高一数学必修四(公式总结)

合集下载

高一数学必修四知识点总结材料

高一数学必修四知识点总结材料

高一数学必修四知识点总结1.三角函数................................................. (2)2.平面向量................................................. (7)3.三角恒等变换................................................. (10)三角函数知识点⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、象限角:角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为22,2k k k παπαπ⎧⎫<<+∈Z ⎨⎬⎩⎭第二象限角的集合为22,2k k k παπαππ⎧⎫+<<+∈Z ⎨⎬⎩⎭第三象限角的集合为322,2k k k παππαπ⎧⎫+<<+∈Z ⎨⎬⎩⎭第四象限角的集合为3222,2k k k παπαππ⎧⎫+<<+∈Z ⎨⎬⎩⎭轴线角:终边在x 轴上的角的集合为{},k k ααπ=∈Z 终边在y 轴上的角的集合为,2k k πααπ⎧⎫=+∈Z ⎨⎬⎩⎭终边在坐标轴上的角的集合为,2k k παα⎧⎫=∈Z ⎨⎬⎩⎭3、与角α终边相同的角的集合为{}2,k k ββπα=+∈Z4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应P xyAOM T 的标号即为nα终边所落在的区域. 6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα=.尤其是长度l r =的弧所对的圆心角叫做1rad 。

7、弧度制与角度制的换算公式:180 3.14rad π=≈,1180rad π=,180157.3rad π⎛⎫=≈ ⎪⎝⎭. 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()220r r x y =+>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.(取决于三角函数定义中的坐标正负)α6π4π 3π 2π 23π 34π 56π π32π2π sin α0 12223213222121- 0cos α132 221212-22- 32- 1- 0 1tan α0 3313/3- 1- 33-0 / 011、三角函数线(有方向的线段):sin α=MP ,cos α=OM ,tan α=AT . 12、同角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=.()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名不变,符号看象限(把α当成是锐角,判断等号右边三角函数所在象限符号).()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:奇变偶不变,符号看象限(奇偶看与90的倍数). 14、函数b x A y ++=)sin(ϕω的图像变换 第一种变换:先周期后相位sin y x =纵坐标不变横坐标伸长(01)ω<<或缩短(1ω>)到原来的1ω倍 sin y x ω=所有点向左(0)ϕ>或向右(0)ϕ<平移ϕω个单位 sin()y x ωϕ=+ 横坐标不变纵坐标伸长(1A >)或缩短(01)A <<到原来的A 倍 sin()y A x ωϕ=+ 所有点向上(0)b >或向下(0)b <平移b 个单位 sin()y A x b ωϕ=++ 第二种变换:先相位后周期sin y x =所有点向左(0)ϕ>或向右(0)ϕ<平移ϕ个单位 sin()y x ϕ=+纵坐标不变横坐标伸长(01)ω<<或缩短(1ω>)到原来的1ω倍 sin()y x ωϕ=+横坐标不变纵坐标伸长(1A >)或缩短(01)A <<到原来的A 倍 sin()y A x ωϕ=+ 所有点向上(0)b >或向下(0)b <平移b 个单位 sin()y A x b ωϕ=++15、函数()()sin 0,0y x B ωϕω=A ++A >>及cos()y A x B ωφ=++的性质:①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ. 当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()m a x m i n 12y yA =-,()max min 12y yB =+,()21122x x x x T=-<.函数tan()y x ωϕ=+,周期T πω=. 16、正弦函数、余弦函数和正切函数的图象与性质:sin y x =cos y x =tan y x =图象作图法 五点法(0,0)(,1)2π(,0)π3(,1)2π-(2,0)π 五点法(0,1)(,0)2π(,1)π3(,0)2π(2,1)π 三点两线法2x π=±(0,0)(,1)4π(,1)4π--定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1- []1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时, max 1y =;当2x k ππ=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2ππ 奇偶性奇函数 偶函数 奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦减在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.函数 性质对称中心 ()(),0k k π∈Z(),02k k ππ⎛⎫+∈Z ⎪⎝⎭(),02k k π⎛⎫∈Z⎪⎝⎭对称轴()2x k k ππ=+∈Z()x k k π=∈Z无对称轴注:()()sin 0,0y x ωϕω=A +A >>的性质则把x ωϕ+当作整体进行处理。

