高等数学下考试题库(附答案)
高等数学下期末试题(七套附答案)

高等数学(下)试卷一一、 填空题(每空3分,共15分)(1)函数11z x y x y =++-的定义域为 (2)已知函数arctany z x =,则zx ∂=∂(3)交换积分次序,2220(,)y y dy f x y dx⎰⎰=(4)已知L 是连接(0,1),(1,0)两点的直线段,则()Lx y ds +=⎰(5)已知微分方程230y y y '''+-=,则其通解为二、选择题(每空3分,共15分)(1)设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,则( ) A. L 平行于π B. L 在π上 C. L 垂直于π D. L 与π斜交(2)设是由方程2222xyz x y z +++=确定,则在点(1,0,1)-处的dz =( )A.dx dy +B.2dx dy +C.22dx dy +D.2dx dy - (3)已知Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()xy dvΩ+⎰⎰⎰在柱面坐标系下化成三次积分为( ) A.2253d r dr dzπθ⎰⎰⎰ B.2453d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰ D. 2252d r dr dzπθ⎰⎰⎰(4)已知幂级数,则其收敛半径( )A. 2B. 1C. 12 D. 2(5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=( )A.B.()x ax b xe +C.()xax b ce ++D.()xax b cxe ++三、计算题(每题8分,共48分) 1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z+-==的平面方程 2、 已知22(,)z f xy x y =,求zx ∂∂, z y ∂∂得分阅卷人3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)xf x y e x y y =++的极值5、计算曲线积分2(23sin )()y L xy x dx x e dy ++-⎰, 其中L 为摆线sin 1cos x t t y t =-⎧⎨=-⎩从点(0,0)O 到(,2)A π的一段弧6、求微分方程 xxy y xe '+=满足 11x y ==的特解四.解答题(共22分)1、利用高斯公式计算22xzdydz yzdzdx z dxdy ∑+-⎰⎰,其中∑由圆锥面22z x y =+与上半球面222z x y =--所围成的立体表面的外侧 (10)'2、(1)判别级数111(1)3n n n n ∞--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6')(2)在(1,1)x ∈-求幂级数1nn nx∞=∑的和函数(6')高等数学(下)试卷二一.填空题(每空3分,共15分)(1)函数24x y z -=的定义域为 ; (2)已知函数xyz e =,则在(2,1)处的全微分dz = ;(3)交换积分次序,ln 1(,)e x dx f x y dy⎰⎰= ;(4)已知L 是抛物线2y x =上点(0,0)O 与点(1,1)B 之间的一段弧,则Lyds =⎰;(5)已知微分方程20y y y '''-+=,则其通解为 .二.选择题(每空3分,共15分)(1)设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,则L 与π的夹角为( );A. 0B. 2πC. 3πD. 4π(2)设是由方程333z xyz a -=确定,则z x ∂=∂( );A. 2yz xy z -B. 2yz z xy -C. 2xz xy z -D. 2xy z xy -(3)微分方程256x y y y xe '''-+=的特解y *的形式为y *=( );A.2()x ax b e +B.2()xax b xe + C.2()x ax b ce ++ D.2()x ax b cxe ++(4)已知Ω是由球面2222x y z a ++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为( ); A2220sin ad d r drππθϕϕ⎰⎰⎰ B.220ad d rdrππθϕ⎰⎰⎰C.200ad d rdrππθϕ⎰⎰⎰ D.220sin a d d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x ∞=-∑,则其收敛半径( ).A. 2B. 1C. 122三.