2020高中数学概念公式大全

合集下载

高中数学公式大全表

高中数学公式大全表

高中数学公式大全表1. 代数公式:方程的根:设方程ax² + bx + c = 0的根为x₁和x₂,则有:x₁ + x₂ = -b/ax₁ × x₂ = c/a二次方程的解:对于方程ax² + bx + c = 0,解可以用以下公式表示:x = (-b ± √(b² - 4ac)) / 2a二次函数的顶点坐标:设二次函数的表达式为y = ax² + bx + c,顶点坐标可以通过以下公式计算:x = -b / 2ay = c - b² / 4a二次函数的平移变换:设原二次函数的表达式为y = ax² + bx + c,经过平移变换后的函数的表达式为y = a(x - h)² + k。

其中(h, k)为平移的距离,代表二次函数的顶点坐标。

2. 几何公式:三角函数:常用的三角函数包括正弦函数(sin)、余弦函数(cos)和正切函数(tan)。

它们的定义如下:sinθ = 对边 / 斜边cosθ = 邻边 / 斜边tanθ = 对边 / 邻边勾股定理:对于一直角三角形,较长的边称为斜边,其余两边称为直角边。

勾股定理可以表示为:斜边² = 直角边₁² + 直角边₂²正弦定理:对于任意三角形ABC,边长的比值与角度的正弦的比值之间有以下关系:a / sinA =b / sinB =c / sinC余弦定理:对于任意三角形ABC,边长的平方与另外两条边长的乘积和它们的夹角的余弦的乘积之间有以下关系:a² = b² + c² - 2bc cosA3. 概率公式:事件概率的计算:对于一个随机试验,事件A发生的概率可以用以下公式表示:P(A) = n(A) / n(S)其中,n(A)表示事件A发生的次数,n(S)表示随机试验的总次数。

加法原理:如果A和B是两个互不相容的事件,即A和B不能同时发生,那么A或B发生的概率可以用以下公式计算:P(A或B) = P(A) + P(B)乘法原理:如果A和B是两个相互独立的事件,即事件A发生与否不会影响事件B发生的概率,那么A和B同时发生的概率可以用以下公式计算:P(A和B) = P(A) × P(B|A)条件概率:对于事件A和B,条件概率可以表示为:P(B|A) = P(A和B) / P(A)4. 统计学公式:均值:一组数据的均值可以用以下公式计算:mean = (x₁ + x₂ + ... + xn) / n其中,x₁、x₂、...、xn为每个数据点的值,n为数据点的个数。

高中数学公式大全(完整版)

高中数学公式大全(完整版)

高中数学公式大全(完整版)高中数学公式大全(完整版)精选1、两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)2、乘法与因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2) •a^3-b^3=(a-b(a^2+ab+b^2)3、三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|4、正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径。

5、余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角。

6、圆的标准方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标。

7、圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0。

8、倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^29、半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))10、某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 51^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3高中数学的学习方法1、养成演算、校核的好习惯,提高计算能力。

