大一下学期高等数学考试题

合集下载

大一下册高数习题册附标准答案

大一下册高数习题册附标准答案

重积分§ 1 二重积分的概念与性质 1、由二重积分的几何意义求二重积分的值dxdy y x I D⎰⎰+=22其中D 为:422≤+y x( dxdy y x I D⎰⎰+=22=πππ3162.4..312.4.=-) 2、设D 为圆域,0,222>≤+a a y x 若积分dxdy y x a D⎰⎰--222=12π,求a 的值。

解:dxdy y x a D⎰⎰--222=3.34.21a π81=a3、设D 由圆,2)1()2(22围成=-+-y x 求⎰⎰Ddxdy 3解:由于D 的面积为π2, 故⎰⎰Ddxdy 3=π64、设D :}10,53|),{(≤≤≤≤y x y x ,⎰⎰⎰⎰+=+=DDdxdy y x I dxdy y x I 221)][ln(,)ln(,比较1I , 与2I 的大小关系解:在D 上,)ln(y x +≤2)][ln(y x +,故1I ≤2I5、设f(t)连续,则由平面 z=0,柱面,122=+y x 和曲面2)]([xy f z =所围的立体的体积,可用二重积分表示为⎰⎰≤+=1:222)]([y x D dxdy xy f V6、根据二重积分的性质估计下列积分的值⎰⎰Dydxdy x 22sin sin ππ≤≤≤≤y x D 0,0: (≤0⎰⎰Dydxdy x 22sin sin 2π≤)7、设f(x,y)为有界闭区域D :222a y x ≤+上的连续函数,求⎰⎰→Da dxdy y x f a ),(1lim20π解:利用积分中值定理及连续性有)0,0(),(lim ),(1lim820f f dxdy y x f a a D a ==→→⎰⎰ηξπ§ 2 二重积分的计算法1、设⎰⎰+=Ddxdy y xI 1,其中D 是由抛物线12+=x y 与直线y=2x ,x=0所围成的区域,则I=()A :212ln 3ln 87+-- B :212ln 3ln 89-+C :212ln 3ln 89-- D :412ln 3ln 89--2、设D 是由不等式1≤+y x 所确定的有界区域,则二重积分⎰⎰+Ddxdy y x )(为()A :0B :31C :32D : 13、设D 是由曲线xy=1与直线x=1,x=2及y=2所围成的区域,则二重积分⎰⎰Dxy dxdy ye 为()A :e e e 212124-- B :21242121e e e e -+-C :e e 21214+ D :2421e e -4、设f(x,y)是连续函数,则二次积分dy y x f dx x x ⎰⎰++-2111),(为()A dx y x f dy dx y x f dy y y ⎰⎰⎰⎰----+112111102),(),( B dx y x f dy y ⎰⎰--1110),( C dx y x f dy dx y x f dy y y ⎰⎰⎰⎰-----+112111102),(),( D dx y x f dy y ⎰⎰---11202),(5、设有界闭域D 1、D 2关于oy 轴对称,f 是域D=D 1+D 2上的连续函数,则二重积分⎰⎰Ddxdy y x f )(2为()A ⎰⎰1),(22D dxdy y x f B ⎰⎰22),(4D dxdy y x fC ⎰⎰1),(42D dxdy y x f D⎰⎰22),(21D dxdy y x f 6、设D 1是由ox 轴、oy 轴及直线x+y=1所围成的有界闭域,f 是域D:|x|+|y|≤1上的连续函数,则二重积分⎰⎰Ddxdy y x f )(22为()A ⎰⎰1),(222D dxdy y x f B ⎰⎰1),(422D dxdy y x fC ⎰⎰1),(822D dxdy y x f D⎰⎰1),(2122D dxdy y x f7、.设f(x,y)为连续函数,则⎰⎰a xdy y x f dx 0),(为( )A ⎰⎰a a ydx y x f dy 0),( B ⎰⎰a yadx y x f dy 0),(C ⎰⎰a y dx y x f dy 0),( D ⎰⎰a xdx y x f dy 0),(8、求⎰⎰=Ddxdy yx I 22,其中:D 由x=2,y=x,xy=1所围成. (49)9、设I=⎰⎰31ln 0),(xdy y x f dx ,交换积分次序后I 为:I=⎰⎰31ln 0),(xdy y x f dx =⎰⎰3ln 03),(y edx y x f dy10、改变二次积分的次序:⎰⎰⎰⎰-+4240200),(),(xx dy y x f dx dy y x f dx =⎰⎰21221xxdx ydx x11、设 D={(x,y)|0≤x ≤1,0≤y ≤1} ,求⎰⎰+Dy x dxdy e 的值解:⎰⎰+Dyx dxdy e=⎰⎰⎰⎰-==+121101)1())((e dy e dx e dy edx y xl yx12设 I=⎰⎰--Ddxdy y x R 222,其中D 是由x 2+y 2=Rx 所围城的区域,求I (331R π)13、计算二重积分⎰⎰-+Ddxdy y x |4|22,其中D 是圆域922≤+y x解:⎰⎰-+Ddxdy y x |4|22==-+-⎰⎰⎰⎰rdr r d rdr r d ππθθ2032220202)4()4(241π 14、计算二重积分⎰⎰Dy xdxdy e },m ax{22,其中D={(x,y)| 0≤x ≤1,0≤y ≤1}解:⎰⎰Dy xdxdy e }22,max{=1101022-=+⎰⎰⎰⎰e dx e d dy e dx yy xx y15、计算二重积分⎰⎰++Ddxdy yx yx 22,D :.1,122≥+≤+y x y x 解:⎰⎰++D dxdy yx y x 22=24)sin (cos 201sin cos 12πθθθπθθ-=+⎰⎰+rdr r r d§ 3 三重积分1、设Ω是由x=0,y=0,z=0及x+2y+z=1所围成的空间有界域,则⎰⎰⎰Ωxdxdydz 为( )A ⎰⎰⎰--12101y x y xdz d dx B ⎰⎰⎰---2102101y yx xdy dz dxC ⎰⎰⎰---2102101x yx xdz dy dx D ⎰⎰⎰10110xdz dy dx2、设Ω是由曲面x 2+y 2=2z,及z=2所围成的空间有界域,在柱面坐标系下将三重积分⎰⎰⎰Ωdxdydz z y x f ),,(表示为累次积分,I=()A ⎰⎰⎰120202ρπθρθρρθz)dz ,sin ,cos f(d d B ⎰⎰⎰2020202ρπρθρθρρθdz z),sin ,cos f(d dC ⎰⎰⎰2022202ρπρθρθρρθdz z),sin ,cos f(d d D ⎰⎰⎰2220dz z),sin ,cos f(d d ρθρθρρθπ3、设Ω是由1222≤++z y x 所确定的有界闭域,求三重积分⎰⎰⎰Ωdv e z ||解:⎰⎰⎰Ωdv e z ||=⎰⎰⎰--≤+111||222)(z y x z dz dxdy e =2⎰=-122)1(ππdz z e z 4、设Ω是由曲面z=xy, y=x, x=1 及z=0所围成的空间区域,求⎰⎰⎰Ωdxdydz z