八年级数学正比例函数1(2019年11月)

合集下载

人教版八年级下册专项训练专题14 正比例函数图象和性质

人教版八年级下册专项训练专题14 正比例函数图象和性质

专题14 正比例函数图象和性质一、知识点1、画正比例函数图象时,通常在坐标系中描出点________和________最为简单。

2、正比例函数y=kx(k是常数,k≠0)的图象是一条经过________的直线。

当k>0时,图象经过第________象限,y所x的增大而________。

当k<0时,图象经过第________象限,y所x的增大而________。

二、标准例题例1:若函数y=(2m+1)x2+(1﹣2m)x(m为常数)是正比例函数,则m的值为()A.m>12B.m=12C.m<12D.m=−12例2:若正比例函数y=(1+m)x 的图像经过点A(1,2m),则下列坐标对应的点也在该正比例函数的图像上的是()A.(2,1)B.(-1,2)C.(2,4)D.(-2,-1)例3:如图,在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1……正方形A n B n∁n C n﹣1(n为大于1的整数)使得点A1,A2,A3…A n在直线上,点C1,C2,C3,…∁n 在x轴正半轴上,请解决下列问题:(1)点A6的坐标是;点B6的坐标是;(2)点A n的坐标是,正方形A n B n∁n C n﹣1的面积是.例4:已知y与x﹣1成正比例,且当x=3时,y=4.(1)求y与x之间的函数表达式;(2)当x=﹣1时,求y的值;(3)当﹣3<y<5时,求x的取值范围.例5:已知正比例函数y=kx图象经过点(2,-4).(1)求这个函数的解析式;(2)图象上两点A(x1,y1)、B(x2,y2),如果x1<x2,比较y1,y2的大小.三、练习1.下列正比例函数中,y随x的值增大而增大的是()A.y=﹣2014x B.y=(√3﹣1)x C.y=(﹣π﹣3)x D.y=(1﹣π2)x2.已知点A(-5,y1)、B(-2,y2)都在直线y=-12x上,则y1与y2的关系是()A.y1≤y2B.y1=y2C.y1<y2D.y1>y23.若y关于x的函数y=(m–2)x+n是正比例函数,则m,n应满足的条件是()A.m≠2且n = 0B.m = 2且n ≠ 0C.m≠2D.n = 04.正比例函数y=2x的大致图象是()A.B.C.D.5.下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2 , −3),(−4 , 6)B.(−2 , 3),(4 , 6)C.(−2 , −3),(4 ,− 6)D.(2 , 3),(−4 , 6)6.直线y=kx过点A(m,n),B(m−3,n+4),则k的值是()A.43B.−43C.34D.−347.正比例函数y=kx(k>0)的图象大致是()A.B.C.D.8.已知正比例函数y=(2m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m 的取值范围是()A.m<12B.m>12C.m<0D.m>09.正比例函数y=kx的图像过点A(2,3),则此函数的图像还经过点()A.(-2,-3)B.(-2,3)C.(3,2)D.(-3,-2)10.已知y=(m+3)x m2−8是正比例函数,则m=______.11.点A(m,−3)向下平移3个单位后,恰好落在正比例函数y=−6x的图象上,则m的值为______.12.如图,直线y=√33x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A4的坐标为______,点A n______.13.函数y=(k-1)x2|k|-3是正比例函数,且y随x增大而减小,求(k+3)2019的值.14.如图,在边长为1个单位长度的小正方形组成的格点图中,点A、B、C都是格点.(1)点A坐标为;点B坐标为;点C坐标为;(2)画出△ABC关于原点对称的△A1B1C1;(3)已知M(1,4),在x轴上找一点P,使|PM﹣PB|的值最大(写出过程,保留作图痕迹),并写出点P 的坐标.15.一次函数y=kx+b.当x=-3时,y=0;当x=0时,y=-4(1)求k与b的值.(2)求该函数图象与x轴和y轴围成的图形面积.16.已知y与x+2成正比,当x=4时,y=4.(1)求y与x之间的函数关系式;(2)若点(a,3)在这个函数图象上,求a的值.17.请你用学习“一次函数”时积累的经验和方法研究函数y=|x|的图象和性质,并解决问题.(1)完成下列步骤,画出函数y=|x|的图象;①列表、填空;②描点:③连线(2)观察图象,当x______时,y随x的增大而增大;(3)结合图象,不等式|x|<x+2的解集为______.19.已知银行2006年9月的“半年期存款”年利率是2.25%,某人当年9月存入银行a元,经过半年到期时按规定缴纳20%利息税后,得到利息b元.问税后利息b(元)与本金a(元)成正比例吗?如果成正比例,那么求出这个比例系数.21.已知y与x成正比例,当x=4时,y=12.(1)写出y与x之间的函数解析式;(2)求当y=36时x的值;(3)判断点(-7,-10)是否是函数图象上的点.22.已知直线y=kx过点(−2,1),A是直线y=kx图像上的点,若过A向x轴作垂线,垂足为B,且SΔAB0=9,求点A的坐标.23.如图,点A(a,6)是第一象限内正比例函数y=3x的图象上的一点,AB⊥x轴,交直线OB于B点,三角形OAB的面积为5,求直线OB所对应的函数表达式.专题14 正比例函数图象和性质一、知识点1、画正比例函数图象时,通常在坐标系中描出点________和________最为简单。

