入微量合金元素,或改变加工工艺及 热处理工艺,使合金基体及沉淀相和过剩相细化,既提高 合金的强度,还会改善合金的塑性和韧性。 如:变形铝合金的形 变再结晶退火,铸造铝合 金通过改变铸造工艺(如
3、导电,导热性好(纯铝的导电性仅次于Ag、Cu、Au 而位居第四位,约为纯铜导电率的60%); 4、耐蚀性好(Al2O3膜的存在,只有在卤素离子及碱离子 的强烈作用下氧化膜才会遭到破坏); 5、优良的工艺性能(极好的铸造性能,良好的可塑性)。
工业纯铝
物理性能
工业纯铝有银白色光泽,密度小( 2.72g/cm3 ),熔点低(660℃),
原子无法一一匹配,界面能大,晶格不发生弹性变形。
3、脱溶的一般序列:
凡是有固溶度变化的相图,从单相区进行两相区时都会 发生脱溶沉淀。 现以Al-Cu合金为例说明脱溶转变的过程:从Al-Cu 合金相图可知,该合金室温组织由 α固溶体和 θ相( CuAl2)
构成,加热到550℃保温,使θ溶入α,得单相α固溶体,如
2)脱溶时的能量变化: 若脱溶过程能够进行,则必有△G<0(其中△G表示 新相和母相的自由能差)。 △G=-V△GV+Sσ+V△Ge
金属材料学-第8章 铝合金

美F-117隐身战斗机 (所用材料大部分是铝合金)
3.铝合金分类
铝合金分类
变形铝合金(1):成分小于B点的合金, 塑性好,能进行压力加工成 形。
铸造铝合金(2):成分大于B点的合金, 由于凝固时发生共晶反应, 熔点低、流动性好,铸造性 能好,能进行铸造成形。
变形铝合金又分 不可热处理强化(3) 可热处理强化(4)
“时效”用于非晶型转变的淬火合金
淬火+时效组织形成示意图
4.铝合金时效析出过程
(1)以Al-Cu合金为例
第一阶段:形成铜原子富集区
铜富集区 称G.P.区
晶体结构与基体α相同, 与基体形成共格应变区,引 起点阵畸变。
强度、硬度↑。G.P.呈盘状,仅几个原 子层厚,室温下直径约5nm,超过200℃ 就不再出现G.P.区。
b) 稳定性较小的脱溶相经晶格改组转变成更稳定的 脱溶相。例如Al-Cu中的GP区改组为θ ”, θ′改组 为θ
c) 较稳定的相在较不稳定的相中成核,然后在基体 中长大。
(3)影响时效强化的主要因素
化学 成分
取决于溶质元素的固溶度、固溶度随温度的变化 程度,及析出相与基体结构的差异。
固溶 处理
规律:淬火T越高,淬火冷却V越快,转移t越 短,过饱和程度越高,时效强化效果也越大
二、 铝的合金强化
合金元素主要强化作用有:固溶强化,沉淀强化,过 剩相强化和细化组织强化
1. 固溶强化
合金元素加入到纯铝中,形成铝基固溶体,导致晶 格发生畸变,增加位错运动阻力,从而提高强度。
固溶强化效果不高,得结合其他强化手段共同强化
2. 沉淀强化(时效强化)
Al中添加在高温下有较高溶解度极限的合金元素, 这些合金元素随温度的降低,溶解度急剧下降,沉淀 析出,均匀、弥散的共格或半共格强化相,在基体中 形成较强的应变场,增加位错运动的阻力
3.铝合金分类
铝合金分类
变形铝合金(1):成分小于B点的合金, 塑性好,能进行压力加工成 形。
铸造铝合金(2):成分大于B点的合金, 由于凝固时发生共晶反应, 熔点低、流动性好,铸造性 能好,能进行铸造成形。
变形铝合金又分 不可热处理强化(3) 可热处理强化(4)
“时效”用于非晶型转变的淬火合金
淬火+时效组织形成示意图
4.铝合金时效析出过程
(1)以Al-Cu合金为例
第一阶段:形成铜原子富集区
铜富集区 称G.P.区
晶体结构与基体α相同, 与基体形成共格应变区,引 起点阵畸变。