xy 32(1/364)5、设Ω是球域:1222≤++z y x ,求⎰⎰⎰Ω++++++dxdydz z y x z y x z 1)1ln(222222 (0) 6、计算⎰⎰⎰+Qdxdydz y x )(22其中Ω为:平面z=2与曲面2222z y x =+所围成的区域(π564) 7、计算⎰⎰⎰Qzdxdydz x 2其中Ω是由平面z=0,z=y,y=1以及y=x 2所围成的闭区域(2/27))8、设函数f(u)有连续导数,且f(0)=0,求dxdydz z y x f t tz y x t )(1lim 222222240⎰⎰⎰≤++→++π解:dxdydz z y x f t t z y x t ⎰⎰⎰≤++→++222222240(1limπ=)0(')(4limsin )(1lim 42022040f t drr f r dr r r f d d ttt tt ==⎰⎰⎰⎰→→ϕϕθπππ§4 重积分的应用1、(1)、由面积22y x +=2x, 22y x +=4x,y=x,y=0所围成的图形面积为()A )2(41+πB )2(21+πC )2(43+π D 2+π(2) 、位于两圆θρsin 2=与θρsin 4=之间,质量分布均匀的薄板重心坐标是( )A (0,35)B (0,36)C (0,37)D (0,38)(3)、由抛物面x y z 422=+和平面x=2所围成的质量分布均匀的物体的重心坐标是()A (0,0,34)B (0,0,35) C (0,0,45) D (0,0,47)(4)、质量分布均匀(密度为μ)的立方体所占有空间区域:}10,10,10|),,{(≤≤≤≤≤≤=Ωz y x z y x ,该立方体到oz 轴的转动惯量I Z =( )A 31μB 32μC μD 34μ2、求均匀上半球体(半径为R)的质心解:显然质心在z 轴上,故x=y=0,z=⎰⎰⎰Ω=831R zdv V 故质心为(0,0,R 38)4、曲面2213y x z --=将球面25222=++z y x 分割成三部分,由上至下依次记 这三部分曲面的面积为s 1, s 2, s 3, 求s 1:s 2:s 3解:π102559222=--=⎰⎰≤+dxdy y x y x 1S π2025516222=--=⎰⎰≤+dxdy y x y x 3Sπ70=2S5、求曲面xy Rz =包含在圆柱222R y x =+内部的那部分面积 解:3)122(2222222R dxdy R y x R R y x π-=++=⎰⎰≤+S6、求圆柱体Rx y x 222≤+包含在抛物面Rz y x 222=+和xoy 平面之间那部分立体的体积解:43)(2132222R dxdy y x R Rx y x π=+=⎰⎰≤+V 第九章自测题一、选择题: (40分) 1、⎰⎰-x dy y x f dx 1010),(=( )A ⎰⎰-1010),(dx y x f dy x B ⎰⎰-xdx y x f dy 1010),(C ⎰⎰11),(dx y x f dy D ⎰⎰-ydx y x f dy 101),(.2、设D 为222a y x ≤+,当=a ( )时,π=--⎰⎰Ddxdy y x a 222. A 1D 321 3、设⎰⎰+=Ddxdy y x I )(22,其中D 由222a y x =+所围成,则I =( B ).A 40220a rdr a d aπθπ=⎰⎰ B 4022021a rdr r d aπθπ=⋅⎰⎰; C 3022032a dr r d a πθπ=⎰⎰ D 402202a adr a d a πθπ=⋅⎰⎰.4、设Ω是由三个坐标面与平面z y x -+2=1所围成的空间区域,则⎰⎰⎰Ωxdxdydz =( ).A481 B 481- C 241 D 241- .5 、设Ω是锥面,0(222222>+=a by a x c z )0,0>>c b 与平面c z y x ===,0,0所围成的空间区域在第一卦限的部分,则⎰⎰⎰Ωdxdydz z xy=( ). A c b a 22361 B b b a 22361 C a c b 22361D ab c 361. 6、计算⎰⎰⎰Ω=zdv I ,1,222=+=Ωz y x z 为围成的立体,则正确的为( )和()A ⎰⎰⎰=101020zdz rdr d I πθ B ⎰⎰⎰=11020rzdz rdr d I πθC ⎰⎰⎰=11020rrdr dz d I πθ D ⎰⎰⎰=zzrdr d dz I 02010πθ.7、曲面22y x z +=包含在圆柱x y x 222=+内部的那部分面积=s ( )A π3B π2C π5D π22.8、由直线2,2,2===+y x y x 所围成的质量分布均匀(设面密度为μ)的平面薄板,关于x 轴的转动惯量x I =( ).A μ3B μ5C μ4D μ6二、计算下列二重积分:(20分)1、⎰⎰-D d y x σ)(22,其中D 是闭区域:.0,sin 0π≤≤≤≤x x y (9402-π)2、⎰⎰Dd xyσarctan ,其中D 是由直线0=y 及圆周1,42222=+=+y x y x ,x y =所围成的在第一象限内的闭区域 . (2643π) 3、⎰⎰+-+Dd y x y σ)963(2,其中D 是闭区域:222R y x ≤+ (2494R R ππ+)4、⎰⎰-+Dd y x σ222,其中D :322≤+y x . (.25π) 三、作出积分区域图形并交换下列二次积分的次序: (15分)1、⎰⎰⎰⎰-+yydx y x f dy dx y x f dy 30312010),(),( (⎰⎰-xxdy y x f dx 3220),()2、⎰⎰-+2111),(x xdy y x f dx (⎰⎰⎰⎰-+2220211),(),(y y y dx y x f dy dx y x f dy )3、⎰⎰θθθθ0)sin ,cos (rdr r r f d a (⎰⎰θθθθ0)sin ,cos (rdr r r f d a)四、计算下列三重积分:(15分)1、Ω+⎰⎰⎰Ω,)cos(dxdydz z x y :抛物柱面x y =2,,π=+==z x o z o y 及平面所围成的区域 (21162-π) 2、,)(22⎰⎰⎰Ω+dv z y 其中Ω是由xoy 平面上曲线x y 22=绕x 轴旋转而成的曲面与平面5=x 所围 (π3250) 五、(5分)求平面1=++czb y a x 被三坐标面所割出的有限部分的面积 .(22222221a c c b b a ++) 六、(5分)设)(x f 在]1,0[上连续,试证:310101])([61)()()(⎰⎰⎰⎰=dx x f dxdydz z f y f x f x y x 0)0(,)()()()(,)()(1==='=⎰⎰F dx x f t F x f x F dt t f x F x且则=⎰⎰⎰101)()()(x yx dxdydz z f y f x f =-⎰⎰dy x F y F y f dx x f x11)]()()[()(dx x F F x F x F F x f )}()1()()]()1((21){[(2122⎰+--=)1(21)1(61)1(21333F F F -+=)1(613F。

