高中数学必修2公式

合集下载

高中数学必修二知识点梳理

高中数学必修二知识点梳理

高中数学必修二知识点梳理第一章空间几何体的表面积和体积公式总结1.表面积(1).棱柱S = 2 S底+ S侧(2).棱锥S = S底+ S侧(3).棱台S = S上底+ S下底+ S侧(4).圆柱S= 2 πr 2 +2πr l =2πr ( r + l )(5).圆锥S = S底+ S侧=πr 2 +πr l =πr ( r + l )(6).圆台S = S上底+ S下底+ S侧=π(r2 + r´2 + rl +r´l) (7).球 S= 4πR22.体积(1).柱体V = S h(2).锥体V = S h/3(3).台体V =( S + √S ´S + S´) h/3(4).球V = 4/3πR3第二章点直线平面之间位置关系的判定,性质及其推论1.直线与平面平行的判定平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行2.平面与平面平行的判定一个平面内的两条相交直线与另一个平面平行,则这两个平面平行推论如果一个平面内有两条相交直线与另一个平面内的两条相交直线平行,则这两个平面平行3.直线与平面平行的性质一条直线与一个平面平行,则过这条直线的任意平面与此平面的交线与该直线平行4.平面与平面平行的性质如果两个平面平行,两个平面同时和第三个平面相交,那么它们的交线平行推论夹在两个平行平面间的平行线段相等5.直线与平面垂直的判定一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直6.平面与平面垂直的判定一个平面过另一平面的垂线,则这两个平面垂直7.直线与平面垂直的性质垂直与同一平面的两条直线平行8.平面与平面垂直的性质两个平面垂直,则一个平面内垂直与交线的直线与另外一个平面垂直推论如果两个平面相互垂直,那么经过第一个平面的一点且垂直于第二个平面的直线在第一个平面内一.直线方程(一).两条直线1.l1∥l2 => k1 = k2或k1 k2不存在2. k1 = k2 => l1∥l2或l1 l2重合3.A,B,C三点共线 k AB = k AC(k存在)4. l1⊥l2 => k1 · k2 = -1 或k1 k2有一不存在,有一为05. k1 · k2 = -1 => l1⊥l2(二).直线方程1.点斜式方程: y–y0 =k (x–x0)2.两点式方程:(y–y1)/(y2–y1)=(x–x1)/(x2–x1)3.截距式方程:x/a +y/b = 14 .斜截式方程:y= k x + b5.一般式方程: Ax + By + C = 0二.距离公式1.两点之间距离公式:d = √【(x2 –x1)2 + (y2–y1)2】2.点到直线的距离公式:d = ∣Ax0 + By0 + C∣/√(A2 + B2)3.两条平行线间的距离公式: d =∣C2– C1∣/√(A2 + B2)]一.圆的方程1.圆的标准方程(x - a)2 +(y - b)2 = r2 (圆心坐标(a ,b),半径为r)2.圆的一般方程x2 + y2 + Dx +Ey +F = 0 => (x+D/2)2+(y+E/2)2 = (D2+E2-4F)/4(1). D2+E2-4F > 0 ,圆心(-D/2 ,- E/2)半径√(D2+E2-4F)/2(2). D2+E2-4F = 0 表示一点(3). D2+E2-4F < 0 不表示任何图形二.直线,圆位置关系1.直线与圆的位置关系(1).直线与圆无公共点⇔ d > r ⇔相离⇔联立方程无解(2).直线与圆只有一个公共点⇔ d = r ⇔相切⇔联立方程有一解(3).直线与圆有两个公共点⇔ d < r ⇔相交⇔联立方程有两解2.圆与圆的位置关系(1).外离⇔ d>R+r(2).外切⇔ d = R+r(3).相交⇔∣R-r∣ < d < R+r(4).内切⇔ d =∣R-r∣(5).内含⇔ d<∣R-r∣。