强度、硬度↑。G.P.呈盘状,仅几个原 子层厚,室温下直径约5nm,超过200℃ 就不再出现G.P.区。
b) 稳定性较小的脱溶相经晶格改组转变成更稳定的 脱溶相。例如Al-Cu中的GP区改组为θ ”, θ′改组 为θ
c) 较稳定的相在较不稳定的相中成核,然后在基体 中长大。
(3)影响时效强化的主要因素
化学 成分
取决于溶质元素的固溶度、固溶度随温度的变化 程度,及析出相与基体结构的差异。
固溶 处理
规律:淬火T越高,淬火冷却V越快,转移t越 短,过饱和程度越高,时效强化效果也越大
二、 铝的合金强化
合金元素主要强化作用有:固溶强化,沉淀强化,过 剩相强化和细化组织强化
1. 固溶强化
合金元素加入到纯铝中,形成铝基固溶体,导致晶 格发生畸变,增加位错运动阻力,从而提高强度。
固溶强化效果不高,得结合其他强化手段共同强化
2. 沉淀强化(时效强化)
Al中添加在高温下有较高溶解度极限的合金元素, 这些合金元素随温度的降低,溶解度急剧下降,沉淀 析出,均匀、弥散的共格或半共格强化相,在基体中 形成较强的应变场,增加位错运动的阻力
工程材料学 第8章 有色金属材料(修改)

工程材料学
第二节 铝及铝合金
3、常用铝合金
一)形变铝合金
卫星天线LF2
1、防锈铝合金
有Al—Mn系合金和Al—Mg系合金。因时效硬化效果不好,
不宜热处理强化,可通过冷加工提高其强度和硬度。常用
来制造航空油箱、油管、以及器皿、日用品、门窗装饰品
等。
GB/T16475 GB3190-
-1996
82
抗拉强度时间
如:4%Cu的Al-Cu合金,加热到550℃并保温, 在 水中快冷时, θ相(CuAl2)来不及析出, 合金获得过饱和的 α 固溶体组织, 其强度为σb=250MPa
若在室温下放置, 随着时间的延续, 强度将逐渐提 高, 经4~5天后, σb可达400MPa。
工程材料学
铝合金热处理
Al-Cu合金时效处理析出相顺序:GP区——θ’’——θ’——θ(CuAl2) 共格 半共格 非共格 工程材料学
第八章 非铁金属材料
主讲人:胡树兵
Outline
1 概论 2 铝及铝合金 3 铜及铜合金 4 钛及钛合金 5 滑动轴承合金
2016/4/1
第一节 概论
1.定义 : 除黑色金属 ( 钢、铁 ) 以外的所有金 属。
2.性能特点:密度小、比强度高、耐蚀性好、导 电导热性优良等
3.分类
重金属(密度>3.5): Cu、Ni 等。 轻金属(密度<3.5):Al、Mg 等。 贵重金属: Au、Ag、Pt 等。 稀有金属:W、Ti、Ra、Nb 等。 半金属:Si、Te、B 等。
铸造铝合金 成分高于D的合 金, 由于冷却时有共晶反应发生, 流动性较好, 适于铸造生产, 称为 可铸造铝合金。
工程材料学
第二节 铝及铝合金
2、铝合金热处理
第二节 铝及铝合金
3、常用铝合金
一)形变铝合金
卫星天线LF2
1、防锈铝合金
有Al—Mn系合金和Al—Mg系合金。因时效硬化效果不好,
不宜热处理强化,可通过冷加工提高其强度和硬度。常用
来制造航空油箱、油管、以及器皿、日用品、门窗装饰品
等。
GB/T16475 GB3190-
-1996
82
抗拉强度时间
如:4%Cu的Al-Cu合金,加热到550℃并保温, 在 水中快冷时, θ相(CuAl2)来不及析出, 合金获得过饱和的 α 固溶体组织, 其强度为σb=250MPa
若在室温下放置, 随着时间的延续, 强度将逐渐提 高, 经4~5天后, σb可达400MPa。
工程材料学
铝合金热处理
Al-Cu合金时效处理析出相顺序:GP区——θ’’——θ’——θ(CuAl2) 共格 半共格 非共格 工程材料学
第八章 非铁金属材料