计算题(每题8分,共48分)5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、 已知(sin cos ,)x yz f x y e +=,求zx ∂∂, z y ∂∂ .7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)x x Le y y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段. 6、求微分方程 32(1)1y y x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin3n n n n π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1n n x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧得分阅卷人得分高等数学(下)模拟试卷三一. 填空题(每空3分,共15分)1、 函数arcsin(3)y x =-的定义域为 .2、22(2)lim 332n n n n →∞++-= .3、已知2ln(1)y x =+,在1x =处的微分dy = . 4、定积分1200621(sin )x x x dx -+=⎰ .5、求由方程57230y y x x +--=所确定的隐函数的导数dydx =.二.选择题(每空3分,共15分)1、2x =是函数22132x y x x -=-+的 间断点 (A )可去 (B )跳跃(C )无穷 (D )振荡2、积分1⎰= .(A) ∞ (B)-∞(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是 。
高等数学下册题库及答案

高等数学下册题库及答案一、设函数f(x) = x3 - 3x2 + 2,则f'(x)的零点个数为A. 1B. 2C. 3D. 4(答案)B解析:首先求导得到f'(x) = 3x2 - 6x。
然后令f'(x) = 0,解得x = 0或x = 2。
因此,f'(x)的零点个数为2。
二、下列哪个选项是函数y = ex的拐点A. (0,1)B. (1,e)C. 不存在拐点D. (-1,1/e)(答案)C解析:函数y = ex的二阶导数恒大于0,说明其图像在整个定义域内都是凹的,因此不存在拐点。
三、定积分∫[0,1] (x2 + 1)dx的值等于A. 1B. 4/3C. 5/3D. 2(答案)C解析:对x2 + 1进行不定积分得到(1/3)x3 + x + C,其中C为常数。
然后利用定积分的计算法则,将上下限1和0分别代入,相减得到5/3。
四、设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a) = f(b) = 0,f((a+b)/2) > 0,则下列结论正确的是A. f'(x)在(a,b)内必有零点B. f'(x)在(a,b)内没有零点C. f'(x)在(a,(a+b)/2)内必有零点D. f'(x)在((a+b)/2,b)内必有零点(答案)C解析:根据罗尔定理,如果函数在闭区间上连续,在开区间内可导,且在区间端点处的函数值相等,那么在开区间内至少存在一点使得函数的导数等于0。
由于f((a+b)/2) > 0,且f(a) = f(b) = 0,因此f'(x)在(a,(a+b)/2)内必有零点。
五、下列哪个选项是微分方程y'' - 4y' + 4y = 0的通解A. y = C1e(2x) + C2xe(2x)B. y = C1e(2x) + C2e(-2x)C. y = (C1 + C2x)e(2x)D. y = C1cos(2x) + C2sin(2x)(答案)C解析:微分方程y'' - 4y' + 4y = 0的特征方程为r2 - 4r + 4 = 0,解得r = 2(重根)。
大学高数下册试题及答案

大学高数下册试题及答案《高等数学》测试题一一、选择题1.设有直线及平面,则直线A.平行于平面;B.在平面上;C.垂直于平面;D.与平面斜交. 2.二元函数在点处A.连续、偏导数存在; B.连续、偏导数不存在;C.不连续、偏导数存在;D.不连续、偏导数不存在. 3.设为连续函数,,则=A.; B.;C.D.. 4.设是平面由,,所确定的三角形区域,则曲面积分=A.7;B.;C.;D.. 5.微分方程的一个特解应具有形式A.;B.;C.;D.. 二、填空题1.设一平面经过原点及点,且与平面垂直,则此平面方程为;2.设,则=;3.设为正向一周,则0 ;4.设圆柱面,与曲面在点相交,且它们的交角为,则正数; 5.设一阶线性非齐次微分方程有两个线性无关的解,若也是该方程的解,则应有 1 . 三、设由方程组确定了,是,的函数,求及与. 解:方程两边取全微分,则解出从而四、已知点及点,求函数在点处沿方向的方向导数. 解:,从而五、计算累次积分). 解:依据上下限知,即分区域为作图可知,该区域也可以表示为从而六、计算,其中是由柱面及平面围成的区域. 解:先二后一比较方便,七.计算,其中是抛物面被平面所截下的有限部分. 解:由对称性从而八、计算,是点到点在上半平面上的任意逐段光滑曲线. 解:在上半平面上且连续,从而在上半平面上该曲线积分与路径无关,取九、计算,其中为半球面上侧. 解:补取下侧,则构成封闭曲面的外侧十、设二阶连续可导函数,适合,求.解:由已知即十一、求方程的通解. 解:解:对应齐次方程特征方程为非齐次项,与标准式比较得,对比特征根,推得,从而特解形式可设为代入方程得十二、在球面的第一卦限上求一点,使以为一个顶点、各面平行于坐标面的球内接长方体的表面积最小. 解:设点的坐标为,则问题即在求最小值。