人教版八下数学06 反比例函数(第01期)-2019年中考真题数学试题分项汇编(解析版)

人教版八下数学06 反比例函数(第01期)-2019年中考真题数学试题分项汇编(解析版)

专题06反比例函数1.(2019•安徽)已知点A(1,–3)关于x轴的对称点A'在反比例函数y=kx的图象上,则实数k的值为A.3 B.1 3C.–3 D.–1 3【答案】A【解析】点A(1,–3)关于x轴的对称点A'的坐标为(1,3),把A'(1,3)代入y=kx得k=1×3=3.故选A.【名师点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.2.(2019•广西)若点(–1,y1),(2,y2),(3,y3)在反比例函数y=kx(k<0)的图象上,则y1,y2,y3的大小关系是A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y1【答案】C【解析】∵k<0,∴在每个象限内,y随x值的增大而增大,∴当x=–1时,y1>0,∵2<3,∴y2<y3<y1,故选C.【名师点睛】本题考查反比函数图象及性质;熟练掌握反比函数的图象及x与y值之间的关系是解题的关键.3.(2019•江西)已知正比例函数y1的图象与反比例函数y2的图象相交于点A(2,4),下列说法正确的是A.反比例函数y2的解析式是y2=–8 xB.两个函数图象的另一交点坐标为(2,–4)C.当x<–2或0<x<2时,y1<y2D.正比例函数y1与反比例函数y2都随x的增大而增大【答案】C【解析】∵正比例函数y1的图象与反比例函数y2的图象相交于点A(2,4),∴正比例函数y1=2x,反比例函数y2=8x,∴两个函数图象的另一个交点为(–2,–4),∴A,B选项错误,∵正比例函数y1=2x中,y随x的增大而增大,反比例函数y2=8x中,在每个象限内y随x的增大而减小,∴D选项错误,∵当x<–2或0<x<2时,y1<y2,∴选项C正确,故选C.【名师点睛】本题考查了反比例函数与一次函数的交点问题,熟练运用反比例函数与一次函数的性质解决问题是本题的关键.4.(2019•河北)如图,函数y=1(0)1(0)xxxx⎧>⎪⎪⎨⎪-<⎪⎩的图象所在坐标系的原点是A.点M B.点N C.点P D.点Q 【答案】A【解析】由已知可知函数y=1(0)1(0)xxxx⎧>⎪⎪⎨⎪-<⎪⎩关于y轴对称,所以点M是原点;故选A.【名师点睛】本题考查反比例函数的图象及性质;熟练掌握反比例函数的图象及性质是解题的关键.5.(2019•黑龙江)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OABC 的顶点A 在反比例函数y =1x 上,顶点B 在反比例函数y =5x上,点C 在x 轴的正半轴上,则平行四边形OABC 的面积是A .32B .52C .4D .6【答案】C【解析】如图,过点B 作BD ⊥x 轴于D ,延长BA 交y 轴于E ,∵四边形OABC 是平行四边形,∴AB ∥OC ,OA =BC , ∴BE ⊥y 轴,∴OE =BD ,∴Rt △AOE ≌Rt △CBD (HL ), 根据系数k 的几何意义,S 矩形BDOE =5,S △AOE =12, ∴四边形OABC 的面积=5–12–12=4, 故选C .【名师点睛】本题考查了反比例函数的比例系数k 的几何意义、平行四边形的性质等,有一定的综合性. 6.(2019•北京)在平面直角坐标系xOy 中,点A (a ,b )(a >0,b >0)在双曲线y =1k x上,点A 关于x 轴的对称点B 在双曲线y =2k x,则k 1+k 2的值为__________. 【答案】0【解析】∵点A (a ,b )(a >0,b >0)在双曲线y =1k x上,∴k 1=ab ; 又∵点A 与点B 关于x 轴对称,∴B (a ,–b ), ∵点B 在双曲线y =2k x上,∴k 2=–ab ;∴k 1+k 2=ab +(–ab )=0; 故答案为:0.【名师点睛】考查反比例函数图象上的点坐标的特征,关于x 轴对称的点的坐标的特征以及互为相反数的和为0的性质.7.(2019•山西)如图,在平面直角坐标中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(–4,0),点D 的坐标为(–1,4),反比例函数y =kx(x >0)的图象恰好经过点C ,则k 的值为__________.