主讲人:胡树兵
Outline
1 概论 2 铝及铝合金 3 铜及铜合金 4 钛及钛合金 5 滑动轴承合金
2016/4/1
第一节 概论
1.定义 : 除黑色金属 ( 钢、铁 ) 以外的所有金 属。
2.性能特点:密度小、比强度高、耐蚀性好、导 电导热性优良等
3.分类
重金属(密度>3.5): Cu、Ni 等。 轻金属(密度<3.5):Al、Mg 等。 贵重金属: Au、Ag、Pt 等。 稀有金属:W、Ti、Ra、Nb 等。 半金属:Si、Te、B 等。
铸造铝合金 成分高于D的合 金, 由于冷却时有共晶反应发生, 流动性较好, 适于铸造生产, 称为 可铸造铝合金。
工程材料学
第二节 铝及铝合金
2、铝合金热处理
金属工艺学第8章课件.ppt

8.2.3 铜合金
8.2 铜及铜合金
2)几种常见的青铜
(1) 锡青铜 (2) 铝青铜 (3) 硅青铜 (4) 铍青铜
8.2.3 铜合金
8.2 铜及铜合金
3)百铜:
以镍为主要合金元素的铜合金称为 白铜。在固态下,铜与镍无限固溶,因 此工业白铜的组织为单相固溶体。白铜 按化学成分分为普通白铜和特殊白铜两 种。其中,特殊白铜是在普通白铜中加 人锌、铝、铁、锰等元素组成的合金。
8.1.2 铝合金
8.1 铝及铝合金
铝 合 金 分 类 示 意 图
4
8.1.2 铝合金
8.1 铝及铝合金
(1)
铸造铝合金
(2)
变形铝合金
5
8.1.2 铝合金
8.1 铝及铝合金Βιβλιοθήκη 68.1.2 铝合金
8.1 铝及铝合金
7
8.1.2 铝合金
8.1 铝及铝合金
8
8.1.2 铝合金
8.1 铝及铝合金
9
8.1 铝及铝合金
8.1.3 铝合金的热处理
1. 固溶处理
3. 其他处理方法
2. 时效处理
10
8.2.1 工业纯铜
8.2 铜及铜合金
纯铜具有很强的导电性、导热件,仅次于银 而居于第二位。
纯铜的抗拉强度不是很高,硬度低,但塑性 很好,易于热压或冷加工。
纯铜中由于含有:Pb、Bi、O、S、P等杂质, 不仅降低了铜的导电、导热性能,还造成脆性断 裂。
2)特殊黄铜的分 类、性能及应用
为改善普通黄铜 的机械性能、抗蚀 性能或某些工艺性 能,而在其中加人 别的合金元素的黄 铜,称为特殊黄铜 或复杂黄铜。
8.2.3 铜合金
8.2 铜及铜合金
铝合金非常学习.pptx

合金系 含Al >99.00% Cu Mn Si Mg Mg和Si Zn 其它
第12页/共104页
目前我国变形铝合金牌号 表示方法基本与美国相同,不同之处在于第二位不用阿拉伯数字,而是用英文字母: 例如:7A04、7B04
第13页/共104页
状态:
F-加工态(热轧、挤压),不控制应变硬化量 O-退火再结晶状态,强度最低、塑性最高 W-固溶处理正在自然时效过程(不稳定) H-冷作硬化状态 T-热处理状态
第9页/共104页
国产变形铝合金分五大类,常见只有四大类
名称 防锈铝 硬铝 锻铝 超硬铝 特殊铝
牌号 LF╳╳ LY╳╳ LD╳╳ LC╳╳ LT╳╳
合金系 Al-Mn和Al-Mg Al-Cu-Mg Al-Mg-Si-(Cu) Al-Zn-Mg-Cu 其它
第10页/共104页
(2)美国变形铝合金牌号及状态
第16页/共104页
T1- 从高温成形过程冷却和自然时效至基本稳定的状态 T2- 从高温成形过程冷却,然后冷加工和自然时效至基本稳定的
