高中数学第三章三角恒等变换31和角公式313两角和与差的正切课堂探究学案新人教B版必修4
高中数学必修4(人教B版)第三章三角恒等变换3.1知识点总结含同步练习题及答案

tan 60∘ − tan 15∘ 1 + tan 60∘ ⋅ tan 15∘ = tan(60∘ − 15∘ ) = tan 45∘ = 1.
(2)根据tan α + tan β = tan(α + β)(1 − tan α tan β) ,则有 原式 = tan 120 ∘ (1 − tan 55∘ tan 65∘ ) − √3 tan 55∘ tan 65∘
π ),向左平移 m 个单位后,得到的函数为 3 π π π y = 2 sin (x + + m),若所得到的图像关于 y 轴对称,则 + m = + kπ, k ∈ Z ,所以 3 3 2 π π m = + kπ ,k ∈ Z.取 k = 0 时,m = . 6 6
高考不提分,赔付1万元,关注快乐学了解详情。
和差角公式 辅助角公式
三、知识讲解
1.和差角公式 描述: 两角差的余弦公式 对于任意角α,β 有cos(α − β) = cos α cos β + sin α sin β,称为差角的余弦公式,简记C(α−β) . 两角和的余弦公式 对于任意角α,β 有cos(α + β) = cos α cos β − sin α sin β,称为和角的余弦公式,简记C(α+β) . 两角和的正弦公式 对于任意角α,β 有sin(α + β) = sin α cos β + cos α sin β,称为和角的正弦公式,简记S (α+β) . 两角差的正弦公式 对于任意角α,β 有sin(α − β) = sin α cos β − cos α sin β,称为差角的正弦公式,简记S (α−β) . 两角和的正切公式 对于任意角α,β 有tan(α + β) = 两角差的正切公式 对于任意角α,β 有tan(α − β) =
高中数学第三章三角恒等变换3.1两角和与差的正弦余弦和正切公式两角差的余弦公式

3.1.1 两角差的余弦公式学习目标:1.了解两角差的余弦公式的推导过程.(重点)2.理解用向量法导出公式的主要步骤.(难点)3.熟记两角差的余弦公式的形式及符号特征,并能利用该公式进行求值、计算.(重点、易混点)[自主预习·探新知]两角差的余弦公式1.思考辨析(1)cos(60°-30°)=cos 60°-cos 30°.()(2)对于任意实数α,β,cos(α-β)=cos α-cos β都不成立.( )(3)对任意α,β∈R,cos(α-β)=cos αcos β+sin αsin β都成立.( )(4)cos 30°cos 120°+sin 30°sin 120°=0.( )[解析](1)错误.cos(60°-30°)=cos 30°≠cos 60°-cos 30°.(2)错误.当α=-45°,β=45°时,cos(α-β)=cos(-45°-45°)=cos(-90°)=0,cos α-cos β=cos(-45°)-cos 45°=0,此时cos(α-β)=cos α-cos β.(3)正确.结论为两角差的余弦公式.(4)正确.cos 30°cos 120°+sin 30°sin 120°=cos(120°-30°)=cos 90°=0.[答案](1)×(2)×(3)√(4)√2.cos(-15°)的值是( )A.6-22B.6+22C.6-24D.6+24D[cos(-15°)=cos 15°=cos(45°-30°)=cos 45°cos 30°+sin 45°sin30°=22×32+22×12=6+24.]3.cos 65°cos 20°+sin 65°sin 20°=________.[合 作 探 究·攻 重 难](1)cos 1312的值为( )A .6+24 B .6-24 C .2-64D .-6+24(2)求下列各式的值:①cos 75°cos 15°-sin 75°sin 195°; ②sin 46°cos 14°+sin 44°cos 76°; ③12cos 15°+32sin 15°. 【导学号:84352295】(1)D [(1)cos 13π12=cos ⎝⎛⎭⎪⎫π+π12=-cos π12=-cos ⎝ ⎛⎭⎪⎫π4-π6=-cos π4cos π6-sin π4sin π6=-22×32-22×12=-6+24. (2)①cos 75°cos 15°-sin 75°sin 195° =cos 75°cos 15°-sin 75°sin(180°+15°) =cos 75°cos 15°+sin 75°sin 15° =cos(75°-15°)=cos 60°=12.②sin 46°cos 14°+sin 44°cos 76°=sin(90°-44°)cos 14°+sin 44°cos(90°-14°) =cos 44°cos 14°+sin 44°sin 14° =cos(44°-14°)=cos 30°=32. ③12cos 15°+32sin 15°=cos 60°cos 15°+s in 60°sin 15°=cos(60°-15°)=cos 45°=22 .][规律方法] 1.解含非特殊角的三角函数式的求值问题的一般思路是:(1)把非特殊角转化为特殊角的和或差,正用公式直接求值.(2)在转化过程中,充分利用诱导公式,构造两角差的余弦公式的结构形式,然后逆用公式求值.2.两角差的余弦公式的结构特点:(1)同名函数相乘:即两角余弦乘余弦,正弦乘正弦.(2)把所得的积相加.[跟踪训练]1.化简下列各式:(1)cos(θ+21°)cos(θ-24°)+sin(θ+21°)sin(θ-24°);(2)-sin 167°·sin 223°+sin 257°·sin 313°.[解](1)原式=cos[θ+21°-(θ-24°)]=cos 45°=22.(2)原式=-sin(180°-13°)sin(180°+43°)+sin(180°+77°)·sin(360°-47°)=sin 13°sin 43°+sin 77°sin 47°=sin 13°sin 43°+cos 13°cos 43°=cos(13°-43°)=cos(-30°)=32.[探究问题]1.若已知α+β和β的三角函数值,如何求cos α的值?提示:cos α=cos[(α+β)-β]=cos(α+β)cos β+sin(α+β)sin β.2.利用α-(α-β)=β可得cos β等于什么?提示:cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β).(1)已知sin α-sin β=1-32,cos α-cos β=12,则cos(α-β)=( )A.-32B.-12(2)已知sin ⎝ ⎛⎭⎪⎫π3+α=1213,α∈⎝ ⎛⎭⎪⎫π6,2π3,求cos α的值.【导学号:84352296】[思路探究] (1)先将已知两式平方,再将所得两式相加,结合平方关系和公式C (α-β)求cos(α-β).(2)由已知角π3+α与所求角α的关系即α=⎝ ⎛⎭⎪⎫π3+α-π3寻找解题思路.(1)D [(1)因为sin α-sin β=1-32, 所以sin 2α-2sin αsin β+sin 2β=⎝ ⎛⎭⎪⎫1-322, ① 因为cos α-cos β=12,所以cos 2α-2cos αcos β+cos 2β=⎝ ⎛⎭⎪⎫122, ②①,②两式相加得1-2cos(α-β)+1=1-3+34+14所以-2cos(α-β)=- 3 所以cos(α-β)=32. (2)∵α∈⎝ ⎛⎭⎪⎫π6,2π3,∴π3+α∈⎝ ⎛⎭⎪⎫π2,π,∴cos ⎝ ⎛⎭⎪⎫π3+α=-1-sin 2⎝ ⎛⎭⎪⎫π3+α=-1-⎝ ⎛⎭⎪⎫12132=-513.∵α=⎝⎛⎭⎪⎫π3+α-π3, cos α=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π3+α-π3=cos ⎝ ⎛⎭⎪⎫π3+αcos π3+sin ⎝ ⎛⎭⎪⎫π3+αsin π3=-513×12+1213×32=123-526.]母题探究:1.将例2(2)的条件改为“sin ⎝ ⎛⎭⎪⎫α+π4=45,且π4<α<3π4”,如何解答?[解] ∵sin ⎝⎛⎭⎪⎫α+π4=45,且π4<α<3π4,∴π2<α+π4<π, ∴cos ⎝⎛⎭⎪⎫α+π4=-1-⎝ ⎛⎭⎪⎫452=-35,∴cos α=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π4-π4=cos ⎝ ⎛⎭⎪⎫α+π4cos π4+sin ⎝ ⎛⎭⎪⎫α+π4sin π4=-35×22+45×22=210.2.将例2(2)的条件改为“sin ⎝ ⎛⎭⎪⎫π3-α=-1213,α∈⎝ ⎛⎭⎪⎫π6,5π6”,求cos ⎝ ⎛⎭⎪⎫α-π12的值.[解] ∵π6<α<5π6,∴-π2<π3-α<π6,又sin ⎝⎛⎭⎪⎫π3-α=-1213<0,∴-π2<π3-α<0,cos ⎝ ⎛⎭⎪⎫π3-α=1-sin 2⎝⎛⎭⎪⎫π3-α=513,∴cos ⎝ ⎛⎭⎪⎫α-π12=cos ⎝ ⎛⎭⎪⎫π12-α=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π3-α-π4=22cos ⎝ ⎛⎭⎪⎫π3-α+22sin ⎝ ⎛⎭⎪⎫π3-α=22×513+22×⎝ ⎛⎭⎪⎫-1213=-7226. [规律方法] 给值求值问题的解题策略已知某些角的三角函数值,求另外一些角的三角函数值时,要注意观察已知角与所求表达式中角的关系,即拆角与凑角.由于和、差角与单角是相对的,因此解题过程中可以根据需要灵活地进行拆角或凑角.常见角的变换有:①α=α-β+β;②α=α+β2+α-β2;③2α=α+β+α-β; ④2β=α+β-α-β已知<π2,求角β的大小.【导学号:84352297】[思路探究] 求cos α、α-β→求cos β=cos[α-α-β→求β[解] 因为sin(π-α)=437, 所以sin α=437.