大一下学期高等数学期中考试试卷及答案

大一下学期高等数学期中考试试卷及答案

大一第二学期高等数学期中考试试卷一、填空题(本题满分15分,共有5道小题,每道小题3分),请将合适的答案填在空中。

1、已知球面的一条直径的两个端点为()532,,-和()314-,,,则该球面的方程为______________________2、函数ln(u x =在点(1,0,1)A 处沿点A 指向点(3,2,2)B -方向的方向导数为3、曲面22z x y =+与平面240x y z +-=平行的切平面方程为4、2222222(,)(0,0)(1cos())sin lim()ex y x y x y xy x y +→-+=+5、设二元函数y x xy z 32+=,则=∂∂∂yx z2_______________ 二、选择填空题(本题满分15分,共有5道小题,每道小题3分)。

以下每道题有四个答案,其中只有一个答案是正确的,请选出合适的答案填在空中,多选无效。

1、旋转曲面1222=--z y x 是( ) (A ).xOz 坐标面上的双曲线绕Ox 轴旋转而成; (B ).xOy 坐标面上的双曲线绕Oz 轴旋转而成; (C ).xOy 坐标面上的椭圆绕Oz 轴旋转而成; (D ).xOz 坐标面上的椭圆绕Ox 轴旋转而成.2、微分方程23cos 2x x x y y +=+''的一个特解应具有形式( ) 其中3212211,,,,,,d d d b a b a 都是待定常数.(A).212211sin )(cos )(x d x b x a x x b x a x ++++;(B).32212211sin )(cos )(d x d x d x b x a x x b x a x ++++++; (C).32212211)sin cos )((d x d x d x b x a b x a x +++++; (D).322111)sin )(cos (d x d x d x x b x a x +++++3、已知直线π22122:-=+=-zy x L 与平面4 2:=-+z y x ππ,则 ( ) (A).L 在π内; (B).L 与π不相交; (C).L 与π正交; (D).L 与π斜交. 4、下列说法正确的是( )(A) 两向量a r 与b r 平行的充要条件是存在唯一的实数λ,使得b a λ=r r;(B) 二元函数()y x f z ,=的两个二阶偏导数22x z ∂∂,22yz∂∂在区域D 内连续,则在该区域内两个二阶混合偏导必相等;(C) 二元函数()y x f z ,=的两个偏导数在点()00,y x 处连续是函数在该点可微的充分条件;(D) 二元函数()y x f z ,=的两个偏导数在点()00,y x 处连续是函数在该点可微 的必要条件.5、设),2,2(y x y x f z -+=且2C f ∈(即函数具有连续的二阶连续偏导数),则=∂∂∂yx z2( )(A)122211322f f f --; (B)12221132f f f ++; (C)12221152f f f ++; (D)12221122f f f --.三、计算题(本大题共29分) 1、(本题13分)计算下列微分方程的通解。

《大一高等数学》试卷(十份)

《大一高等数学》试卷(十份)