【答案】16【解析】过点C 、D 作CE ⊥x 轴,DF ⊥x 轴,垂足为E 、F ,∵四边形ABCD 是菱形,∴AB =BC =CD =DA , 易证△ADF ≌△BCE ,∵点A (–4,0),D (–1,4), ∴DF =CE =4,OF =1,AF =OA –OF =3,在Rt △ADF 中,AD 5,∴OE =EF –OF =5–1=4,∴C (4,4),∴k =4×4=16,故答案为:16.【名师点睛】本题主要考查反比例函数图象上点的坐标特征,综合利用菱形的性质、全等三角形、直角三角形勾股定理,以及反比例函数图象的性质;把点的坐标与线段的长度相互转化也是解决问题重要方法.8.(2019•福建)如图,菱形ABCD顶点A在函数y=3x(x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=2,∠BAD=30°,则k=__________.【答案】【解析】连接OC,AC,过A作AE⊥x轴于点E,延长DA与x轴交于点F,过点D作DG⊥x轴于点G,∵函数y=kx(k>3,x>0)的图象关于直线AC对称,∴O、A、C三点在同直线上,且∠COE=45°,∴OE=AE,不妨设OE=AE=a,则A(a,a),∵点A在反比例函数y=3x(x>0)的图象上,∴a2=3,∴a AE=OE∵∠BAD=30°,∴∠OAF=∠CAD=12∠BAD=15°,∵∠OAE =∠AOE =45°,∴∠EAF =30°,∴AF =cos30AE=2,EF =AE tan30°=1,∵AB =AD =2,∴AF =AD =2,又∵AE ∥DG ,∴EF =EG =1,DG =2AE ,∴OG =OE +EG ,∴D ,),∴k ×+1).故答案为:【名师点睛】本题是一次函数图象与反比例函数图象的交点问题,主要考查了一次函数与反比例函数的性质,菱形的性质,解直角三角形,关键是确定A 点在第一象限的角平分线上. 9.(2019•吉林)已知y 是x 的反比例函数,并且当x =2时,y =6. (1)求y 关于x 的函数解析式; (2)当x =4时,求y 的值. 【答案】(1)y =12x.(2)y =3. 【解析】(1)因为y 是x 的反例函数, 所以设y =kx(k ≠0), 当x =2时,y =6. 所以k =xy =12, 所以y =12x. (2)当x =4时,y =3.【名师点睛】此题主要考查了待定系数法求反比例函数解析式,正确假设出解析式是解题关键. 10.(2019•广东)如图,一次函数y =k 1x +b 的图象与反比例函数y =2k x的图象相交于A 、B 两点,其中点A 的坐标为(–1,4),点B 的坐标为(4,n ). (1)根据图象,直接写出满足k 1x +b >2k x的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1:2,求点P 的坐标.【答案】(1)由图象可得:k 1x +b >2k x的x 的取值范围是x <–1或0<x <4; (2)直线解析式y =–x +3,反比例函数的解析式为y =–4x; (3)P (23,73). 【解析】(1)∵点A 的坐标为(–1,4),点B 的坐标为(4,n ).由图象可得:k 1x +b >2k x的x 的取值范围是x <–1或0<x <4; (2)∵反比例函数y =2k x的图象过点A (–1,4),B (4,n ), ∴k 2=–1×4=–4,k 2=4n ,∴n =–1,∴B (4,–1), ∵一次函数y =k 1x +b 的图象过点A ,点B , ∴11441k b k b -+=+=-⎧⎨⎩,解得k =–1,b =3,∴直线解析式y =–x +3,反比例函数的解析式为y =–4x; (3)设直线AB 与y 轴的交点为C ,∴C (0,3), ∵S △AOC =12×3×1=32, ∴S △AOB =S △AOC +S △BOC =12×3×1+12×3×4=152,∵S△AOP:S△BOP=1:2,∴S△AOP=152×13=52,∴S△COP=52–32=1,∴12×3x P=1,∴x P=23,∵点P在线段AB上,∴y=–23+3=73,∴P(23,73).【名师点睛】本题考查了反比例函数图象与一次函数图象的交点问题,熟练运用图象上的点的坐标满足图象的解析式是本题的关键.11.(2019•甘肃)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于A(–1,n)、B(2,–1)两点,与y轴相交于点C.