因为0<α<π2,所以cos α=1-sin 2α=17.因为cos(α-β)=1314,且0<β<α<π2,所以0<α-β<π2,所以sin(α-β)=1-cos2α-β=3314, 所以cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=17×1314+437×3314=12.因为0<β<π2,所以β=π3. [规律方法] 已知三角函数值求角的解题步骤界定角的范围,根据条件确定所求角的范围.求所求角的某种三角函数值.为防止增解最好选取在范围内单调的三角函数. 结合三角函数值及角的范围求角.提醒:在根据三角函数值求角时,易忽视角的范围,而得到错误答案. [跟踪训练]2.已知α,β均为锐角,且cos α=255,cos β=1010,求α-β的值.[解] ∵α,β均为锐角, ∴sin α=55,sin β=31010, ∴cos(α-β)=cos αcos β+sin αsin β =255×1010+55×31010=22. 又sin α<sin β,∴0<α<β<π2,∴-π2<α-β<0,故α-β=-π4.[当 堂 达 标·固 双 基]1.sin 14°cos 16°+sin 76°cos 74°=( )【导学号:84352298】A .32 B .12 C .-32D .-12B [∵sin 14°=cos 76°,cos 74°=sin 16°∴原式=cos 76°cos 16°+sin 76°sin 16°=cos(76°-16°)=cos 60°=12.]2.若sin αsin β=1,则cos(α-β)的值为( ) A .0 B .1 C .±1D .-1B [由sin αsin β=1,得cos αcos β=0, cos(α-β)=cos αcos β+sin αsin β=1.]3.已知α为锐角,β为第三象限角,且cos α=1213,sin β=-35,则cos(α-β)的值为( )【导学号:84352299】A .-6365B .-3365C .6365D .3365A [∵α为锐角,cos α=1213,∴sin α=1-cos 2α=513,∵β为第三象限角,sin β=-35,∴cos β=-1-sin 2β=-45,∴cos(α-β)=cos αcos β+sin αsin β=1213×⎝ ⎛⎭⎪⎫-45+513×⎝ ⎛⎭⎪⎫-35=-6365.]4.cos(α-35°)cos(α+25°)+sin(α-35°)sin(α+25°)=________. 12[原式=cos[(α-35°)-(α+25°)] =cos(-60°)=cos 60°=12.]5.已知sin α=-45,sin β=513,且180°<α<270°,90°<β<180°,求cos(α-β)的值.【导学号:84352300】[解] 因为sin α=-45,180°<α<270°,所以cos α=-35.因为sin β=513,90°<β<180°,所以cos β=-1213,所以cos(α-β)=cos αcos β+sin αsin β=⎝ ⎛⎭⎪⎫-35×⎝ ⎛⎭⎪⎫-1213+⎝ ⎛⎭⎪⎫-45×513=3665-2065=1665.。
高中数学 第三章 三角恒等变换 3.1 两角和与差的正弦、余弦和正切公式 3.1.3 二倍角的正弦、

3.1.3 二倍角的正弦、余弦、正切公式(二)课堂导学三点剖析1.二倍角公式在证明题中的应用【例1】 求证:x x cos 22sin (1+tanx·tan 2x )=tanx. 思路分析:本题的目标是把等式的左端统一成角x 的正切函数.可能用的公式有sin2x=2sinxcosx ,tan 2x =x x x x x x x sin cos 12cos 2sin 22sin 22cos 2sin2-==. 证法1:左端=x x x cos 2cos sin 2(1+xx x x sin cos 1cos sin -•) =sinx (1+xx cos cos 1-) =xx cos sin =tanx=右端. 证法2:左端=x x x x x x x x x x x x x x x cos sin 2tan 2cos cos 2sin cos 2cos sin 2)2tan(2tan tan cos 22sin =••=--• =x x cos sin =tanx=右端. 温馨提示证明恒等式就是要根据所证等式两端的特征(结构、名称、角度等)来选择最佳方法,本题就是抓住左右两端的次数差异作为突破口,使问题得以解决.2.二倍角公式在化简题中的应用【例2】 已知函数f (x )=cos 4x-2sinxcosx-sin 4x.(1)求f (x )的最小正周期;(2)若x∈[0,2π],求f (x )的最大值,最小值. 解:(1)因为f (x )=cos 4x-2sinxcosx-sin 4x=(cos 2x+sin 2x )(cos 2x-sin 2x )-sin2x =cos2x-sin2x=2cos (2x+4π),所以f (x )的最小正周期T=22π=π. (2)因为0≤x≤2π,所以4π≤2x+4π≤π45. 当2x+4π=4π时,cos (2x+4π)取得最大值22; 当2x+4π=π时,cos (2x+4π)取得最小值-1. 所以f (x )在[0,2π]上的最大值为1, 最小值为2-.温馨提示(1)将cos2x-sin2x 变形为sin (4π-2x ),也会有同样的结果; (2)像这类高次三角函数,首先利用倍角公式通过降幂化为y=Asin (ωx+φ)或y=Acos (ωx+φ)(A ,ω,φ均为常数,A >0)的形式,然后再求周期和最值.3.公式的综合、灵活运用【例3】 已知函数f (x )=3-sin 2x+sinxcosx (1)求f (625π)的值; (2)设α∈(0,π),f (2α)=41-23,求sinα的值 解:(1)∵sin 625π=21,cos 625π=23, ∴f(625π)=-3sin 2625π+sin 625πcos 625π=0 (2)f (x )=23cos2x-23+21sin2x ∴f(2α)=23cos α+21sin α-23=41-23, 16sin 2α-4sin α-11=0解得sin α=8531±. ∵α∈(0,π),∴sinα>0故sinα=8531+ 温馨提示要注意公式变形的重要性,不能死记公式,更不能只会正用,同时逆用、变形也要学会只有灵活运用公式,才能灵活解决问题各个击破类题演练1求证:3+cos4α-4cos2α=8sin 4α.证法1:∵左边=2+1+cos4α-4cos2α=2+2cos 22α-4cos2α=2(cos 22α-2cos2α+1)=2(cos2α-1)2=2(-2sin 2α)2=8sin 4α=右边.∴等式成立.证法2:右边=2×4sin 4α=2(1-cos2α)2=2(1-2cos2α+cos 22α)=2-4cos2α+2cos 22α =2-4cos2α+1+cos4α=3+cos4α-4cos2α=左边.∴等式成立.变式提升1 求证:.tan 14cos 4sin 1tan 24cos 4sin 12θθθθθθ-++=-+ 证明:左边=θθθtan 24sin )4cos 1(+- =θθθθθcos sin 22cos 2sin 22sin 22+=θθθθθsin sin cos 2)2cos 2(sin 2+ =2cos 2θ(sin2θ+cos2θ) 右边=θθθ2tan 14sin )4cos 1(-++ =θθθθθθ2222cos sin cos 2cos 2sin 22cos 2•-+ =θθθθθ2cos 2cos )2sin 2(cos 2cos 2•+ =2cos 2θ(sin2θ+cos2θ)∴左边=右边,故等式成立.类题演练2设函数f (x )=sin 2x+3sinxcosx+α, (1)写出函数f (x )的单调递增区间;(2)求f (x )的最小正周期.解:(1)f (x )=2322cos 1+-x sin2x+a =23sin2x-21cos2x+a+21 =sin (2x-6π)+a+21, 2k π-2π≤2x -6π≤2kπ+2π,k∈Z , k π-6π≤x≤kπ+3π,k∈Z , ∴f(x )的单调递增区间是[kπ-6π,kπ+3π],k∈Z (2)T=222πωπ==π, ∴f(x )的最小正周期为π.变式提升2已知函数y=sin2x-2(sinx+cosx )+a 2设t=sinx+cosx ,t 为何值时,函数y 取得最小值;解:∵t=sinx+cosx=2sin (x+4π),-2≤t≤2, ∴t 2=1+2sinxcosx=1+sin2x ,sin2x=t 2-1,∴y=t 2-1-2t+a 2=(t-1)2+a 2-2∵-2≤t≤2,∴当t=1时,函数y 取得最小值a 2-2类题演练3 已知α为第二象限角,且sinα=415,求12cos 2sin )4sin(+++ααπα的值. 解:∵sinα=415,α为第二象限角,∴cosα=-41. ∴sin2α=2sinαcosα=815-. ααπαπαααπα2cos 22sin 4sin cos 4cos sin 12cos 2sin )4sin(++=+++ =151230)41(28152241224152--=-⨯+-⨯-⨯ =.2151)115(2-=--变式提升3函数f (x )=sin 2(x+4π)-sin 2(x-4π)是( ) A.周期为π的偶函数 B.周期为π的奇函数C.周期为2π的偶函数D.周期为2π的奇函数解析:f (x )=2)22cos(12)22cos(1ππ---+-x x =22sin 122sin 1x x --+=sin2x.∴T=22 =π,f(x )为奇函数. 答案:B。
高中数学 第三章 三角恒等变换 3.1 两角和与差的正弦、余弦和正切公式 3.1.3 二倍角的正弦、