高中数学必背公式大全

高中数学必背公式大全

高中数学必背公式大全一、代数部分。

1. 二项式定理。

(a+b)ⁿ = Cⁿ₀aⁿb⁰ + Cⁿ₁aⁿ⁻¹b¹ + ... + Cⁿᵢaⁿ⁻ⁱbⁱ + ... + Cⁿₙa⁰bⁿ。

2. 一元二次方程求根公式。

ax²+bx+c=0的解为x= (-b±√(b²-4ac))/2a。

3. 等差数列通项公式。

an = a₁ + (n-1)d。

4. 等比数列通项公式。

an = a₁ q^(n-1)。

5. 两点间距离公式。

两点A(x₁, y₁)和B(x₂, y₂)间的距离为√((x₂-x₁)² + (y₂-y₁)²)。

6. 直线斜率公式。

直线y=kx+b的斜率为k。

7. 二次函数顶点坐标。

二次函数y=ax²+bx+c的顶点坐标为(-b/2a, c-b²/4a)。

二、几何部分。

1. 直角三角形勾股定理。

a² + b² = c²。

2. 直角三角形中正弦、余弦、正切公式。

sinA = a/c, cosA = b/c, tanA = a/b。

3. 三角形面积公式。

三角形面积S=√(p(p-a)(p-b)(p-c)),其中p为半周长。

4. 圆周长和面积公式。

圆周长C=2πr, 圆面积S=πr²。

5. 正多边形内角和公式。

正n边形内角和为(n-2) 180°。

6. 圆锥、圆柱、球体积公式。

圆锥体积V=1/3πr²h, 圆柱体积V=πr²h, 球体积V=4/3πr³。

三、概率与统计部分。

1. 随机事件概率公式。

P(A) = n(A)/n(S)。

2. 期望公式。

E(X) = x₁p₁ + x₂p₂ + ... + xᵢpᵢ。

3. 正态分布概率公式。

P(a < X < b) = ∫(a, b) 1/√(2πσ²) e^(-(x-μ)²/2σ²) dx。

高中数学所有公式大总结

高中数学所有公式大总结

高中数学所有公式大总结高中数学涉及的公式很多,不同的章节和知识点都有对应的公式,掌握这些公式是解题的基础。

下面将对高中数学中常用的各个章节的公式进行总结。

1. 代数基本公式:- 二次方程的根公式:对于二次方程ax^2+bx+c=0,根的公式为x=(-b±√(b^2-4ac))/(2a)。

- 一次方程求解公式:对于一次方程ax+b=0,解为x=-b/a。

- 直线的斜率公式:对于直线y=kx+b,其斜率为k。

- 等差数列通项公式:对于等差数列an=a1+(n-1)d,其中an表示第n个数,a1表示首项,d表示公差。

- 等比数列通项公式:对于等比数列an=a1*r^(n-1),其中an表示第n个数,a1表示首项,r表示公比。

2. 平面几何公式:- 长方形面积公式:面积为长乘以宽,即A=lw。

- 正方形面积公式:面积为边长的平方,即A=s^2。

- 三角形面积公式:面积为底乘以高的一半,即A=1/2bh。

- 三角形海伦公式:对于已知三角形三边长a、b、c,其面积可以由海伦公式计算:A=√(s(s-a)(s-b)(s-c)),其中s为半周长(s=(a+b+c)/2)。

- 直角三角形勾股定理:直角三角形两直角边的平方和等于斜边的平方,即a^2+b^2=c^2。

3. 解析几何公式:- 两点之间的距离公式:对于平面上两点的坐标分别为(x1, y1)和(x2, y2),两点之间的距离为d=√((x2-x1)^2+(y2-y1)^2)。