高中数学必修二知识点总结及公式大全

高中数学必修二知识点总结及公式大全

高中数学必修二知识点总结及公式大全高中数学是培养学生逻辑思维和抽象能力的重要学科。

《必修二》作为高中数学课程的重要组成部分,涉及了许多核心知识点和基础公式。

本文将为您详细总结《必修二》的知识点,并整理出一份公式大全,帮助您更好地掌握这门学科。

一、高中数学必修二知识点总结1.函数概念与性质- 函数的定义、表示方法、分类- 函数的性质(单调性、奇偶性、周期性、对称性等)- 反函数及其求法2.指数函数与对数函数- 指数函数的定义、性质、图像- 对数函数的定义、性质、图像- 指数方程与对数方程的解法3.三角函数- 角度制与弧度制互换- 三角函数的定义、图像、性质- 三角恒等变换- 三角方程与不等式的解法4.数列- 等差数列与等比数列的定义、性质、求和公式- 数列的通项公式与求和公式- 数列的极限5.平面向量- 向量的定义、表示、线性运算- 向量的坐标表示与几何表示- 向量的数量积与垂直关系- 向量的平行四边形法则与三角形法则6.解析几何- 直线方程的求法(点斜式、截距式、一般式等)- 圆的方程与性质- 常见图形的面积、周长、体积计算二、高中数学必修二公式大全1.函数类- y=f(x) 的反函数:y=f^(-1)(x)- 幂函数:y=x^a(a 为常数)- 指数函数:y=a^x(a>0 且a≠1)- 对数函数:y=log_a(x)(a>0 且a≠1)2.三角函数类- 正弦函数:y=sin(x)- 余弦函数:y=cos(x)- 正切函数:y=tan(x)- 三角恒等变换公式(和差公式、倍角公式、半角公式等)3.数列类- 等差数列通项公式:a_n=a_1+(n-1)d- 等差数列求和公式:S_n=n/2(a_1+a_n)- 等比数列通项公式:a_n=a_1q^(n-1)- 等比数列求和公式:S_n=a_1(1-q^n)/(1-q)(q≠1)4.向量类- 向量加法:A+B=(a_x+b_x, a_y+b_y)- 向量减法:A-B=(a_x-b_x, a_y-b_y)- 向量数量积:A·B=a_xb_x+a_yb_y- 向量模长:|A|=√(a_x^2+a_y^2)5.解析几何类- 点斜式直线方程:y-y_1=k(x-x_1)- 截距式直线方程:x/a+y/b=1- 圆的标准方程:(x-a)^2+(y-b)^2=r^2总结:本文为您详细总结了高中数学必修二的知识点,并整理了一份公式大全。

高中数学必修二公式

高中数学必修二公式

公式一:设α为任意角,终边一样的角的同一三角函数的值相等:sin〔2kπ+α〕=sinαcos〔2kπ+α〕=cosαtan〔2kπ+α〕=tanαcot〔2kπ+α〕=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin〔π+α〕=-sinαcos〔π+α〕=-cosαtan〔π+α〕=tanαcot〔π+α〕=cotα公式三:任意角α与-α的三角函数值之间的关系:sin〔-α〕=-sinαcos〔-α〕=cosαtan〔-α〕=-tanαcot〔-α〕=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin〔π-α〕=sinαcos〔π-α〕=-cosαtan〔π-α〕=-tanαcot〔π-α〕=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin〔2π-α〕=-sinαcos〔2π-α〕=cosαtan〔2π-α〕=-tanαcot〔2π-α〕=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin〔π/2+α〕=cosαcos〔π/2+α〕=-sinαtan〔π/2+α〕=-cotαcot〔π/2+α〕=-tanαsin〔π/2-α〕=cosαcos〔π/2-α〕=sinαtan〔π/2-α〕=cotαcot〔π/2-α〕=tanαsin〔3π/2+α〕=-cosαcos〔3π/2+α〕=sinαtan〔3π/2+α〕=-cotαcot〔3π/2+α〕=-tanαsin〔3π/2-α〕=-cosαcos〔3π/2-α〕=-sinαtan〔3π/2-α〕=cotαcot〔3π/2-α〕=tanα(以上k∈Z)诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.〔奇变偶不变〕然后在前面加上把α看成锐角时原函数值的符号。