高一必修数学第四章知识点

高一必修数学第四章知识点

高一必修数学第四章知识点第一节直线与坐标系一、点和坐标在平面直角坐标系中,一个点可以用有序数对 (x, y) 表示,其中 x 表示横坐标,y 表示纵坐标。

二、直线的斜率1. 斜率的定义设两点 A(x₁, y₁) 和 B(x₂, y₂),其斜率 k 定义为 k = (y₂ - y₁) / (x₂ - x₁)。

2. 与坐标轴平行的直线的斜率与 x 轴平行的直线的斜率为 0;与 y 轴平行的直线没有斜率,记为∞。

三、直线的方程及性质1. 一般形式的直线方程直线的一般形式方程为 Ax + By + C = 0,其中 A、B、C 为常数且 A、B 不同时为 0。

2. 点斜式的直线方程已知直线上一点 P(x₁, y₁) 和斜率 k,则直线的点斜式方程为 y - y₁ = k(x - x₁)。

3. 斜截式的直线方程已知直线与 y 轴的交点为 (0, b) 和斜率 k,则直线的斜截式方程为 y = kx + b。

第二节二次函数的图像与性质一、二次函数的定义与图像二次函数的一般形式为 f(x) = ax² + bx + c,其中 a、b、c 为常数且a ≠ 0。

二、抛物线的开口方向1. a > 0 时,抛物线向上开口;2. a < 0 时,抛物线向下开口。

三、顶点坐标和对称轴1. 顶点坐标抛物线的顶点坐标为 V(-b/2a, f(-b/2a))。

2. 对称轴抛物线的对称轴为直线 x = -b/2a。

四、二次函数的性质1. 单调性a > 0 时,二次函数单调递增;a < 0 时,二次函数单调递减。

2. 零点二次函数与 x 轴交点的横坐标为零点,可通过解方程 ax² + bx + c = 0 求得。

3. 最值a > 0 时,二次函数的最小值为 f(-b/2a);a < 0 时,二次函数的最大值为 f(-b/2a)。

第三节平面向量与数量积一、平面向量的定义平面向量是具有大小和方向的有向线段。

人教版高一数学必修一和必修四公式

人教版高一数学必修一和必修四公式

人教版高中数学必修一至必修四公式(必会)初高中连接:和平方: a 2 b 2 (ab)(ab) 和、差平方: (a b)2 a 2 2ab b 2立方和、立方差: a 3 b 3(a b)(a 2 ab b 2 ) 和、差立方: (a b)3 a 3 b 3 3a 2b 3ab 2(a b c)2 a 2 b 2 c 2 2ab 2bc 2ac ; (a b c) 2 a 2 b 2 c 2 2ab 2bc 2ac (a bc) 2 a 2 b 2 c 22ab 2bc 2ac ; (ab c) 2 a 2 b 2c 2 2ab 2bc 2acx 1 x 2bx 1和x 2为ax 2bx c 0的两根,那么 a韦达定理:设cx 1 x 2a恒建立问题:ax 2 bx c 0( a 0)在 R 上恒建立的条件 a0且△ 0; ax 2bx c 0( a 0)在 R 上建立的条件为 a 0且△ 0指数函数:na , a 0 a m m an当 n 为奇数时:na na ;当 n 为偶数时:na n a; n 1 ( a 0, m 、 n N *,且 m 1)a , a 0 a mna mra sa r s(a, 、s ; r ) s a rs( a , 、 s ; ra rr( a,b ; Q)a 0 r Q ) (a0 r Q) ( ab)b 0 0 r对勾函数单一区间公式:对勾函数基本形式: yxp ,在 ( ,0)(0, 单一递加:( ,p ) ( p,)x) 上单一递减: ,)(,( p 0 0 p ) 对数函数 :log a a1,log a b ? log b a 1 ,log a 1, alog a N N ( N 、 a 0且 a 1),log a b1(a 、 b且 a 、 bddlog bclog ac log b 1) , log blog addaacbcablog a ( M ? N ) log a M log a Nlog a M log a M log a N (a 、 M 、 N>0, 且a ≠ 1)ln x log e x( x 0), ln e log e e 1Nlog a m nn log a m ( a 、 b 、 m 0, n R,且 a 1) , log a b log c b (a 、 b 、 c0,且 a 、 c 1) (换底公式 )nnlog a m blog a b log c am函数图像(一定熟)表1指数函数y a xa 0,a 1对数数函数ylog a x a0, a 11定义域值域图象人教版高中数学必修一至必修四公式(必会)x R x0,y 0,y R过定点 (0,1) 过定点 (1,0)减函数增函数减函数增函数x ( ,0)时, y (1, ) x ( ,0)时, y (0,1) 时,y (0, ) 时,x (0,1)x y ( ,0) x (0,时,(0,1)x (0, ) 时,y (1, ) (0,1)时,时,)yx (1, ( ,0)x (1, y (0, ))y )性质a b a b a ba b表 2 幂函数 y x ( R)p0 1 1 1qp为奇数奇函数q为奇数p为奇数q为偶数p为偶数偶函数q为奇数第一象限性增函数(01,)减函数质过定点2人教版高中数学必修一至必修四公式(必会)判断奇偶函数:若 f ( x) f ( x) 则为偶函数,若 f ( x)f ( x) 则为奇函数(奇函数 f (0) 0 )1x1 x2,化简 f (x1 ) f ( x2 ) ,若 f ( x1 ) f ( x2 ) 0即 f ( x1 ) f (x2 ) 则以为该函数在其判断单一函数:○ 在定义域内设定义域内单一递减,若 f ( x1 ) f ( x2 ) 0即f (x1 ) f (x2 ) 则以为该函数在其定义域内单一递加。

