湘教版七年级数学下册期中复习题及答案
湘教版七年级数学下册期中考试卷及答案【可打印】

湘教版七年级数学下册期中考试卷及答案【可打印】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.若a≠0, b≠0, 则代数式的取值共有()A. 2个B. 3个C. 4个D. 5个2.如下图, 下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5, 能判定AB∥CD的条件为()A. ①②③④B. ①②④C. ①③④D. ①②③3. ①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180°;④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是()A. 、1个B. 2个C. 3个D. 4个4.如图, △ABC中, AD是BC边上的高, AE、BF分别是∠BAC、∠ABC的平分线, ∠BAC=50°, ∠ABC=60°, 则∠EAD+∠ACD=()A. 75°B. 80°C. 85°D. 90°5.如图, 四边形ABCD内接于⊙O, 点I是△ABC的内心, ∠AIC=124°, 点E 在AD的延长线上, 则∠CDE的度数为()A. 56°B. 62°C. 68°D. 78°6.如图, 若AB∥CD, CD∥EF, 那么∠BCE=()A. ∠1+∠2B. ∠2-∠1C. 180°-∠1+∠2D. 180°-∠2+∠17.如图, AB∥CD, BP和CP分别平分∠ABC和∠DCB, AD过点P, 且与AB垂直.若AD=8, 则点P到BC的距离是()A. 8B. 6C. 4D. 28. 已知多项式2x2+bx+c分解因式为2(x-3)(x+1), 则b, c的值为().A. b=3, c=-1B. b=-6, c=2C. b=-6, c=-4D. b=-4, c=-69.关于x的不等式组无解, 那么m的取值范围为( )A. m≤-1B. m<-1C. -1<m≤0D. -1≤m<010. 将9.52变形正确的是()A. 9.52=92+0.52B. 9.52=(10+0.5)(10﹣0.5)C. 9.52=102﹣2×10×0.5+0.52D. 9.52=92+9×0.5+0.52二、填空题(本大题共6小题, 每小题3分, 共18分)1. 一个n边形的内角和为1080°, 则n=________.2.如图, 把三角板的斜边紧靠直尺平移, 一个顶点从刻度“5”平移到刻度“10”, 则顶点C平移的距离CC'=________.3. 分解因式: _________.4.在不透明的口袋中有若干个完全一样的红色小球, 现放入10个仅颜色与红球不同的白色小球, 均匀混合后, 有放回的随机摸取30次, 有10次摸到白色小球, 据此估计该口袋中原有红色小球个数为________.5. 因式分解: _____________.5. 若的相反数是3, 5, 则的值为_________.三、解答题(本大题共6小题, 共72分)1. 解方程组:(1)53x yy x+=⎧⎨=-⎩(2)223346a ba b⎧+=-⎪⎨⎪-=⎩2. 先化简, 再求值: (a﹣2b)(a+2b)﹣(a﹣2b)2+8b2, 其中a=﹣2, b=3. 如图, △ABC与△DCB中, AC与BD交于点E, 且∠A=∠D, AB=DC(1)求证: △ABE≌DCE;(2)当∠AEB=50°, 求∠EBC的度数.4. 如图, ∠1=70°, ∠.=70°. 说明: AB∥CD.5. 学校开展“书香校园”活动以来, 受到同学们的广泛关注, 学校为了解全校学生课外阅读的情况, 随机调查了部分学生在一周内0次1次2次3次4次及以上借阅图书的次数, 并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数人数7 13 a 10 3请你根据统计图表中的信息, 解答下列问题:______, ______.该调查统计数据的中位数是______, 众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;若该校共有2000名学生, 根据调查结果, 估计该校学生在一周内借阅图书“4次及以上”的人数.(注: 获利=售价-进价)(1) 该商场购进A.B两种商品各多少件?(2) 商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变, 而购进A种商品的件数是第一次的2倍, A种商品按原价出售, 而B种商品打折销售.若两种商品销售完毕, 要使第二次经营活动获利不少于81600元, B种商品最低售价为每件多少元?参考答案一、选择题(本大题共10小题, 每题3分, 共30分) 1、A2、C3、C4、A5、C6、D7、C8、D9、A10、C二、填空题(本大题共6小题, 每小题3分, 共18分) 1、82、53、()2x x 1-.4、205、(2)(2)a a a +-6.2或-8三、解答题(本大题共6小题, 共72分)1.(1) ;(2)2、4ab, ﹣4.3.见解析(2)∠EBC=25°4、略.5. 17、20; 2次、2次; ; 人.6、(1)该商场购进A 、B 两种商品分别为200件和120件.(2)B 种商品最低售价为每件1080元.。
湘教版七年级下册数学期中考试试题及答案

湘教版七年级下册数学期中考试试题及答案湘教版七年级下册数学期中考试试卷一、选择题(本题共8小题,每小题3分,共24分)1.(3分)计算(-2xy^2)^3的结果是()A。
-2x^3y^6 B。
-6x^3y^6 C。
8x^3y^6 D。
-8x^3y^62.(3分)将多项式-6a^3b^2-3a^2b^2因式分解时,应提取的公因式是()A。
-3a^2b^2 B。
-3ab C。
-3a^2b D。
-3a^3b^33.(3分)下列计算中,正确的是()A。
(m-2)(m+2)=m^2-2 B。
(x-6)(x+6)=x^2-36 C。
y^2 D。
(x+y)(x+y)=x^2+y^24.(3分)下列方程组中,为二元一次方程组的是()A。
B。
C。
D.5.(3分)下列各式从左到右的变形中,为因式分解的是()A。
x(a-b)=ax-bx B。
x^2-1+y^2=(x-1)(x+1)+y^2 C。
y^2-1=(y+1)(y-1) D。
ax+by+c=x(a+b)+c6.(3分)已知 -1 是方程组 4x-3y=11,2x+y=-5 的解,则a-b的值是()A。
-1 B。
3 C。
4 D。
67.(3分)多项式x^2-mxy+9y^2能用完全平方因式分解,则m的值是()A。
3 B。
6 C。
±3 D。
±68.(3分)某商场购进甲、乙两种服装后,都加价40%标价出售。
“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别把标价的八折和九折出售。
某顾客购买甲、乙两种服装共付182元,两种服装的标价之和为210元,则这两种服装的进价各是()A。
50、100 B。
50、56 C。
56、126 D。
100、126二、填空题(本题共8小题,每小题3分,共24分)9.(3分)计算:(-3x+1)•(-2x)^2=12x^3-4x^210.(3分)因式分解a(b-c)-3(c-b)=a(b-c)+3(b-c)=(a+3)(b-c)11.(3分)解下列方程组:① 3x+2y=5,x-y=1;④ 2x-3y=1,4x-6y=2①解法:x=1,y=1④解法:无解12.(3分)分解因式:(a-b)^2-4b^2=(a-b+2b)(a-b-2b)=(a-3b)(a+b)13.(3分)若x+y=6,xy=5,则x^2+y^2=(x+y)^2-2xy=36-10=2614.(3分)已知x^2-4x+n因式分解的结果为(x+2)(x+m),则n=-4m15.(3分)某宾馆有3人房间和2人房间共20间,总共可以住旅客48人,若设3人房间有x间,2人房间有y间,则可列出方程组为:3x+2y=203x+2y=48解法:无解16.(3分)对于有理数x,y,定义新运算“※”:x※y=ax+by+1,a,b为常数,若3※5=15,4※7=28,则5※9=25a+9b+1解法:将3※5=15和4※7=28带入得到两个方程式:3a+5b+1=154a+7b+1=28解得a=2,b=1,代入5※9=25a+9b+1得到5※9=60.点评】此题考查了多项式因式分解的基本思想和方法,需要掌握提取公因式的技巧和规律。
湘教版七年级下册数学期中考试试题含答案

湘教版七年级下册数学期中考试试卷一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中有一项是符合题意的)1.(3分)下列方程组中,不是二元一次方程组的是()A.B.C.D.2.(3分)方程组:,由②﹣①,得正确的方程是()A.3x=10 B.x=5 C.3x=﹣5 D.x=﹣53.(3分)若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.2 D.34.(3分)为了节省空间,家里的饭碗一般是摞起来存放的.如果6只饭碗摞起来的高度为15cm,9只饭碗摞起来的高度为20cm,那么11只饭碗摞起来的高度更接近()A.21cm B.22cm C.23cm D.24cm5.(3分)下列计算正确的是()A.x+x2=x3B.x2•x3=x6C.(x3)2=x6D.x9÷x3=x36.(3分)下列计算正确的是()A.(﹣8)﹣8=0 B.3+=3C.(﹣3b)2=9b2D.a6÷a2=a37.(3分)下列各式由左边到右边的变形中,属于分解因式的是()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x8.(3分)把多项式2x2﹣8分解因式,结果正确的是()A.2(x2﹣8)B.2(x﹣2)2C.2(x+2)(x﹣2)D.2x(x﹣)9.(3分)添加一项,能使多项式9x2+1构成完全平方式的是()A.9x B.﹣9x C.9x2D.﹣6x10.若(x-5)(2x-n)=2x2+mx-15,则m,n的值分别是()A.m=-7,n=3 B.m=7,n=-3C.m=7,n=3 D.m=-7,n=-3二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)若(m﹣3)x+2y|m﹣2|+8=0是关于x,y的二元一次方程,m=.12.(3分)已知关于x,y的二元一次方程组的解互为相反数,则k 的值是.13.(3分)已知m+n=3,m﹣n=2,则m2﹣n2=.14.(3分)若|a﹣2|+(b+0.5)2=0,则a11b11=.15.(3分)分解因式:9x3﹣18x2+9x=.16.(3分)分解因式:4ax2﹣ay2=.17.(3分)某宾馆在重新装修后考虑在大厅内的主楼梯上铺设地毯,已知主楼梯宽为3m,其剖面如图所示,那么需要购买地毯m2.18.(3分)水仙花是漳州市花,如图,在长为14m,宽为10m的长方形展厅,划出三个形状、大小完全一样的小长方形摆放水仙花,则每个小长方形的周长为m.三、解答题(每题8分,共24分)19.(8分)解下列二元一次方程组:(1)(2).20.(8分)计算:(1)(﹣2x2y)3•(3xy2)2(2)2(a+1)2+(a+1)(1﹣2a)21.(8分)因式分解(1)﹣2x2y+12xy﹣18y(2)2x2y﹣8y.四、应用题(本大题有3个小题,每小题8分,共24分)22.(8分)在代数式ax+by中,当x=3,y=2时,它的值是﹣1,当x=5,y=﹣2时,它的值是17,求a,b的值.23.(8分)已知有理数m,n满足(m+n)2=9,(m﹣n)2=1,求下列各式的值.(1)mn;(2)m2+n2﹣mn.24.(8分)先分解因式,再求值:已知a+b=2,ab=2,求a3b+a2b2+ab3的值.五、综合题(第26题8分,第27题10分,共18分)25.(8分)已知(a+2)2+|b﹣3|=0,求(9ab2﹣3)+(7a2b﹣2)+2(ab2+1)﹣2a2b的值.26.(10分)湘西自治州风景优美,物产丰富,一外地游客到某特产专营店,准备购买精加工的豆腐乳和猕猴桃果汁两种盒装特产.若购买3盒豆腐乳和2盒猕猴桃果汁共需180元;购买1盒豆腐乳和3盒猕猴桃果汁共需165元.(1)请分别求出每盒豆腐乳和每盒猕猴桃果汁的价格;(2)该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需多少元?参考答案与试题解析一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中有一项是符合题意的)1.(3分)(2017春•邵东县期中)下列方程组中,不是二元一次方程组的是()A.B.C.D.【分析】依据二元一次方程组的定义求解即可.【解答】解:A.方程组是二元一次方程组,与要求不符;B.方程组中,含有三个未知数,不是二元一次方程组,符号要求;C.方程组是二元一次方程组,与要求不符;D.方程组是二元一次方程组,与要求不符.故选:B.【点评】本题主要考查的是二元一次方程组的定义,掌握二元一次方程组的定义是解题的关键.2.(3分)(2007•丽水)方程组:,由②﹣①,得正确的方程是()A.3x=10 B.x=5 C.3x=﹣5 D.x=﹣5【分析】②﹣①的过程其实是合并同类项得过程,依据合并同类项法则解答即可.