高中数学必修2空间两点间的距离公式

高中数学必修2空间两点间的距离公式
z
|OA|=|x|
B
|OB|=|y|
|OC|=|z|
O
A
y
C
x
思考2:在空间直角坐标系中,坐标 平面上的点A(x,y,0),B(0,y, z),C(x,0,z),与坐标原点O 的距离分别是什么?
z B
| OA |=
x +y
2
2
2
C
O
y
x
2
A
| OB |=
y + z , | OC |=
x +z
2
2
思考3:在空间直角坐标系中,设点 P(x,y,z)在xOy平面上的射影为 M,则点M的坐标是什么?|PM|,|OM| 的值分别是什么?
4.3.2 空间两点间的距离公式
问题提出
1. 在平面直角坐标系中两点间 的距离公式是什么? 2. 在空间直角坐标系中,若已 知两个点的坐标,则这两点之间的 距离是惟一确定的,我们希望有一 个求两点间距离的计算公式,对此, 我们从理论上进行探究.
知识探究(一):与坐标原点的距离公式
思考1:在空间直角坐标系中,坐标 轴上的点A(x,0,0),B(0,y, 0),C(0,0,z),与坐标原点O 的距离分别是什么?
例3 如图,点P、Q分别在棱长 为1的正方体的对角线AB和棱CD上运 动,求P、Q两点间的距离的最小值, 并指出此时P、Q两点的位置.
z A P O M N B D Q C y
x
作业: P138练习:1,2,3,4.
z O x P2 P1 y
|P1P2|=|z1-z2|
思考3:若直线P1P2平行于xOy平面, 则点P1、P2之间的距离如何?
z P1 O x M N P2 y