人教版高一数学必修一至必修四公式

人教版高一数学必修一至必修四公式

初高中衔接:和平方:))((22b a b a b a -+=- 和、差平方: 2222)(b ab a b a +±=±立方和、立方差:))((2233b ab a b a b a +±=± 和、差立方:2233333)(ab b a b a b a +±±=±ac bc ab c b a c b a 222)(2222+++++=++;ac bc ab c b a c b a 222)(2222-+-++=--韦达定理:设⎪⎩⎪⎨⎧=-=+=++a c x x a b x x c bx x x 21212210ax 的两根,那么为和 必修一:恒成立问题:00)0(0ax ;00)0(0ax 22<<≠<++<>≠>++且△上成立的条件为在且△上恒成立的条件在a R a c bx a R a c bx指数函数:)00()()0()()0(Q r b a b a ab Q s r a a a Q s r a a a a r r r rs s r s r s r ∈>>=∈>=∈>=+;,;、,;、,对数函数:1log =a a ,1log log =∙a b b a ,1log =a ,)10(log ≠>=a a N N a N a 且、,)10(log 1log ≠>=b a b a a b b a 、且、,dcd c c d c d ba ab b a a b log log log log =-=-= ⎪⎭⎪⎬⎫-=+=∙N M N M N M N M a a a a a a log log log log log )(log (a 、M 、N>0,且a ≠1)1log ln ),0(log ln ==∴>=e e x x x e e ⎪⎭⎪⎬⎫==b m n b m n m a n a a n a m log log log log )1,0(≠∈>a R n m b a 且,、、, )1,0(log log log ≠>=c a c b a ab bc c a、且、、(换底公式)判断奇偶函数:若)()(x f x f -=则为偶函数,若)()(x f x f -=-则为奇函数(奇函数0)0(=f )必修二:(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。

高一数学知识点总结大全(最新版)

高一数学知识点总结大全(最新版)

高一数学知识点总结大全(最新版)要想学好数学,大量做题是必可避免的,熟练地掌握各种题型,这样才能有效的提高数学成绩。

今天小编在这给大家整理了高一数学知识点总结大全(最新版),接下来随着小编一起来看看吧!高一数学知识点总结第一章三角函数1.1任意角和弧度制1.2任意角的三角函数——阅读与思考三角形与天文学1.3三角函数的诱导公式1.4三角函数的图像与性质——探究与发现函数y=Asin(ωX+φ)及函数y=Acos(ωx+φ)的周期探究与发现利用单位圆中的三角函数线研究正弦函数、余弦函数的性质信息技术应用利用正切线画函数y=tanX,X∈(—2π,2π )的图像1.5函数y=Asin(ωX+φ)的图像——阅读与思考振幅、周期、频率、相位1.6三角函数模型的简单应用小结复习参考题第二章平面向量2.1平面向量的实际背景及基本概念——阅读与思考向量及向量符号的由来2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例——阅读与思考向量的运算(运算律)与图形性质小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式——信息技术应用利用信息技术制作三角函数表3.2简单的三角恒等变换复习参考题1.正角:按逆时针方向旋转形成的角叫做正角。