【解答】解:由②﹣①,得x=5.故选B.【点评】这类题目的解题关键是掌握方程组解法中的加减消元法.3.(3分)(2014•莆田)若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.2 D.3【分析】方程组两方程相减即可求出x﹣y的值.【解答】解:,②﹣①得:2x﹣2y=﹣2,则x﹣y=﹣1,故选:A.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.(3分)(2014•阜新)为了节省空间,家里的饭碗一般是摞起来存放的.如果6只饭碗摞起来的高度为15cm,9只饭碗摞起来的高度为20cm,那么11只饭碗摞起来的高度更接近()A.21cm B.22cm C.23cm D.24cm【分析】设碗的个数为xcm,碗的高度为ycm,可得碗的高度和碗的个数的关系式为y=kx+b,根据6只饭碗摞起来的高度为15cm,9只饭碗摞起来的高度为20cm,列方程组求解,然后求出11只饭碗摞起来的高度.【解答】解:设碗身的高度为xcm,碗底的高度为ycm,由题意得,,解得:,则11只饭碗摞起来的高度为:×11+5=23(cm).更接近23cm.故选:C.【点评】本题考查了二元一次方程组的应用,关键是根据题意,找出合适的等量关系,列方程组求解.5.(3分)(2015•梅州)下列计算正确的是()A.x+x2=x3B.x2•x3=x6C.(x3)2=x6D.x9÷x3=x3【分析】A、原式不能合并,错误;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用幂的乘方运算法则计算得到结果,即可做出判断;D、原式利用同底数幂的除法法则计算得到结果,即可做出判断.【解答】解:A、原式不能合并,错误;B、原式=x5,错误;C、原式=x6,正确;D、原式=x6,错误.故选C.【点评】此题考查了同底数幂的除法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.6.(3分)(2015•崇左)下列计算正确的是()A.(﹣8)﹣8=0 B.3+=3C.(﹣3b)2=9b2D.a6÷a2=a3【分析】根据有理数的减法、积的乘方、同底数幂的除法,即可解答.【解答】解:A、(﹣8)﹣8=﹣16,故错误;B、3与不是同类项,不能合并,故错误;C、正确;D、a6÷a2=a4,故错误;故选:C.【点评】本题考查了有理数的减法、积的乘方、同底数幂的除法,解决本题的关键是熟记相关法则.7.(3分)(2013•茂名)下列各式由左边到右边的变形中,属于分解因式的是()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x【分析】根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.【解答】解:A、是多项式乘法,故选项错误;B、右边不是积的形式,x2﹣4x+4=(x﹣2)2,故选项错误;C、提公因式法,故选项正确;D、右边不是积的形式,故选项错误.故选:C.【点评】此题考查了因式分解的意义;这类问题的关键在于能否正确应用分解因式的定义来判断.8.(3分)(2015•台州)把多项式2x2﹣8分解因式,结果正确的是()A.2(x2﹣8)B.2(x﹣2)2C.2(x+2)(x﹣2)D.2x(x﹣)【分析】首先提取公因式2,进而利用平方差公式分解因式得出即可.【解答】解:2x2﹣8=2(x2﹣4)=2(x﹣2)(x+2).故选:C.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式分解因式是解题关键.9.(3分)(2017春•邵东县期中)添加一项,能使多项式9x2+1构成完全平方式的是()A.9x B.﹣9x C.9x2D.﹣6x【分析】利用完全平方公式的结构特征判断即可得到结果.【解答】解:添加一项,能使多项式9x2+1构成完全平方式的是﹣6x,故选D【点评】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.10.正确答案:D二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)(2014春•河西区期末)若(m﹣3)x+2y|m﹣2|+8=0是关于x,y的二元一次方程,m=1.【分析】根据二元一次方程满足的条件,即只含有2个未知数,未知数的项的次数是1的整式方程,即可求得m的值.【解答】解:根据题意,得|m﹣2|=1且m﹣3≠0,解得m=1.故答案为:1.【点评】二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数的项的最高次数为一次;(3)方程是整式方程.12.(3分)(2015•南充)已知关于x,y的二元一次方程组的解互为相反数,则k的值是﹣1.【分析】将方程组用k表示出x,y,根据方程组的解互为相反数,得到关于k 的方程,即可求出k的值.【解答】解:解方程组得:,因为关于x,y的二元一次方程组的解互为相反数,可得:2k+3﹣2﹣k=0,解得:k=﹣1.故答案为:﹣1.【点评】此题考查方程组的解,关键是用k表示出x,y的值.13.(3分)(2015•莱芜)已知m+n=3,m﹣n=2,则m2﹣n2=6.【分析】根据平方差公式,即可解答.【解答】解:m2﹣n2=(m+n)(m﹣n)=3×2=6.故答案为:6.【点评】本题考查了平方差公式,解决本题的关键是熟记平方差公式.14.(3分)(2017春•邵东县期中)若|a﹣2|+(b+0.5)2=0,则a11b11=﹣1.【分析】首先根据非负数的性质求得a,b的值,然后根据a11b11=(ab)11把a,b的值代入求解即可.【解答】解:根据题意得:,解得:,则a11b11=(ab)11=(﹣1)11=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质以及积的乘方法则,正确求得a,b的值是关键.15.(3分)(2015•泰安)分解因式:9x3﹣18x2+9x=9x(x﹣1)2.【分析】首先提取公因式9x,进而利用完全平方公式分解因式得出即可.【解答】解:9x3﹣18x2+9x=9x(x2﹣2x+1)=9x(x﹣1)2.故答案为:9x(x﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.16.(3分)(2016•黄冈)分解因式:4ax2﹣ay2=a(2x+y)(2x﹣y).【分析】首先提取公因式a,再利用平方差进行分解即可.【解答】解:原式=a(4x2﹣y2)=a(2x+y)(2x﹣y),故答案为:a(2x+y)(2x﹣y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.17.(3分)(2017春•邵东县期中)某宾馆在重新装修后考虑在大厅内的主楼梯上铺设地毯,已知主楼梯宽为3m,其剖面如图所示,那么需要购买地毯10.8 m2.【分析】地毯的长度实际是所有台阶的宽加上台阶的高,再由主楼梯宽3米可得出地毯的面积.【解答】解:由题意得:地摊的长为:1.2+2.4=3.6m,∴地摊的面积=3.6×3=10.8米2.故答案为:10.8.【点评】本题考查平移性质的实际运用,难度不大,注意先求出地毯的长度.18.(3分)(2014•漳州)水仙花是漳州市花,如图,在长为14m,宽为10m的长方形展厅,划出三个形状、大小完全一样的小长方形摆放水仙花,则每个小长方形的周长为16m.【分析】设小长方形的长为x m,宽为y m,由图可知,长方形展厅的长是(2x+y)m,宽为(x+2y)m,由此列出方程组求得长、宽,进一步解决问题.【解答】解:设小长方形的长为x m,宽为y m,由图可得解得x+y=8,∴每个小长方形的周长为8×2=16m.故答案为:16.【点评】此题考查二元一次方程组的运用,看清图意,正确利用图意列出方程组解决问题.三、解答题(每题8分,共24分)19.(8分)(2017春•邵东县期中)解下列二元一次方程组:(1)(2).【分析】(1)应用加减法,求出方程组的解是多少即可.(2)应用代入法,求出方程组的解是多少即可.【解答】解:(1)②﹣①,可得:5y=5,解得y=1,∴x=1×2+1=3,∴原方程组的解是.(2)由①,可得:y=2x﹣5③,把③代入②,可得:x﹣1=2x﹣5﹣0.5,解得x=4.5,∴y=2×4.5﹣5=4,∴原方程组的解是.【点评】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入法和加减法的应用.20.(8分)(2017春•邵东县期中)计算:(1)(﹣2x2y)3•(3xy2)2(2)2(a+1)2+(a+1)(1﹣2a)【分析】(1)原式利用幂的乘方及积的乘方运算法则计算,再利用单项式乘以单项式法则计算即可得到结果;(2)原式利用完全平方公式,以及多项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=﹣8x6y3•9x2y4=﹣72x8y7;(2)原式=2a2+4a+2+a﹣2a2+1﹣2a=3a+3.【点评】此题考查了整式的混合运算,以及完全平方公式,熟练掌握运算法则是解本题的关键.21.(8分)(2017春•邵东县期中)因式分解(1)﹣2x2y+12xy﹣18y(2)2x2y﹣8y.【分析】(1)直接提取公因式﹣2y,再利用完全平方公式分解因式得出答案;(2)直接提取公因式2y,进而利用平方差公式分解因式得出答案.【解答】解:(1)﹣2x2y+12xy﹣18y=﹣2y(x2﹣6x+9)=﹣2y(x﹣3)2;(2)2x2y﹣8y=2y(x2﹣4)=2y(x+2)(x﹣2).【点评】此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键.四、应用题(本大题有3个小题,每小题8分,共24分)22.(8分)(2017春•邵东县期中)在代数式ax+by中,当x=3,y=2时,它的值是﹣1,当x=5,y=﹣2时,它的值是17,求a,b的值.【分析】根据题意,可得:,再应用加减法,求出a,b的值各是多少即可.【解答】解:,①+②,可得:8a=16,解得a=2,∴b=(﹣3×2﹣1)÷2=﹣3.5,∴原方程组的解是.【点评】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入法和加减法的应用.23.(8分)(2017春•邵东县期中)已知有理数m,n满足(m+n)2=9,(m﹣n)2=1,求下列各式的值.(1)mn;(2)m2+n2﹣mn.【分析】(1)已知等式利用完全平方公式化简,相减即可求出mn的值;(2)已知等式利用完全平方公式化简,相加即可求出m2+n2的值.【解答】解:(m+n)2=m2+n2+2mn=9①,(m﹣n)2=m2+n2﹣2mn=1②,(1)①﹣②得:4mn=8,则mn=2;(2)①+②得:2(m2+n2)=10,则m2+n2=5.所以m2+n2﹣mn=5﹣2=3.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.24.(8分)(2011秋•普安县校级期末)先分解因式,再求值:已知a+b=2,ab=2,求a3b+a2b2+ab3的值.【分析】先把a3b+a2b2+ab3提公因式ab,再运用完全平方和公式分解因式,最后整体代入求值.【解答】解:a3b+a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2.∴当a+b=2,ab=2时,原式=×2×22=×2×4=4.【点评】化简求值是课程标准中所规定的一个基本内容,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材.五、综合题(第26题8分,第27题10分,共18分)25.(8分)(2011秋•腾冲县校级期末)已知(a+2)2+|b﹣3|=0,求(9ab2﹣3)+(7a2b﹣2)+2(ab2+1)﹣2a2b的值.【分析】根据非负数的性质可求出a、b的值,然后将所求的代数式化简,再代值计算.【解答】解:∵(a+2)2+|b﹣3|=0,∴a=﹣2,b=3;原式=3ab2﹣1+7a2b﹣2+2ab2+2﹣2a2b,=5ab2+5a2b﹣1,=5ab(a+b)﹣1,当a=﹣2,b=3时,原式=5×(﹣2)×3×(﹣2+3)﹣1=﹣31.【点评】本题主要考查整式的混合运算,先利用非负数的性质求出a、b的值是解题的关键.26.(10分)(2015•湘西州)湘西自治州风景优美,物产丰富,一外地游客到某特产专营店,准备购买精加工的豆腐乳和猕猴桃果汁两种盒装特产.若购买3盒豆腐乳和2盒猕猴桃果汁共需180元;购买1盒豆腐乳和3盒猕猴桃果汁共需165元.(1)请分别求出每盒豆腐乳和每盒猕猴桃果汁的价格;(2)该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需多少元?【分析】(1)设每盒豆腐乳x元,每盒猕猴桃果汁y元,根据若购买3盒豆腐乳和2盒猕猴桃果汁共需180元;购买1盒豆腐乳和3盒猕猴桃果汁共需165元,列出方程组,求解即可;(2)将(1)中的每盒豆腐乳和每盒猕猴桃果汁的价格代入解得即可.【解答】解:(1)设每盒豆腐乳x元,每盒猕猴桃果汁y元,可得:,解得:,答:每盒豆腐乳和每盒猕猴桃果汁的价格分别为30元,45元;(2)把每盒豆腐乳和每盒猕猴桃果汁的价格分别为30元,45元代入,可得:4×30+2×45=210(元),答:该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需210元.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,找出合适的等量关系,列方程求解.。
