椭圆型偏微分方程边值问题的一种数值解

合集下载

偏微分方程中的边值问题

偏微分方程中的边值问题

偏微分方程中的边值问题偏微分方程(Partial Differential Equations,简称PDE)是数学中重要的研究对象,它描述了物理、工程、生物等学科中许多实际问题的数学模型。

在解决偏微分方程的过程中,边值问题(Boundary Value Problem,简称BVP)扮演着重要的角色。

本文将探讨在偏微分方程中的边值问题及其解决方法。

一、边值问题的定义在求解偏微分方程时,我们通常需要给定一些额外的条件,这些条件被称为边界条件或边值条件。

边值问题是指在解偏微分方程时,除了给出方程本身外,还给出了在某些边界上的条件限制。

通常边界包括定解区域的整个边界以及初始时刻的条件。

二、常见类型的边值问题1. 狄利克雷边值问题狄利克雷边值问题是指在求解偏微分方程时,给定了方程在边界上的函数值。

具体而言,对于一个定义在定解区域Ω上的偏微分方程,狄利克雷边值问题给定了方程在Ω的边界∂Ω上的值,即f(x)=g(x),其中f(x)是方程的解,g(x)是边界条件给定的函数。

通过求解方程和验证边界条件,可以得到满足狄利克雷边值问题的解。

2. 诺依曼边值问题诺依曼边值问题是指在求解偏微分方程时,给定了方程在边界上的法向导数。

具体而言,对于一个定义在定解区域Ω上的偏微分方程,诺依曼边值问题给定了方程在Ω的边界∂Ω上法向导数的值,即∂f/∂n = h(x),其中f(x)是方程的解,h(x)是边界条件给定的函数。

通过求解方程和验证边界条件,可以得到满足诺依曼边值问题的解。

3. 罗宾边值问题罗宾边值问题是指在求解偏微分方程时,给定了方程在边界上的线性组合形式,即同时给定了边界上的函数值和法向导数的线性组合。

具体而言,对于一个定义在定解区域Ω上的偏微分方程,罗宾边值问题给定了方程在Ω的边界∂Ω上函数值和法向导数的线性组合,即f(x) + ∂f/∂n = k(x),其中f(x)是方程的解,k(x)是边界条件给定的函数。

通过求解方程和验证边界条件,可以得到满足罗宾边值问题的解。

偏微分方程数值解_图文_图文

偏微分方程数值解_图文_图文

估计误差
这种误差称为“局部截断误差”,如图。
局部截断误差是以点 的精确解 而产生的误差。
为出发值,用数值方法推进到下一个点
2.整体截断误差—收敛性
整体截断误差是以点 的初始值 为出发值,用数值方法推进i+1步到点
,所得的近似值 与精确值
的偏差:
称为整体截断误差。
特例,若不计初始误差,即 则
即 3.舍入误差—稳定性
五、线性多步(Linear Multistep Method)法
1. 预备知识:插值多项式
插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况, 估算出函数在其他点处的近似值。
从几何上理解:对一维而言,已知平面上n+1个不同点,要寻找一条n次多项式 曲线通过这些点。插值多项式一般常见的是拉格朗日插值多项式。

代入 中,有
经比较得到
取 为自由参数: 从而得到不同的但都是二阶的R-K方法,对应的有中点法、Heun(亨)法 以及改进的Euler法。
基于相同的过程,通过比较五次Taylor多项式,得到更加复杂的结果,给出了包含 13个未知数的11个方程。得到多组系数,其中常用的是以下四阶R-K法:
改进的Euler法、R-K法以及解析解的比较:
是待定的系数。
Euler法就是
的R-K法。
其系数的确定如下:将 展开成 的幂级数,并与微分方程的精确解
在点 的Taylor展开式相比较,使两者的前
项相同,这样确定的R-K法,
其局部截断误差为
,根据所得关于待定系数的方程组,求出它们的值后
代入公式,就成为一个 阶R-K方法。
例题 以二阶R-K法为例说明上述过程
2. Curtis F.Gerald and Patrick O., Applied Numerical Analysis, Person Education, Inc., 2004.