令,则由推出,的坐标为附加题:1.判别级数是否收敛?如果是收敛的,是绝对收敛还是条件收敛?解:由于,该级数不会绝对收敛,显然该级数为交错级数且一般项的单调减少趋于零,从而该级数条件收敛2.求幂级数的收敛区间及和函数. 解:从而收敛区间为,3.将展成以为周期的傅立叶级数. 解:已知该函数为奇函数,周期延拓后可展开为正弦级数。
高数下册期末考试和答案

高数下册期末考试和答案一、选择题(每题4分,共40分)1. 已知函数f(x)=x^3-3x+2,求f'(x)的值。
A. 3x^2-3B. x^2-3xC. 3x^2-3xD. x^3-3x^2答案:A2. 求极限lim(x→0) (sin(x)/x)的值。
A. 0B. 1C. 2D. -1答案:B3. 已知函数f(x)=e^x,求f'(x)的值。
A. e^xB. -e^xC. 0D. 1答案:A4. 求定积分∫(0,1) x^2 dx的值。
A. 1/3B. 1/2C. 1D. 2答案:A5. 已知函数f(x)=ln(x),求f'(x)的值。
A. 1/xC. xD. -x答案:A6. 求定积分∫(0,1) e^x dx的值。
A. e-1B. eC. 1D. 0答案:A7. 已知函数f(x)=x^2,求f''(x)的值。
A. 2xB. 2C. 0答案:B8. 求极限lim(x→∞) (1/x)的值。
A. 0B. 1C. ∞D. -∞答案:A9. 已知函数f(x)=x^3,求f'(x)的值。
A. 3x^2B. 3xC. x^2D. x^3答案:A10. 求定积分∫(0,1) 1/x dx的值。
A. ln(1)-ln(0)B. ln(1)-ln(1)C. ln(2)-ln(1)D. ln(1)-ln(2)答案:C二、填空题(每题5分,共30分)11. 已知函数f(x)=x^2-4x+3,求f'(x)的值。
______答案:2x-412. 求极限lim(x→0) (1-cos(x))/x的值。
______答案:013. 已知函数f(x)=x^4-6x^2+8,求f'(x)的值。
______答案:4x^3-12x14. 求定积分∫(0,1) x^3 dx的值。
______答案:1/415. 已知函数f(x)=e^(-x),求f'(x)的值。
高等数学(同济)下册期末考试题及答案(5套)

高等数学(同济)下册期末考试题及答案(5套)高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、z=log(a,(x+y))的定义域为D={(x,y)|x+y>0}。
2、二重积分22ln(x+y)dxdy的符号为负号。
3、由曲线y=lnx及直线x+y=e+1,y=1所围图形的面积用二重积分表示为∬(x+y-e-1)dxdy,其值为1/2.4、设曲线L的参数方程表示为{x=φ(t),y=ψ(t)}(α≤t≤β),则弧长元素ds=sqrt(φ'(t)^2+ψ'(t)^2)dt。
5、设曲面∑为x+y=9介于z=0及z=3间的部分的外侧,则∬(x+y+1)ds=27√2.6、微分方程y'=ky(1-y)的通解为y=Ce^(kx)/(1+Ce^(kx)),其中C为任意常数。
7、方程y(4)d^4y/dx^4+tan(x)y'''=0的通解为y=Acos(x)+Bsin(x)+Ccos(x)e^x+Dsin(x)e^x,其中A、B、C、D为任意常数。
8、级数∑n(n+1)/2的和为S=1/2+2/3+3/4+。
+n(n+1)/(n+1)(n+2)=n/(n+2),n≥1.二、选择题(每小题2分,共计16分)1、二元函数z=f(x,y)在(x,y)处可微的充分条件是(B)f_x'(x,y),f_y'(x,y)在(x,y)的某邻域内存在。
2、设u=yf(x)+xf(y),其中f具有二阶连续导数,则x^2+y^2等于(B)x。
3、设Ω:x+y+z≤1,z≥0,则三重积分I=∭Ω2z dV等于(C)∫0^π/2∫0^1-rsinθ∫0^1-r sinθ-zrdrdφdθ。
4、球面x^2+y^2+z^2=4a^2与柱面x^2+y^2=2ax所围成的立体体积V=(A)4∫0^π/4∫0^2acosθ∫0^4a-rsinθ rdrdφdθ。
高等数学下试题及答案