状态 T3- 固溶处理、冷加工和自然时效至基本稳定的状态 T4- 固溶处理,自然时效到基本稳定的状态 T5- 从高温成形过程冷却,然后进行人工时效的状态 T6- 固溶处理,人工时效到强度最高的状态 T7- 固溶处理,人工时效到过时效状态(稳定化处理的状态) T8- 固溶处理后冷加工,然后进行人工时效的状态 T9- 固溶处理、人工时效、然后冷加工的状态 T10-从高温成形工序冷却,然后冷加工并进行人工时效的状态
第14页/共104页
应变硬化状态:
H1-应变硬化。 H2-应变硬化加不完全退火。 H3-应变硬化稳定处理。 H112-加工过程的应变硬化(不控制应变量)。 H321-加工过程的应变硬化(控制应变量)。 H116-特殊应变硬化。
工程材料学 第8章

在机械生产中,为了稳定铸件尺寸, 在机械生产中,为了稳定铸件尺寸,常将铸件在 室温下长期放置,然后才进行切削加工。 室温下长期放置,然后才进行切削加工。这种措 施也被称为时效。但这种时效不属于热处理工艺。 施也被称为时效。但这种时效不属于热处理工艺。
(2)细晶强化(变质处理) )细晶强化(变质处理)
一、铝及铝合金
1.铝及铝合金的性能特点 1.铝及铝合金的性能特点
(1)优良的物理性能 (2)抗大气腐蚀性能好 加工性能好、 (3)加工性能好、比强度高
(1)优良的物理性能 ) 密度小,熔点低,导电性、导热性好,磁化率低。 密度小,熔点低,导电性、导热性好,磁化率低。
纯铝的密度2.72g/cm3,仅为铁的 , 仅为铁的1/3, 纯铝的密度 熔点为660.4℃, 熔点为 ℃ 导电性仅次于Cu、Au、Ag。 导电性仅次于 、 、 。
• 时效
这种过饱和固溶体是不稳定的,在室温放置或在低于固 这种过饱和固溶体是不稳定的, 溶度线的某一温度下加热时,使过饱和α固溶体趋于发 溶度线的某一温度下加热时,使过饱和 固溶体趋于发 生某种程度的分解,使合金的强度和硬度明显提高, 生某种程度的分解,使合金的强度和硬度明显提高,这 种现象称为时效或时效硬化(时效强化)。 种现象称为时效或时效硬化(时效强化)。 在室温下进行的时效称为自然时效, 在室温下进行的时效称为自然时效,在加热条件下进行 的时效称为人工时效。 的时效称为人工时效。
第八章 有色金属及合金
• 工业生产中,通常把以铁为基的金属材料称为黑色 工业生产中, 金属,如钢与铸铁, 金属,如钢与铸铁,把非铁金属及其合金称为有色 金属,如铅、金属、 铜等, 金属,如铅、金属、镍、锌、钛、铜等,金属及合 金。 • 有色金属及合金与钢铁材料相比,具有许多特殊性 有色金属及合金与钢铁材料相比, 是现代工业生活中不可缺少的金属材料。 能,是现代工业生活中不可缺少的金属材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如:变形铝合金的形 变再结晶退火,铸造铝合 金通过改变铸造工艺(如 变质处理)及加入微量元 素(如0.1~0.3%Ti)的方 法(分析铝钛相图)都可 以达到细化组织的目的。
5、形变强化: 对合金进行冷塑性变形,利用金属的加工硬化提高合
金强度。这是不能热处理强化铝合金的主要强化方法。
沉淀强化相的脱溶过程
铸造铝合金:
是指成分比D点高的合金属铸造铝合金。这类合金有良 好的铸造性能,熔液流动性好,收缩性好,抗热裂性高, 可直接浇铸在砂型或金属型内,制成各种形状复杂的甚至 薄壁的零件或毛坯。
铝合金的强化方式
1、固溶强化:
铝合金中常加入的主要合金元素Cu,Mg,Zn,Mn, Si,Li等都与Al形成有限固溶体,有较大的固溶度(见表 10-1),具有较好的固溶强化效果。
1、概述: 1)定义: 淬火是指将合金通过加热到固溶体溶解度曲 线以上温度保温,然后以大于临界冷却速度急速冷却,从 而得到过饱和固溶体的热处理方法。 时效是指将淬火状 态的合金在一定温度下保持适当时间,使淬火得到的过饱 和固溶体发生分解,从而大大提高合金的强度。