《大一高等数学》试卷(十份)《高等数学试卷》一.选择题(3分10)1.点M12,3,1到点M22,7,4的距离M1M2().A.3B.4C.5D.62.向量ai2jk,b2ij,则有().A.a∥bB.a⊥bC.a,bD.a,b343.函数y2某2y21某y122的定义域是().某,y1某C.2222A.某,y1某y2B.某,y1某y22y2某,y1某2D2y224.两个向量a与b垂直的充要条件是().A.ab0B.ab0C.ab0D.ab05.函数z某3y33某y的极小值是().A.2B.2C.1D.16.设z某iny,则zy1,4=().A.22B.C.2D.2221收敛,则().pnn17.若p级数A.p1B.p1C.p1D.p1某n8.幂级数的收敛域为().n1nA.1,1B1,1C.1,1D.1,1某9.幂级数在收敛域内的和函数是().n02nA.1221B.C.D.1某2某1某2某10.微分方程某yylny0的通解为().A.yce某B.ye某C.yc某e某D.yec某二.填空题(4分5)1.一平面过点A0,0,3且垂直于直线AB,其中点B2,1,1,则此平面方程为______________________.2.函数zin某y的全微分是______________________________.2z3.设z某y3某y某y1,则_____________________________.某y3234.1的麦克劳林级数是___________________________.2某5.微分方程y4y4y0的通解为_________________________________.三.计算题(5分6)u1.设zeinv,而u某y,v某y,求zz,.某yzz,.某y2.已知隐函数zz某,y由方程某22y2z24某2z50确定,求3.计算inD某2y2d,其中D:2某2y242.4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R为半径).5.求微分方程y3ye2某在y四.应用题(10分2)某00条件下的特解.1.要用铁板做一个体积为2m的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线yf某上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点1,,求此曲线方程.313试卷3参考答案一.选择题CBCADACCBD二.填空题1.2某y2z60.2.co某yyd某某dy.3.6某2y9y21.4.n01n某n.2n12某5.yC1C2某e三.计算题1..zze某yyin某yco某y,e某y某in某yco某y.某y2.z2某z2y,.某z1yz13.4.20dind62.2163R.33某5.yee2某.四.应用题1.长、宽、高均为32m时,用料最省.2.y12某.3《高数》试卷4(下)一.选择题(3分10)1.点M14,3,1,M27,1,2的距离M1M2().A.12B.13C.14D.152.设两平面方程分别为某2y2z10和某y50,则两平面的夹角为(A.6B.4C.3D.23.函数zarcin某2y2的定义域为().A.某,y0某2y21B.某,y0某2y21C.某,y0某2y22D.某,y0某2y224.点P1,2,1到平面某2y2z50的距离为().A.3B.4C.5D.65.函数z2某y3某22y2的极大值为().A.0B.1C.1D.126.设z某23某yy2,则z某1,2().A.6B.7C.8D.97.若几何级数arn是收敛的,则().n0A.r1B.r1C.r1D.r18.幂级数n1某n的收敛域为().n0A.1,1B.1,1C.1,1D.1,19.级数inna是(n1n4)..)A.条件收敛B.绝对收敛C.发散D.不能确定10.微分方程某yylny0的通解为().A.yec某B.yce某C.ye某D.yc某e某二.填空题(4分5)某3t1.直线l过点A2,2,1且与直线yt平行,则直线l的方程为z12t__________________________.2.函数ze的全微分为___________________________.3.曲面某yz2某24y2在点2,1,4处的切平面方程为_____________________________________.4.1的麦克劳林级数是______________________.21某某15.微分方程某dy3yd某0在y三.计算题(5分6)1条件下的特解为______________________________.1.设ai2jk,b2j3k,求ab.2.设zuvuv,而u某coy,v某iny,求22zz,.某yzz,.某y3.已知隐函数zz某,y由某33某yz2确定,求2222224.如图,求球面某yz4a与圆柱面某y2a某(a0)所围的几何体的体积.5.求微分方程y3y2y0的通解.四.应用题(10分2)1.试用二重积分计算由y某,y2某和某4所围图形的面积.2.如图,以初速度v0将质点铅直上抛,不计阻力,求质点的运动规律某某t.(提示:d某d2某t0v0)g.当时,有,某某02dtdt试卷4参考答案一.选择题CBABACCDBA.二.填空题1.某2y2z1.112某y2.eyd某某dy.3.8某8yz4.n2n1某.n04.5.y某.三.计算题1.8i3j2k.2.zz3某2inycoycoyiny,2某3inycoyinycoy某3in3yco3y某y.3.zyzz某z.,22某某yzy某yz3232a.3234.5.yC1e2某C2e某.四.应用题1.16.32.某12gtv0t某0.2《高数》试卷5(上)一、填空题(每小题3分,共24分)1.函数y19某2的定义域为________________________.in4某,某02.设函数f某某,则当a=_________时,f某在某0处连续.某0a,某213.函数f(某)2的无穷型间断点为________________.某3某2某4.设f(某)可导,yf(e),则y____________.某21_________________.5.lim2某2某某5某3in2某d某=______________.6.41某某211d某2tedt_______________________.7.d某08.yyy30是_______阶微分方程.二、求下列极限(每小题5分,共15分)某31e某11.lim;2.;lim23.lim1.某3某9某0in某某2某三、求下列导数或微分(每小题5分,共15分)某co某,求y(0).2.ye,求dy.某2dy3.设某ye某y,求.d某某1.y四、求下列积分(每小题5分,共15分)11.2in某d某.2.某ln(1某)d某.某3.10e2某d某某t五、(8分)求曲线在t处的切线与法线方程.2y1cot六、(8分)求由曲线y某21,直线y0,某0和某1所围成的平面图形的面积,以及此图形绕y轴旋转所得旋转体的体积.七、(8分)求微分方程y6y13y0的通解.八、(7分)求微分方程yye某满足初始条件y10的特解.某《高数》试卷5参考答案某某一.1.(3,3)2.a43.某24.ef(e)1某25.6.07.2某e8.二阶21二.1.原式=lim某0某某2.lim11某3某36112某1)]2e23.原式=lim[(1某2某三.1.y2,(某2)2y(0)122.dyin某eco某d某3.两边对某求写:y某ye某y(1y)e某yy某yyy'某e某y某某y四.1.原式=ln某2co某C某某2122.原式=ln(1某)d()ln(1某)某d[ln(1某)]222某1某2某211d某ln(1某)(某1)d某=ln(1某)221某221某22某21某2=ln(1某)[某ln(1某)]C222112某12某ed(2某)e3.原式=022dydyint,五.d某d某2101(e21)2t1.且当t2时,某2,y1切线:y1某2,即某y120法线:y1(某),即某y121132S(某1)d某(某某)六.03102043V某2dy(y1)dy11221(y2y)22112r32i七.特征方程:八.yer26r130ye3某(C1co2某C2in2某)某d某1(e某e某d某1d某C)[(某1)e某C]由y某11某0,C0某1某e某y《高等数学》试卷6(下)一、选择题(本题共10小题,每题3分,共30分)1、二阶行列式2-3的值为(d)45A、10B、20C、24D、222、设a=i+2j-k,b=2j+3k,则a与b的向量积为(c)A、i-j+2kB、8i-j+2kC、8i-3j+2kD、8i-3i+k3、点P(-1、-2、1)到平面某+2y-2z-5=0的距离为(c)A、2B、3C、4D、54、函数z=某iny在点(1,)处的两个偏导数分别为(a)4A、22222222,,B、,,C、D、22222222zz,分别为()某yD、5、设某2+y2+z2=2R某,则A、某Ry某Ry某Ry,B、,C、,zzzzzz22某Ry,zz26、设圆心在原点,半径为R,面密度为某y的薄板的质量为()(面积A=R)A、R2AB、2R2AC、3R2AD、n12RA2某n7、级数(1)的收敛半径为()nn1A、2B、1C、1D、328、co某的麦克劳林级数为()2n2n某2n某2n1n某n某nA、(1)B、(1)C、(1)D、(1)(2n)!(2n)!(2n)!(2n1)!n0n1n0n0n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是()A、一阶B、二阶C、三阶D、四阶10、微分方程y``+3y`+2y=0的特征根为()A、-2,-1B、2,1C、-2,1D、1,-2二、填空题(本题共5小题,每题4分,共20分)1、直线L1:某=y=z与直线L2:直线L3:某1y3z的夹角为___________。