偏微分方程数值解法

偏微分方程数值解法

偏微分方程数值解法偏微分方程(Partial Differential Equations,简称PDE)是数学中重要的研究对象,其在物理学、工程学、经济学等领域有广泛的应用。

然而,对于大多数偏微分方程而言,很难通过解析方法得到精确解,因此需要借助数值解法来求解。

本文将介绍几种常见的偏微分方程数值解法。

一、有限差分法(Finite Difference Method)有限差分法是一种常见且直观的偏微分方程数值解法。

其基本思想是将偏微分方程中的导数通过差分近似来表示,然后通过离散化的方式转化为代数方程组进行求解。

对于一维偏微分方程,可以通过将空间坐标离散化成一系列有限的格点,并使用中心差分格式来近似原方程中的导数项。

然后,将时间坐标离散化,利用差分格式逐步计算每个时间步的解。

最后,通过迭代计算所有时间步,可以得到整个时间域上的解。

对于二维或高维的偏微分方程,可以将空间坐标进行多重离散化,利用多维的中心差分格式进行近似,然后通过迭代计算得到整个空间域上的解。

二、有限元法(Finite Element Method)有限元法是另一种重要的偏微分方程数值解法。

其基本思想是将求解区域分割成有限数量的子区域(单元),然后通过求解子区域上的局部问题来逼近整个求解区域上的解。

在有限元法中,首先选择适当的形状函数,在每个单元上构建近似函数空间。

然后,通过构建变分问题,将原偏微分方程转化为一系列代数方程。

最后,通过求解这些代数方程,可以得到整个求解区域上的解。

有限元法适用于各种复杂的边界条件和几何构型,因此在实际工程问题中被广泛应用。

三、谱方法(Spectral Methods)谱方法是一种基于特定基函数(如切比雪夫多项式、勒让德多项式等)展开解的偏微分方程数值解法。

与有限差分法和有限元法不同,谱方法在整个求解区域上都具有高精度和快速收敛的特性。

在谱方法中,通过选择适当的基函数,并利用其正交性质,可以将解在整个求解区域上展开为基函数系数的线性组合。

高等数学中的偏微分方程数值解法

高等数学中的偏微分方程数值解法

偏微分方程是数学中的一大重要分支,广泛应用于物理、工程、金融等领域。

其求解方法可以分为解析解法和数值解法。

解析解法要求方程具有可积性,适用于一些简单的方程,但是对于复杂的方程往往无法得到解析解。

而数值解法通过将方程离散化,利用数值计算方法得到数值解,是一种弥补解析解法不足的重要手段。

在高等数学中,偏微分方程数值解法主要包括差分法、有限元法和有限差分法。

其中,差分法是最早应用于求解偏微分方程的数值方法之一。

差分法通过将偏微分方程中的导数用差商的形式来近似表示,将连续的问题转化为离散的问题,再通过计算机程序来进行求解。

差分法的优点是简单易懂、计算速度快,适用于一些较为简单的偏微分方程。

但是差分法的精度受到离散化步长的影响,不适用于一些对精度要求较高的问题。

有限元法是一种更为广泛应用的偏微分方程数值解法。

有限元法通过将求解区域分割成有限多个小区域,用简单形状的基函数来逼近真实解,再通过求解线性方程组得到数值解。

有限元法的优点在于适用于复杂的几何形状、能够处理不规则的边界条件,并且精度较高。

有限元法还具有较好的可扩展性,可以处理大规模的求解问题。

因此,有限元法在工程领域的应用非常广泛。

有限差分法是一种通过计算导数来逼近微分方程的数值解法。

有限差分法基于泰勒展开公式,将微分算子在某点处的展开为有限多个导数的差商的线性组合。

通过将微分算子离散化,可以将偏微分方程转化为代数方程组,再通过求解方程组来得到数值解。

有限差分法的优点在于简单易懂,计算速度较快。

但是由于差商的导数逼近误差,有限差分法的精度受到离散化步长的影响,需要选择合适的步长来保证精度。

总的来说,高等数学中的偏微分方程数值解法是研究偏微分方程数值计算的一大热点和难点。

不同的数值方法适用于不同的问题,需要根据具体情况来选择适合的数值方法。

在求解偏微分方程时,还需要注意数值误差对结果的影响,并通过适当选择离散化步长和网格数量等参数来提高数值解的精度。

随着计算机技术的发展,偏微分方程数值解法将会越来越广泛地应用于实际问题的求解中。

二阶椭圆偏微分方程实例求解(附matlab代码)