高中必修二数学方差公式

高中必修二数学方差公式

高中必修二数学方差公式高中数学中,方差是一个重要的概念。

方差是用来描述一组数据的分散程度的统计量。

在高中必修二数学中,我们学习了方差的计算方法,即方差公式。

方差公式是通过计算每个数据与平均值之差的平方,并求平均得到的。

方差公式的具体表达为:方差=每个数据与平均值之差的平方的和除以数据个数。

在实际问题中,方差的计算可以帮助我们对数据进行分析和比较。

下面我们通过几个例子来说明方差的应用。

例1:某班级的学生参加了一次数学考试,他们的成绩如下:80,85,90,92,95。

求这组数据的方差。

解:首先,我们需要计算这组数据的平均值。

将这些数据相加后除以数据个数,即(80+85+90+92+95)/5=88.4。

所以平均值为88.4。

然后,我们计算每个数据与平均值之差的平方,并求和。

计算得到的结果为((80-88.4)^2+(85-88.4)^2+(90-88.4)^2+(92-88.4)^2+(95-88.4)^2)=165.2。

我们将这个和除以数据个数,即165.2/5=33.04。

所以这组数据的方差为33.04。

例2:某班级的学生参加了两次数学考试,他们的成绩如下表所示。

求这组数据的方差,并比较两次考试的分散程度。

第一次考试:80,85,90,92,95第二次考试:83,86,88,90,95解:首先,我们分别计算两次考试的平均值。

第一次考试的平均值为(80+85+90+92+95)/5=88.4,第二次考试的平均值为(83+86+88+90+95)/5=88.4。

然后,我们分别计算每个数据与平均值之差的平方,并求和。

第一次考试的结果为165.2,第二次考试的结果为38.8。

我们分别将这个和除以数据个数,得到第一次考试的方差为33.04,第二次考试的方差为7.76。

通过比较两次考试的方差,我们可以发现第二次考试的分数相较于第一次考试更加集中,分散程度更小。

方差公式在实际问题中有着广泛的应用。

例如,在金融领域中,方差可以用来度量投资组合的风险;在质量管理中,方差可以用来衡量产品质量的稳定性;在社会调查中,方差可以用来分析数据的差异等等。

高中数学必修2,选修1-1公式表

高中数学必修2,选修1-1公式表

第一部分立体几何1、常见基本函数的导数(1)常函数:0)()(='⇒=x f C x f (2)幂函数:1)()(-='⇒=αααx x f x x f (3)正弦函数:x x f x x f cos )(sin )(='⇒= (4)余弦函数:x x f x x f sin )(cos )(-='⇒= (5)指数函数1:a a x f a x f x x ln )()(='⇒= (6)指数函数2:x x e x f e x f ='⇒=)()( (7)对数函数1:ax x f x x f a ln 1)(log )(='⇒= (8)对数函数2:xx f x x f 1)(ln )(='⇒= 2、导数运算公式:(1)和的导数:)()(])()([x g x f x g x f '±'⇒'±(2)积的导数:)()()()(])()([x g x f x g x f x g x f '+'⇒'(3)商的导数:)()()()()(])()([2x g x g x f x g x f x g x f '-'⇒' 3、导数的意义:(1)导数值就是曲线在该点的斜率:)(0x f k '=; (2)位移的导数就是瞬时速度:)(t s v '=瞬 (3)速度的导数就是瞬时加速度:)(t v a '=瞬4、曲线的切线方程:))((000x x x f y y -'=-5、导数与单调性:(1)增区间x I x f ⇒⎩⎨⎧>'0)(范围; (2)减区间x I x f ⇒⎩⎨⎧<'0)(范围; 求单调区间步骤:求定义域→求导函数→分类求交集;6、利用单调性求参数范围 (1)求定义域: (2)求导函数:(3)由函数的单调性写出导函数的符号;①若)(x f 在区间D 上是单调递增函数0)(≥'⇒x f 在D 上恒成立; ②若)(x f 在区间D 上是单调递减函数0)(≤'⇒x f 在D 上恒成立; (4)分离参数①max )()(x a x a ϕϕ≥⇒≥; ②min )()(x a x a ϕϕ≤⇒≤; 例、已知函数xx a x x f 2ln )(2++=在[)+∞,1单调递增函数,求实数a 的取值范围。

高中数学-必修二6.2.2二倍角公式-知识点

高中数学-必修二6.2.2二倍角公式-知识点
高中数学-必修二6.2.2二倍角公式-知识点
1、熟记二倍角公式及其常用变形.
(1)正弦:sin2α=2sinαcosα。常用变形:①sinα=2sin cos ;②(sinα±cosα)2=1±sin2α。
(2)余弦:cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α。常用变形-降幂公式:①cos2α= ,②sin2α= 。
5、积化和差公式(容易由两角和或差的正/余弦公式反向推导得出)
sinαcosβ= [sin(α+β)+sin(α-β)]
cosαsinβ= [sin(α+β)-sin(α-β)]
cosαcosβ= [cos(α+β)+cos(α-β)]
sinαsinβ=- [cos(α+β)-cos(α-β)]
6、和差化积公式:
(3)正切:tan2α= 。
2、题型:给角求值。典例:求sin10°sin50°sin70°。方法:变形,凑配,逆用公式。原式=cos80°cos40°cos20°= = (分子连续逆用正弦二倍角公= ;②cos = ;③tan = = = 。
4、万能公式:sinα= ,cosα= ,tanα= 。
①sinα+sinβ=2sin cos
②sinα-sinβ=2cos sin
③cosα+cosβ=2cos cos
④cosα-cosβ=-2sin sin
★记忆口诀:①角的顺序都是α,β, , ;②公式的左边:一加二减,三加四减。③三角函数名:赛赛赛口;赛赛口赛;口口口口;口口赛赛。④第4个公式,有负号。

高中数学必修二公式汇总与整理

高中数学必修二公式汇总与整理

高中数学必修二公式汇总与整理一、不等式的性质1.两个实数a与b之间的大小关系2.不等式的性质3.绝对值不等式的性质(1)如果a>0,那么(2)|a?b|=|a|?|b|.(3)|a|-|b|≤|a±b|≤|a|+|b|.(4)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.二、不等式的证明1.不等式证明的依据(2)不等式的性质(略)(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)2.不等式的证明方法(1)比较法:要证明a>b(a<b),只要证明a-b>0(a-b<0),这种证明不等式的方法叫做比较法.用比较法证明不等式的步骤是:作差——变形——判断符号.(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.三、解不等式1.解不等式问题的分类(1)解一元一次不等式.(2)解一元二次不等式.(3)可以化为一元一次或一元二次不等式的不等式.①解一元高次不等式;②解分式不等式;③解无理不等式;④解指数不等式;⑤解对数不等式;⑥解带绝对值的不等式;⑦解不等式组.2.解不等式时应特别注意下列几点:(1)正确应用不等式的基本性质.(2)正确应用幂函数、指数函数和对数函数的增、减性.(3)注意代数式中未知数的取值范围.3.不等式的同解性(5)|f(x)|<g(x)与-g(x)<f(x)<g(x)同解.(g(x)>0)(6)|f(x)|>g(x)①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②与g(x)<0同解.(9)当a>1时,af(x)>ag(x)与f(x)>g(x)同解,当0<a<1时,af(x)>ag(x)与f(x)<g(x)同四、《不等式》解不等式的途径,利用函数的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修2知识点一、直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k tan k α=当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0<k ; 当90=α时,k 不存在。