3.1.3 二倍角的正弦、余弦、正切公式互动课堂疏导引导1.二倍角公式(1)二倍角公式的正弦、余弦、正切公式sin2α=2sinαcosα,(S 2α)cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,(C 2α) tan2α=αα2tan 1tan 2-,(T 2α) 这组公式要记准、记熟、用活.下面给出这组公式的推导:∵sin(α+β)=sinαcosβ+cosαsinβ,当α=β时,有sin2α=2sinαcosα.∵cos(α+β)=cosαcosβ-sinαsinβ,当α=β时,有co s2α=cos 2α-sin 2α=2cos 2α-1(sin 2α=1-cos 2α)=1-2sin 2α(cos 2α=1-sin 2α). ∵tan(α+β)=βαβαtan tan 1tan tan -+, 当α=β时,有tan2α=αα2tan 1tan 2-. 公式S 2α、C 2α中,α∈R ,公式T 2α中的α≠21kπ+4π且α≠kπ+2π (k∈Z ). 从上面的公式推导中可以看到二倍角公式是和角公式的特殊情况.(2)关于倍角公式应注意的几个问题:①推导思路:在正弦、余弦、正切的和角公式中,令两角相等,就得相应倍角公式.由此,倍角公式是和角公式的特例.②公式的适用范围:公式S 2α、C 2α中,角α可以为任意角,但公式T 2α只有当α≠2π+kπ及α≠4π+2πk (k∈Z )时才成立,否则不成立.当α=2π+kπ,k∈Z ,虽然tanα的值不存在,但tan2α的值是存在的,这时求tan2α的值可利用诱导公式.③对于“二倍角”要有广义理解,如4α是2α的2倍;α作为2α的2倍;2α作为4α的2倍;3α作为23α的2倍;3α作为6α的2倍等. 2.二倍角公式的变形(1)公式逆用2sinαcosα=sin2α, sinαcosα=21sin2α,cosα=ααsin 22sin 2,cos 2α-sin 2α=cos2α,αα2tan 1tan 2-=tan2α. (2)公式的逆向变换及有关变形1±sin2α=sin 2α+cos 2α±2sinαcosα=(sinα±cosα)2,1+cos2α=2cos 2α,1-cos2α=2sin 2α,cos 2α=22cos 1α+,sin 2α=22cos 1α-. 活学巧用1.已知sin α+cos α=31,且0<α<π,求sin2α、cos2α、tan2α的值. 解析:方法一:∵sinα+cos α=31,∴sin 2α+cos 2α+2sin αcos α=91.∴sin2α=98-且sin αcos α=94-<0. ∵0<α<π,sin α>0,∴cosα<0.∴sinα-cos α>0.∴sinα-cos α=3172sin 1)cos (sin 2=-=-ααα. ∴cos2α=cos 2α-sin 2α=(sin α+cos α)(cos α-sin α)=31×(-317)=917-. tan2α=171782cos 2sin =αα. 方法二:∵sinα+cos α=31,平方得sin αcos α=94-, ∴sinα、cosα可看成方程x 2-31x 94-=0的两根, 解方程x 2-31x 94-=0,得x 1=6171+,x 2=6171-.∵α∈(0,π),∴sinα>0.∴sinα=6171+, cosα=6171-.∴sin2α=2sinαcosα=98-,cos2α=cos 2α-sin 2α=917-,tan2α=171782cos 2sin =αα. 答案:sin2α=98-,cos2α=917-,tan2α=17178. 2.已知函数f(x)=cos 4x-2sinxcosx-sin 4x.(1)求f(x)的最小正周期;(2)若x∈[0, 2π],求f(x)的最大值、最小值. 解析:f(x)=(cos 2x+sin 2x)(cos 2x-sin 2x)-sin2x =cos2x-sin2x=2cos(2x+4π). (1)T=22π=π. (2)0≤x≤2π,0≤2x≤π,4π≤2x+4π≤45π,-1≤cos(2x+4π)≤22,∴-2≤2cos(2x+4π)≤1.∴f(x)max =1,f(x)min =-2.答案:(1)π;(2)f(x)max =1,f(x)min =-2.3.已知函数y=21cos 2x+23sinxcosx+1,x∈R .当函数y 取得最大值时,求自变量x 的集合. 解析:y=21cos 2x+23sinxcosx+1=41(2cos 2x-1)+41+43(2sinxcosx)+1 =21(cos2xsin 6π+sin2xcos 6π)+45=21sin(2x+6π)+45.y 取得最大值必须且只需2x+6π=2π+2k π,k∈Z ,即x=6π+k π,k∈Z .所以量x 的集合为{x|x=6π+k π,k∈Z }.。
高中数学第三章三角恒等变换第1节两角和与差的正弦余弦和正切公式第3课时二倍角的正弦余弦正切公式教案含解

第3课时二倍角的正弦、余弦、正切公式[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P132~P134的内容,回答下列问题.(1)在公式C(α+β),S(α+β)和T(α+β)中,若α=β,公式还成立吗?提示:成立.(2)在上述公式中,若α=β,你能得到什么结论?提示:cos 2α=cos2α-sin2α,sin 2α=2sin αcos α,tan 2α=2tan α1-tan2α. 2.归纳总结,核心必记[问题思考](1)S 2α,C 2α,T 2α中角α的取值范围分别是什么?提示:S 2α,C 2α中α∈R ,T 2α中α≠k π+π2且α≠k π2±π4.(2)能应用tan α表示sin 2α,cos 2α吗?提示:sin 2α=2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α,cos 2α=cos 2α-sin 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α.[课前反思](1)二倍角的正弦公式: ;(2)二倍角的余弦公式: ;(3)二倍角的正切公式: .知识点1化简求值讲一讲1.求下列各式的值:(1)sin π12cos π12;(2)1-2sin 2750°;(3)2tan 150°1-tan 2150°;(4)1sin 10°-3cos 10°; (5)cos 20°cos 40°cos 80°.[尝试解答] (1)原式=2sin π12cos π122=sinπ62=14.(2)原式=cos(2×750°)=cos 1 500° =cos(4×360°+60°)=cos 60°=12.(3)原式=tan(2×150°)=tan 300°=tan(360°-60°)=-tan 60°=- 3. (4)原式=cos 10°-3sin 10°sin 10°cos 10°=2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°sin 10°cos 10°=4sin 30°cos 10°-cos 30°sin 10°2sin 10°cos 10°=4sin 20°sin 20°=4.(5)原式=2sin 20°·cos 20°·cos 40°·cos 80°2sin 20°=2sin 40°·cos 40°·cos 80°4sin 20°=2sin 80°·cos 80°8sin 20°=sin 160°8sin 20°=18.类题·通法化简求值的四个方向三角函数的化简有四个方向,即分别从“角”“函数名”“幂”“形”着手分析,消除差异.练一练1.化简:(1)11-tan θ-11+tan θ;(2)2cos 2α-12tan ⎝ ⎛⎭⎪⎫π4-αsin 2⎝ ⎛⎭⎪⎫π4+α.解:(1)原式=1+tan θ-1-tan θ1-tan θ1+tan θ=2tan θ1-tan 2θ=tan 2θ. (2)原式=cos 2α2tan ⎝ ⎛⎭⎪⎫π4-αcos 2⎝ ⎛⎭⎪⎫π2-π4-α=cos 2α2tan ⎝ ⎛⎭⎪⎫π4-αcos 2⎝ ⎛⎭⎪⎫π4-α=cos 2α2sin ⎝ ⎛⎭⎪⎫π4-αcos ⎝ ⎛⎭⎪⎫π4-α =cos 2αsin ⎝ ⎛⎭⎪⎫2×π4-2α=cos 2αcos 2α=1.知识点2条件求值讲一讲2.(1)已知cos ⎝ ⎛⎭⎪⎫α+π4=35,π2≤α<3π2,求cos2α+π4的值; (2)已知α∈⎝ ⎛⎭⎪⎫-π2,π2,且sin 2α=sin ⎝ ⎛⎭⎪⎫α-π4,求α.[尝试解答] (1)∵π2≤α<3π2,∴3π4≤α+π4<7π4.∵cos ⎝ ⎛⎭⎪⎫α+π4>0,∴3π2<α+π4<7π4.∴sin ⎝ ⎛⎭⎪⎫α+π4=-1-cos 2⎝⎛⎭⎪⎫α+π4=-1-⎝ ⎛⎭⎪⎫352=-45.∴cos 2α=sin ⎝ ⎛⎭⎪⎫2α+π2=2sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4 =2×⎝ ⎛⎭⎪⎫-45×35=-2425,sin 2α=-cos ⎝ ⎛⎭⎪⎫2α+π2=1-2cos 2⎝⎛⎭⎪⎫α+π4=1-2×⎝ ⎛⎭⎪⎫352=725.∴cos ⎝⎛⎭⎪⎫2α+π4=22cos 2α-22sin 2α=22×⎝ ⎛⎭⎪⎫-2425-725=-31250. (2)∵sin 2α=-cos ⎝ ⎛⎭⎪⎫2α+π2=-⎣⎢⎡⎦⎥⎤2cos 2⎝ ⎛⎭⎪⎫α+π4-1,sin ⎝ ⎛⎭⎪⎫α-π4=-sin ⎝ ⎛⎭⎪⎫π4-α=-cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4-α =-cos ⎝ ⎛⎭⎪⎫π4+α,∴原式可化为1-2cos 2⎝ ⎛⎭⎪⎫α+π4=-cos ⎝ ⎛⎭⎪⎫α+π4,解得cos ⎝ ⎛⎭⎪⎫α+π4=1或cos ⎝ ⎛⎭⎪⎫α+π4=-12.