二阶椭圆偏微分方程实例求解(附matlab代码)

《微分方程数值解法》期中作业实验报告二阶椭圆偏微分方程第一边值问题姓名:学号:班级:2013年11月19日二阶椭圆偏微分方程第一边值问题摘要对于解二阶椭圆偏微分方程第一边值问题.课本上已经给出了相应的差分方程。

而留给我的难题就是把差分方程组表示成系数矩阵的形式.以及对系数进行赋值。

解决完这个问题之后.我在利用matlab 解线性方程组时.又出现“out of memory ”的问题。

因为99*99阶的矩阵太大.超出了分配给matlab 的使用内存。

退而求其次.当n=10.h=1/10或n=70.h=1/70时.我都得出了很好的计算结果。

然而在解线性方程组时.无论是LU 分解法或高斯消去法.还是gauseidel 迭代法.都能达到很高的精度。

关键字:二阶椭圆偏微分方程 差分方程 out of memory LU 分解 高斯消去法 gauseidel 迭代法一、题目重述解微分方程:()()2222((,))((,))()(,)()(,)(,)1y x x x y y x y yxxyxye u x y e u x y x y u x y x y u x y u x y y e x e e y x e--+++-+=-++++已知边界:(0,)1,(1,),(,0)1,(,1)y x u y u y e u x u x e ====求数值解, 把区域[0,1][0,1]G =?分成121/100,1/100h h ==.n =100 注:老师你给的题F 好像写错了.应该把22x y y e x e +改成22y x y e x e +。

二、问题分析与模型建立2.1微分方程上的符号说明()()22221y x xy xy y e x e e y x e -++++2.2课本上差分方程的缺陷课本上的差分方程为:举一个例子:当i=2,j=3时.;当i=3,j=3时.。

但是.显然这两个不是同一个数.其大小也不相等。

数学建模第八讲:偏微分方程数值解

数学建模第八讲:偏微分方程数值解

2 (t )
其中:u
t
0
(
x
),
u t
t0
(x)
为初值条件
u x0 1 (t ), u xt 2 (t ) 为边值条件
当该波动方程只提供初值条件时,称此方程为波动方程的初值问题,二
。 者均提供时称为波动方程的混合问题
5.3.1 波动方程求解
t
t
x 0 a)初值问题
x
0
l
b)混合问题
对于初值问题,是已知t=0时,u与u 依赖于x的函数形式,求解不同位置, t
un1 i , j,k
t 2 t nt , xix , y jy,zkz
( t )2
2u x 2
t nt , xix , y jy,zkz
un i1, j,k
2uin, j,k (x)2
un i1, j ,k
2u y2
t nt , xix , y jy,zkz
un i , j1,k
2uin, j,k (y)2
21
A11 I
A
I
A22 I
I AN 2 ,N 2 I
I
R( N 1)2 ( N 1)2
AN 1,N 1
其中
4 1
f ( x, t)
u
t
0
(
x
),
u t
t0
( x)
u
x0
1(t), u xl
2(t)
uin
un1 i
τn
xi
x
un1 i
方程离散化
un1 i
2uin
un1 i
(t )2
a2
un i1
2uin

几何中完全非线性椭圆偏微分方程的斜边值问题

几何中完全非线性椭圆偏微分方程的斜边值问题

几何中完全非线性椭圆偏微分方程的斜边值问题
完全非线性椭圆偏微分方程的斜边值问题(Elliptic Boundary Value Problem,EBVP)是指给定一组椭圆偏微分方程与与之相对应的斜边式的边值问题,求其满足原问题的解。