高等数学下试题及答案一、选择题(每题5分,共20分)1. 设函数\( f(x) = \sin(x) \),则\( f'(x) \)是:A. \( \cos(x) \)B. \( -\cos(x) \)C. \( \sin(x) \)D. \( -\sin(x) \)2. 极限\( \lim_{x \to 0} \frac{\sin(x)}{x} \)的值是:A. 0B. 1C. \( \frac{\pi}{2} \)D. \( \infty \)3. 曲线\( y = x^2 \)在点\( (1, 1) \)处的切线方程是:A. \( y = 2x - 1 \)B. \( y = 2x \)C. \( y = x + 1 \)D. \( y = x - 1 \)4. 函数\( f(x) = \ln(x) \)的不定积分是:A. \( x\ln(x) \)B. \( x\ln(x) + x \)C. \( x\ln(x) - x \)D. \( x\ln(x) + C \)二、填空题(每题5分,共20分)5. 函数\( f(x) = e^x \)的导数是______。
6. 曲线\( y = \ln(x) \)在点\( (1, 0) \)处的切线斜率是______。
7. 函数\( f(x) = \int_{0}^{x} t^2 dt \)的导数是______。
8. 函数\( f(x) = \frac{1}{x} \)在区间\( (0, \infty) \)上的原函数是______。
三、解答题(每题10分,共60分)9. 求函数\( f(x) = x^3 - 3x + 2 \)的极值点。
10. 计算定积分\( \int_{0}^{1} (2x + 1) dx \)。
11. 求曲线\( y = x^2 - 4x + 4 \)在点\( (2, 0) \)处的法线方程。
12. 证明不等式\( \forall x \in \mathbb{R}, e^x > 1 + x \)。
高等数学下考试题库(附答案)

高等数学下考试题库(附答案)一、选择题(每题5分,共25分)1. 设函数f(x)在区间[a, b]上单调递增,且f(a) = 1,f(b) = 2,则下列不等式成立的是:A. f(x) ≥ 1,a ≤ x ≤ bB. f(x) ≤ 2,a ≤ x ≤ bC. f(x) ≥ f(a),a ≤ x ≤ bD. f(x) ≤ f(b),a ≤ x ≤ b答案:C2. 设函数f(x) = x^3 - 3x,其导函数f'(x) =3x^2 - 3,则f'(x)的符号变化点为:A. x = -1 和 x = 1B. x = 0 和 x = 2C. x = -1 和 x = 1D. x = 0 和 x = 1答案:A3. 下列关于极限的叙述正确的是:A. 当x → 0时,sinx → 0B. 当x → ∞时,e^x → ∞C. 当x → -∞时,|x| → ∞D. 当x → a时,x^2 → a^2答案:B4. 设函数f(x) = (x - 1)^2,则f(x)的极值点为:A. x = 1B. x = -1C. x = 0D. x = 2答案:A5. 下列关于积分计算的叙述正确的是:A. 定积分与不定积分具有相同的计算法则B. 定积分的计算结果为数值,不定积分的计算结果为函数C. 被积函数为偶函数时,定积分的计算结果为非负数D. 被积函数为奇函数时,定积分的计算结果为0答案:D二、填空题(每题5分,共25分)1. 设函数f(x) = x^3 - 3x,其导函数为f'(x) = ______。
答案:3x^2 - 32. 函数y = e^x的导数为y' = ______。
答案:e^x3. 定积分$$ ∫_{ a }^{ b }$$f(x)dx的定义为f(x)在[a, b]上的______。
答案:面积4. 设函数f(x) = x^2,则f(x)的极值点为______。
答案:x = 05. 设函数f(x) = sinx,则f(x)的周期为______。
大一高数下考试题及答案

大一高数下考试题及答案一、选择题(每题4分,共20分)1. 极限的定义中,当x趋近于a时,f(x)的极限为L,是指对于任意给定的正数ε,存在正数δ,使得当0<|x-a|<δ时,|f(x)-L|<ε。
这个定义描述的是()。
A. 函数在某点的连续性B. 函数在某点的可导性C. 函数在某点的极限D. 函数在某点的间断性答案:C2. 以下哪个函数是偶函数?()A. f(x) = x^2 + xB. f(x) = x^3 - xC. f(x) = cos(x)D. f(x) = sin(x)答案:C3. 以下哪个积分是收敛的?()A. ∫(1/x)dx 从1到∞B. ∫(1/x^2)dx 从1到∞C. ∫(1/x^3)dx 从1到∞D. ∫(1/x)dx 从0到1答案:B4. 以下哪个级数是发散的?()A. 1 + 1/2 + 1/4 + 1/8 + ...B. 1 - 1/2 + 1/3 - 1/4 + ...C. 1 + 1/2^2 + 1/3^2 + 1/4^2 + ...D. 1 + 1/2 + 1/3 + 1/4 + ...答案:D5. 以下哪个是二阶导数?()A. f''(x) = 2xB. f'(x) = 2xC. f(x) = x^2D. f'(x) = 2答案:A二、填空题(每题4分,共20分)1. 函数f(x) = x^3 - 3x在x=0处的导数是________。
答案:02. 函数f(x) = e^x的不定积分是________。
答案:e^x + C3. 函数f(x) = sin(x)的不定积分是________。
答案:-cos(x) + C4. 函数f(x) = x^2在区间[0,1]上的定积分是________。