②过两点的直线的斜率公式:)(211212x x x x y y k ≠--= 注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。

②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y a b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。

⑤一般式:0=++C By Ax (A ,B 不全为0)注意:○1各式的适用范围 ○2特殊的方程如: 平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x=(a 为常数); (5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)(二)过定点的直线系(ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ; (ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。

(6)两直线平行与垂直当111:b x k y l +=,222:b x k y l +=时,212121,//b b k k l l ≠=⇔;12121-=⇔⊥k k l l注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

(7)两条直线的交点0:1111=++C y B x A l 0:2222=++C y B x A l 相交交点坐标即方程组⎩⎨⎧=++=++00222111C y B x A C y B x A 的一组解。

方程组无解21//l l ⇔ ; 方程组有无数解⇔1l 与2l 重合(8)两点间距离公式:设1122(,),A x y B x y ,()是平面直角坐标系中的两个点,则||AB(9)点到直线距离公式:一点)00,y x P 到直线0:1=++C By Ax l 的距离2200B A C By Ax d +++=(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解。

二、圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程(1)标准方程()()222r b y a x =-+-,圆心()b a ,,半径为r ;(2)一般方程022=++++F Ey Dx y x 当0422>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为F E D r 42122-+= 当0422=-+F E D时,表示一个点; 当0422<-+F E D 时,方程不表示任何图形。

(3)求圆方程的方法:一般都采用待定系数法:先设后求。

确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:(1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离为22B A C Bb Aa d +++=,则有相离与C l r d ⇔>;相切与C l r d ⇔=;相交与C l r d ⇔<(2)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,先将方程联立消元,得到一个一元二次方程之后,令其中的判别式为∆,则有相离与C l ⇔<∆0;相切与C l ⇔=∆0;相交与C l ⇔>∆0注:如果圆心的位置在原点,可使用公式200r yy xx =+去解直线与圆相切的问题,其中()00,y x 表示切点坐标,r 表示半径。

(3)过圆上一点的切线方程:①圆x 2+y 2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为200r yy xx =+ (课本命题).②圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为(x 0-a)(x-a)+(y 0-b)(y-b)= r 2 (课本命题的推广).4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。

设圆()()221211:r b y a x C =-+-,()()222222:R b y a x C =-+-两圆的位置关系常通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。

当r R d +>时两圆外离,此时有公切线四条;当r R d +=时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当r R d r R +<<-时两圆相交,连心线垂直平分公共弦,有两条外公切线;当r R d -=时,两圆内切,连心线经过切点,只有一条公切线; 当r R d -<时,两圆内含; 当0=d 时,为同心圆。

三、立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱'''''E D C B A ABCDE -或用对角线的端点字母,如五棱柱'AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台'''''E D C B A P -几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x 轴平行的线段仍然与x 平行且长度不变;②原来与y 轴平行的线段仍然与y 平行,长度为原来的一半。

4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线) ch S =直棱柱侧面积 rh S π2=圆柱侧 '21ch S =正棱锥侧面积 rl S π=圆锥侧面积 ')(2121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表 ()l r r S +=π圆锥表 ()22R Rl rl r S +++=π圆台表 (3)柱体、锥体、台体的体积公式V Sh =柱 2V Sh r h π==圆柱 13V Sh =锥 h r V 231π=圆锥 ''1()3V S S S S h =台 ''2211()()33V S S S S h r rR R h π==++圆台(4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π4、空间点、直线、平面的位置关系(1)平面① 平面的概念: A.描述性说明; B.平面是无限伸展的;② 平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内); 也可以用两个相对顶点的字母来表示,如平面BC 。

相关文档
最新文档