∵α∈⎝ ⎛⎭⎪⎫-π2,π2,∴α+π4∈⎝ ⎛⎭⎪⎫-π4,3π4,故α+π4=0或α+π4=2π3,即α=-π4或α=5π12.类题·通法解决条件求值问题的方法解决条件求值问题,要注意寻找已知式与未知式之间的联系,有两个观察方向: (1)有方向地将已知式或未知式化简,使关系明朗化;(2)寻找角之间的关系,看是否适合相关公式的使用,注意常见角的变换和角之间的二倍关系.练一练2.(1)已知cos α=13,则cos 2α等于( )A.13B.23 C .-79 D.79(2)设α是第四象限角,已知sin α=-35,则sin 2α,cos 2α和tan 2α的值分别为( )A .-2425,725,-247 B.2425,725,247C .-2425,-725,247 D.2425,-725,-247(3)已知tan α+1tan α=52,α∈⎝ ⎛⎭⎪⎫π4,π2,求cos 2α和sin ⎝⎛⎭⎪⎫2α+π4的值.解析:(1)cos 2α=2cos 2α-1=29-1=-79.(2)因为α是第四象限角,且sin α=-35,所以cos α=45,所以sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=725,tan 2α=sin 2αcos 2α=-247.(3)由tan α+1tan α=52,得sin αcos α+cos αsin α=52, 则2sin 2α=52,即sin 2α=45.因为α∈⎝ ⎛⎭⎪⎫π4,π2,所以2α∈⎝ ⎛⎭⎪⎫π2,π,所以cos 2α=-1-sin 22α=-35,sin ⎝ ⎛⎭⎪⎫2α+π4=sin 2α·cos π4+cos 2α·sin π4=45×22-35×22=210. 答案:(1)C (2)A知识点3倍角公式的综合应用讲一讲3.已知向量a =(sin A ,cos A ),b =(3,-1),a ·b =1,且A 为锐角. (1)求角A 的大小;(2)求函数f (x )=cos 2x +4cos A sin x (x ∈R )的值域. [尝试解答] (1)由题意得a ·b =3sin A -cos A =1, 2sin ⎝ ⎛⎭⎪⎫A -π6=1,sin ⎝ ⎛⎭⎪⎫A -π6=12. 由A 为锐角得A -π6=π6,所以A =π3.(2)由(1)知cos A =12,所以f (x )=cos 2x +2sin x =1-2sin 2x +2sin x =-2⎝⎛⎭⎪⎫sin x -122+32. 因为x ∈R ,所以sin x ∈[-1,1], 因此,当sin x =12时,f (x )有最大值32.当sin x =-1时,f (x )有最小值-3, 所以所求函数f (x )的值域是⎣⎢⎡⎦⎥⎤-3,32.类题·通法二倍角公式的灵活运用(1)公式的逆用:逆用公式,这种在原有基础上的变通是创新意识的体现.主要形式有: 2sin αcos α=sin 2α,sin αcos α=12sin 2α,cos α=sin 2α2sin α,cos 2α-sin 2α=cos 2α,2tan α1-tan 2α=tan 2α. (2)公式的变形用:公式间有着密切的联系,这就要求思考时融会贯通,有目的的活用公式.主要形式有:1±sin 2α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2, 1+cos 2α=2cos 2α,cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.练一练3.已知函数f (x )=(2cos 2x -1)sin 2x +12cos 4x .(1)求f (x )的最小正周期及最大值; (2)若α∈⎝⎛⎭⎪⎫π2,π,且f (α)=22,求α的值.解:(1)因为f (x )=(2cos 2x -1)sin 2x +12cos 4x=cos 2x sin 2x +12cos 4x=12(sin 4x +cos 4x ) =22sin ⎝⎛⎭⎪⎫4x +π4,所以f (x )的最小正周期为π2,最大值为22.(2)因为f (α)=22, 所以sin ⎝⎛⎭⎪⎫4α+π4=1. 因为α∈⎝ ⎛⎭⎪⎫π2,π, 所以4α+π4∈⎝ ⎛⎭⎪⎫9π4,17π4,即4α+π4=5π2.故α=9π16.[课堂归纳·感悟提升]1.本节课的重点是二倍角的正弦、余弦、正切公式,难点是公式的应用. 2.要掌握二倍角公式的三个应用 (1)解决化简求值问题,见讲1; (2)解决条件求值问题,见讲2; (3)倍角公式的综合应用,见讲3. 3.要牢记二倍角公式的几种变形 (1)sin 2x =cos ⎝⎛⎭⎪⎫π2-2x =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-x=2cos 2⎝ ⎛⎭⎪⎫π4-x -1=1-2sin 2⎝ ⎛⎭⎪⎫π4-x ;(2)cos 2x =sin ⎝ ⎛⎭⎪⎫π2-2x =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-x=2sin ⎝⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x ; (3)cos 2x =sin ⎝⎛⎭⎪⎫π2+2x =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4+x=2sin ⎝⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x .课下能力提升(二十四)[学业水平达标练]题组1 化简求值 1.下列各式中,值为32的是( ) A .2sin 15°cos 15° B.cos 215°-sin 215° C .2sin 215° D.sin 215°+cos 215° 解析:选B cos 215°-sin 215°=cos 30°=32. 2.cos 275°+cos 215°+cos 75°cos 15°=( ) A.62 B.32 C.54 D .1+34解析:选C 原式=sin 215°+cos 215°+sin 15°cos 15°=1+12sin 30°=1+14=54.3.求值:sin 50°1+3tan 10°-cos 20°cos 80°1-cos 20°.解:∵sin 50°(1+3tan 10°) =sin 50°cos 10°+3sin 10°cos 10°=sin 50°2sin 40°cos 10°=1,cos 80°1-cos 20°=sin 10°2sin 210°=2sin 210°, ∴sin 50°1+3tan 10°-cos 20°cos 80°1-cos 20°=1-cos 20°2sin 210°= 2. 题组2 条件求值4.若tan α=3,则sin 2αcos 2α的值等于( ) A .2 B .3 C .4 D .6 解析:选Dsin 2αcos 2α=2sin αcos αcos 2α=2tan α=2×3=6. 5.已知sin 2α=23,则sin 2⎝ ⎛⎭⎪⎫α+π4=( )A.16B.12C.23D.56解析:选D sin 2⎝ ⎛⎭⎪⎫α+π4=1-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π42=1+sin 2α2=56.6.已知α∈⎝ ⎛⎭⎪⎫π2,π,且sin α=55,则tan ⎝ ⎛⎭⎪⎫2α+π4=( )A .-43 B.34 C .7 D .-17解析:选D 因为α∈⎝ ⎛⎭⎪⎫π2,π,且sin α=55,所以cos α=-255,所以tan α=-12,由二倍角公式得tan 2α=2tan α1-tan 2α=-43,tan ⎝⎛⎭⎪⎫2α+π4=tan 2α+11-tan 2α=-17. 7.已知角α在第一象限且cos α=35,则1+2cos ⎝⎛⎭⎪⎫2α-π4sin ⎝ ⎛⎭⎪⎫α+π2=( )A.25B.75C.145 D .-25解析:选C 因为cos α=35且α在第一象限,所以sin α=45.所以cos 2α=cos 2α-sin 2α=-725,sin 2α=2sin αcos α=2425,原式=1+2⎝⎛⎭⎪⎫cos 2αcos π4+sin 2αsin π4cos α=1+cos 2α+sin 2αcos α=145.8.已知π2<α<π,cos α=-45.(1)求tan α的值;(2)求sin 2α+cos 2α的值.解:(1)因为cos α=-45,π2<α<π,所以sin α=35,所以tan α=sin αcos α=-34.(2)sin 2α=2sin αcos α=-2425.cos 2α=2cos 2α-1=725,所以sin 2α+cos 2α=-2425+725=-1725. 题组3 倍角公式的综合应用9.函数f (x )=2cos 2x +sin 2x 的最小值是________. 解析:f (x )=1+cos 2x +sin 2x =1+2sin ⎝ ⎛⎭⎪⎫2x +π4,∴f (x )的最小值为1- 2. 答案:1- 210.已知0<x <π2,sin 2 x 2+3sin x 2cos ⎝ ⎛⎭⎪⎫π+x 2=-110,求tan ⎝⎛⎭⎪⎫2x +π3的值.解:∵sin 2x 2+3sin x2cos ⎝ ⎛⎭⎪⎫π+x 2=1-cos x 2-3sin x 2cos x2=12-⎝ ⎛⎭⎪⎫32sin x +12cos x =12-sin ⎝⎛⎭⎪⎫x +π6,∴由已知得12-sin ⎝⎛⎭⎪⎫x +π6=-110,∴sin ⎝⎛⎭⎪⎫x +π6=35.∵0<x <π2,结合sin ⎝⎛⎭⎪⎫x +π6=35易知π6<x +π6<π2.∴cos ⎝ ⎛⎭⎪⎫x +π6=45,∴tan ⎝⎛⎭⎪⎫x +π6=34.