大一高等数学考卷及答案

大一高等数学考卷及答案

专业课原理概述部分一、选择题(每题1分,共5分)1.若函数f(x)在x=a处可导,则f'(a)等于()A.f(a)B.f(a+h)-f(a)/h(h趋于0)C.lim(f(a+h)-f(a))/h(h趋于0)D.f(a+h)-f(a)2.下列函数中,在x=0处连续但不可导的是()A.y=|x|B.y=x^2C.y=x^3D.y=1/x3.若函数f(x)在区间I上单调递增,则f'(x)在I上()A.必大于0B.必小于0C.可以为0D.不存在4.设函数f(x)在区间(a,b)内可导,且f'(x)>0,则f(x)在(a,b)内()A.单调递增B.单调递减C.有极值点D.无极值点5.设函数f(x)在x=a处连续,且lim(f(x)-f(a))/(x-a)=L,则f(x)在x=a处()A.可导,f'(a)=LB.可导,f'(a)不存在C.不可导D.无法确定二、判断题(每题1分,共5分)1.若函数f(x)在x=a处可导,则f(x)在x=a处一定连续。

()2.若函数f(x)在区间I上单调递增,则f'(x)在I上一定大于0。

()3.若函数f(x)在区间I上有极值点,则f'(x)在I上一定存在零点。

()4.若函数f(x)在区间I上连续,则f(x)在I上一定可积。

()5.若函数f(x)在区间I上可导,则f(x)在I上一定连续。

()三、填空题(每题1分,共5分)1.函数f(x)=x^3-3x在x=1处的导数为______。

2.函数f(x)=e^x在x=0处的导数为______。

3.函数f(x)=lnx在x=1处的导数为______。

4.函数f(x)=sinx在x=π/2处的导数为______。

5.函数f(x)=cosx在x=0处的导数为______。

四、简答题(每题2分,共10分)1.简述导数的定义。

2.简述连续与可导的关系。

3.简述罗尔定理。

4.简述拉格朗日中值定理。

大一下学期高等数学期末试题及答案__数套

大一下学期高等数学期末试题及答案__数套

高等数学(下)试卷一一、 填空题(每空3分,共15分)(1)函数z =的定义域为 (2)已知函数arctanyz x =,则z x ∂=∂(3)交换积分次序,2220(,)y y dy f x y dx⎰⎰=(4)已知L 是连接(0,1),(1,0)两点的直线段,则()L x y ds +=⎰(5)已知微分方程230y y y '''+-=,则其通解为二、选择题(每空3分,共15分)(1)设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,则( )A. L 平行于πB. L 在π上C. L 垂直于πD. L 与π斜交 (2)设是由方程xyz =(1,0,1)-处的dz =( )A.dx dy +B.dxD.dx (3)已知Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()x y dv Ω+⎰⎰⎰在柱面坐标系下化成三次积分为( ) A.22530d r dr dzπθ⎰⎰⎰ B.24530d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰ D.2252d r dr dzπθ⎰⎰⎰(4)已知幂级数12nnn n x ∞=∑,则其收敛半径( )A. 2B. 1C. 12D. (5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=( )A.B.()x ax b xe +C.()xax b ce ++D.()xax b cxe ++三、计算题(每题8分,共48分)1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z +-==的平面方程 2、 已知22(,)z f xy x y =,求zx ∂∂, z y ∂∂3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)x f x y e x y y =++的极值5、计算曲线积分2(23sin )()y L xy x dx x e dy ++-⎰, 其中L 为摆线sin 1cos x t t y t =-⎧⎨=-⎩从点(0,0)O 到(,2)A π的一段弧6、求微分方程 x xy y xe '+=满足 11x y ==的特解四.解答题(共22分)1、利用高斯公式计算22xzdydz yzdzdx z dxdy ∑+-⎰⎰,其中∑由圆锥面z =与上半球面z =所围成的立体表面的外侧 (10)'2、(1)判别级数111(1)3n n n n ∞--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6')(2)在(1,1)x ∈-求幂级数1nn nx∞=∑的和函数(6')高等数学(下)试卷二一.填空题(每空3分,共15分)(1)函数z =的定义域为 ; (2)已知函数xyz e =,则在(2,1)处的全微分dz = ;(3)交换积分次序,ln 1(,)e x dx f x y dy⎰⎰= ;(4)已知L 是抛物线2y x =上点(0,0)O 与点(1,1)B 之间的一段弧,则=⎰;(5)已知微分方程20y y y '''-+=,则其通解为 . 二.