2)淬火及时效的作用: 铝合金重要的综合热处理方式,提高铝合金强度的重
要手段。
3)淬火后合金性能的变化 对铝合金及大多数有色金属合金而言:经过淬火,不
同合金的性能变化也大不相同。可能有四种情况:①σ↑, δ或ψ↓;②σ↓,δ或ψ↑;③σ↑,δ或ψ↑;④σ,δ或ψ基本无 变化。
固态铝具有面心立方晶体结构,无同素异构转变。因此铝具有良好 的塑性和韧性,在0~253℃之间塑性韧性不降低。
分类
纯铝按其纯度分为高纯、工业高纯和工业纯,纯度依次降低。
应用
工业纯铝强度低,室温下仅为(45~50)MPa,故一般不宜用作结构 材料。工业纯铝主要用作配制铝基合金;高纯铝则主要用于科学试验, 化学工业和其他特殊领域。此外纯铝还可用于制作电线、铝箱、屏蔽壳 体、反射器、包覆材料及化工容器等。
铝合金的分类及强化
铝的合金化和强化方式
为改善铝的机械性能,研究发现向铝中加入适量的某 些合金元素,并进行冷变形加工或热处理,可大大提高其 机械性能,其强度甚至可以达到钢的强度指标。
目 前 铝 中 主 要 可 能 加 入 的 合 金 元 素 有 Cu 、 Mg 、 Si 、 Mn、Zn和Li等,它们可单独加入,也可配合加入。由此得 到多种不同工程应用的铝合金。除上述主加元素外,许多 Al合金还常常要加入一些辅助的微量元素,如Ni、B、Zr、 Cr、Ti、稀土等,进一步改善合金的综合性能。
本篇主要介绍目前工程中广泛应用的铝、镁、钛、 铜及其合金和相关材料,了解这些材料的典型性能特 点,合金化及热处理以及材料一般用途等。
第一节 铝合金中的合金元素
概述
1、产量占有色金属首位;成本低廉(地壳含量8.2%); 2、密度低( 2.63~2.85g/cm3 ),比强度高; 3、导电,导热性好(纯铝的导电性仅次于Ag、Cu、Au
相图分析:
2、时效(沉淀)强化:
单纯靠固溶作用对Al合金的强化作用是很有限的,另 一种更为有效的强化方式是Al合金的固溶(淬火)处理+ 时效热处理。
铝合金中较强的沉淀强化效果的基本条件: ① 沉淀强化相是硬度高的质点; ② 加入铝中的合金元素应有较高的极限固溶度,且
其随温度降低而显著减小; ③ 淬火后形成的过饱和固溶体在时效过程中能析出
无论加入哪种合金元素,各类Al合金的相图一般都具 有如下图的形式,相图靠Al端都具有共晶相图特点。
以相图上合金元素在Al中的最大饱和溶解度D为界线将 各种Al合金分为变形铝合金和铸造铝合金两大类。
变形铝合金
是指成分小于D点的合金可以得到单相固溶体组织, 塑性变形能力好,适合于冷热加工。
变形铝合金又可分为热处理强化和不可热处理强化铝 合金两种:成分小于F点的合金其固溶体成分不随温度而 变化,故不能用热处理强化; 反之则可以通过时效处理而 沉淀强化。
第八章 铝合金
铝合金、镁合金和钛合金质轻又耐蚀,为航空结 构件之优选材料。铜和铜合金有很好导电和导热性, 为电气和仪表元器件之优选。
金属分为黑色金属和有色金属两大类,黑色金属包 括铁、铬、锰;工业中主要是指钢铁材料。而黑色金属 以外的所有金属则为有色金属(非铁金属材料)。相对 于黑色金属,有色金属有许多优良的特性,在工业领域 尤其是高科技领域具有极为重要的地位。
3)变质处理 :以铝硅合金为例(如图所示),共晶组织中 的硅晶体呈初针状或片状,此时共晶的强度和塑性很低,
若使共晶硅细化成颗 粒,可以显著改善组 织的塑性。通常采用 变质处理,加入钠盐 变质剂,使共晶合金 变成α固溶体和细小的 共晶组成的亚共晶组 织,共晶中硅呈细粒 状。
4、细晶强化:
通过向合金中加入微量合金元素,或改变加工工艺及 热处理工艺,使合金基体及沉淀相和过剩相细化,既提高 合金的强度,还会改善合金的塑性和韧性。
均匀,弥散的共格或半共格的亚稳相,在基体中 能形成强烈的应变场。
3、过剩相强化:
1)定义: 当合金元素加入量超过其极限溶解度时,合 金固溶处理时就有一部分第二相不能溶入固溶体,这部分 第二相称作过剩相。
2)过剩相对合金性能的影响 : 过剩相一般为强硬脆的 金属间化合物,当其数量一定且分布均匀,对铝合金有较 好的强化作用,但会使合金塑性韧性下降;数量过多还会 脆化合金,其强度也会下降。
例如:铝、镁、钛、铍等轻金属具有相对密度小、 比强度高等特点,广泛用于航空航天、汽车、船舶和 军事领域;银、铜、金(包括铝)等贵金属具有优良 导电导热和耐蚀性,是电器仪表和通讯领域不可缺少 的材料;镍、钨、钼、钽及其合金是制造高温零件和 电真空元器件的优良材料;还有专用于原子能工业的 铀、镭、铍;用于石油化工领域的钛、铜、镍等。
而位居第四位,约为纯铜导电率的60%); 4、耐蚀性好(Al2O3膜的存在,只有在卤素离子及碱离子
的强烈作用下氧化膜才会遭到破坏); 5、优良的工艺性能(极好的铸造性能,良好的可塑性)。
工业纯铝
物理性能
工业纯铝ห้องสมุดไป่ตู้银白色光泽,密度小(2.72g/cm3),熔点低(660℃), 为非磁性材料。
5、形变强化: 对合金进行冷塑性变形,利用金属的加工硬化提高合
金强度。这是不能热处理强化铝合金的主要强化方法。
沉淀强化相的脱溶过程
铸造铝合金:
是指成分比D点高的合金属铸造铝合金。这类合金有良 好的铸造性能,熔液流动性好,收缩性好,抗热裂性高, 可直接浇铸在砂型或金属型内,制成各种形状复杂的甚至 薄壁的零件或毛坯。
铝合金的强化方式
1、固溶强化:
铝合金中常加入的主要合金元素Cu,Mg,Zn,Mn, Si,Li等都与Al形成有限固溶体,有较大的固溶度(见表 10-1),具有较好的固溶强化效果。
1、概述: 1)定义: 淬火是指将合金通过加热到固溶体溶解度曲 线以上温度保温,然后以大于临界冷却速度急速冷却,从 而得到过饱和固溶体的热处理方法。 时效是指将淬火状 态的合金在一定温度下保持适当时间,使淬火得到的过饱 和固溶体发生分解,从而大大提高合金的强度。
2)淬火及时效的作用: 铝合金重要的综合热处理方式,提高铝合金强度的重
要手段。
3)淬火后合金性能的变化 对铝合金及大多数有色金属合金而言:经过淬火,不
同合金的性能变化也大不相同。可能有四种情况:①σ↑, δ或ψ↓;②σ↓,δ或ψ↑;③σ↑,δ或ψ↑;④σ,δ或ψ基本无 变化。
固态铝具有面心立方晶体结构,无同素异构转变。因此铝具有良好 的塑性和韧性,在0~253℃之间塑性韧性不降低。
分类
纯铝按其纯度分为高纯、工业高纯和工业纯,纯度依次降低。
应用
工业纯铝强度低,室温下仅为(45~50)MPa,故一般不宜用作结构 材料。工业纯铝主要用作配制铝基合金;高纯铝则主要用于科学试验, 化学工业和其他特殊领域。此外纯铝还可用于制作电线、铝箱、屏蔽壳 体、反射器、包覆材料及化工容器等。
铝合金的分类及强化
铝的合金化和强化方式
为改善铝的机械性能,研究发现向铝中加入适量的某 些合金元素,并进行冷变形加工或热处理,可大大提高其 机械性能,其强度甚至可以达到钢的强度指标。
目 前 铝 中 主 要 可 能 加 入 的 合 金 元 素 有 Cu 、 Mg 、 Si 、 Mn、Zn和Li等,它们可单独加入,也可配合加入。由此得 到多种不同工程应用的铝合金。除上述主加元素外,许多 Al合金还常常要加入一些辅助的微量元素,如Ni、B、Zr、 Cr、Ti、稀土等,进一步改善合金的综合性能。