按边旋转的方向分零角:如果一条射线没有作任何旋转,我们称它形成了一个零角。

角负角:按顺时针方向旋转形成的角叫做负角。

的第一象限角{α|k2360°<α<90°+k2360°,k∈Z}分第二象限角{α|90°+k2360°<α<180°+k2360°,k∈Z}类第三象限角{α|180°+k2360°<α<270°+k2360°,k∈Z}第四象限角{α|270°+k2360°<α<360°+k2360°,k∈Z}或{α|-90°+k2360°<α<k2360°,k∈z}(象间角):当角的终边与坐标轴重合时叫轴上角,它不属于任何一个象限.2.终边相同角的表示:所有与角α终边相同的角,连同角α在内,可构成一个集合s={β|β=α+k2360°,k∈z}即任一与角α终边相同的角,都可以表示成角α与整个周角的和。

高一年级数学必修四知识点(最新)

高一年级数学必修四知识点(最新)

1.高一年级数学必修四知识点⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q(m为等距离的项数之差)。

⑵对任何m、n,在等比数列{a}中有:a=a·q,特别地,当m=1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性。

⑶一般地,如果t,k,p,…,m,n,r,…皆为自然数,且t+k,p,…,m+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等比数列时,有:a。

a。

a。

…=a。

a。

a。

…。

⑷若{a}是公比为q的等比数列,则{|a|}、{a}、{ka}、{}也是等比数列,其公比分别为|q|}、{q}、{q}、{}。

⑸如果{a}是等比数列,公比为q,那么,a,a,a,…,a,…是以q为公比的等比数列。

⑹如果{a}是等比数列,那么对任意在n,都有a·a=a·q>0。

⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积。

⑻当q>1且a>0或00且01时,等比数列为递减数列;当q=1时,等比数列为常数列;当q<0时,等比数列为摆动数列。

2.高一年级数学必修四知识点初等函数是由幂函数、指数函数、对数函数、三角函数、反三角函数与常数经过有限次的有理运算及有限次函数复合所产生,并且能用一个解析式表示的函数。

非初等函数是指凡不是初等函数的函数。

初等函数是最常用的一类函数,包括常函数、幂函数、指数函数、对数函数、三角函数、反三角函数(以上是基本初等函数),以及由这些函数经过有限次四则运算或函数的复合而得的所有函数。

即基本初等函数经过有限次的四则运算或有限次的函数复合所构成并可以用一个解析式表出的'函数,称为初等函数。

非初等函数的研究与发展是近现代数学的重大成就之一,极大拓展了数学在各个领域的应用,在概率论、物理学科各个分支中等有十分广泛的应用。

是函数的一个重要的分支。

(经典讲义)高一数学下必修四第一章三角函数

(经典讲义)高一数学下必修四第一章三角函数

高一数学下必修四第一章三角函数第一讲:三角函数(1)⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k kαα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k kαα⋅+<<⋅+∈Z第三象限角的集合为{}360180360270,k k kαα⋅+<<⋅+∈Z第四象限角的集合为{}360270360360,k k kαα⋅+<<⋅+∈Z终边在x轴上的角的集合为{}180,k kαα=⋅∈Z终边在y轴上的角的集合为{}18090,k kαα=⋅+∈Z终边在坐标轴上的角的集合为{}90,k kαα=⋅∈Z3、与角α终边相同的角的集合为{}360,k kββα=⋅+∈Z4、已知α是第几象限角,确定()*nnα∈N所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l rα=.7、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈⎪⎝⎭.8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x rα=,()tan 0yx xα=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT 12、同角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=.()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.14、函数sin y x =的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.函数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ.函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<. 15、正弦函数、余弦函数和正切函数的图象与性质:sin y x =cos y x =tan y x =图象定义R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭问题1各是第几象限角问题:已知α角是第三象限角,则2α,2问题21.有向线段:坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。