- 点到直线的距离公式:对于直线Ax+By+C=0和平面上的点P(x0, y0),点P 到直线的距离为d=|Ax0+By0+C|/√(A^2+B^2)。

- 两直线夹角的余弦公式:对于直线y=k1x+b1和直线y=k2x+b2,两直线夹角的余弦为cosθ=(k1k2+1)/√((k1^2+1)(k2^2+1))。

4. 概率与统计公式:- 事件的概率公式:对于事件A,其概率表示为P(A)。

高中数学概念公式大全

高中数学概念公式大全

高中数学概念公式大全1.代数与函数:- 一次函数的方程:y = kx + b- 二次函数的方程:y = ax² + bx + c- 三次函数的方程:y = ax³ + bx² + cx + d-指数函数的方程:y=a^x- 对数函数的方程:y = logₐ(x)-幂函数的方程:y=x^a-绝对值函数的方程:y=,x- 正弦函数的方程:y = A sin(Bx + C) + D- 余弦函数的方程:y = A cos(Bx + C) + D-反比例函数的方程:y=k/x2.平面解析几何:-直线的一般式方程:Ax+By+C=0- 直线的斜截式方程:y = kx + b-直线的点斜式方程:y-y₁=k(x-x₁)-直线的两点式方程:(y-y₁)/(y₂-y₁)=(x-x₁)/(x₂-x₁) -圆的标准方程:(x-h)²+(y-k)²=r²-椭圆的标准方程:(x-h)²/a²+(y-k)²/b²=1-双曲线的标准方程:(x-h)²/a²-(y-k)²/b²=1- 抛物线的标准方程:y = ax² + bx + c-平行线的判定:两直线的斜率相等-垂直线的判定:两直线的斜率的乘积为-13.空间解析几何:- 空间直线的参数方程:x = x₁ + at, y = y₁ + bt, z = z₁ + ct -空间直线的对称式方程:(x-x₁)/a=(y-y₁)/b=(z-z₁)/c-空间平面的一般式方程:Ax+By+Cz+D=0-空间平面的点法式方程:(x-x₀)/A=(y-y₀)/B=(z-z₀)/C-两直线的位置关系:平行、异面、交于一点-直线与平面的位置关系:相交、平行、共面、垂直-两平面的位置关系:平行、重合、相交4.三角函数与解三角形:- 任意角的辅助角公式:sin(π - θ) = sinθ, cos(π - θ) = -cosθ, tan(π - θ) = -tanθ-任意角的和差公式:sin(θ₁ ± θ₂) = sinθ₁cosθ₂ ± cosθ₁sinθ₂cos(θ₁ ± θ₂) = cosθ₁cosθ₂∓ sinθ₁sinθ₂tan(θ₁ ± θ₂) = (tanθ₁ ± tanθ₂)/(1 ∓ tanθ₁tanθ₂)-二倍角公式:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = (2tanθ)/(1 - tan²θ)-三角函数的诱导公式:sin(π ± θ) = ±sinθ, cos(π ± θ) = -cosθ, tan(π ± θ) = ±tanθ-等腰三角形的性质:两底角相等,底边平分顶角,底边上的高相等- 直角三角形的性质:勾股定理(a² + b² = c²),正弦定理(sinθ = a/c),余弦定理(cosθ = b/c),正切定理(tanθ = a/b)。

高中数学所有公式大总结

高中数学所有公式大总结

高中数学所有公式大总结高中数学是一门重要的学科,其中涉及了许多公式和定理。

这些公式和定理帮助学生解决各种数学问题,以及在日常生活中应用数学知识的能力。

一、代数公式:1. 一元二次方程的求根公式:对于一元二次方程ax^2 + bx + c = 0,其求根公式为 x = (-b ±√(b^2 - 4ac)) / (2a)。

2. 因式分解公式:将一个多项式进行因式分解,以简化计算或解决方程的过程。

3. 比例与相似性公式:包括比例的定义、比例的性质以及相似三角形的性质和判定方法。

4. 二项式定理:展开一个二项式的幂,即(a + b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + ... + C(n,n) * a^0 * b^n。

二、几何公式:1. 直角三角形的勾股定理:对于直角三角形,满足a^2 + b^2 = c^2,其中a和b是直角边,c是斜边。

2. 三角函数的基本关系:包括正弦定理、余弦定理和正切定理,用于解决三角形的边长和角度之间的关系。

3. 圆的面积和周长公式:圆的面积公式为A = πr^2,圆的周长公式为C = 2πr,其中r是圆的半径。

4. 三角形的面积公式:三角形的面积公式为A = 1/2 * b * h,其中b是底边长,h是对应的高。

三、微积分与导数:1. 导数的定义与性质:导数表示函数在某一点的变化率,可以用于求函数的极值、曲线的切线等问题。

2. 基本导数公式:例如常数函数的导数为0,幂函数的导数为n * x^(n-1),指数函数的导数为e^x。

3. 导数的四则运算法则:包括求和、差、乘积和商的导数法则,用于求复合函数的导数。

四、概率与统计公式:1. 排列组合公式:包括排列数公式P(n,r) = n! / (n-r)!和组合数公式C(n,r) = n! / (r! * (n-r)!),用于计算事件的可能性。

2. 期望与方差公式:期望表示随机变量的平均值,方差表示随机变量的离散程度,用于描述随机事件的分布情况。

高中数学公式大全(最整理新版)

高中数学公式大全(最整理新版)