选择题(每空3分,共15分)(1)设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,则L 与π的夹角为( );A. 0B. 2πC. 3πD. 4π(2)设(,)z f x y =是由方程333z xyz a -=确定,则z x ∂=∂( ); A. 2yz xy z - B. 2yz z xy - C. 2xz xy z - D. 2xy z xy -(3)微分方程256x y y y xe '''-+=的特解y *的形式为y *=( );A.2()x ax b e +B.2()x ax b xe +C.2()x ax b ce ++D.2()xax b cxe ++ (4)已知Ω是由球面2222x y z a ++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为( ); A222sin ad d r drππθϕϕ⎰⎰⎰ B.220ad d rdrππθϕ⎰⎰⎰C.20ad d rdrππθϕ⎰⎰⎰ D.220sin a d d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x ∞=-∑,则其收敛半径( ).2 B.1 C. 12 D.三.计算题(每题8分,共48分)5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、 已知(sin cos ,)x yz f x y e +=,求zx ∂∂, z y ∂∂ . 7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)x x Le y y dx e y dy -+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段. 6、求微分方程 32(1)1y y x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin3n n n n π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1nn x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧高等数学(下)模拟试卷三一. 填空题(每空3分,共15分)1、 函数arcsin(3)y x =-的定义域为 .2、22(2)lim 332n n n n →∞++-= .3、已知2ln(1)y x =+,在1x =处的微分dy = . 4、定积分1200621(sin )x x x dx -+=⎰.5、求由方程57230y y x x +--=所确定的隐函数的导数dydx =.二.选择题(每空3分,共15分)1、2x =是函数22132x y x x -=-+的 间断点 (A )可去 (B )跳跃 (C )无穷 (D )振荡2、积分10⎰= .(A) ∞ (B)-∞(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是 。

大一下学期高等数学考试题

大一下学期高等数学考试题

一、单项选择题(6×3分)1、设直线,平面,那么与之间的夹角为( )A.0B.C.D.2、二元函数在点处的两个偏导数都存在是在点处可微的()A.充分条件B.充分必要条件C.必要条件D.既非充分又非必要条件3、设函数,则等于()A. B.C. D.4、二次积分交换次序后为()A. B.C. D.5、若幂级数在处收敛,则该级数在处()A.绝对收敛B.条件收敛C.发散 C.不能确定其敛散性6、设是方程的一个解,若,则在处()A.某邻域内单调减少B.取极小值C.某邻域内单调增加D.取极大值二、填空题(7×3分)1、设=(4,-3,4),=(2,2,1),则向量在上的投影=2、设,,那么3、D为,时,4、设是球面,则=5、函数展开为的幂级数为6、=7、为通解的二阶线性常系数齐次微分方程为三、计算题(4×7分)1、设,其中具有二阶导数,且其一阶导数不为 1,求。

2、求过曲线上一点(1,2,0)的切平面方程。

3、计算二重积分,其中4、求曲线积分,其中是沿曲线由点(0,1)到点(2,1)的弧段。

5、求级数的和。

四、综合题(10分)曲线上任一点的切线在轴上的截距与法线在轴上的截距之比为3,求此曲线方程。

五、证明题 (6分)设收敛,证明级数绝对收敛。

一、单项选择题(6×3分)1、 A2、 C3、 C4、 B5、 A6、 D二、填空题(7×3分)1、22、3、 4 、5、 6、0 7、三、计算题(5×9分)1、解:令则,故2、解:令则所以切平面的法向量为:切平面方程为:3、解:===4、解:令,则当,即在x轴上方时,线积分与路径无关,选择由(0,1)到(2,1)则===5、解:令则,即令,则有=四、综合题(10分)解:设曲线上任一点为,则过的切线方程为:在轴上的截距为过的法线方程为:在轴上的截距为依题意有由的任意性,即,得到这是一阶齐次微分方程,变形为: (1)令则,代入(1)得:分离变量得:解得:即为所求的曲线方程。

大一第二学期高数期末考试题(含答案)

大一第二学期高数期末考试一、单项选择题(本大题有4小题, 每小题4分, 共16分)1.。

(A)(B)(C)(D)不可导.2.。

(A)是同阶无穷小,但不是等价无穷小;(B)是等价无穷小;(C)是比高阶的无穷小; (D)是比高阶的无穷小。

3.若,其中在区间上二阶可导且,则().(A)函数必在处取得极大值;(B)函数必在处取得极小值;(C)函数在处没有极值,但点为曲线的拐点;(D)函数在处没有极值,点也不是曲线的拐点。

(A)(B)(C)(D)。

二、填空题(本大题有4小题,每小题4分,共16分)4.。

5..6..7..三、解答题(本大题有5小题,每小题8分,共40分)8.设函数由方程确定,求以及.9.设函数连续,,且,为常数. 求并讨论在处的连续性.10.求微分方程满足的解。

四、解答题(本大题10分)11.已知上半平面内一曲线,过点,且曲线上任一点处切线斜率数值上等于此曲线与轴、轴、直线所围成面积的2倍与该点纵坐标之和,求此曲线方程。

五、解答题(本大题10分)12.过坐标原点作曲线的切线,该切线与曲线及x轴围成平面图形D.(1)求D的面积A;(2)求D绕直线x = e 旋转一周所得旋转体的体积V。