高一数学期中知识点总结

高一数学期中知识点总结

高一数学期中知识点总结知识是取之不尽,用之不竭的。

只有限度地挖掘它,才能体会到学习的乐趣。

任何一门学科的知识都需要大量的记忆和练习来巩固。

虽然辛苦,但也伴随着快乐!下面是小编给大家整理的一些高一数学的知识点,希望对大家有所帮助。

高一数学必修四知识点梳理1.回归分析:就是对具有相关关系的两个变量之间的关系形式进行测定,确定一个相关的数学表达式,以便进行估计预测的统计分析方法。

根据回归分析方法得出的数学表达式称为回归方程,它可能是直线,也可能是曲线。

2.线性回归方程设x与y是具有相关关系的两个变量,且相应于n组观测值的n 个点(xi,yi)(i=1,......,n)大致分布在一条直线的附近,则回归直线的方程为。

其中。

3.线性相关性检验线性相关性检验是一种假设检验,它给出了一个具体检验y与x之间线性相关与否的办法。

①在课本附表3中查出与显著性水平0.05与自由度n-2(n为观测值组数)相应的相关系数临界值r0.05。

②由公式,计算r的值。

③检验所得结果如果|r|≤r0.05,可以认为y与x之间的线性相关关系不显著,接受统计假设。

如果|r|>r0.05,可以认为y与x之间不具有线性相关关系的假设是不成立的,即y与x之间具有线性相关关系。

高一年级数学必修三知识点1、算法概念:在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.2、算法的特征①有限性:算法中的步骤序列是有限的,必须在有限操作之后停止,不能是无限的。

②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可。

③顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后续步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题。

④不性:求解某一个问题的解法不一定是的,对于一个问题可以有不同的算法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ⅲ 诱导公式终边相同的角的三角函数值相等
上述的诱导公式记忆口诀:“奇变偶不变,符号看象限”
Ⅳ 周期问题
Ⅴ 三角函数的性质
性 质
定义域
R
R
值 域
周期性
奇偶性
奇函数
偶函数
单调性
对称中心
对称轴