高中数学公式大全(最整理新版)一、代数1. 一元一次方程:ax + b = 0,其中a ≠ 0。

解为 x = b/a。

2. 一元二次方程:ax^2 + bx + c = 0,其中a ≠ 0。

解为 x =[b ± sqrt(b^2 4ac)] / 2a。

3. 一元三次方程:ax^3 + bx^2 + cx + d = 0,其中a ≠ 0。

解为x = [b ± sqrt(b^2 3ac)] / 3a。

4. 一元四次方程:ax^4 + bx^3 + cx^2 + dx + e = 0,其中 a≠ 0。

解为x = [b ± sqrt(b^2 4ac)] / 2a。

5. 分式方程:分子和分母均为多项式。

解法为将方程两边乘以分母的乘积,得到一个等价的整式方程,然后求解。

6. 二元一次方程组:由两个一元一次方程组成的方程组。

解法为消元法或代入法。

7. 二元二次方程组:由两个一元二次方程组成的方程组。

解法为消元法或代入法。

8. 三元一次方程组:由三个一元一次方程组成的方程组。

解法为消元法或代入法。

9. 等差数列:首项为 a1,公差为 d。

第 n 项为 an = a1 + (n 1)d。

前 n 项和为 Sn = n/2(a1 + an)。

10. 等比数列:首项为 a1,公比为 q。

第 n 项为 an = a1q^(n 1)。

前 n 项和为 Sn = a1 (1 q^n) / (1 q),其中q ≠ 1。

二、几何1. 平面几何(1)直线:两点确定一条直线,直线方程为 y = mx + b,其中m 是斜率,b 是截距。

(2)圆:圆心为 (a, b),半径为 r。

圆的方程为 (x a)^2 +(y b)^2 = r^2。

(3)椭圆:中心为 (a, b),长轴为 2a,短轴为 2b。

椭圆的方程为 (x a)^2 / a^2 + (y b)^2 / b^2 = 1。

(4)双曲线:中心为 (a, b),实轴为 2a,虚轴为 2b。

高中数学必背公式大全

高中数学必背公式大全

高中数学必背公式大全1. 二次函数的标准形式:y = ax² + bx + c2. 三角函数的基本关系:sin(A±B)=sinAcosB±cosAsinB3. 余弦定理:a² = b² + c² - 2bc cosA4. 正弦定理:a/sinA = b/sinB = c/sinC5. 相似三角形的定义:两个三角形的相应角相等,且相应边成比例,则称两个三角形相似。

6. 三角形面积公式:S=1/2ab sinC7. 勾股定理:a² + b² = c²8. 平面向量的定义:平面向量是指在平面上的有向线段,它由起点和终点确定,其长度和方向确定。

9. 向量的加法:a+b=b+a10. 向量的减法:a-b=b-a高中数学公式大全总结1、二次函数的标准方程:y=ax^2+bx+c2、三角函数的基本公式:sinA=a/c,cosA=b/c,tanA=a/b3、勾股定理:a^2+b^2=c^24、直角三角形面积公式:S=1/2ab5、椭圆面积公式:S=πab6、圆的面积公式:S=πr^27、梯形面积公式:S=1/2(a+b)h8、平行四边形面积公式:S=ab9、正方形面积公式:S=a^210、圆柱体体积公式:V=πr^2h探索澳洲金融数学,展开你的金融数学之旅澳洲金融数学是一门涉及金融统计学、投资分析和金融工程的综合性学科。

它侧重于金融市场、金融产品和金融服务中经济学、数学和计算机科学知识的结合。

本文将为您提供了解更多澳洲金融数学的指南,帮助您开启探索之旅。

一、澳洲金融数学的定义澳洲金融数学是一门综合性学科,涉及金融统计学、投资分析和金融工程等领域。

它涉及金融市场、金融产品和金融服务相关的经济学、数学和计算机科学知识。

二、澳洲金融数学的内容澳洲金融数学的内容包括:金融数学基础、金融数学模型、金融产品定价、金融风险管理、金融统计学、金融工程、投资管理、金融市场分析等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学概念公式大全一、 三角函数1、以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则sin α=r y ,cos α=r x ,tg α=x y ,ctg α=y x ,sec α=xr ,csc α=y r 。

2、同角三角函数的关系中,平方关系是:1cos sin 22=+αα,αα22sec 1=+tg ,αα22csc 1=+ctg ;倒数关系是:1=⋅ααctg tg ,1csc sin =⋅αα,1sec cos =⋅αα; 相除关系是:αααcos sin =tg ,αααsin cos =ctg 。