∴tan ⎝ ⎛⎭⎪⎫2x +π3=2tan ⎝ ⎛⎭⎪⎫x +π61-tan 2⎝⎛⎭⎪⎫x +π6=2×341-916=247. [能力提升综合练]1.sin 65°cos 25°+cos 65°sin 25°-tan 222.5°2tan 22.5°=( )A.12B .1 C. 3 D .2 解析:选B 原式=sin 90°-tan 222.5°2tan 22.5°=1-tan 222.5°2tan 22.5°=1tan 45°=1.2.已知sin 2α=23,则tan α+1tan α等于( )A .1B .2C .4D .3解析:选D tan α+1tan α=sin αcos α+cos αsin α=112sin 2α=3.3.已知cos 2x2cos ⎝ ⎛⎭⎪⎫x +π4=15,则sin 2x =( )A .-2425B .-45 C.2425 D.255解析:选A ∵cos 2x2cos ⎝ ⎛⎭⎪⎫x +π4=15,∴cos 2x -sin 2x cos x -sin x =15,∴cos x +sin x =15,∴1+sin2x =125,∴sin 2x =-2425.4.设a ∈R ,f (x )=cos x (a sin x -cos x )+cos 2⎝⎛⎭⎪⎫π2-x 满足f ⎝ ⎛⎭⎪⎫-π3=f (0),当x ∈⎣⎢⎡⎦⎥⎤π4,11π24时,f (x )的值域为( )A .[1,2]B .[2, 3 ]C .[3,2]D .[2,2]解析:选D f (x )=a 2sin 2x -1+cos 2x 2+1-cos 2x2=a2sin 2x -cos 2x ,因为f ⎝ ⎛⎭⎪⎫-π3=f (0),所以a =23, 所以f (x )=3sin 2x -cos 2x =2sin ⎝⎛⎭⎪⎫2x -π6, x ∈⎣⎢⎡⎦⎥⎤π4,11π24时,2x -π6∈⎣⎢⎡⎦⎥⎤π3,3π4,f (x )∈[2,2].故选D. 5.等腰三角形一个底角的余弦值为23,那么这个三角形顶角的正弦值为________.解析:设A 是等腰△ABC 的顶角,则cos B =23,sin B =1-cos 2B =1-⎝ ⎛⎭⎪⎫232=53. 所以sin A =sin(180°-2B )=sin 2B =2sin B cos B =2×53×23=459. 答案:4596.已知cos 2α=13,π<2α<2π,求1+sin α-2cos 2α23sin α+cos α的值.解:原式=sin α-cos α3sin α+cos α,又∵cos 2α=13,∴2cos 2α-1=13,∴cos 2α=23,3π2<2α<2π,∴3π4<α<π,∴⎩⎪⎨⎪⎧cos α=-63,sin α=33,∴原式=5+427.7.设函数f (x )=53cos 2x +3sin 2x -4sin x cos x . (1)求f ⎝⎛⎭⎪⎫5π12;(2)若f (α)=53,α∈⎝ ⎛⎭⎪⎫π2,π,求角α. 解:f (x )=53cos 2x +3sin 2x -4sin x cos x =53cos 2x +53sin 2x -2sin 2x -43sin 2x =53-2sin 2x -23(1-cos 2x ) =33-2sin 2x +23cos 2x =33-4⎝ ⎛⎭⎪⎫sin 2x ×12-cos 2x ×32=33-4⎝ ⎛⎭⎪⎫sin 2x cos π3-cos 2x sin π3 =33-4sin ⎝ ⎛⎭⎪⎫2x -π3. (1)f ⎝⎛⎭⎪⎫5π12=33-4sin ⎝ ⎛⎭⎪⎫5π6-π3=33-4sin π2=33-4.(2)由f (α)=53,得sin ⎝ ⎛⎭⎪⎫2α-π3=-32, 由α∈⎝ ⎛⎭⎪⎫π2,π,得2α-π3∈⎝ ⎛⎭⎪⎫2π3,5π3,∴2α-π3=4π3,α=5π6.。
高中数学 第三章 三角恒等变换 3.1 两角和与差的正弦、余弦和正切公式 3.1.3 二倍角的正弦、

3.1.3 二倍角的正弦、余弦、正切公式备课资料一、三角变换中的“一致代换”法在三角变换中,“一致代换”法是一种重要的方法,所谓“一致代换”法,即在三角变换中,化“异角”“异名”“异次”为“同角”“同名”“同次”的方法.它主要包括:在三角函数式中,①如果只含同角三角函数,一般应从变化函数名称入手,尽量化为同名函数,常用“化弦法”;②如果含有异角,一般应从变化角入手,尽量化不同角为同角,变复角为单角;③如果含有异次幂,一般利用升幂或降幂公式化异次幂为同次幂.二、备用习题1.求值:οο10cos 310sin 1- 2.化简:cos36°cos72°.3.化简:cosαcos 2a cos 22a cos 32a ·…·cos 12-n a . 4.求值:sin6°sin42°sin66°sin78°.5.若cos(4π+x)=53,1217π<x<47π,求x x x tan 1sin 22sin 2-+的值. 6.已知cos(α-2β)=91-,sin(2a -β)=32,且2π<α<π,0<β<2π,求cos(α+β)的值. 参考答案: 1.原式=οοοοοοοο10cos 10sin )10sin 2310cos 21(210cos 10sin 10sin 310cos -=- =οοοοοοοοο20sin )1030sin(410cos 10sin 2)10sin 30cos 10cos 30(sin 4-=-=4. 2.原式=οοοοοοο36sin 472cos 72sin 236sin 272cos 36cos 36sin 2=•=41. 3.先将原式同乘除因式sin,然后逐次使用倍角公式,则原式=12sin 22sin -n n a a . 4.原式=sin6°cos48°cos24°cos12°=sin6°cos12°cos24°cos48° =1616cos 166cos 6cos 296sin 6cos 248cos 24cos 12cos 6sin 6cos 2444===οοοοοοοοοο. 5.原式=)4tan(2sin tan 1)tan 1(cos sin 2tan 1sin 2cos sin 22x x x x x x x x x x +=-+=-+π.∵1217π<x<47π,∴35π<4π+x<2π.又cos(4π+x)=53, ∴sin(4π+x)=-54,tan(4π+x)=34-. ∴sin2x=sin[2(4π+x)-2π]=-cos2(4π+x)=-[2cos 2(4π+x)-1]=257, 故原式=257·(34-)=7528-. 6.∵cos(α-2β)=91-,2π<α<π,0<β<2π, ∴2π<α2β-<π. ∴sin(α-2β)=954. ∵sin(2a -β)= 32,2π<α<π,0<β<2π, ∴0<2a -β<2π. ∴cos(2a -β)=35. ∵cos2β+a =cos [(α-2β)-(2a -β)] =cos(α-2β)cos(2a -β)+sin(α-2β)sin(2a -β) =(91-)×35+954×32=2755, ∴cos(α+β)=2cos 22β+a -1=729239-.。
高中数学 第三章 三角恒等变换 3.1 两角和与差的正弦、余弦和正切公式 3.1.3 二倍角的正弦、
3.1.3 二倍角的正弦、余弦、正切公式疱工巧解牛知识•巧学 一、倍角公式1.公式的推导:倍角公式是和角公式的特例,只要在和角公式中令α=β,就可得出相应的倍角公式.sin(α+β)=sinαcosβ+cosαsinβ−−→−=βα令sin2α=2sinαcosα;cos(α+β)=cosαcosβ-sinαsinβ−−→−=βα令cos2α=cos 2α-sin 2α.由于sin 2α+cos 2α=1,显然,把sin 2α=1-cos 2α代入cos2α=cos 2α -sin 2α,得cos2α=cos 2α-sin 2α=cos 2α-(1-cos 2α)=2cos 2α-1.同理,消去cos 2α,得cos2α=1-2sin 2α. tan(α+β)=αααβαβαβα2tan 1tan 22tan tan tan 1tan tan -=−−→−•-+=令. 综上,我们把公式叫做二倍角公式.2.二倍角公式中角α的范围由任意角的三角函数的定义可知S 2α、C 2α中的角α是任意的,但公式T 2α即tan2α=αα2tan 1tan 2-中的角是有条件限制的. 要使tan2α有意义,需满足1-tan 2α≠0且tanα有意义.当tanα有意义时,α≠2π+kπ(k∈Z );当1-tan 2α≠0,即tanα≠±1时,α≠±4π+kπ(k∈Z ).综上,可知要使T 2α有意义,需α≠±4π+kπ且α≠2π+kπ(k∈Z ).特别地,当α=2π+kπ(k∈Z )时,虽然tanα的值不存在,但tan2α的值是存在的,这时求tan2α的值,可用诱导公式进行,即tan2(2π+kπ)=tan(π+2kπ)=tanπ=0. 学法一得 二倍角的切函数是用单角的切函数表示出来的,它的角α除了使解析式有意义外,还应使函数自身也有意义. 3.倍角公式中的倍角是相对的二倍角公式不仅仅可用于将2α作为α的2倍的情况,对于两个角的比值等于2的情况都成立,如8α是4α的二倍角,4α是2α的二倍角,3α是23α的二倍角,2α是4α的二倍角,3α是6α的二倍角等. 在运用倍角公式对半角的三角函数进行变换时,无论正用还是逆用,都可直接使用这一公式.例6cos6sin23sinααα=,6cos 26sin 6cos 3cos222αααα=-=-1=1-2sin26α;sin3α·cos3α=21 (2sin3αcos3α)=21sin6α;cos 22α-sin 22α=cos4α;ααα3sin 4123cos 23sin 21=;︒-︒35tan 135tan 22=tan70°等. 4.倍角公式的几种变形形式(sinα±cosα)2=1±sin2α;1+cos2α=2cos 2α;1-cos2α=2sin 2α;cos 2α=22cos 1α+;sin 2α=22cos 1α-. 