答案:1/35. 函数f(x) = x^2 + 2x + 1的极值点是________。
答案:x = -1三、计算题(每题10分,共30分)1. 计算极限:lim(x→0) [(x^2 + 1) / (x^2 - 1)]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高等数学》试卷1(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a +=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a 3.函数1122222-++--=y x y x y 的定义域是( ).A.(){}21,22≤+≤y x y xB.(){}21,22<+<y x y xC.(){}21,22≤+<y x y x D (){}21,22<+≤y x y x4.两个向量a 与b 垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的微小值是( ).A.2B.2-C.1D.1-6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πy z =( ). A.22 B.22- C.2 D.2- 7.若p 级数∑∞=11n p n 收敛,则( ). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n n n x 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫ ⎝⎛02在收敛域内的和函数是( ).A.x -11B.x -22C.x -12D.x-21 10.微分方程0ln =-'y y y x 的通解为( ).A.x ce y =B.x e y =C.x cxe y =D.cx e y =二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂y x z 2_____________________________. 4.x+21的麦克劳林级数是___________________________. 三.计算题(5分⨯6)1.设v e z u sin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,y z x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D .4.求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能运用料最省?.试卷1参考答案一.选择题 CBCAD ACCBD二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4. ()n n n nx ∑∞=+-0121.5.()xe x C C y 221-+= .三.计算题 1.()()[]y x y x y e x z xy +++=∂∂cos sin ,()()[]y x y x x e y zxy +++=∂∂cos sin . 2.12,12+=∂∂+-=∂∂z yy zz xx z.3.⎰⎰=⋅πππρρρϕ202sin d d 26π-. 4.3316R .5.x x e e y 23-=.四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷2(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为(). A.6π B.4π C.3π D.2π3.函数()22arcsin y x z +=的定义域为( ).A.(){}10,22≤+≤y x y xB.(){}10,22<+<y x y xC.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y xD.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ).A.3B.4C.5D.65.函数22232y x xy z --=的极大值为( ).A.0B.1C.1-D.21 6.设223y xy x z ++=,则()=∂∂2,1x z( ).A.6B.7C.8D.97.若几何级数∑∞=0n n ar 是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()n n x n ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1-9.级数∑∞=14sin n n na 是( ). A.条件收敛 B.肯定收敛 C.发散 D.不能确定二.填空题(4分⨯5)1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行,则直线l 的方程为__________________________.2.