湘教版七年级下册数学期中考试试卷及答案

湘教版七年级下册数学期中考试试题一、单选题1.计算(−x 2y)2的结果是()A .x 4y 2B .﹣x 4y 2C .x 2y 2D .﹣x 2y 22.方程组60230x y x y +=⎧⎨-=⎩的解是()A .7010x y =⎧⎨=-⎩B .9030x y =⎧⎨=-⎩C .5010x y =⎧⎨=⎩D .3030x y =⎧⎨=⎩3.下列运算正确的是()A .236(2)8x x -=-B .()22122x x x x -+=-+C .222()x y x y +=+D .()()22224x y x y x y-+--=--4.下列各式中,能用完全平方公式分解因式的是()A .2161x +B .221x x +-C .2224a ab b +-D .214x x -+5.为了绿化校园,某班学生共种植了144棵树苗.其中男生每人种3棵,女生每人种2棵,且该班男生比女生多8人,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是()A .144328x y x y +=⎧⎨-=⎩B .832144x y x y -=⎧⎨+=⎩C .832144y x x y -=⎧⎨+=⎩D .832144x y x y +=⎧⎨+=⎩6.多项式2()()()x y a b xy b a y a b ---+-提公因式后,另一个因式为()A .21x x --B .21x x ++C .21x x --D .21x x +-7.计算(0.5×105)3×(4×103)2的结果是()A .13210⨯B .140.510⨯C .21210⨯D .21810⨯8.图(1)是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A .2mnB .(m+n )2C .(m-n )2D .m 2-n 29.计算(﹣4a ﹣1)(﹣4a+1)的结果为()A .16a 2﹣1B .﹣8a 2﹣1C .﹣4a 2+1D .﹣16a 2+110.下列等式由左到右的变形中,属于因式分解的是()A .x 2+5x ﹣1=x (x+5﹣1x)B .x 2﹣4+3x =(x+2)(x ﹣2)+3x C .x 2﹣6x+9=(x ﹣3)2D .(x+2)(x ﹣2)=x 2﹣4二、填空题11.化简:()()x 111x +-+=_______.12.因式分解:2218x -=______.13.如果有理数x ,y 满足方程组4221x y x y +=⎧⎨-=⎩那么x 2-y 2=________.14.多项式()()x m x n --的展开结果中的x 的一次项系数为3,常数项为2,则22m n mn +的值为_________.15.已知13x y =⎧⎨=⎩是二元一次方程组71mx ny nx my +=⎧⎨-=⎩的解,则2m+n 的值为_____.16.若(17x-11)(7x-3)-(7x-3)(9x-2)=(ax+b )(8x-c ),其中a ,b ,c 是整数,则a+b+c 的值等于______.17.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问安排______名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.三、解答题18.已知22610340m n m n +-++=,则m n +=______.19.先化简,再求值:(2x+3)(2x-3)-4x(x-1)-(x+2)2,其中x=-3.20.解下列方程组:(1)38 534 x yx y+=⎧⎨-=⎩(2)132(1)6 x yx y⎧+=⎪⎨⎪+-=⎩21.分解因式或计算:(1)(2m-n)2-169(m+n)2;(2)8(x2-2y2)-x(7x+y)+xy.(3)40×3.152+80×3.15×1.85+40×1.85222.已知二次三项式x2+px+q的常数项与(x-1)(x-9)的常数项相同,而它的一次项与(x-2)(x-4)的一次项相同,试将此多项式因式分解.23.已知方程组51542ax yx by-=⎧⎨-=-⎩①②由于甲看错了方程①中的a得到方程组的解为31xy=-⎧⎨=-⎩;乙看错了方程②中的b得到方程组的解为54xy=⎧⎨=⎩,若按正确的a,b计算,请你求原方程组的解.24.为建设资源节约型、环境友好型社会,克服因干旱而造成的电力紧张困难,切实做好节能减排工作.某地决定对居民家庭用电实行“阶梯电价”,电力公司规定:居民家庭每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度)时,实行“基本电价”;当居民家庭月用电量超过80千瓦时时,超过部分实行“提高电价”.(1)小张家今年2月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元.求“基本电价”和“提高电价”分别为多少元/千瓦时;(2)若6月份小张家预计用电130千瓦时,请预算小张家6月份应上缴的电费.25.观察下列各式(x-1)(x+1)=x2-1(x-1)(x2+x+1)=x3-1(x-1)(x3+x2+x+1)=x4-1…①根据以上规律,则(x-1)(x6+x5+x4+x3+x2+x+1)=______.②你能否由此归纳出一般性规律:(x-1)(x n+x n-1+…+x+1)=______.③根据②求出:1+2+22+…+234+235的结果.26.图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一下正方形.(1)请你用两种不同的方法求图2中阴影部分的面积?①②(2)观察图2,写出三个代数式(m+n)2,(m﹣n)2,4mn之间的等量关系:(3)根据(2)中的等量关系,解决如下问题:若|a+b﹣7|+|ab﹣6|=0,求(a﹣b)2的值.参考答案1.A 【解析】试题分析:(−x 2y)2=x 4y 2.故选A .考点:幂的乘方与积的乘方.2.C 【详解】试题分析:利用加减消元法求出方程组的解即可作出判断:60{230x y x y +=-=①②,①﹣②得:3y=30,即y=10,将y=10代入①得:x+10=60,即x=50,则方程组的解为50{10x y ==.故选C.考点:解二元一次方程组.3.A 【解析】解:A .(-2x 2)3=-8x 6,正确;B .-2x(x +1)=-2x 2-2x ,故B 错误;C .(x +y)2=x 2+2xy+y 2,故C 错误;D .(-x +2y)(-x -2y)=x 2-4y 2,故D 错误;故选A .4.D 【分析】根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数的平方和的形式,另一项是这两个数的积的2倍,对各选项分析判断后利用排除法求解.【详解】A.2161x +只有两项,不符合完全平方公式;B.221x x +-其中2x 、-1不能写成平方和的形式,不符合完全平方公式;C.2224a ab b +-,其中2a 与24b -不能写成平方和的形式,不符合完全平方公式;D.214x x -+符合完全平方公式定义,故选:D.【点睛】此题考查完全平方公式,正确掌握完全平方式的特点是解题的关键.5.B 【分析】根据“共种植了144棵树苗”,“男生比女生多8人”可以列出相应的二元一次方程组,本题得以解决.【详解】由题意可得:832144x y x y -=⎧⎨+=⎩.故选:B .【点睛】本题考查了二元一次方程组的应用,解答本题的关键是明确题意,列出相应的二元一次方程组.6.B 【分析】各项都有因式y (a-b ),根据因式分解法则提公因式解答.【详解】2()()()x y a b xy b a y a b ---+-=2()()()x y a b xy a b y a b -+-+-=2()(1)y a b x x -++,故提公因式后,另一个因式为:21x x ++,故选:B.【点睛】此题考查多项式的因式分解,掌握因式分解的方法是解题的关键.7.C【详解】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质进行计算.解:(0.5×105)3×(4×103)2=0.125×1015×16×106=2×1021.故选C.本题考查同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.8.C【详解】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2.又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)2-4mn=(m-n)2.故选C.9.A【分析】根据平方差公式计算即可.【详解】解:原式=(﹣4a)2﹣12=16a2﹣1.故选:A.【点睛】本题考查整式的乘法、乘法公式等知识,熟练掌握这些法则是解题的关键,属于中考常考题型.10.C【分析】根据多项式因式分解的意义,逐个判断得结论.【详解】解:A等号的右边不是整式积的形式,不属于因式分解;B、D等号的右边是和的形式,不属于因式分解;C属于因式分解.故选:C .【点睛】本题考查了因式分解的意义.因式分解就是把多项式化为几个整式乘积的形式.11.2x .【详解】第一项利用平方差公式展开,去括号合并即可得到结果:()()22x 11111x x x +-+=-+=.考点:整式的混合运算12.2(x+3)(x ﹣3).【详解】试题分析:先提公因式2后,再利用平方差公式分解即可,即2218x -=2(x 2-9)=2(x+3)(x-3).考点:因式分解.13.2【分析】把第一个方程乘以2,然后利用加减消元法求解得到x 、y 的值,然后代入代数式进行计算即可得解.【详解】4221x y x y +=⎧⎨-=⎩①②,①×2得,2x+2y=8③,②+③得,4x=9,解得x=94,把x=94代入①得,94+y=4,解得y=74,∴方程组的解是94{74x y ==,∴x 2-y 2=(94)2-(74)2=32216=.考点:解二元一次方程组.14.-6【详解】分析:根据多项式与多项式相乘的法则把原式变形,根据题意求出m+n和mn,把所求的代数式因式分解、代入计算即可.详解:(x-m)(x-n)=x2-(m+n)x+mn,由题意得,m+n=-3,mn=2,则m2n+mn2=mn(m+n)=-6,故答案为-6.点睛:本题考查的是多项式与多项式相乘的法则,掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加是解题的关键.15.3【详解】解:由题意可得:3731m nn m+=⎧⎨-=⎩①②,①-②得:4m+2n=6,故2m+n=3.故答案为3.16.13【详解】解:(17x﹣11)(7x﹣3)﹣(7x﹣3)(9x﹣2)=(7x﹣3)[(17x﹣11)﹣(9x﹣2)]=(7x﹣3)(8x﹣9)∵(17x﹣11)(7x﹣3)﹣(7x﹣3)(9x﹣2)=(ax+b)(8x﹣c),可因式分解成(7x﹣3)(8x﹣9),∴a=7,b=﹣3,c=9,∴a+b+c=7﹣3+9=13.故答案为13.【点睛】此题主要考查了提取公因式法分解因式以及代数式求值,根据已知正确分解因式是解题关键.17.25【详解】设需安排x 名工人加工大齿轮,安排y 名工人加工小齿轮,由题意得:85316210x y x y +=⎧⎨⨯=⨯⎩,解得:2560x y =⎧⎨=⎩.即安排25名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.故答案为25.【点睛】本题考查理解题意能力,关键是能准确得知2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.18.-2【分析】本题利用拆常数项凑完全平方的方法进行求解.【详解】解:22 610340m n m n +-++=22 6910250m m n n -++++=即()()22350m n -++=根据非负数的非负性可得: 3050m n -=+=,解得: 35m n ==-,所以()35 2.m n +=+-=-故答案为:-2.19.-x 2-13,-22【分析】先算乘法,再合并同类项,最后代入求出即可.【详解】(2x+3)(2x-3)-4x (x-1)-(x+2)2=4x 2-9-4x 2+4x-x 2-4x-4=-x 2-13,当x=-3时,原式=-(-3)2-13=-22.【点睛】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.20.(1)22xy=⎧⎨=⎩(2)32xy=⎧⎨=⎩【详解】试题分析:(1)用加减消元法解方程组即可;(2)用代入法解方程组即可.