六、证明题(本大题有2小题,每小题4分,共8分)13.设函数在上连续且单调递减,证明对任意的,.14.设函数在上连续,且,.证明:在内至少存在两个不同的点,使(提示:设)解答一、单项选择题(本大题有4小题, 每小题4分,共16分)1、D2、A3、C4、C二、填空题(本大题有4小题,每小题4分,共16分)5.。

6。

.7. . 8.。

三、解答题(本大题有5小题,每小题8分,共40分)9.解:方程两边求导,10.解:11.解:12.解:由,知。

,在处连续。

13.解:,四、解答题(本大题10分)14.解:由已知且,将此方程关于求导得特征方程:解出特征根:其通解为代入初始条件,得故所求曲线方程为:五、解答题(本大题10分)15.解:(1)根据题意,先设切点为,切线方程:由于切线过原点,解出,从而切线方程为:则平面图形面积(2)三角形绕直线x = e一周所得圆锥体体积记为V1,则曲线与x轴及直线x = e所围成的图形绕直线x = e一周所得旋转体体积为V2 D绕直线x = e旋转一周所得旋转体的体积六、证明题(本大题有2小题,每小题4分,共12分)16.证明:故有:证毕.证:构造辅助函数:.其满足在上连续,在上可导。

大一下学期高等数学期中考试试卷及答案

大一下学期高等数学期中考试试卷及答案一、选择题(共40题,每题2分,共80分)1. 计算∫(4x-3)dx的结果是:A. 2x^2 - 3x + CB. 2x^2 - 3x + 4C. 2x^2 - 3x + 1D. 2x^2 - 3x答案:A2. 曲线y = 2x^3 经过点(1, 2),则函数y = 2x^3的导数为:A. 2x^2B. 6x^2C. 6xD. 2x答案:D3. 若a,b为实数,且a ≠ 0,则 |a|b 的值等于:A. aB. abC. 1D. b答案:B4. 设函数f(x) = x^2 + 2x + 1,g(x) = 2x - 1,则f(g(-2))的值为:A. 19B. 17C. 16D. 15答案:C5. 已知√2是无理数,则2-√2是:A. 有理数B. 无理数C. 整数D. 分数答案:A二、填空题(共5题,每题4分,共20分)1. 设函数f(x) = 3x^2 - 2x + 1,则f'(1)的值为____。

答案:42. 已知函数f(x) = 4x^2 + ax + 3,若其图像与x轴有两个交点,则a的取值范围是____。

答案:(-∞, 9/4) ∪ (9/4, +∞)3. 三角形ABC中,AB = AC,角A的度数为α,则角B的度数为____。

答案:(180°-α)/24. 若函数y = f(x)在点x = 2处的导数存在,则f(x)在点x = 2处____。

答案:连续5. 若直线y = kx + 2与曲线y = x^2交于两个点,则k的取值范围是____。

答案:(-∞, 1) ∪ (1, +∞)三、解答题(共5题,每题20分,共100分)1. 计算∫(e^x+1)/(e^x-1)dx。

解:令u = e^x-1,则du = e^xdx。

原积分变为∫(1/u)du = ln|u| + C = ln|e^x-1| + C。

2. 求函数y = x^3 + 2x^2 - 5x的驻点和拐点。

高数大一考试试题

高数大一考试试题一、选择题(每题3分,共30分)1. 下列函数中,哪一个不是基本初等函数?A. 指数函数B. 对数函数C. 分段函数D. 三角函数2. 函数f(x) = 2x^3 - 5x^2 + 3x + 1在区间(-∞,+∞)内的最大值是:A. 1B. -1C. 0D. 23. 设函数f(x) = x^2 + 3x + 2,求f(x)的最小值:A. -1B. 0C. 1D. 24. 以下哪个选项是极限lim (x->2) [(x^2 - 4)/(x - 2)]的值?A. 0B. 4C. 8D. 不存在5. 已知数列{an}是等差数列,且a1 = 3,a4 = 13,求此等差数列的A. 2B. 3C. 4D. 56. 以下哪个选项是不定积分∫1/(4+3x^2) dx的解?A. 1/3 arctan(x/2)B. 1/2 arctan(x/2)C. 1/3 arctan(x)D. 1/2 arctan(x)7. 设函数f(x) = sin(x) + cos(x),求f(x)的导数f'(x):A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) - cos(x)D. -sin(x) + cos(x)8. 以下哪个选项是定积分∫[0, π/2] x^2 dx的值?A. π^2/4B. π^2/3C. π^3/6D. π^3/39. 设随机变量X服从参数为λ的泊松分布,求E(X)的值:A. λB. λ^2C. 1/λD. 2λ10. 以下哪个选项是二元函数z = xy在区域D:x^2 + y^2 ≤ 1上的A. 1B. 0C. -1D. 不存在二、填空题(每题4分,共20分)11. 若函数f(x) = √x在区间[0, 4]上可导,则f'(x) = ________。