(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=mx上的两点,当x1<x2<0时,比较y2与y1的大小关系.【答案】(1)一次函数的解析式为y=–x+1,反比例函数的解析式为y=–2x.(2)S△ABD=3.(3)y1<y2.【解析】(1)∵反比例函数y=mx经过点B(2,–1),∴m=–2,∵点A(–1,n)在y=2x-上,∴n=2,∴A(–1,2),把A,B坐标代入y=kx+b,则有221k bk b-+=+=-⎧⎨⎩,解得11kb=-=⎧⎨⎩,∴一次函数的解析式为y =–x +1,反比例函数的解析式为y =–2x. (2)∵直线y =–x +1交y 轴于C ,∴C (0,1), ∵D ,C 关于x 轴对称,∴D (0,–1), ∵B (2,–1),∴BD ∥x 轴, ∴S △ABD =12×2×3=3. (3)∵M (x 1,y 1)、N (x 2,y 2)是反比例函数y =–2x上的两点,且x 1<x 2<0,s ∴y 1<y 2. 【名师点睛】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法解决问题,学会利用函数的增减性,比较函数值的大小.12.(2019•河南)模具厂计划生产面积为4,周长为m 的矩形模具.对于m 的取值范围,小亮已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下: (1)建立函数模型设矩形相邻两边的长分别为x ,y ,由矩形的面积为4,得xy =4,即y =4x;由周长为m ,得2(x +y )=m ,即y =–x +2m.满足要求的(x ,y )应是两个函数图象在第__________象限内交点的坐标. (2)画出函数图象 函数y =4x (x >0)的图象如图所示,而函数y =–x +2m的图象可由直线y =–x 平移得到.请在同一直角坐标系中直接画出直线y =–x . (3)平移直线y =–x ,观察函数图象 ①当直线平移到与函数y =4x(x >0)的图象有唯一交点(2,2)时,周长m 的值为__________; ②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长m 的取值范围. (4)得出结论若能生产出面积为4的矩形模具,则周长m 的取值范围为__________.【答案】(1)一;(2)见解析;(3)m ≥8.【解析】(1)x ,y 都是边长,因此,都是正数,故点(x ,y )在第一象限,答案为:一; (2)图象如下所示:(3)①把点(2,2)代入y =–x +2m得: 2=–2+2m,解得:m =8; ②在直线平移过程中,交点个数有:0个、1个、2个三种情况, 联立y =4x 和y =–x +2m并整理得:x 2–12mx +4=0, △=14m 2–4×4≥0时,两个函数有交点,解得m ≥8,即:0个交点时,m <8;1个交点时,m =8;2个交点时,m >8.(4)由(3)得:m ≥8.【名师点睛】本题为反比例函数综合运用题,涉及到一次函数、一元二次方程、函数平移等知识点,此类探究题,通常按照题设条件逐次求解,一般难度不大.13.(2019•兰州)如图,在平面直角坐标系xOy 中,反比例函数y =k x (k ≠0)的图象经过等边三角形BOC 的顶点B ,OC =2,点A 在反比例函数图象上,连接AC ,OA .(1)求反比例函数y =k x(k ≠0)的表达式;(2)若四边形ACBO 的面积是A 的坐标.【答案】(1)反比例函数的表达式为y =x;(2)点A 的坐标为(12, 【解析】(1)如图,过点B 作BD ⊥OC 于D ,∵△BOC 是等边三角形,∴OB =OC =2,OD =12OC =1,∴BD∴S △OBD =12OD ×BD =2,又∵S △OBD =12|k |,∴|k ∵反比例函数y =k x (k ≠0)的图象在第一、三象限,∴k ,∴反比例函数的表达式为y ;(2)∵S △OBC =12OC •BD =12×∴S △AOC ,∵S △AOC =12OC •y A ,∴y A把y y =x,求得x =12,∴点A 的坐标为(12, 【名师点睛】本题考查了待定系数法求反比例函数的解析式,反比例系数k 的几何意义,反比例函数图象上点的坐标特征,此题的突破点是先由三角形的面积求出反比例函数的解析式.。