试题解析:解:(1)38534x yx y+=⎧⎨-=⎩①②①+②,得6x=12,解得x=2.将x=2代入①中,得2+3y=8,解得y=2.∴方程组的解为22 xy=⎧⎨=⎩;(2)原方程组可化为3324x yx y①②=-⎧⎨-=⎩将①代入②中,得2(3y-3)-y=4,解得y=2.将y=2代入①中,得x=3,∴方程组的解为32 xy=⎧⎨=⎩.21.(1)-(15m+12n)(11m+14n);(2)(x+4y)(x-4y);(3)1000.【分析】(1)原式利用平方差公式分解即可;(2)原式整理后,利用平方差公式分解即可;(3)原式提取40,再利用完全平方公式分解即可.【详解】(1)原式=[(2m-n)+13(m+n)][(2m-n)-13(m+n)]=-(15m+12n)(11m+14n);(2)原式=x2-16y2=(x+4y)(x-4y);(3)原式=40×(3.152+2×3.15×1.85+1.852)=40×(3.15+1.85)2=40×25=1000.【点睛】此题考查了因式分解-运用公式法,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.22.答案见解析【分析】先计算出(x-1)(x-9)与(x-2)(x-4),根据二次三项式x2+px+q的常数项与(x-1)(x-9)的常数项相同,一次项与(x-2)(x-4)的一次项相同,确定二次三项式,再因式分解.【详解】(x-1)(x-9)=x2-10x+9,由于二次三项式x2+px+q的常数项与(x-1)(x-9)的常数项相同,∴q=9,(x-2)(x-4)=x2-6x+8,由于二次三项式x2+px+q的一次项与(x-2)(x-4)的一次项相同,∴p=-6.∴原二次三项式是x2-6x+9.∴x2-6x+9=(x-3)2.【点睛】本题考查了多项式乘以多项式和多项式的因式分解.解决本题的关键是根据题目条件确定二次三项式.23.14295 xy=⎧⎪⎨=⎪⎩【分析】依题意把31xy=-⎧⎨=-⎩代入②,把54xy=⎧⎨=⎩代入①,组成二元一次方程组即可求出a,b,再求出原方程的解即可.【详解】解:(1)依题意把31xy=-⎧⎨=-⎩代入②,把54xy=⎧⎨=⎩代入①,得52013 122 ab+=⎧⎨-+=-⎩解得7510 ab⎧=-⎪⎨⎪=⎩(2)故原方程为751354102x yx y⎧-+=⎪⎨⎪-=-⎩,解得20415xy=⎧⎪⎨=⎪⎩【点睛】此题主要考查二元一次方程组的求解,解题的关键是熟知二元一次方程组的求解方法. 24.(1)“基本电价”为0.6元/千瓦时,“提高电价”为1元/千瓦时;(2)98元.【详解】试题分析:(1)设“基本电价”为x 元/千瓦时,“提高电价”为y 元/千瓦时,则根据2月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元,列方程组求解;(2)由(1)得出的“基本电价”和“提高电价”求出6月份应上缴的电费.试题解析:解:(1)设“基本电价”为x 元/千瓦时,“提高电价”为y 元/千瓦时,根据题意,得:()()801008068801208088x y x y ⎧+-=⎪⎨+-=⎪⎩,解之,得:0.61x y =⎧⎨=⎩.答:“基本电价”为0.6元/千瓦时,“提高电价”为1元/千瓦时.(2)80×0.6+(130﹣80)×1=98(元).答:预计小张家6月份上缴的电费为98元.点睛:此题考查的是二元一次方程组的应用,解题的关键是理解明确上缴电费的计算方法,列方程组求解.25.(1)x 7-1;(2)x n +1-1;(3)236-1.【分析】①观察已知各式,得到一般性规律,化简原式即可;②原式利用①中得出的规律化简即可得到结果;③原式变形后,利用②中得出的规律化简即可得到结果.【详解】解:①根据题意得:(x ﹣1)(x 6+x 5+x 4+x 3+x 2+x+1)=x 7﹣1;②根据题意得:(x ﹣1)(x n +x n ﹣1+…+x+1)=x n+1﹣1;③原式=(2﹣1)(1+2+22+…+234+235)=236﹣1.故答案为①x 7﹣1;②x n+1﹣1;③236﹣1【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.26.(1)①(m ﹣n )2;②(m+n )2﹣4mn ;(2)(m ﹣n )2=(m+n )2﹣4mn ;(3)25.【分析】(1)由题意知,阴影部分为一正方形,其边长正好为m n -.根据正方形的面积公式即可求出图中阴影部分的面积,也可以用大正方形的面积减去四个小长方形的面积由图形可得:(2)大正方形的面积减去四个小长方形的面积正好等于图中阴影部分的面积.(3)2()a b +正好表示大正方形的面积,2()a b -正好表示阴影部分小正方形的面积,ab 正好表示一个小长方形的面积.根据(2)中的等式代入计算即可.【详解】解:(1)①由图可知,阴影部分是一个正方形,边长为m ﹣n∴阴影部分的面积为:(m ﹣n )2;②由图形知,阴影部分的面积=大正方形的面积减去四个小长方形的面积,∴阴影部分的面积为(m+n )2﹣4mn ;故答案为:①(m ﹣n )2;②(m+n )2﹣4mn ;(2)由(1)知(m ﹣n )2=(m+n )2﹣4mn ,故答案为:(m ﹣n )2=(m+n )2﹣4mn ;(3)∵|a+b ﹣7|+|ab ﹣6|=0∴a+b =7,ab =6,当a+b =7,ab =6时,(a-b )2=(a+b )2-4ab=72-4×6=49﹣24=25,【点睛】此题考查根据图形理解完全平方公式,以及利用整体代入的方法求代数式的值.。
湘教版七年级数学下册期中试卷及答案【完美版】

湘教版七年级数学下册期中试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .02.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .803.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=4.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱5.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°6.如果23a b-=,那么代数式22()2a b aba a b+-⋅-的值为()A.3B.23C.33D.437.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°8.6的相反数为()A.-6 B.6 C.16-D.169.温度由﹣4℃上升7℃是()A.3℃B.﹣3℃C.11℃D.﹣11℃10.一个多边形的内角和与外角和相等,则这个多边形是()A.四边形B.五边形C.六边形D.八边形二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x的不等式组531xa x-≥-⎧⎨-<⎩无解,则a的取值范围是________.2.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是_______.3.如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150°,则∠ABC=_______度.5.若数轴上表示互为相反数的两点之间的距离是16,则这两个数是______. 6.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程组:3416 5633 x yx y+=⎧⎨-=⎩2.解不等式组:3561162x xx x<+⎧⎪+-⎨≥⎪⎩,把它的解集在数轴上表示出来,并写出其整数解.3.如图①,在三角形ABC中,点E,F分别为线段AB,AC上任意两点,EG交BC于点G,交AC的延长线于点H,∠1+∠AFE=180°.(1)证明:BC∥EF;(2)如图②,若∠2=∠3,∠BEG=∠EDF,证明:DF平分∠AFE.4.如图,∠1=∠ACB,∠2=∠3,求证:∠BDC+∠DGF=180°.5.现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数;(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.6.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的13.请设计出最省钱的购买方案,并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、B4、A5、C6、A7、A8、A9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、a ≥22、-4π3、∠A +∠ABC =180°或∠C +∠ADC =180°或∠CBD =∠ADB 或∠C =∠CDE4、1205、-8、86、5三、解答题(本大题共6小题,共72分)1、612x y =⎧⎪⎨=-⎪⎩2、32x -<≤,x 的整数解为﹣2,﹣1,0,1,2.3、(1)略;(2) 略.4、略5、(1)甲蛋糕店数量为100家,该市蛋糕店总数为600家;(2)甲公司需要增设25家蛋糕店.6、(1)A 的单价30元,B 的单价15元(2)购买A 奖品8个,购买B 奖品22个,花费最少。
湘教版七年级数学下册期中考试及答案【全面】

湘教版七年级数学下册期中考试及答案【全面】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.黄金分割数512-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值( )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间2.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .3.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +4.下列说法正确的是( ) A .一个数前面加上“-”号,这个数就是负数B .零既是正数也是负数C .若a 是正数,则a -不一定是负数D .零既不是正数也不是负数5.图甲和图乙中所有的正方形都全等,将图甲的正方形放在图乙中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④6.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2017将与圆周上的哪个数字重合()A.0 B.1 C.2 D.37.若关于x的一元一次不等式组11(42)423122x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x≤a,且关于y的分式方程24111y a yy y---=--有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.68.如图,△ABC≌△ADE,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.45°C.35°D.25°9.一次函数满足,且随的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.预计到2025年,中国5G用户将超过460 000 000,将460 000 000用科学计数法表示为()A.94.610⨯B.74610⨯C.84.610⨯D.90.4610⨯二、填空题(本大题共6小题,每小题3分,共18分)1.若式子x2-在实数范围内有意义,则x的取值范围是________.2.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是________元.3.已知,|a|=﹣a,bb=﹣1,|c|=c,化简|a+b|﹣|a﹣c|﹣|b﹣c|=_____.4.27的立方根为________.5.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为____________.6.已知|x|=3,则x的值是________.三、解答题(本大题共6小题,共72分)1.解下列方程(组):(1)321126x x-+-=(2)2.若不等式组122x ax x+≥⎧⎨->-⎩①有解;②无解.请分别探讨a的取值范围.3.如图,点D、E在AB上,点F、G分别在BC、CA上,且DG∥BC,∠1=∠2.(1)求证:DC∥EF;(2)若EF⊥AB,∠1=55°,求∠ADG的度数.4.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.5.中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对七年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:(1)统计表中的a=________,b=___________,c=____________;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校七年级共有1200名学生,请你分析该校七年级学生课外阅读7本及以上的人数.6.杭州地铁5号线全长48.18公里,投资315.9亿元,规划建设预期2014-2019年,杭州工程地铁队负责建设,分两个班组分别从杭州南站外香樟路站和余杭科技岛站同时开工掘进.已知甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.7米,乙组平均每天能比原来多掘进1.3米.按此施工进度,能够比原来少用多少天完成任务?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、D5、A6、B7、B8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、x2≥2、2000,3、﹣2c4、35、454353 x yx y+=⎧⎨-=⎩6、±3三、解答题(本大题共6小题,共72分)1、(1)x=16;(2)13383 xy⎧=⎪⎪⎨⎪=⎪⎩2、①a>-1②a≤-13、(1)见解析(2)35°4、证明略5、(1)a=10,b=0.28,c=50;(2)补图见解析;(3)6.4本;(4)528人.6、(1)甲班组平均每天掘进12.2米,乙班组平均每天掘进9.8米.(2)少用262.2天完成任务.。