完全非线性椭圆偏微分方程的斜边值问题可以定义为:给定椭圆偏微分方程utt + f (u, ux, uxx) = 0,给定斜边式u(x,0) = φ(x),uxt(x,0) = ψ(x),求解u(x,t) 使其满足这一问题。

解答:
由椭圆偏微分方程及其斜边式的边值条件,可以建立一组完全非线性的非线性方程组,使其满足椭圆偏微分方程和斜边式的边值条件,然后利用定性理论来解决这一问题。

最终可以通过极值方法、Hausdorff方法、双缓存法或其他数值方法来求解解析解。

椭圆型微分方程

椭圆型微分方程

数学与计算科学学院实验报告
实验项目名称椭圆型方程数值解
所属课程名称微分方程数值解法
实验类型验证
实验日期
班级信计0902
学号
姓名
成绩
附录1:源程序
附录2:实验报告填写说明
1.实验项目名称:要求与实验教学大纲一致。

2.实验目的:目的要明确,要抓住重点,符合实验教学大纲要求。

3.实验原理:简要说明本实验项目所涉及的理论知识。

4.实验环境:实验用的软、硬件环境。

5.实验方案(思路、步骤和方法等):这是实验报告极其重要的内容。

概括整个实验过程。

对于验证性实验,要写明依据何种原理、操作方法进行实验,要写明需要经过哪几个步骤来实现其操作。

对于设计性和综合性实验,在上述内容基础上还应该画出流程图、设
计思路和设计方法,再配以相应的文字说明。

对于创新性实验,还应注明其创新点、特色。

6.实验过程(实验中涉及的记录、数据、分析):写明具体实验方案的具体实施步骤,包括实验过程中的记录、数据和相应的分析。

7.实验结论(结果):根据实验过程中得到的结果,做出结论。

8.实验小结:本次实验心得体会、思考和建议。

9.指导教师评语及成绩:指导教师依据学生的实际报告内容,给出本次实验报告的评价。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆型偏微分方程边值问题的一种数值解
为了解不规则区域上的椭圆型偏微分方程边值问题, 首先要对区域进行剖分,这样做
使得在整个解题过程中进行了两次边值问题的求解。在学习中得到启发看到了一个方法,它
将区域剖分的问题及求解的问题结合起来进行, 使整个求解过程得到简化这个方法求得的
是未知函数的一组等值线,这在某些物理问题中是方便的。

(1)
其中Ω是区域;Γ1、Γ2、Γ3、Γ4Ω的边界。且Γ1、Γ3相对,Γ2、Γ4相对。
公式的系数分别是Ω上的连续函数。φ1φ2是单调函数但可以不连续。u0,un是常
数。又设d>0,c<=0,un>u0.特殊的,Γ1、Γ2、Γ3、Γ4中至多有两个可以退化为一点。
为了求解上式,引入辅助问题

(2)
00:;mmvvvv其中、是常数且 34


是单调函数, 也可以不连续,

034m
vv、、、
可按解题方便来选取作变换

(3)
变换(3)区域Ω变为Ω`由椭圆型方程的性质可见(3)是可逆的。
设(3)的逆变换是

(4)
变换(3)将(1)(2)中的方程变为
(5)
(6)
其中:

,易见仍有即式
(3)和(6)是一个拟线性椭圆型方程组。设曲线的几何方程分别是

解下面四组联立方程

并分别记它们的解为
于是(3)将(1)(2)、中的边界条件变为

(7)
现将方程(5)(6)加上边界条件(7)称为问题(1`) 向题(1`), 虽然方程复杂, 但
定解区域是矩形,用差分法离散, 迭代法求解是很方便的。(1`) 的解形如(4).将u 视为常数,
v是参数, (4)就是u的等值线的参数方程。

参考文献
1、 刘家琦。应用求解拉普拉斯方程的边值问题建立有限元网格。计算数学 1988,5(1):1~9
2、 李子才。具有奇点的Laplace方程边值问题的原始能量有限元结合法。计算数学,1980,2(4):319~328

相关文档
最新文档