学法一得 我们常把1+co sα=2cos 22α,1-cosα=2sin 22α称为升幂换半角公式,利用该公式消去常数项,便于提取公因式化简三角函数式;把cos 2α=22cos 1α+,sin 2α=22cos 1α-称为降幂换倍角公式,利用该公式能使之降次,便于合并同类项化简三角函数式.倍角公式给出了α的三角函数与2α的三角函数之间的关系.对于该公式不仅要会正用,还应会逆用和变用.5.倍角公式与和角公式的内在联系只有理清公式的来龙去脉及公式的变形形式,才能及时捕捉到有价值的信息,完成问题的解答.典题•热题知识点一 直接应用倍角公式求值 例1 求下列各式的值:(1)2sin15°sin105°;(2)︒-15sin 731432;(3)︒-︒5.22tan 15.22tan 2;(4)12cos24cos 24sin πππ. 解:(1)原式=2sin15°·sin(90°+15°)=2sin15°cos15°=sin30°=21.(2)原式=143(1-2sin 215°)=143cos30°=283323143=⨯. (3)原式=.2112145tan 215.22tan 15.22tan 2212=⨯=︒=︒-︒•. (4)原式=8121416sin 4112cos 12sin 21=⨯==πππ.方法归纳 倍角公式中的角是相对的,对它应该有广义上的理解,即112cos 2sin22++=n n nααα(n∈N *),12sin 2cos 2cos212+-=+n n nααα(n∈N *),1212tan 12tan 22tan++-=n n nααα(n∈N *).知识点二 利用倍角公式给值求值例2 已知x∈(2π-,0),cosx=54,则tan2x 等于( ) A.247 B.247- C.724 D.724- 思路分析:运用三角函数值在各个象限的符号及倍角公式求解. 解法一:∵x∈(2π-,0),cosx=54, ∴sinx=53)54(1cos 122-=--=--x . 由倍角公式sin2x=2sinxcosx=2524-,cos2x=2cos 2x-1=2×(54)2-1=257. 得tan2x=7242cos 2sin -=x x .解法二:∵x∈(2π-,0),cosx=54, ∴sinx=53)54(1cos 122-=--=--x .∴tanx=43cos sin -=x x . ∴tan2x=724)43(1)43(2tan 1tan 222-=---⨯=-xx . 答案:D方法归纳 ①解好选择题的关键在于能否针对题目的特点,选择合理而适当的解法,最忌对任何题目都按部就班地演算求解,小题大做,应力求做到“小题小做”“小题巧做”. ②像这种从题目的条件出发,通过正确地运算推理,得出结论,再与选择肢对照确定选项的方法叫做定量计算法;像这样通过对题干和选择肢的关系进行观察、分析,再运用所学知识,通过逻辑推理作出正确选择的方法叫做定性分析法. 例3 已知sin(4π+α)sin(4π-α)=161,α∈(2π,π),求sin4α的值.思路分析:要求sin4α的值,根据倍角公式可知只需求出sin2α、cos2α的值或sinα、cosα的值即可.由于(4π+α)+(4π-α)=2π,可运用二倍角公式求出cos2α的值. 解:由题设条件得sin(4π+α)sin(4π-α)=sin(4π+α)cos[2π-(4π-α)] =sin(4π+α)cos(4π+α)=21sin(2π+2α)=21cos2α=61,∴cos2α=31.∵α∈(2π,π),∴2α∈(π,2π).又∵cos2α=31>0,∴2α∈(23π,2π).∴sin2α=322)31(12cos 122-=--=--α. ∴sin4α=2sin2α·cos2α=2×92431)322(-=⨯-. 例4 已知cos(4π+x)=53,47127ππ<<x ,求x x x tan 1sin 22sin 2-+的值. 思路分析:由于结论中同时含有切、弦函数,所以可先对结论切化弦,化简后不难发现,只需求出sin2x 和tan(4π+x)的值即可,注意到2(4π+x)=2π+2x ,这样通过诱导公式就容易找到sin2x 同cos(4π+x)的关系了. 解:∵47127ππ<<x ,∴πππ2465<+<x .又∵cos(4π+x)=53>0,∴23π<4π+x <2π.∴sin(4π+x)=54)53(1)4(cos 122-=--=+--x π,345354)4cos()4sin()4tan(-=-=++=+x x x πππ.∵sin2x=-cos2(4π+x)=1-2cos 2(4π+x)=25725181=-, ∴原式=x x x x x x x x x x x xx x x sin cos )sin (cos 2sin sin cos cos sin 2cos 2sin cos sin 1sin 22sin 22-+=-•+•=-+7528)34(257)4tan(2sin tan 1tan 12sin -=-⨯=+•=-+•=x x x x x π.例5 在△ABC 中,已知AB=AC=2BC(如图3-1-10),求角A 的正弦值.图3-1-10思路分析:由于所给三角形是等腰三角形,所以可通过底角的三角函数值或顶角一半的三角函数值来求解.解:作AD⊥BC 于点D ,设∠BAD=θ,那么A=2θ.∵BD=21BC=41AB ,∴sinθ=41=AB BD . ∵0<2θ<π,∴0<θ<2π.于是cosθ=415)41(1sin 122=-=-θ. 故sinA=sin2θ=2sinθcosθ=815415412=⨯⨯. 巧解提示:作AD⊥BC 于点D ,∵BD=21BC=41AB,又∵AB=AC, ∴∠B=∠C.∴cosB=cosC=41=AB BD . ∵0<B <2π,∴sinB=415.又∵A+B+C=π,∴A=π-(B+C)=π-2B. ∴sinA=sin(π-2B)=sin2B=2sinBcosB=815414152=⨯⨯. 方法归纳 在△ABC 中,由于A+B+C=π,所以A=π-(B+C),222CB A +-=π.由诱导公式可知:sinA=sin(B+C);cosA=-cos(B+C);tanA=-tan(B+C);2cot 2tan ;2sin 2cos ;2cos 2sinCB AC B A C B A +=+=+=. 任意变换A 、B 、C 的位置,以上关系式仍然成立. 例6 已知sin 22α+sin2αcosα-cos2α=1,α∈(0,2π),求sinα、tanα的值. 思路分析:已知是二倍角,所求的结论是单角;已知复杂,结论简单,因此可从化简已知入手,推出求证的结论.解:把倍角公式sin2α=2sinαcosα,cos2α=2cos 2α-1代入已知得4sin 2αcos 2α+2sinαcos 2α-2cos 2α=0,即2cos 2α(2sin 2α+sinα-1)=0,即2cos 2α(2sinα-1)(sinα+1)=0.∵α∈(0,2π),∴sinα+1≠0,cos 2α≠0. ∴2sinα-1=0,即sinα=21.又∵α∈(0,2π),∴α=6π.∴tanα=33.知识点三 利用倍角公式化简三角函数式例7 利用三角公式化简sin50°(1+3tan10°).思路分析:本题给我们的感觉是无从下手,很难看出有什么公式可直接利用.从角的角度去分析,10°、50°除了它们的和60°是特殊角外,别无特点;从函数名称的角度去分析,由于该式子有弦,有切,我们可从化切为弦入手去尝试解决,转化成弦函数.通分后出现asinθ+bcosθ的形式,由于3是一特殊角的三角函数值,可把它拼凑成两角和(差)的正、余弦展开式的形式逆用公式求值.若把50°转化成(60°-10°)从同一角入手,也可以求值. 解:原式=sin(60°-10°)(1+3tan10°)=(23cos10°-21sin10°)(1+3tan10°) =23cos10°+23cos10°tan10°-21sin 10°-23sin10°tan10° =23cos10°+sin10°-23sin10°·tan10°=23(cos10°-︒︒10cos 10sin 2)+sin10° =︒︒︒+︒•=︒+︒︒•10cos 10cos 10sin 33220cos 2310sin 10cos 20cos 23 ︒︒+︒••=︒︒+︒•=10cos 20sin 2120cos 233322310cos 20sin 3320cos 23180sin 80sin 10cos 80sin 10cos 20sin 60cos 20cos 60sin =︒︒=︒︒=︒︒︒+︒︒=.巧解提示:原式=︒︒+︒•︒=︒︒+︒10cos )10sin 2310cos 21(250sin )10cos 10sin 31(50sin ︒︒︒+︒︒︒=10cos 10sin 30cos 10cos 30sin 50sin 2110cos 10cos 10cos 80sin 10cos 40sin 40cos 2=︒︒=︒︒=︒︒︒=.方法归纳 对于三角整式,基本思路是降次、消项和逆用公式;对三角分式,基本思路是分子与分母约分或逆用公式;对二次根式,要设法使被开方数升次,通过开方进行化简.另外,还可用切割化弦、变量代换、角度归一等方法.对于形如1±sinα、1±cosα的形式,我们可采取升幂换半角的形式,消去常数项1,通过提取公因式化简有理式或通过开方化简无理式. 例8 求cos20°cos40°cos60°cos80°的值. 解:由于cos60°=21,所以原式=21cos20°cos40°cos80° ︒︒︒︒︒•=20sin 80cos 40cos 20cos 20sin 21 ︒︒︒•=︒︒︒︒•=20sin 80cos 80sin 8120sin 80cos 40cos 40sin 41 16120sin 160sin 161=︒︒•=. 方法归纳 对于可化为cosαcos2αcos4α…cos2n-1α(n∈N 且n>1)的三角函数式,由于它们的角是以2为公比的等比数列,可将分子、分母同乘以最小角的正弦,运用二倍角公式进行化简.