湘教版七年级数学下册期中考试题及答案【完整版】
湘教版七年级数学下册期中考试题及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.32.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A →B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是( )A.B.C.D.3.已知|m-2|+(n-1)2=0,则关于x的方程2m+x=n的解是()A.x=-4 B.x=-3 C.x=-2 D.x=-14.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>05.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A .8B .9C .10D .116.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-8.已知多项式2x 2+bx +c 分解因式为2(x -3)(x +1),则b ,c 的值为( ).A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-69.已知有理数a 、b 、c 在数轴上对应的点如图所示,则下列结论正确的是( )A .c+b >a+bB .cb <abC .﹣c+a >﹣b+aD .ac >ab10.已知关于x 的方程2x-a=x-1的解是非负数,则a 的取值范围为( )A .1a ≥B .1a >C .1a ≤D .1a <二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是_____.3.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD ,若∠AOB=15°,则∠AOD=________度.4.方程()()()()32521841x x x x +--+-=的解是_________.5.如图,C 岛在A 岛的北偏东45°方向,在B 岛的北偏西25°方向,则从C 岛看A ,B 两岛的视角∠ACB =________.6.如图所示,想在河堤两岸塔建一座桥,搭建方式最短的是________,理由________.三、解答题(本大题共6小题,共72分)1.解不等式组:3(1)531152x x x x --≥⎧⎪-+⎨-<⎪⎩2.已知m ,n 互为相反数,且m n ≠,p ,q 互为倒数,数轴上表示数a 的点距原点的距离恰为6个单位长度。
湘教版七年级数学下册期中考试题及完整答案
湘教版七年级数学下册期中考试题及完整答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若()286m n a b a b =,那么22m n -的值是 ( ) A .10 B .52 C .20 D .32 2.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .3.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-4.已知a =b ,下列变形正确的有( )个.①a +c =b +c ;②a ﹣c =b ﹣c ;③3a =3b ;④ac =bc ;⑤a b c c =. A .5 B .4 C .3 D .25.已知x 是整数,当30x 取最小值时,x 的值是( )A .5B .6C .7D .86.设x y z 234==,则x 2y 3z x y z -+++的值为( )A .27B .23C .89D .577.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( ) A .m >2 B .m ≥2 C .m ≥2且m ≠3 D .m >2且m ≠38.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱9.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A .x ≥11B .11≤x <23C .11<x ≤23D .x ≤2310.若320,a b -++=则a b +的值是( )A .2B .1C .0D .1-二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C 平移的距离CC '=________.3.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为____________.6.设4x2+mx+121是一个完全平方式,则m=________三、解答题(本大题共6小题,共72分)1.(1)用代入法解方程组:3 759 x yx y-=⎧⎨+=-⎩(2)用加减法解方程组:2232(3)31 x yx y⎧+=⎪⎨⎪+-=⎩2.已知m,n互为相反数,且m n≠,p,q互为倒数,数轴上表示数a的点距原点的距离恰为6个单位长度。
湘教版七年级下册数学期中考试试题附答案
湘教版七年级下册数学期中考试试卷一、单选题1.二元一次方程组2x y 53x 4y 2-=⎧⎨+=⎩的解是()A .x 1y 2=-⎧⎨=⎩B .x 1y 2=⎧⎨=⎩C .x 2y 1=⎧⎨=⎩D .x 2y 1=⎧⎨=-⎩2.下列各式中,能用平方差公因式分解的是()A .2x x+B .2x 8x 16++C .2x 4+D .2x 1-3.化简(m 2+1)(m+1)(m-1)-(m 4+1)的值是()A .22m -B .0C .2-D .1-4.某校课外小组的学生分组课外活动,若每组7人,则余下3人;若每组8人,则少5人,求课外小组的人数x 和应分成的组数y .依题意可得方程组()A .7y x 38y 5x =+⎧⎨+=⎩B .7x 3y 8x 5y +=⎧⎨-=⎩C .7y x 38y x 5=-⎧⎨=+⎩D .7y x 38y x 5=+⎧⎨=+⎩5.有一个两位数,它的十位数字和个位数字的和为6,则这样的两位数有()个.A .4B .5C .6D .76.如果x 2+ax-6=(x+b)(x-2),那么a-b 的值为()A .2B .2-C .3D .3-7.小王只带2元和5元两种面值的人民币,他买一件学习用品要支付27元,则付款的方式有()A .1种B .2种C .3种D .4种8.以下方程中,是二元一次方程的是()A .8x y y-=B .xy 3=C .3x 2y 3z+=D .1y x=9.下列各式由左边到右边的变形中,是分解因式的为()A .()a x y ax ay+=+B .()2x 4x 4x x 44-+=-+C .()210x 5x 5x 2x 1-=-D .()()2x 163x x 4x 43x-+=-++10.用代入消元法解方程组3+4=225x y x y ⎧⎨-=⎩①②使得代入后化简比较容易的变形是()A.由①得243yx-=B.由①得234xy-=C.由②得52yx+=D.由②得y=2x-5二、填空题11.分解因式:291x-=_____.12.若方程组3x5y k22x3y k+=+⎧⎨+=⎩的解x、y的和为0,则k的值为______.13.如x+m与2x+3的乘积中不含x的一次项,则m的值为______.14.计算:(-a2)•a3=______.15.多项式-3x2y3z+9x3y3z-6x4yz2因式分解时,提取的公因式是______.16.计算:(m-3)(m+2)的结果为______.17.(-8)2018×(0.125)2019=______.18.因式分解:3x2-6xy+3y2=______.三、解答题19.解方程组x2y4 2x y6-=⎧⎨-=⎩20.计算:(3x+4y)2-(4y-3x)(3x+4y)21.把下列各式因式分解:(1)4x2-8x+4(2)(x+y)2-4y(x+y)22.先化简,再求值:(x+5)(x-1)+(x-2)2,其中x=-2.23.一种口服液有大盒、小盒两种包装,3大盒4小盒共108瓶;2大盒3小盒共76瓶.求大盒、小盒每盒各装多少瓶?24.已知(x+y)2=25,(x-y)2=81,求x 2+y 2和xy 的值.25.某工地因道路建设需要开挖土石方,计划每小时挖掘土石方540m 3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:租金(单位:元/台•时)挖掘土石方量(单位:m 3/台•时)甲型机10060乙型机12080(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案.26.一个被墨水污染的方程组如下:x y 2x 7y 8+=⎧⎨-=⎩,小刚回忆说:这个方程组的解是x 3y 2=⎧⎨=-⎩,而我求出的解是x 2y 2=-⎧⎨=⎩,经检查后发现,我的错误是由于看错了第二个方程中的x 的系数所致,请你根据小刚的回忆,把方程组复原出来.参考答案1.D【分析】二元一次方程组将第一个方程×4加第二个方程,利用加减消元法求出解即可.【详解】解:25342x yx y-=⎧⎨+=⎩①②,①×4+②得:11x=22,即x=2,把x=2代入①得:y=-1,则方程组的解为21 xy=⎧⎨=-⎩,故选D.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.D【详解】A选项:x2+x不符合平方差公式的形式,可用提公因式法进行分解,故A选项不符合题意. B选项:x2+8x+16可用完全平方公式进行分解,而不是平方差公式,故B选项不符合题意. C选项:通常情况下,x2+4不能进行因式分解,故C选项不符合题意.D选项:x2-1=x2-12符合平方差公式的形式,可用平方差公式进行分解,故D选项符合题意.故本题应选D.3.C【详解】【分析】直接运用整式乘法进行去括号,再合并同类项.【详解】(m2+1)(m+1)(m﹣1)﹣(m4+1)=(m2+1)(m2﹣1)﹣(m4+1)=(m4﹣1)﹣(m4+1)=m4﹣1﹣m4-1=-2故选C【点睛】本题考核知识点:平方差公式,整式化简.解题关键点:运用平方差公式进行化简. 4.C【解析】本题考查的是根据实际问题列方程组根据等量关系:①若每组7人,则余下3人;②每组8人,则少5人,即可列出方程组.根据若每组7人,则余下3人,得方程,根据若每组8人,则少5人,得方程,则可列方程组为73 {85 y xy x=-=+,.故选C.5.C【解析】【分析】可以设两位数的个位数为x,十位为y,根据两数之和为6,且xy为整数,分别讨论两未知数的取值即可.注意不要漏解.【详解】解:设两位数的个位数为x,十位为y,根据题意得:x+y=6,∵xy都是整数,∴当x=0时,y=6,两位数为60;当x=1时,y=5,两位数为51;当x=2时,y=4,两位数为42;当x=3时,y=3,两位数为33;当x=4时,y=2,两位数为24;当x=5时,y=1,两位数为15;则此两位数可以为:60、51、42、33、24、15,共6个,故选C.【点睛】本题考查了二元一次方程的应用,解题的关键在于根据未知数的整数性质讨论未知数的具体值,注意不要漏掉两位数的个位数可以为0的情况.6.B【解析】【分析】首先运用多项式的乘法法则将(x+b)(x-2)展开,然后根据对应项系数相等列式求出a、b 的值,再代入求解即可.【详解】解:∵(x+b)(x-2)=x2+(b-2)x-2b=x2+ax-6,∴x2+(b-2)x-2b=x2+ax-6,∴b-2=a,-2b=-6,∴a=1,b=3,∴a-b=1-3=-2.故选B.【点睛】本题主要考查了多项式的乘法法则及两个多项式相等的条件.多项式乘多项式法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.两个多项式相等时,它们同类项的系数对应相等.7.C【详解】试题分析:设付款时用了2元x张,5元y张.