初二数学人教版八年级下册第十九章《一次函数》教材分析文字讲稿

初二数学人教版八年级下册第十九章《一次函数》教材分析文字讲稿

第十九章《一次函数》教材分析一、本章的地位和作用1.“函数”概念的引入使得数学从“常量数学”转化为“变量数学”,这正是近代数学的一个标志。

2.以函数概念可以统一数学教育内容:以函数为中心,将全部数学教材集中在它的周围,可以进行充分的综合;3. 数学教育改革的重要观点是:一般受教育者在数学课上应该学会的重要事情是用变量和函数来思考问题;4. 初等函数知识是中学数学的固定内容,是引进现代数学的基础和前提,是联系实际生活的重要内容。

在数学教育的现代化中,函数教育的重要性不容分说;5. 本章通过对初等函数“一次函数”的学习,使学生经历学习和探究一个具体函数的一般过程,即从定义、图象、性质、函数与方程及不等式的关系、不同函数之间的关系等方面进行研究。

二、教学要求解读1.课标要求:教学总目标(因用而学、学以致用、以学导用、以用促学)(1)以探索实际问题中的数量关系和变化规律为背景,经历“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型;(2)结合实例,了解常量、变量和函数的概念,体会“变化与对应”的思想,了解函数的三种表示方法,能利用图像数形结合地分析简单的函数关系;(3)理解正比例函数和一次函数的概念,会画它们的图像,能结合图像讨论这些函数的基本性质,能利用这些函数分析和解决简单实际问题;(4)通过讨论一次函数与方程(组)及不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程(组)及不等式等内容的认识,构建和发展相互联系的知识体系.2.教学要求建议:注重对基本知识和基本技能的掌握,提高基本能力.函数的基本概念、函数的一般表示法和一次函数的概念图象性质等是基础知识,能画一次函数的图象,能结合图象讨论这些函数的基本性质等是基本技能,能利用一次函数解决简单实际问题是基本能力。