性 质
定义域
值 域
R
R
周期性
奇偶性
奇函数
奇函数
单调性
对称中心
对称轴





振幅变化: 左右伸缩变化:
左右平移变化
真心希望我的这些忠告能够对你今后的学习有所帮助,果真如此,也就聊以欣慰了!
基本三角函数

ⅠБайду номын сангаас
Ⅰ、Ⅲ

Ⅰ、Ⅲ

Ⅱ、Ⅳ

Ⅱ、Ⅳ
Ⅱ终边落在x轴上的角的集合: 终边落在y轴上的角的集合: 终边落在坐标轴上的角的集合:
倒数关系: 正六边形对角线上对应的三角函数之积为1
平方关系:
乘积关系: , 顶点的三角函数等于相邻的点对应的函数乘积
〈三〉易错点提示:
1. 在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?
2. 在三角中,你知道1等于什么吗?( 这些统称为1的代换) 常数 “1”的种种代换有着广泛的应用.
高一数学公式总结
复习指南
1.注重基础和通性通法
在平时的学习中,应立足教材,学好用好教材,深入地钻研教材,挖掘教材的潜力,注意避免眼高手低,偏重难题,搞题海战术,轻视基础知识和基本方法的不良倾向,当然注重基础和通性通法的同时,应注重一题多解的探索,经常利用变式训练和变式引申来提高自己的分析问题、解决问题的能力。
所以我们在平时学习中要注意反思,只有这样才能使内容得到巩固,知识的得到拓展,能力得到提高,思维得到优化,创新能力得到真正的发展,希望大能够让数学反思成为我们的自然的习惯!
5.注重平时的听课效率
听课效率高不仅可以让自己深刻的理解知识,而且事半功倍,可以省好多的时间。而有些同学则认为上课时听不到什么,索性就不听,抓紧课堂上的每一点时间做题,多做几道题心里就踏实。这种认识是不科学的,想象如果上课没有用的话,国家还开办学校干嘛?只要印刷课本就足够了,学生买了书就可以自己学习到时候参加考试就行了。
想想好多东西还是在课堂上聆听的,听听老师对问题的分析和解题技巧,老师是如何想到的,与自己预习时的想法比较。课堂上记下比较重要的东西,更重要的是跟着老师的思路,注重老师对题目的分析过程。课后宁愿花时间去整理笔记,因为整理笔记实际上是一种知识的整合和再创造!回忆课堂上老师是怎样讲的,自己在整理时有比较好的想法,就记下来,抓住自己思维的火花,因为较为深刻的思维火花往往是稍纵即逝的。
希望大家还是能够做到我经常所讲的做题的“三观” :
1. 审题观 2. 思想方法观 3. 步骤清晰、层次分明观
3. 注重应用意识的培养
注重培养用数学的眼光观察和分析实际问题,提高数学的兴趣,增强学好数学的信心,达到培养创新精神和实践能力的目的。
4.培养学习与反思的整合
建构主义学习观认为知识并不是简单的由教师或者其他人传授给学生的,而只能由学生依据自身已有的知识、经验,主动地加以建构。学习是一个创造的过程,一个批判、选择、和存疑的过程,一个充满想象、探索和体验的过程。你不想学,老师强行的逼迫是不容易的或者说是作用不大,俗话说“强扭的瓜不甜”嘛!数学学习不但要对概念、结论和技能进行记忆,积累和模仿,而且还要动手实践,自主探索,并且在获得知识的基础上进行反思和修正。(这也就是我们经常将让大家一定要好好预习,养成自学的好习惯。)记得有一位中科院的教授曾经给“科学”下了一个定义:科学就是以怀疑和接纳新知识作为进步的标准的一门学问,仔细想来确实很有道理!
正弦定理:
余弦定理:
变形:
三角公式以及恒等变换
两角的和与差公式:
变形:
二倍角公式:
半角公式:
降幂扩角公式:
积化和差公式:
和差化积公式: ( )
万能公式: ( )
三倍角公式:
“三四立,四立三,中间横个小扁担”
♣ 补充: 1. 由公式
可以推导 :
在有些题目中应用广泛。
2.
3. 柯西不等式
补充
1.常见三角不等式:(1)若 ,则 .
(2) 若 ,则 . (3) .
2. (平方正弦公式);
.
= (辅助角 所在象限由点 的象限决定, ).
3. 三倍角公式 : .
. .
4.三角形面积定理:(1) ( 分别表示a、b、c边上的高).
(2) .(3) .
5.三角形内角和定理在△ABC中,有 .
6. 正弦型函数 的对称轴为 ;对称中心为 ;类似可得余弦函数型的对称轴和对称中心;
在这里我再一次强调听课要做到“五得”
听得懂想得通记得住说得出用得上
6. 注重思想方法的学习
学习数学重再学习数学思想方法,它是数学知识在更高层次上的抽象和概括,它蕴含于数学知识发生、发展和应用的过程中,也是历年来高考数学命题的特点之一。不少学者认为:
“传授知识”是数学的一种境界,加上“能力培养”是稍高的境界,再加上“方法渗透”是较高的境界,而再加上“提高修养(指数学文化和非智力引力的介入)”则是最高境界。作为学生一定要深刻理解数学的思想方法,它是数学的精髓,只有运用数学思想方法,才能把数学的知识和技能转化为分析问题和解决问题的能力,才能体现数学的学科特点,才能形成数学素养。即使在以后我们走上社会,在工作岗位上我们的这种数学素养就会内化为自身的较深的修养,从而使得自己的气质得以升华,它对于我们今后的做人和处事有很大的指导意义,再加上我们的人文素养就可以造就自己哲学修养。
2.注重思维的严谨性
平时学习过程中应避免只停留在“懂”上,因为听懂了不一定会,会了不一定对,对了不一定美。即数学学习的五种境界:听——懂——会——对——美。
我们今后要在第五种境界上下功夫,每年的高考结束,结果下来都可以发现我们宿迁市的考生与南方的差距较大,这就是其中的一个原因。
另外我们的学生的解题的素养不够,比如仅仅一点“规范答题”问题,我们老师也强调很多遍,但作为学生的你们又有几人能够听进去!
上下平移变化
Ⅵ平面向量共线定理:一般地,对于两个向量
Ⅶ 线段的定比分点
点 分有向线段
.
当 时 当 时
Ⅷ 向量的一个定理的类似推广
向量共线定理:
推广
平面向量基本定理:
推广
空间向量基本定理:
Ⅸ一般地,设向量 ∥
反过来,如果 ∥ .
Ⅹ 一般地,对于两个非零向量 有 ,其中θ为两向量的夹角。
特别的,


三角形中的三角问题
相关文档
最新文档