则:2x+5y=27,x和y只能取正整数.则当y=1时,x=11;当y=3时,x=6,当y=5时,x=1.故选C.考点:二元一次方程点评:本题难度中等,主要考查对二元一次方程求解的掌握.根据题意列出方程代入即可.8.A【解析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.由此可得只有选项A 是二元一次方程,故选A.9.C 【详解】试题分析:根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.解:A 、是多项式乘法,故A 选项错误;B 、右边不是积的形式,x 2﹣4x+4=(x ﹣2)2,故B 选项错误;C 、提公因式法,故C 选项正确;D 、右边不是积的形式,故D 选项错误;故选C .考点:因式分解的意义.10.D 【分析】根据代入消元法解二元一次方程组的步骤可知变形②更简单.【详解】解:观察方程①②可知,②中的系数为-1,比其它未知数的系数更为简单,所只要将②变形为y =2x -5③,再把③代入①即可求出方程组的解.故应选D.【点睛】本题考查了用代入消元法解二元一次方程组,理解代入消元法解方程组时化简系数较简单的方程是解题的关键.11.(3x+1)(3x-1)【分析】符合平方差公式的结构特点,利用平方差公式分解即可.【详解】解:291x -()2231x =-()()3131x x =+-.故答案为:(3x+1)(3x-1).【点睛】本题考查了平方差公式因式分解,熟记平方差公式的特点:两项平方项,符号相反是解题的12.2【分析】先求出方程组的解,然后再根据x、y的和为0,得出方程2k-6+4-k=0,解出即可.【详解】解:∵方程组3x5y k22x3y k+=+⎧+=⎨⎩,解得{x2k6y4k=-=-.∵x、y的和为0,则有2k-6+4-k=0,解得k=2.【点睛】本题主要考查二元一次方程组的解法,关键是熟练掌握二元一次方程组的解法即代入消元法和加减消元法.注意:在运用加减消元法消元时,两边同时乘以或除以一个不为0的整数或整式,一定注意不能漏项.13.32 m=-【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把m看作常数合并关于x的同类项,令x的系数为0,得出关于m的方程,求出m的值.【详解】∵(x+m)(2x+3)=2x2+3x+2mx+3m=x2+(3+2m)x+3m,又∵乘积中不含x的一次项,∴3+2m=0,解得32 m=-.故答案为:3 2-.14.-a5【解析】【分析】同底数幂相乘,底数不变,指数相加.解:原式=-a 5,故答案是-a 5.【点睛】本题考查了同底数幂的乘法,解题的关键是注意符号的确定.15.23x yz -【解析】试题分析:根据公因式的意义,当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,且各字母的指数取次数最低的;取相同的多项式,且多项式的次数取最低的.因此可知其公因式为23x yz -.16.26m m --【解析】【分析】根据多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加计算即可.【详解】()()32m m -+=2236m m m +--=26m m --.故答案为26m m --.【点睛】本题考查多项式乘多项式,熟练掌握运算法则是解题的关键.17.0.125【解析】【分析】首先利用同底数幂的乘法把(0.125)2018化为(0.125)2018×0.125,然后再利用积的乘方计算即可.【详解】解:原式=(-8)2018×(0.125)2018×0.125=(-8×0.125)2018×0.125=1×0.125=0.125,故答案为0.125.【点睛】此题主要考查了同底数幂的乘法和积的乘方,关键是掌握(ab)n=a n b n(n是正整数).18.3(x﹣y)2【解析】试题分析:原式提取3,再利用完全平方公式分解即可,得到3x2﹣6xy+3y2=3(x2﹣2xy+y2)=3(x﹣y)2.考点:提公因式法与公式法的综合运用19.8 x32 y3⎧=⎪⎪⎨⎪=-⎪⎩.【分析】根据二元一次方程组的解法利用加减消元法即可求出答案.【详解】解:24 26 x yx y-=⎧⎨-=⎩①②①×2得:2x-4y=8③③-②得:-3y=2解得:y=2 3-将y=23-代入①得:x=83∴方程组的解为8 x32 y3⎧=⎪⎪⎨⎪=-⎪⎩【点睛】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.20.18x2+24xy.【解析】【分析】根据平方差公式和完全平方公式算乘法,再合并同类项即可.【详解】解:原式=9x2+24xy+16y2-(16y2-9x2)=18x2+24xy.【点睛】本题考查了整式的混合运算,平方差公式和完全平方公式的应用,能熟记公式的特点是解此题的关键,注意:(a+b)(a-b)=a2-b2.21.(1)4(x-1)2;(2)(x+y)(x-3y).【解析】【分析】(1)原式提取4,再利用完全平方公式分解即可;(2)原式提取公因式即可.【详解】解:(1)原式=4(x2-2x+1)=4(x-1)2;(2)原式=(x+y)(x+y-4y)=(x+y)(x-3y).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.7.【分析】根据多项式乘多项式、完全平方公式可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【详解】解:(x+5)(x-1)+(x-2)2=x2+4x-5+x2-4x+4=2x2-1,当x=-2时,原式=2×(-2)2-1=8-1=7.【点睛】本题考查整式的混合运算-化简求值,解答本题的关键是明确整式化简求值的方法.23.大盒装20瓶,小盒装12瓶.【分析】设大盒每盒装x瓶,小盒每盒装y瓶,根据等量关系:3大盒4小盒共108瓶;2大盒3小盒共76瓶,列出方程组求解即可.【详解】解:设大盒每盒装x瓶,小盒每盒装y瓶.依题意得:3x4y1082x3y76+=⎧+=⎨⎩,解此方程组,得{x20y12==.答:大盒每盒装20瓶,小盒每盒装12瓶.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程组求解.24.x2+y2=53;xy=-14.【解析】【分析】直接利用完全平方公式将原式变形进而得出答案.【详解】解:∵(x+y)2=25,(x-y)2=81,∴(x+y)2+(x-y)2=2x2+2y2=106,则x2+y2=53;∴(x+y)2-(x-y)2=4xy=-56,则xy=-14.【点睛】此题主要考查了完全平方公式,正确将已知变形是解题关键.25.(1)甲、乙两种型号的挖掘机各需5台、3台;(2)有一种租车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机【分析】(1)设甲、乙两种型号的挖掘机各需x台、y台,根据题意建立二元一次方程组即可求解;(2)设租用m辆甲型挖掘机,n辆乙型挖掘机,根据题意列出二元一次方程,求出其正整数解,然后分别计算支付租金,选择符合要求的租金方案.【详解】(1)设甲、乙两种型号的挖掘机各需x台、y台.依题意得:8 6080540x yx y+=⎧⎨+=⎩,解得:53xy=⎧⎨=⎩.答:甲、乙两种型号的挖掘机各需5台、3台;(2)设租用m辆甲型挖掘机,n辆乙型挖掘机.依题意得:60m+80n=540,化简得:3m+4n=27.∴m=9﹣4 3 n取正整数解有:53mn=⎧⎨=⎩或16mn=⎧⎨=⎩.当m=5,n=3时,支付租金:100×5+120×3=860元>850元,超出限额;当m=1,n=6时,支付租金:100×1+120×6=820元<850元,符合要求.答:有一种租车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机.【点睛】本题考查二元一次方程的实际应用,根据题意建立等量关系是解题关键.26.原方程组为452 278 x yx y+=⎧⎨--=⎩.【详解】分析:设方程组为278ax bycx y+=⎧⎨-=⎩,而两个解都是第一个方程的解,将两个解代入到第一个方程中得到关于a、b的一元一次方程组求出a和b,再将32xy=⎧⎨=-⎩,代入第二方程得到m的值.详解:由题意知:322 3148 a bc-⎧⎨+⎩==,又∵小明做错的原因是他把c看错了,∴与a、b无关.故-2a+2b=2,由以上三方程可解得:a=4,b=5,c=-2.∴那道题为452 278 x yx y+⎧⎨--⎩==.点睛:此题主要考查了二元一次方程组的解,关键是先设方程组,再根据给出条件求出方程组中待定的系数.。
湘教版七年级下册数学期中考试试卷附答案
湘教版七年级下册数学期中考试试题一、单选题1.下列选项是方程 327x y -= 的一个解的是( )A .13x y =⎧⎨=⎩B .31x y =⎧⎨=⎩C .31x y =⎧⎨=-⎩D .31x y =-⎧⎨=⎩ 2.下列属于二元一次方程组的是( )A .1113x y x y +=⎧⎪⎨+=⎪⎩B .57x y y z +=⎧⎨+=⎩C .1326x x y =⎧⎨-=⎩D .1x y xy x y -=⎧⎨-=⎩ 3.下列各式运算正确的是( )A .235a a a +=B .236a a a •=C .()325a a -=-D .()3236ab a b = 4.下面式子从左到右的变形是因式分解的是( )A .22(1)21x x x +=++B .()()2933x x x -=+-C .2(1)(1)1x x x +-=-D .234(3)4x x x x +-=+-5.下列各式能用完全平方公式因式公解的是( )A .2421x x -+B .2441x x +-C .221x x --D .221x x -+- 6.某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售,该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应安排几天精加工,几天粗加工?设安排x 天精加工,y 天粗加工.为解决这个问题,所列方程组正确的是( ) A .14016615x y x y +=⎧⎨+=⎩ B .14061615x y x y +=⎧⎨+=⎩ C .15166140x y x y +=⎧⎨+=⎩ D .15616140x y x y +=⎧⎨+=⎩7.计算:()433124a b ab -• 的值是( ) A .1374a b - B .874a b - C .1374a b D .874a b 8.多项式22431218a x a x -各项的公因式是( )A .22a xB .6axC .32a xD .226a x 9.若5m n +=,3mn =,则224m mn n ++的值为( )A .27B .31C .35D .3910.图(1)是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .2mnB .(m+n )2C .(m-n )2D .m 2-n 2二、填空题11.计算:233?2()x x =____________.12.因式分解:24x -=__________.13.已知单项式322x y 与225x y -的积为4n mx y ,那么m n -=______.14.若关于x y 、的二元一次方程27x ay +=有一个解是31x y =⎧⎨=⎩,则a =___________.15.计算:(2)(3)x y x y +-=_______________.16.已知213x y +=,且22439x y -=,则多项式2x y -的值是_________.17.关于x 的二次三项式21x ax -+ 是完全平方式,则a 的值是___________.18.已知13a a -=,则221+=a a _________.三、解答题19.运用乘法公式进行计算(1)(23)(23)x y x y -++-(2)11(2)(2)33a a ---20.已知31x y =⎧⎨=⎩和211x y =-⎧⎨=⎩都是方程ax+by=7 的解,求a 、b 的值.21.先化简,再求值:2(x-y)2-(2x+y)(x-3y),其中x=1,y=−15.22.解方程组(1)26132x y y x +=⎧⎪⎨=-⎪⎩(2)349237a b a b +=-⎧⎨+=-⎩23.把下列各式因式分解:(1)22331827a b ab b -+(2)24()()x x y y x -+-24.甲、乙两地火车线路比汽车线路长30千米,汽车从甲地先开出,速度为40千米/时,开出半小时后,火车也从甲地开出,速度为60千米/时,结果汽车仅比火车晚1小时到达乙地,求甲、乙两地的火车与汽车线路长.25.如图,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a b >),将余下的部分拼成一个梯形,根据两个图形中阴影部分面积关系,解决下列问题:(1)如图①所示,阴影部分的面积为 (写成平方差形式).(2)如图②所示,梯形的上底是 ,下底是 ,高是 ,根据梯形面积公式可以算出面积是 (写成多项式乘法的形式).(3)根据前面两问,可以得到公式.(4)运用你所得到的公式计算:22.25224826.