本篇主要介绍目前工程中广泛应用的铝、镁、钛、 铜及其合金和相关材料,了解这些材料的典型性能特 点,合金化及热处理以及材料一般用途等。
第一节 铝合金中的合金元素
概述
1、产量占有色金属首位;成本低廉(地壳含量8.2%); 2、密度低( 2.63~2.85g/cm3 ),比强度高; 3、导电,导热性好(纯铝的导电性仅次于Ag、Cu、Au
相图分析:
2、时效(沉淀)强化:
单纯靠固溶作用对Al合金的强化作用是很有限的,另 一种更为有效的强化方式是Al合金的固溶(淬火)处理+ 时效热处理。
铝合金中较强的沉淀强化效果的基本条件: ① 沉淀强化相是硬度高的质点; ② 加入铝中的合金元素应有较高的极限固溶度,且
其随温度降低而显著减小; ③ 淬火后形成的过饱和固溶体在时效过程中能析出
无论加入哪种合金元素,各类Al合金的相图一般都具 有如下图的形式,相图靠Al端都具有共晶相图特点。
以相图上合金元素在Al中的最大饱和溶解度D为界线将 各种Al合金分为变形铝合金和铸造铝合金两大类。
变形铝合金
是指成分小于D点的合金可以得到单相固溶体组织, 塑性变形能力好,适合于冷热加工。
变形铝合金又可分为热处理强化和不可热处理强化铝 合金两种:成分小于F点的合金其固溶体成分不随温度而 变化,故不能用热处理强化; 反之则可以通过时效处理而 沉淀强化。
第八章 铝合金
铝合金、镁合金和钛合金质轻又耐蚀,为航空结 构件之优选材料。铜和铜合金有很好导电和导热性, 为电气和仪表元器件之优选。
金属分为黑色金属和有色金属两大类,黑色金属包 括铁、铬、锰;工业中主要是指钢铁材料。而黑色金属 以外的所有金属则为有色金属(非铁金属材料)。相对 于黑色金属,有色金属有许多优良的特性,在工业领域 尤其是高科技领域具有极为重要的地位。
3)变质处理 :以铝硅合金为例(如图所示),共晶组织中 的硅晶体呈初针状或片状,此时共晶的强度和塑性很低,
若使共晶硅细化成颗 粒,可以显著改善组 织的塑性。通常采用 变质处理,加入钠盐 变质剂,使共晶合金 变成α固溶体和细小的 共晶组成的亚共晶组 织,共晶中硅呈细粒 状。
4、细晶强化:
通过向合金中加入微量合金元素,或改变加工工艺及 热处理工艺,使合金基体及沉淀相和过剩相细化,既提高 合金的强度,还会改善合金的塑性和韧性。
均匀,弥散的共格或半共格的亚稳相,在基体中 能形成强烈的应变场。
3、过剩相强化:
1)定义: 当合金元素加入量超过其极限溶解度时,合 金固溶处理时就有一部分第二相不能溶入固溶体,这部分 第二相称作过剩相。
2)过剩相对合金性能的影响 : 过剩相一般为强硬脆的 金属间化合物,当其数量一定且分布均匀,对铝合金有较 好的强化作用,但会使合金塑性韧性下降;数量过多还会 脆化合金,其强度也会下降。
例如:铝、镁、钛、铍等轻金属具有相对密度小、 比强度高等特点,广泛用于航空航天、汽车、船舶和 军事领域;银、铜、金(包括铝)等贵金属具有优良 导电导热和耐蚀性,是电器仪表和通讯领域不可缺少 的材料;镍、钨、钼、钽及其合金是制造高温零件和 电真空元器件的优良材料;还有专用于原子能工业的 铀、镭、铍;用于石油化工领域的钛、铜、镍等。
而位居第四位,约为纯铜导电率的60%); 4、耐蚀性好(Al2O3膜的存在,只有在卤素离子及碱离子
的强烈作用下氧化膜才会遭到破坏); 5、优良的工艺性能(极好的铸造性能,良好的可塑性)。
工业纯铝
物理性能
工业纯铝ห้องสมุดไป่ตู้银白色光泽,密度小(2.72g/cm3),熔点低(660℃), 为非磁性材料。