3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。

如:=-)23sin(απαcos -,)215(απ-ctg =αtg ,=-)3(απtg αtg -。

4、函数B x A y ++=)sin(ϕω),(其中00>>ωA 的最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心。

5、三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈;x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,tgx y =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,ctgx y =的递减区间是()πππ+k k ,)(Z k ∈。

6、=±)sin(βαβαβαsin cos cos sin ±=±)cos(βαβαβαsin sin cos cos μ=±)(βαtg βαβαtg tg tg tg ⋅±μ1 7、二倍角公式是:sin2α=ααcos sin 2⋅cos2α=αα22sin cos -=1cos 22-α=α2sin 21-tg2α=αα212tg tg -。

8、三倍角公式是:sin3α=αα3sin 4sin 3- cos3α=ααcos 3cos 43-9、半角公式是:sin 2α=2cos 1α-± cos 2α=2cos 1α+± tg 2α=ααcos 1cos 1+-±=ααsin cos 1-=ααcos 1sin +。

10、升幂公式是:2cos2cos 12αα=+ 2sin 2cos 12αα=-。

11、降幂公式是:22cos 1sin 2αα-=22cos 1cos 2αα+=。

12、万能公式:sin α=21222ααtg tg + cos α=212122ααtg tg +- tg α=21222ααtg tg - 13、sin(βα+)sin(βα-)=βα22sin sin -,cos(βα+)cos(βα-)=βα22sin cos -=αβ22sin cos -。

14、)60sin()60sin(sin 400ααα+-=α3sin ;)60cos()60cos(cos 400ααα+-=α3cos ;)60()60(00ααα+-tg tg tg =α3tg 。

15、ααtg ctg -=α22ctg 。

16、sin180=415-。

17、特殊角的三角函数值:α0 6π 4π 3π 2π π 23π sin α 0 21 22 23 1 0 1- cos α 1 23 22 21 0 1- 0 tg α 0 33 1 3 不存在 0 不存在ctg α 不存在 3 1 33 0 不存在 018、正弦定理是(其中R 表示三角形的外接圆半径):R Cc B b A a 2sin sin sin === 19、由余弦定理第一形式,2b =B ac c a cos 222-+ 由余弦定理第二形式,cosB=acb c a 2222-+ 20、△ABC 的面积用S 表示,外接圆半径用R 表示,内切圆半径用r 表示,半周长用p 表示则:①Λ=⋅=a h a S 21;②Λ==A bc S sin 21; ③C B A R S sin sin sin 22=;④R abc S 4=; ⑤))()((c p b p a p p S ---=;⑥pr S = 21、三角学中的射影定理:在△ABC 中,A c C a b cos cos ⋅+⋅=,…22、在△ABC 中,B A B A sin sin <⇔<,…23、在△ABC 中:-tgC B)+tg(A -cosC B)+cos(A sinC=B)+sin(A == 2cos 2sin C B A =+ 2sin 2cos C B A =+ 22C ctg B A tg =+ tgC tgB tgA tgC tgB tgA ⋅⋅=++24、积化和差公式:①)]sin()[sin(21cos sin βαβαβα-++=⋅, ②)]sin()[sin(21sin cos βαβαβα--+=⋅, ③)]cos()[cos(21cos cos βαβαβα-++=⋅,④)]cos()[cos(21sin sin βαβαβα--+-=⋅。

25、和差化积公式: ①2cos 2sin2sin sin y x y x y x -⋅+=+, ②2sin 2cos 2sin sin y x y x y x -⋅+=-, ③2cos 2cos 2cos cos y x y x y x -⋅+=+, ④2sin 2sin 2cos cos y x y x y x -⋅+-=-。

二、 函数1、 若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n 2,所有非空真子集的个数是22-n 。

二次函数c bx ax y ++=2的图象的对称轴方程是ab x 2-=,顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac a b 4422,。

用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即(一般式)c bx ax x f ++=2)(,(零点式))()()(21x x x x a x f -⋅-=和n m x a x f +-=2)()( (顶点式)。