甲、乙两家商场同时出售同样的水瓶和水杯,且定价相同,请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(请列方程解应用题)(2)为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和12个水杯,请问选择哪家商场购买更合算,并说明理由(水瓶和水杯必须在同一家购买).参考答案1.B【分析】根据二元一次方程的解得定义把x,y代入方程检验即可.【详解】解:A 、312337⨯-⨯=-≠,故此选项错误;B 、33217⨯-⨯=,故此选项正确;C 、()3321117⨯-⨯-=≠,故此选项错误;D 、()3321117⨯--⨯=-≠,故此选项错误;故选:B【点睛】此题主要考查了二元一次方程的解,解题的关键是掌握二元一次方程解的定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.2.C【分析】根据二元一次方程组的定义求解即可.【详解】A 、是分式方程组,故A 不符合题意;B 、是三元一次方程组,故B 不符合题意;C 、是二元一次方程组,故C 符合题意;D 、是二元二次方程组,故D 不符合题意;故选:C .【点睛】本题考查了二元一次方程组的定义,利用二元一次方程组的定义是解题关键.3.D【分析】运用幂的运算性质逐项判断即可得到结果;【详解】235a a a +≠,故A 错误;232356+•==≠a a a a a ,故B 错误;()322365⨯-=-=-≠-a a a a ,故C 错误; ()322336⨯==ab ab a b ,故D 正确; 故答案选D .【点睛】本题主要考查了整式乘法的运算,准确运用幂的乘方和积的乘方是解题的关键. 4.B【分析】根据因式分解的定义:把整式分解为几个整式乘积的形式,即可作出判断.【详解】解:A.左边不是多项式,是整式的乘法,不是因式分解,故A 错误.B.直接利用平方差公式,把多项式化为两个因式的乘积,故B 正确.C.左边是两个因式的乘积,不是多项式,是整式的乘法,不是因式分解,故C 错误. D .右边不是因式乘积的形式,不是因式分解,故D 错误.【点睛】本题的关键是要正确理解因式分解的定义,左边是多项式和的形式,右边是因式积的形式,由和转变成积的形式.5.D【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项分析判断后利用排除法求解.【详解】A 、2421x x -+不符合完全平方公式法分解因式的式子特点,故选项错误;B 、2441x x +-不符合完全平方公式法分解因式的式子特点,故选项错误;C 、221x x --不符合完全平方公式法分解因式的式子特点,故选项错误;D 、22221=(21)=(1)x x x x x -+---+--,故选项正确.故选:D .【点睛】本题考查用公式法进行因式分解,能用公式法进行因式分解的式子的特点需熟记. 6.D【详解】题目中的等量关系:精加工的天数+粗加工的天数=15,精加工的蔬菜吨数+粗加工的蔬菜吨数=140,列方程组,故选D【分析】先计算积的乘方,再按照单项式乘以单项式的法则可得答案.【详解】解:()12433431371164.1244a b a b ab b b a a =•=-• 故选C .【点睛】本题考查的是单项式与单项式相乘,同时考查了积的乘方,掌握以上知识是解题的关键. 8.D【分析】根据公因式定义,对各选项整理然后即可选出有公因式的项.【详解】22431218a x a x -=6a 2x 2(2-3a 2x ), 6a 2x 2是公因式,故选:D .【点睛】此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“-1”.9.B【分析】化简224m mn n ++为()22m n mn ++,然后代入数值求解即可; 【详解】()22222=+2224++++=++mn m n m mn n m mn n mn ;∵5m n +=,3mn =,代入上式,∴原式=25+23=25+6=31⨯.故答案选B .【点睛】本题主要考查了完全平方公式的应用,准确把已知式子化为完全平方公式是解题的关键.【详解】解:由题意可得,正方形的边长为(m+n ),故正方形的面积为(m+n )2. 又∵原矩形的面积为4mn ,∴中间空的部分的面积=(m+n )2-4mn=(m-n )2. 故选C .11.76x【分析】先通过幂的乘方计算,再利用同底数幂的乘法进行计算即可.【详解】236732()32=6⋅=⋅⋅x x x x x .故答案是:76x .【点睛】本题主要考查了整式乘法的运用,准确运用的幂的运算公式是解题的关键. 12.(x+2)(x-2)【详解】解:24x -=222x -=(2)(2)x x +-;故答案为(2)(2)x x +-13.15.-【分析】先计算单项式乘以单项式,再比较求解,m n ,从而可得答案.【详解】 解: ()22544325102.n x y x x y y x m y •-=-=10,5,m n ∴=-=10515.m n ∴-=--=-故答案为:15.-【点睛】本题考查的是单项式乘以单项式,掌握单项式乘以单项式的法则是解题的关键. 14.1【分析】将方程的解代入27x ay +=,再解关于a 的一元一次方程.【详解】解:将31x y =⎧⎨=⎩代入27x ay +=得,67a +=,解得:1a =.故答案为:1.【点睛】本题考查的知识点是二元一次方程的解以及解一元一次方程,比较基础,难度不大. 15.22253x xy y --【分析】由多项式乘以多项式的运算法则进行计算,即可得到答案.【详解】解:(2)(3)x y x y +-22263x xy xy y =-+-22253x xy y =--;故答案为:22253x xy y --.【点睛】本题考查了整式的乘法,解题的关键是熟练掌握多项式乘以多项式的运算法则. 16.3【分析】直接利用平方差公式,得到224(2)(2)39x y x y x y -=+-=,即可求出答案.【详解】解:∵224(2)(2)39x y x y x y -=+-=,又∵213x y +=,∴239133x y -=÷=;故答案为:3.【点睛】本题考查了平方差公式的运用,解题的关键是掌握平方差公式进行计算.17.±2.【分析】利用完全平方公式的结构特征判断即可求出a 的值.【详解】∵关于x 的二次三项式21x ax -+是完全平方式,∴a=±2,故答案为:±2.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键. 18.11【分析】对已知条件等号两边平方,整理后求解即可.【详解】 ∵13a a -=, ∴21()9a a -=, 即22129-+=a a , ∴22111+=a a .故答案为:11.【点睛】此题的关键是根据a 与1a 互为倒数的特点,利用完全平方公式求解.19.(1)22469x y y -+-(2)2149-a【分析】(1)把两个式子变形,利用平方差公式和完全平方公式计算即可; (2)第一个式子出负号变形,运用平方差公式计算;【详解】(1)(23)(23)x y x y -++-,()()=2323--+-⎡⎤⎡⎤⎣⎦⎣⎦x y x y ,=()()2223--x y ,=22469x y y -+-;(2)11(2)(2)33a a ---, =11(2)(2)33-+-a a , =22123⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦a , =2149⎛⎫-- ⎪⎝⎭a , =2149-a . 【点睛】本题主要考查了平方差公式完全平方公式的应用,在解题过程中准确变形是解题的关键. 20.a=2,b=1.【分析】将方程的解代入方程ax+by=7,得到关于a 、b 的方程组,从而可求得a 、b 的值.【详解】将31x y =⎧⎨=⎩和211x y =-⎧⎨=⎩分别代入方程ax+by=7得: 37? 2117a b a b +=⎧⎨-+=⎩①②①×2+②×3得,35b=35, 解得,b=1把b=1代入①得,3a+1=7解得,a=2,所以,a=2,b=1.【点睛】本题主要考查的是二元一次方程的解,得到关于a 、b 的方程组是解题的关键. 21.xy +5y 2,0【解析】【分析】利用整式的混合运算顺序和运算法则化简,再将x ,y 的值代入计算可得.【详解】原式=2(x 2−2xy +y 2)−(2x 2−6xy +xy −3y 2)=2x 2−4xy +2y 2−2x 2+6xy −xy +3y 2=xy +5y 2当x =1,y =−15时原式= 1×(−15)+5×(−15)2= −15+15=0【点睛】本题主要考查整式的混合运算-化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则. 22.(1)60x y =⎧⎨=⎩;(2)1.3a b =⎧⎨=-⎩【分析】(1)利用代入法解方程组即可;(2)利用加减法解方程组即可.【详解】解:(1)26132x y y x +=⎧⎪⎨=-⎪⎩①② 把②代入①得:1236,2x x ⎛⎫+-= ⎪⎝⎭6,x ∴=把6x =代入①得:0,y =∴方程组的解是: 6.0x y =⎧⎨=⎩(2)349237a b a b +=-⎧⎨+=-⎩①②①-②得:2a b +=-③③2⨯得:224a b +=-④②-④得:3,b =-把3b =-代入③得:1,a =∴方程组的解是:1.3a b =⎧⎨=-⎩【点睛】本题考查的是二元一次方程组的解法,掌握二元一次方程组的解法是解题的关键. 23.(1)()233b a b -;(2)()()()2121.x y x x -+-【分析】(1)先提公因式,再按照完全平方公式分解因式即可;(2)先提公因式,再按照平方差公式分解即可.【详解】解:(1)22331827a b ab b -+()22369b a ab b =-+()233,b a b =-(2)24()()x x y y x -+-()()24x x y x y =---()()241x y x =--()()()2121.x y x x =-+-【点睛】本题考查的是因式分解,掌握提公因式法与公式法分解因式是解题的关键.24.汽车路线240千米,火车路线270千米.【解析】【分析】设汽车路线x 千米,火车路线y 千米,根据题意可列出二元一次方程组进行求解.【详解】设汽车路线x 千米,火车路线y 千米, 依题意得301140602y x xy-=⎧⎪⎨-=⎪⎩解得240270x y =⎧⎨=⎩故汽车路线240千米,火车路线270千米.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意找到等量关系进行求解. 25.(1)22a b -;(2)()()a b a b +-;(3)22()()a b a b a b -=+-;(4)2000.【分析】(1)由大正方形减去小正方形的面积,即可得到答案;(2)由梯形的定义,以及梯形的面积公式,即可得到答案;(3)联合(1)(2),即可得到答案;(4)直接利用平方差公式进行计算,即可得到答案.【详解】解:(1)大正方形的面积为:2a ,小正方形的面积为:2b ,∴阴影部分的面积为:22a b -;故答案为:22a b -;(2)由梯形的定义可知:上底是:2b ,下底是:2a ,高是:-a b , ∴梯形的面积为:1(22)()()()2a b a b a b a b ⨯+-=+-;故答案为:()()a b a b +-;(3)由(1)(2)可知,22()()a b a b a b -=+-;故答案为:22()()a b a b a b -=+-;(4)22-252248+-=(252248)(252248)⨯=5004=2000;【点睛】本题考查了平方差公式的几何意义的知识点,解题的关键是熟练掌握平方差公式的运用,注意运用了数形结合的数学思想进行解题.26.(1)一个水瓶40元,一个水杯是8元;(2)选择乙商场购买更合算.【分析】(1)设一个水瓶x元,表示出一个水杯为(48-x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果.【详解】解:(1)设一个水瓶x元,表示出一个水杯为(48-x)元,根据题意得:3x+4(48-x)=152,解得:x=40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为:(40×5+8×12)×80%=236.8(元);乙商场所需费用为:5×40+(12-5×2)×8=216(元),∵236.8>216,∴选择乙商场购买更合算.【点睛】此题考查了一元一次方程的应用,弄清题意,列出方程是解本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级第二学期期中复习检测卷
说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),满分120分,考试时间120分钟。
第Ⅰ卷(选择题,共30分)
一、精心选一选(本题满分30分,共有10道小题,每小题3分。
下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.请将各小题所选答案的标号填写在题后面的括号内.)