巧解提示:此外,本题也可构造一对偶式求解. 设M=cos20°·cos40°·cos60°·cos80°, N=sin20°·sin40°·sin60°·sin80°, 则MN=161sin40°·sin80°·sin120°·sin160° =161sin20°·sin40°·sin60°·sin80° =161N ,∴M=161,即cos20°·cos40°·cos60°·cos80°=161. 知识点四 利用倍角公式证明三角恒等式例9 求证:θθθθθθ2tan 14cos 4sin 1tan 24cos 4sin 1-++=-+. 证明:原式等价于1+sin4θ-cos4θ=αθ2tan 1tan 2-(1+sin4θ+cos4θ), 即1+sin4θ-cos4θ=tan2θ(1+sin4θ+cos4θ). ① 而①式右边=tan2θ(1+cos4θ+sin4θ)=θθ2cos 2sin(2cos 22θ+2sin2θcos2θ)=2sin2θcos2θ+2sin 22θ =sin4θ+1-cos4θ=左边. 所以①式成立,原式得证.例10 求证:︒=︒-︒10sin 3240cos 140sin 322.思路分析:由于分母是三角函数值平方的形式,通分后转化成3cos 240°-sin 240°,按平方差公式展开得(3cos40°+sin40°)(3cos40°-sin40°),恰好是两个辅助角公式的形式,可运用三角函数的和差公式求值;此外,也可对它的分母降幂换倍角进行化简. 证明:左边=︒•︒︒-︒︒+︒=︒︒︒-︒40cos 40sin )40sin 40cos 3)(40sin 40cos 3(40cos 40sin 40sin 40cos 3222222 2)40cos 40sin 2()40sin 2140cos 23(2)40sin 2140cos 23(24︒︒︒-︒⨯︒+︒⨯= ︒︒︒-︒︒︒︒+︒︒=80sin )40sin 60cos 40cos 60)(sin 40sin 60cos 40cos 60(sin 162︒︒-︒︒+︒=80sin )4060sin()4060sin(162︒=︒︒︒⨯=︒︒=︒︒︒=10sin 3210cos 10cos 10sin 21680sin 20sin 1680sin 20sin 100sin 162=右边, 所以原式成立.方法归纳 对于三角函数式的化简、求值和证明,可从角的角度、运算的角度或函数名称的角度去考虑,其中通过通分,提取公因式、约分、合并同类项等运算的手法去化简是非常必要的.例11 已知3sin 2α+2sin 2β=1,3sin2α-2sin2β=0,求证:cos(α+2β)=0.思路分析:从求证的结论看,cos(α+2β)的展开式中含有cosα、cos2β、sinα、sin2β这样的函数值.由已知条件结合倍角公式的特点,恰好能转化出cos2β、sin2β这样的函数值.证明:由3sin 2α+2sin 2β=1,得1-2sin 2β=3sin 2α,∴cos2β=3sin 2α. 又∵sin2β=23sin2α, ∴cos(α+2β)=cosαcos2β-sinαsin2β=cosα·3sin 2α-sinα·23sin2α=23sinαsin 2α-23sinαsin2α=0. 方法归纳 首先观察条件与结论的差异,从解决某一差异入手.确定从结论开始,通过变换将已知条件代入得出结论;或通过变换已知条件得出结论;或同时将条件与结论变形,直到找到它们间的联系.如果上述方法都难奏效的话,可采用分析法;如果已知条件含有参数,可采用消去参数法;如果已知条件是连比的式子,可采用换元法,等等. 问题•探究 材料信息探究问题 倍角和半角公式:sinα=2tan12tan22αα+,cosα=2tan12tan 122αα+-,tanα=2tan12tan 22αα-,这组公式称为“万能公式”,那么“万能公式”是怎样来的?它真的是“万能”的吗?探究过程:万能公式是一组用tan2α来表示sinα、cosα和tanα的关系式. 这组公式可以利用二倍角公式推导,其中正切tanα=2tan 12tan22αα-,可以由倍角公式直接获得;正弦、余弦只要在倍角公式中添加分母,再分子、分母同除以cos 22α可得: 2tan 12tan22cos 2sin 2cos 2sin 22cos 2sin 2sin 222ααααααααα+=+==, 2tan 12tan 12cos 2sin 2sin 2cos 2sin 2cos cos 22222222ααααααααα+-=+-=-=. 这组“万能公式”为一类三角函数的求值提供了一座方便可行的桥梁,如要计算cosα或sin(α+β)的值,可以先设法求得tan2α或2tan βα+的值.由于公式中涉及角的正切,所以使用时要注意限制条件,即要保证式子有意义.探究结论:所谓的“万能”,是说不论角α的哪一种三角函数,都可以表示成tan 2α的有理式,这样就可以把问题转化为以tan 2α为变量的“一元有理函数”,即如果令tan 2α=t ,则sinα、cosα和tanα均可表达为关于t 的分式函数,这就实现了三角问题向代数问题的转化,为三角问题用代数方法求解提供了一条途径.如ta n15°+cot15°=tan15°+=︒+︒=︒15tan 115tan 15tan 12430sin 2115tan 15tan 222=︒=+︒︒,就较方便的解决了问题.再如求函数2sin cos +=x x y 的值域.令t x=2tan ,则t∈R ,利用万能公式有sinx=212t t +,cosx=2211t t +-,所以=+++-=21211222t t t t y 222221t t t ++-,由此可以建立关于t 的一次或二次函数(2y+1)t 2+2yt+2y-1=0,进一步分类讨论可得函数的值域.。
202新数学复习第三章三角函数解三角形3.3.两角和与差的三角公式学案含解析
第三节简单的三角恒等变换课标要求考情分析1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式推导出两角差的正弦、正切公式.3.能利用两角差的余弦公式推导出两角和的正弦、余弦、正切公式,推导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.1。
利用两角和与差的正弦、余弦、正切公式及二倍角公式进行化简、求值是高考考查的热点,本部分内容常与三角函数的性质、向量、解三角形的知识相结合命题.2.命题形式多种多样,既有选择题、填空题,也有综合性的解答题.知识点一基本公式1.两角和与差的正弦、余弦、正切公式C(α-β):cos(α-β)=cosαcosβ+sinαsinβ.C(α+β):cos(α+β)=cosαcosβ-sinαsinβ。
S(α+β):sin(α+β)=sinαcosβ+cosαsinβ.S(α-β):sin(α-β)=sinαcosβ-cosαsinβ。
T(α+β):tan(α+β)=错误!(α,β,α+β≠错误!+kπ,k∈Z).T(α-β):tan(α-β)=错误!(α,β,α-β≠错误!+kπ,k∈Z).2.二倍角的正弦、余弦、正切公式S2α:sin2α=2sinαcosα.C2α:cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α。
T2α:tan2α=2tanα1-tanα错误!知识点二三角公式的变形技巧1.降幂公式:cos2α=错误!,sin2α=错误!。
2.升幂公式:1+cos2α=2cos2α,1-cos2α=2sin2α。
3.公式变形:tanα±tanβ=tan(α±β)(1∓tanαtanβ).4.辅助角公式:a sin x+b cos x=a2+b2sin(x+φ)错误!知识点三三角恒等变换1.重视三角函数的“三变”:“三变”是指“变角、变名、变式".(1)变角:对角的分拆要尽可能化成同角、特殊角;(2)变名:尽可能减少函数名称;(3)变式:对式子变形一般要尽可能有理化、整式化、降低次数等.2.在解决求值、化简、证明问题时,一般是观察角、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.1.思考辨析判断下列结论正误(在括号内打“√”或“×")(1)存在实数α,β,使等式sin(α+β)=sinα+sinβ成立.(√)(2)在锐角△ABC中,sin A sin B和cos A cos B大小不确定.(×)(3)公式tan(α+β)=tanα+tanβ1-tanαtanβ可以变形为tanα+tanβ=tan(α+β)(1-tanαtanβ),且对任意角α,β都成立.(×)(4)公式a sin x+b cos x=错误!sin(x+φ)中φ的取值与a,b的值无关.(×)解析:根据正弦、余弦和正切的和角、差角公式知(2)(3)(4)是错误的,(1)是正确的.2.小题热身(1)(2019·全国卷Ⅰ)tan255°=(D)A.-2-错误!B.-2+错误!C.2-错误!D.2+错误!(2)若sinα=错误!,则cos2α=(B)A.错误!B.错误!C.-错误!D.-错误!(3)sin347°cos148°+sin77°·cos58°=错误!.(4)已知tan(α-错误!)=错误!,则tanα=错误!。
高中数学 第三章 三角恒等变换 3.1 两角和与差的正弦、余弦和正切公式 3.1.3 二倍角的正弦、
3.1.3 二倍角的正弦、余弦、正切公式(一)
课前导引
问题导入
从特殊到一般和从一般到特殊,这是人们正确认识客观事物的认识规律,也是处理数学问题的重要思想方法.从这一思想出发,我们知道两角和的正弦为:sin (α+β)=sin αcos β+cos αsin β,那么现在我们令α=β,在这种特殊情况下我们可以得到公式sin2α=2sin αcos α,同理其余几种三角函数也可以做类似的推理,本节我们就来研究一下有关倍角的公式.你能利用上述知识解决下面的问题吗?