函数xy e z =的全微分为___________________________.3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________.三.计算题(5分⨯6)1.设k j b k j i a 32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,y z x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.四.应用题(10分⨯2)1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.试卷2参考答案一.选择题 CBABA CCDBA.二.填空题1.211212+=-=-z y x . 2.()xdy ydx e xy +.3.488=--z y x .4.()∑∞=-021n n n x .5.3x y =.三.计算题1.k j i 238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ . 3.22,z xy xzy z z xy yzx z+-=∂∂+-=∂∂. 4. ⎪⎭⎫⎝⎛-3223323πa .5.x xe C e C y --+=221.四.应用题 1.316. 2. 00221x t v gt x ++-=.《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分)2、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( )A 、i-j+2kB 、8i-j+2kC 、8i-3j+2kD 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( )A 、2B 、3C 、4D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( )A 、,22 ,22B 、,2222-C 、22- 22-D 、22- ,225、设x 2+y 2+z 2=2Rx ,则y zx z∂∂∂∂,分别为( )A 、z y z R x --,B 、z y z R x ---,C 、z y z R x ,--D 、z yz R x ,-6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2AD 、A R 2217、级数∑∞=-1)1(n n n n x 的收敛半径为( ) A 、2 B 、21 C 、1 D 、38、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n )!2(2n x nB 、∑∞=-1)1(n n )!2(2n x nC 、∑∞=-0)1(n n )!2(2n x nD 、∑∞=-0)1(n n )!12(12--n x n 二、填空题(本题共5小题,每题4分,共20分)1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。
直线L 3:之间的夹角为与平面062321221=-+=-+=-z y x z y x ____________。
2、(0.98)2.03的近似值为________,sin100的近似值为___________。
3、二重积分⎰⎰≤+Dy x D d 的值为1:,22σ___________。
4、幂级数的收敛半径为∑∞=0!n n x n __________,∑∞=0!n n n x 的收敛半径为__________。
三、计算题(本题共6小题,每小题5分,共30分)2、求曲线x=t,y=t 2,z=t 3在点(1,1,1)处的切线与法平面方程.3、计算⎰⎰===Dx y x y D ,xyd 围成及由直线其中2,1σ.4、问级数∑∞=-11sin )1(n n ?,?n收敛则是条件收敛还是绝对若收敛收敛吗5、将函数f(x)=e 3x 展成麦克劳林级数四、应用题(本题共2小题,每题10分,共20分)1、求表面积为a 2而体积最大的长方体体积。
参考答案一、选择题1、D2、C3、C4、A5、B6、D7、C8、A9、B10,A二、填空题1、218arcsin ,182cos ar 2、0.96,0.17365 3、л 4、0,+∞5、ycx ce y x 11,22-== 三、计算题2、解:因为x=t,y=t 2,z=t 3,所以x t =1,y t =2t,z t =3t 2,所以x t |t=1=1, y t |t=1=2, z t |t=1=3 故切线方程为:312111-=-=-z y x 法平面方程为:(x-1)+2(y-1)+3(z-1)=0即x+2y+3z=63、解:因为D 由直线y=1,x=2,y=x 围成,所以D : 1≤y ≤2≤x ≤2故:⎰⎰⎰⎰⎰=-==212132811)22(][dy y y dy xydx xyd y D σ 4、解:这是交织级数,因为。