12. 设数列{bn}的通项公式为bn = 2n - 1,该数列的前n项和Sn =________。

大一高等数学试题及答案

大一高等数学试题及答案一、选择题(每题2分,共20分)1. 下列函数中,不是周期函数的是()。

A. y = sin(x)B. y = cos(x)C. y = e^xD. y = tan(x)2. 函数f(x) = x^2 + 3x - 2的零点个数是()。

A. 0B. 1C. 2D. 33. 极限lim(x→0) (sin(x)/x)的值是()。

A. 0B. 1C. 2D. 无穷大4. 曲线y = x^3 - 2x^2 + 3在x = 1处的切线斜率是()。

A. -1B. 0C. 1D. 25. 以下哪个不是微分方程dy/dx = y/x的解()。

A. y = x^2B. y = x^3C. y = x^(-1)D. y = x6. 定积分∫(0,1) x^2 dx的值是()。

A. 1/3B. 1/4C. 1/2D. 17. 函数f(x) = ln(x)在区间[1, e]上的值域是()。

A. [0, 1]B. [1, e]C. [0, e]D. [1, 2]8. 以下哪个是复合函数f(g(x))的导数()。

A. f'(g(x)) * g'(x)B. f(g(x)) * g'(x)C. f'(x) * g'(x)D. f(x) * g'(x)9. 以下哪个是泰勒级数展开的公式()。

A. f(x) = ∑[n=0 to ∞] (f^(n)(a) / n!) * (x - a)^nB. f(x) = ∑[n=1 to ∞] (f^(n)(a) / n!) * (x - a)^nC. f(x) = ∑[n=0 to ∞] (f^(n)(a) / (n+1)!) * (x - a)^nD. f(x) = ∑[n=1 to ∞] (f^(n)(a) / (n+1)!) * (x - a)^n10. 以下哪个是拉格朗日中值定理的条件()。

A. f(x) 在区间[a, b]上连续B. f(x) 在区间(a, b)上可导C. f(x) 在区间[a, b]上可导D. f(x) 在区间(a, b)上连续且可导答案:1-5 C B B C A 6-10 B A A D D二、填空题(每题2分,共10分)1. 若f(x) = x^3 - 4x^2 + 5x - 6,则f'(x) = __________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大一下学期高等数学考试

This manuscript was revised by the office on December 10, 2020.
一、单项选择题(6×3分)
1、设直线,平面,那么与之间的夹角为()
、二元函数在点处的两个偏导数都存在是在点处可微的()
A.充分条件
B.充分必要条件
C.必要条件
D.既非充分又非必要条件
3、设函数,则等于()
.
C. D.
4、二次积分交换次序后为()
.
.
5、若幂级数在处收敛,则该级数在处()
A.绝对收敛
B.条件收敛
C.发散C.不能确定其敛散性
6、设是方程的一个解,若,则在
处()
A.某邻域内单调减少
B.取极小值
C.某邻域内单调增加
D.取极大值
二、填空题(7×3分)
1、设=(4,-3,4),=(2,2,1),则向量在上的投影

2、设,,那么
3、D为,时,
4、设是球面,则=
5、函数展开为的幂级数为
6、=
7、为通解的二阶线性常系数齐次微分方程为
三、计算题(4×7分)
1、设,其中具有二阶导数,且其一阶导数不为1,求。

2、求过曲线上一点(1,2,0)的切平面方程。

3、计算二重积分,其中
4、求曲线积分,其中是沿曲线由点(0,1)到点(2,1)的弧段。

5、求级数的和。

四、综合题(10分)
曲线上任一点的切线在轴上的截距与法线在轴上的截距之比为3,求此曲线方程。

五、证明题(6分)
设收敛,证明级数绝对收敛。

一、单项选择题(6×3分)
1、A
2、C
3、C
4、B
5、A
6、D
二、填空题(7×3分)
1、2
2、
3、
4、
5、6、07、
三、计算题(5×9分)
1、解:令则,故
2、解:令

所以切平面的法向量为:
切平面方程为:
3、解:===
4、解:令,则
当,即在x轴上方时,线积分与路径无关,选择由(0,1)到(2,1)则
===5、解:令则


令,则有

四、综合题(10分)
解:设曲线上任一点为,则
过的切线方程为:
在轴上的截距为
过的法线方程为:
在轴上的截距为
依题意有
由的任意性,即,得到
这是一阶齐次微分方程,变形为:
(1)
令则,代入(1)
得:
分离变量得:
解得:

为所求的曲线方程。

五、证明题(6分)
证明:

而与都收敛,由比较法及其性质知:
收敛
故绝对收敛。

一,单项选择题(6×4分)
1、直线一定()
A.过原点且垂直于x轴
B.过原点且平行于x轴
C.不过原点,但垂直于x轴
D.不过原点,但平行于x轴
2、二元函数在点处
①连续②两个偏导数连续③可微④两个偏导数都存在
那么下面关系正确的是()
A②③①B.③②①
C.③④①
D.③①④
3、设,则等于()
B.
.
4、设,改变其积分次序,则I=()
.
.
5、若与都收敛,则()
A.条件收敛
B.绝对收敛
C.发散C.不能确定其敛散性
6、二元函数的极大值点为()
A.(1,0)
B.(1,2)
C.(-3,0)
D.(-3,2)
二、填空题(8×4分)
1、过点(1,3,-2)且与直线垂直的平面方程为
2、设,则=
3、设D:,,则
4、设为球面,则=
5、幂级数的和函数为
6、以为通解的二阶线性常系数齐次微分方程为
7、若收敛,则=
8、平面上的曲线绕轴旋转所得到的旋转面的方程为
三、计算题(4×7分)
1、设可微,由确定,求及。

2、计算二重积分,其中。

3、求幂级数的收敛半径与收敛域。

4、求曲线积分,其中是由所围成区域边界取顺时针方向。

四、综合题(10分)
曲线上点的横坐标的平方是过点的切线与轴交点的纵坐标,求此曲线方程。

五、证明题(6分)
设正项级数收敛,证明级数也收敛。

一、单项选择题(6×4分)
1、A
2、A
3、C
4、B
5、B
6、D
二、填空题(8×4分)
1、2、3、44、
5、6、7、18、
三、计算题(4×7分)
1、解:令
2、解:==
===
3、解:令对于,
当时=发散
当时,=也发散
所以在时收敛,在该区间以外发散,即
解得
故所求幂级数的收敛半径为2,收敛域为(0,4)
4、解:令,则
,由格林公式得到
==
==4
四、综合题(10分)
解:过的切线方程为:
令X=0,得
依题意有:即 (1)
对应的齐次方程解为
令所求解为
将代入(1)得:
故(1)的解为:
五、证明题(6分)
证明:由于收敛,所以也收敛,

由比较法及收敛的性质得:收敛。

相关文档
最新文档