已知sin α=
135,α∈(2
π,π),求sin2α,cos2α,tan2α的值. 思路分析:∵sin α=135,α∈(2π,π), ∴cos α=.13
12)135(1sin 122-=--=--α ∴sin2α=sin (α+α)=sin αcos α+cos αsin α=2sin αcos α=169
120-, cos2α=cos 2α-sin 2
α=169
119, tan2α=1191202cos 2sin -=αα. 知识预览
1.二倍角正弦公式S 2α:sin2α=2sin αcos α.
2.二倍角余弦公式C 2α:cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.
3.二倍角正切公式T 2α:tan2α=αα2tan 1tan 2-.。
高中数学第三章三角恒等变换3.1两角和与差的正弦余弦和正切公式第32课时二倍角的正弦余弦正切公式1作
1 2
sin22θ,又cos2θ=-34,∴sin22θ=1-cos22θ=176.
∴原式=1-12sin22θ=1-12×176=2352.
π 11.函数f(x)=sin22x-4π的最小正周期是 2 .
解析:f(x)=1-cos24x-π2=12-12sin4x, ∴T=24π=2π.
三、解答题(本大题共2小题,共25分.解答应写出文字说 明,证明过程或演算步骤)
一、选择题(每小题5分,共35分)
1.sin22°30′cos22°30′等于( A )
2 A. 4 C. 2
2 B. 2 D.1
2.已知α为第二象限角,sinα=35,则sin2α=( A )
A.-2245
B.-1225
12
24
C.25
D.25
解析:∵sinα=
3 5
且α为第二象限角,∴cosα=-
=sin88s0i°nc2o0s°80°=116·ssiinn12600°°=116.
13.(13分)已知cosα=17,cos(α-β)=1134,且0<β<α<2π.
(1)求tan2α的值.
(2)求β. 解:(1)由cosα=17,0<α<π2,
得sinα= 1-cos2α=
1-172=4
7
3 .
1-sin2α =
-45.
∴sin2α=2sinαcosα=-2245,故选A.
3.已知角α的终边与单位圆x2+y2=1交于点P cos2α等于( A )
12,y0
,则
A.-12
1 B.2
C.-
3 2
D.1
解析:点P12,y0在单位圆上,∴x=12,y=y0,r=1. ∴cosα=12,cos2α=2cos2α-1=-12.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
3.1.3 两角和与差的正切
课堂探究
探究一 利用和(差)角正切公式求值
对于形如:cossincossincossincossinaaaaaaaa或的式子,常常分子、分母同时除以cos α
转化为1tan1tanaa1tan1tanaa或的形式,再化为tan45tan1tan45tanaatan45tan1tan45tanaa或的形
式,逆用公式Tα+β即可.
【例1】 计算:(1) 1tan751tan75;
(2) cos15sin15cos15sin15;
(3)tan 15°+tan 30°+tan 15°tan 30°.
分析:由两角和与差公式Tα±β的特点易知(1)(2)可逆用公式Tα±β,而(3)应使用公式
T
α
+β
的变形.
解:(1)解法一:tan 75°=tan(45°+30°)
=tan45tan301tan45tan30=313313
=3333=12636=2+3.
所以1tan751tan75=123123
=3313=-232=-3.
解法二:1tan751tan75=tan45tan751tan45tan75
=tan(45°+75°)=tan 120°=-tan 60°=-3.
(2) cos15sin15cos15sin15 =sin151cos15sin151cos15=1tan151tan15
=tan45tan151tan45tan15=tan (45°-15°)
2
=tan 30°=33.
(3)公式tan(α+β)=tantan1tantana可变形为
tan α+tan β=tan(α+β)(1-tan αtan
β),
所以tan 15°+tan 30°+tan 15°tan 30°
=tan 45°(1-tan 15°tan 30°)+tan 15°tan 30°
=tan 45°=1.
探究二 给值求值问题
若所求三角函数的角可用已知三角函数的角的和或差表示就可求出其值,即角变换思想
同样可以运用到和差角的正切公式上求值.
【例2】 已知tan(α+β)=5,tan(α-β)=3,求tan 2α,tan 2β,
tan
24
的值.
解:tan 2α=tan[(α+β)+(α-β)]
=tan()tan()1tan()tan()
=53153=-47.
tan 2β=tan
[(α+β)-(α-β)]
=tan()tan()1tan()tan()=53153=18.
tan
24
=1tan21tan2=417417=311.
探究三 给值求角问题
【例3】 已知tan(α-β)=12,tan β=-17,α,β∈(0,π),求2α-β的值.
分析:已知α-β及β角的正切,要求2α-β的正切,必须通过角变换,2α-β
=α+(α-β),α=(α-β)+β,故需先求出α角的正切.
解:因为tan β=-17,tan(α-β)=12,
所以tan α=tan[(α-β)+β]=tan()tan1tan()tan
3
=112711127=13,
tan(2α-β)=tan
[(α-β)+α]=tan()tan1tan()tan
=112311132=1.
因为tan α=13>0,tan β=-17<0,
所以α∈0,2,β∈,2.
所以α-β∈(-π,0).
又因为tan(α-β)=12>0,
所以α-β∈,2,
2α-β=α+(α-β)∈(-π,0).
而tan(2α-β)=1,所以2α-β=-34.
评注 该小题的解题思路是利用角变换求出了2α-β角的正切值,难点和关键是通过
判断值的大小缩小2α-β角的范围.若仅仅根据已知条件告诉的α和β的范围判断2α
-β的范围,这个范围是非常大的,这个范围是(-π,π),则正切值为1的角有4和-34,
导致错误答案.
探究四 易错辨析
易错点:对角的取值范围把握不准致误
【例4】 已知tan α,tan β是方程x2+33x+4=0的两个根,且α,β∈,22,
则α+β的值等于( )
A.3 B.-23或3 C.-3或23 D.-23
错解:因为tan α,tan β是方程x2+33x+4=0的两个根,所以tan α+tan β
=-33,tan αtan β=4.
4
所以tan(α+β)=tantan1tantan=3314=3.
又因为α,β∈,22,所以α+β∈(-π,π).
所以α+β=-23或α+β=3.故选B.
错因分析:忽视了tan α,tan β是两个负根这一隐含条件,从而导致增解现象.
正解:因为tan α,tan β是方程x2+33x+4=0的两个根,所以tan α+tan β
=-33<0,tan αtan β=4>0.
所以tan α,tan β是方程x2+33x+4=0的两个负根,
即tan α<0,tan β<0.
因为α,β∈,22,所以α,β∈,02,
所以α+β∈(-π,0).
又因为tan(α+β)=tantan1tantan=3314=3,
所以α+β=-23.故选D.
答案:D