2、 幂函数n mx y = ,当n 为正奇数,m 为正偶数,m<n 时,其大致图象是3、 函数652+-=x x y 的大致图象是由图象知,函数的值域是)0[∞+,,单调递增区间是)3[]5.22[∞+,和,,单调递减区间是]35.2[]2(,和,-∞。

三、 反三角函数 1、x y arcsin =的定义域是[-1,1],值域是]22[ππ,-,奇函数,增函数; x y arccos =的定义域是[-1,1],值域是]0[π,,非奇非偶,减函数; arctgx y =的定义域是R ,值域是)22(ππ,-,奇函数,增函数; arcctgx y =的定义域是R ,值域是)0(π,,非奇非偶,减函数。

2、当x x x x x ==-∈)cos(arccos )sin(arcsin ]11[,时,,; 221)cos(arcsin 1)sin(arccos x x x x -=-=,x x x x arccos )arccos(arcsin )arcsin(-=--=-π,2arccos arcsin π=+x x对任意的R x ∈,有: 2)()()()(ππ=+-=--=-==arcctgx arctgx arcctgx x arcctg arctgx x arctg xarcctgx ctg x arctgx tg ,, 当xarctgx ctg x arcctgx tg x 1)(1)(0==≠,时,有:。

3、最简三角方程的解集: {}{}{}{}。

,的解集为,方程;,的解集为,方程;,的解集为时,;的解集为时,,的解集为时,;的解集为时,Z n arcctga n x x a ctgx R a Z n arctga n x x a tgx R a Z n a n x x a x a a x a Z n a n x x a x a a x a n ∈+==∈∈+==∈∈±==≤=>∈⋅-+==≤=>πππφπφarccos 2cos 1cos 1arcsin )1(sin 1sin 1四、 不等式1、若n 为正奇数,由b a <可推出n n b a <吗? ( 能 )若n 为正偶数呢? (b a 、仅当均为非负数时才能)2、同向不等式能相减,相除吗 (不能)能相加吗? ( 能 )能相乘吗? (能,但有条件)3、两个正数的均值不等式是:ab b a ≥+2三个正数的均值不等式是:33abc c b a ≥++ n 个正数的均值不等式是:n n n a a a n a a a ΛΛ2121≥+++ 4、两个正数b a 、的调和平均数、几何平均数、算术平均数、均方根之间的关系是2211222b a b a ab b a +≤+≤≤+ 6、 双向不等式是:b a b a b a +≤±≤-左边在)0(0≥≤ab 时取得等号,右边在)0(0≤≥ab 时取得等号。

五、 数列1、等差数列的通项公式是d n a a n )1(1-+=,前n 项和公式是:2)(1n n a a n S += =d n n na )1(211-+。

2、等比数列的通项公式是11-=n n q a a ,前n 项和公式是:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S n n 3、当等比数列{}n a 的公比q 满足q <1时,n n S ∞→lim =S=qa -11。

一般地,如果无穷数列{}n a 的前n 项和的极限n n S ∞→lim 存在,就把这个极限称为这个数列的各项和(或所有项的和),用S 表示,即S=n n S ∞→lim 。

4、若m 、n 、p 、q ∈N ,且q p n m +=+,那么:当数列{}n a 是等差数列时,有q p n m a a a a +=+;当数列{}n a 是等比数列时,有q p n m a a a a ⋅=⋅。

5、 等差数列{}n a 中,若S n =10,S 2n =30,则S 3n =60;6、等比数列{}n a 中,若S n =10,S 2n =30,则S 3n =70;六、 复数1、 n i 怎样计算?(先求n 被4除所得的余数,r r k i i=+4) 2、 i i 2321232121--=+-=ωω、是1的两个虚立方根,并且: 13231==ωω 221ωω= 122ωω= 211ωω= 121ωω= 21ωω= 12ωω= 121-=+ωω3、 复数集内的三角形不等式是:212121z z z z z z +≤±≤-,其中左边在复数z 1、z 2对应的向量共线且反向(同向)时取等号,右边在复数z 1、z 2对应的向量共线且同向(反向)时取等号。

相关文档
最新文档