1、下列运动属于平移的是 ( )
A.冷水加热过程中小气泡上升成为大气泡
B.急刹车时汽车在地面上的滑动
C.随手抛出的彩球的运动
D.随风飘动的风筝在空中的运动
2、如图21所示,矩形ABCD 中,横向阴影部分是矩形,另一个阴影是平行四边形,根据图中尺寸,其中空白部分的面积是 ( ) A.bc ab ac c -++2
B.ab bc ac c --+2
C.a ab bc ac 2
++- D.b bc a ab 2
2-++-
图21
3、如图22,下列判断不正确的是 ( )
A .
B .
C.图22
D.
4、同一平面内,直线与两条平行线a,b的位置关系是()
A.与a,b平行或相交B.可能与a平行,与b相交
C.与a,b一定都相交D.同旁内角互补,则两直线平行
5、下列图案中的哪一个可以看做是由图案自身的一部分经平移后而得到的?
6、在坐标平面上有一个区间(-1,2),若将此区间向正方向右平移3个单位后得到的区间的面积为()
A、4
B、6
C、8
D、无法确定
7、观察下面四幅图中,是由左图平移得到的是()
图23
8、关于如图24所示中各图案的说法不正确的是()
图24
A.只有(1)和(3)是平移
B.(1)和(3)是平移,(2)和(4)也是平移
C.把(1)和(2)看成一个整体图案,它与由(3)和(4)组成的图案也是平移
D.(1)和(2)、(2)和(3)、(1)和(4)都是平移
9、若不等式组 x>3
x>a 的解集是x>a,则a 的取值范围是 ( ) A 、a<3 B 、a=3 C 、a>3 D 、a≥3
10、若关于x 、y 的方程组⎩⎨⎧2x-3ay=4
4x-(2a-1)y=18
只有一个解,则a 的值不等于 ( )
A 、12
B 、-12
C 、14
D 、-1
4
第Ⅱ卷(非选择题部分,共70分)
二.细心的填一填(本题有10个小题, 每小题3分, 共30分)
11、如图,数轴上表示的是一个不等式的解集,这个不等式的整数解是_____.
12、某厂四月份产值为50万元,第二季度的产值比四月份的3倍还多32万元,那么五、六两个月的产值的平均增长率为____.
13、如图25,AD 是一条直线,
.
.则BE ____CF.(填:平行或垂直)
图25
14、一块方形蛋糕,一刀切成两块,两刀最多切成4块,试问:五刀最多可切成_______块,十刀最多可切成_______块(要求:竖切,不移动蛋糕). 15、 ∵
∥
,
∥
(已知)
∴_____∥______( )
16、时钟指示2点15分,此时的时针和分针所构成的锐角是__度__分__秒. 17、如图26所示,△ABC 沿着BC 方向平移到△DEF 的位置,若BE=2cm ,则CF=_________.
A D
B E
C F
图26
18、如果两个图形大小、形状都一样,则这两个图形__________(能、不一定能)通过平移 得到.
E A B
C
D
G
F
19、如图27所示,将△ABC 平移后得到△DEF ,∠BNF=100°,则∠DEF 等于__.
图27 图28
20、如图28,在四边形ABCD 中,AD ∥BC ,BC >AD ,∠B 与∠C 互余,将AB ,CD 分别平移到EF 和EG 的位置,则△EFG 为________三角形
三、专心解一解(共60分)
21、(10分)(1)求不等式组的整数解.
(2)解方程组:。
22、(6分)已知:如图29,,
,且
.
求证:EC ∥DF.
图29
23、(6分)如图30,已知:点O 在射线AB 上,点E 在直线上MN 上,AB 交EA 于A 点,31∠=∠,42∠=∠.求证:︒=∠+∠+∠1802OEA A .
A
O
B
P N
E
M
1
2
34
图30
24、(6分)如图31,已知AD ⊥BC 于D ,EG ⊥BC 于G ,且∠E=∠3,求证:AD 平分∠BAC .
图31
25、(8分)探索与猜想:
(1)王强同学家来了8个客人,他们都互相握手问候,你能知道他们一共握手多少次吗?
(2)李明家来了8个客人,他们互送名片,一共送了多少张?
26、(6分)有两个相同的长方形,如图32所示把它们叠放在一起,如果长方形的长是9米,那么这个图形的周长是多少米?
图32
27、(8分)(1)下面两个图形的周长是否相同?
图33 图34
(2)如图35,平移方格纸中的图形,使点A平移到点A′处,画出平移后的图形.
图35
28、(8分)某纸品加工厂为了制作甲、乙两种无盖的长方体小盒(如图3),利用边角料裁出正方形和长方形两种硬纸片,长方形的宽与正方形的边长相等.现将150张正方形硬纸片和300张长方形硬纸片全部用于制作这两种小盒,可以做成甲、乙两种小盒各多少个?
七年级第二学期期中复习检测卷
参考答案
一、1、B;提示:注意到平移的概念,“急刹车时汽车在地面上的滑动”属于平移
2、B;提示:根据面积关系有ab-bc-ac+c2
3、C;提示:∵∠1=∠2,∴AB∥ED错误
4、A;提示:提示:根据平面内直线的位置关系有“与a,b平行或相交”
5、A;提示:图A可以看做是由图案自身的一部分经平移后而得到的,其他图案都不是
6、C;提示:4×2=8
7、B;提示:根据平移的特征
8、D;提示:“(1)和(2)、(2)和(3)、(1)和(4)都是平移”不正确
9、D;提示:注意解集的端点
10、D;提示:代入验证,易知a=1/4。
二、11、-2<x<-1;提示:注意两端点是空心的,不能取等号
12、0.2
13、∥;提示:根据同旁内角互补,两直线平行
14、16,56;提示:注意到每增加一条直线,探究增加平面的个数
15、∥(平行公理的推论).根据平行公理的推论,平行关系是可以传递的
16、22,30,0;
17、2cm;提示:图形上的每一个点都平移了2cm
18、不一定能
19、80°;提示:平移所得到的图形的对应线段平行,根据同旁内角互补
20、直角三角形;提示:有两个角互余,则另一个角必是直角
3
三、21、(1)解3x+7<5(x+2),得x>-
2
解,得x<2。
∴不等式组的解集为-2
3
<x <2 在-
2
3
<x <2中的整数有–1、0、1 ∴不等式组的整数解是:–1、0、1.
(2);提示:,由(1)得x=68-y 代入(2),解得y=23,x=45
22、证明:∵ (已知),
∴ (等量代换).
∵
∴ (等角的补角相等).
∴ (内错角相等,两直线平行)
23、解:∵31∠=∠,42∠=∠,∴4321∠+∠=∠+∠ ∴)43(180)21(180∠+∠-︒=∠+∠-︒,即:65∠=∠ ∴ OP ∥AE (4分),∴A ∠=∠1
又∵︒=∠+∠+∠180521,∴︒=∠+∠+∠18062A 即︒=∠+∠+∠1802OEA A . 24、证明:∵AD ⊥BC ,EG ⊥BC , ∴∠EGC=∠ADC=90°,
∴AD//EG . ∴∠1=∠3,∠2=∠E , ∵∠E=∠3,∴∠1=∠2, ∴AD 平分∠BAC. 25、(1)28;(2)56张;(3)45种。
26、分析:许多同学认为此题无法解答,理由是只知道长方形的长,而重叠之后其他几个短边的长度根本不知道。
其实,同学们只要认真观察,运用平移的手段,此题就能迎刃而解。
如图,短边b 和d 向下平移,它们的长度之和恰是长方形的长;短边a 和c 向右平移,它们的长度之和是9米。
平移之后可以发现,这个图形的周长正好是原来长方形的长的4倍。
解:9×4=36(米). 答:这个图形的周长是36米.
27、(1)从表面看,右边的图形的周长似乎要比左边的图形的周长长些。
如果我们用运动的观点,把右图中有关线段平移,就会发现这两个图形的周长相同.
(2)解:平移后的图形如上图所示.
点评:本题评移应选取五个关键点:三角形的三个顶点、长方形下面的两点顶点,根据平移的方向和距离,确定平移后图形的位置.
28、解析:设可以制作甲种小盒x个,乙种小盒y个,根据题意可得
.。