基本要求(1)能在简单问题中列出变量之间的关系式;(2)能根据函数的三种表示方法解读自变量和函数值的对应关系;(3)能根据已知的函数解析式,在自变量和函数值中知一求一;(4)能用描点法画出简单函数图象;(5)能结合图像对简单实际问题中的函数关系进行分析;(6)能确定简单代数和实际问题中的函数的自变量取值范围;(7)能根据简单已知条件确定一次函数表达式;(8)会画一次函数的图象,理解一次函数的性质;(9)能用一次函数解决较简单实际问题.略高要求(1)探索问题中的数量关系和变化规律;(2)能根据线段长面积等几何的条件确定一次函数解析式;(3)结合对函数关系的分析,尝试对变量的变化规律进行初步预测;(4)能根据一次函数的图象求二元一次方程组的近似解、一元一次不等式的解集.较高要求(1)能根据复杂的条件完整的求解;(2)能用一次函数解决较复杂实际问题,分析决策方案.三、学情分析1.学生已有的基础学生在小学时已接触到的观察与分析、数字推理、正比例与反比例等内容就渗透了变化的思想;七年级的代数式求值、探索规律等加强了学生对量的变化的“规律意识”,因此相对传统教材的使用者,使用课标教科书的学生在对事物规律的发现和探究上有明显的优势.《一次函数》一章则是在前述基础之上第一次集中的讨论变量间的关系.2.学生学习本章常见错误与不易掌握的内容初次接触函数概念,学生常有一种很“虚”的感觉,常常不知从何入手,思考以往的教学,不断总结中发现,学生接受函数概念困难重要在于(1)没有很好地理解有序实数对,从而也就认识不到:函数不是数,在同一变化过程中,变量之间不是孤立的,而是相互联系,一个变量的变化会引起其他变量的相应变化,这些变化之间存在对应关系。

【含8套中考卷】2019年中考数学一轮复习《变量与函数》专题练习卷含答案

【含8套中考卷】2019年中考数学一轮复习《变量与函数》专题练习卷含答案

1. 2. 3. 4. 5. 6.7.变量与函数专题在平面直角坐标系中,点(-3,2)所在的象限是A.第一象限C.第三象限【答案】B函数y=VEE2中自变量X的取值范围是x-3A.x>2B.xN2【答案】CB.第二象限D.第四象限C.xN2且xU3若一次函数y=(k-2)x+1的函数值y随x的增大而增大,则A.k<2B.k>2C.k>0D.k<0D.x"3【答案】B一次函数y=x+2的图象与y轴的交点坐标为A.(0,2)【答案】AB.(0,-2)C.(2,0)D.(-2,0)将直线y=2x-3向右平移2个单位长度,A.y=2x-4B.y=2x+4再向上平移3个单位长度后,所得的直线的表达式为C.y=2x+2D.y=2x-2【答案】A如图,在矩形A0BC中,A(-2,1A.--2【答案】A1B.-20),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为C.-2D.2如图,直线y二kx+b(k"0)经过点A(-2,4),则不等式kx+b>4的解集为A.x>-2 D.x<4【答案】A8.如图,直线1是一次函数y=kx+b 的图象,若点A (3, m)在直线1上,则m 的值是【答案】C9.反比例函数y=§的图象经过点(3, -2),下列各点在图象上的是xA. (-3, -2)B. (3, 2)C. ( - 2, - 3)D. ( -2, 3)【答案】D10.如图,已知直线y=k 1X (虹尹0)与反比例函数y=4 (k 2^0)的图象交于M, N 两点.若点M 的坐标x是(1, 2),则点N 的坐标是A. ( - 1> - 2)C. (1, -2)B. ( -1, 2)D. ( -2, - 1)【答案】A11.如图,点C 在反比例函数y=* (x>0)的图象上,过点C 的直线与x 轴,y 轴分别交于点A, B,且AB=BC,X△A0B 的面积为1,则k 的值为A. 1B. 2C. 3D. 4【答案】D12.某通讯公司就上宽带网推出A, B,C 三种月收费方式.这三种收费方式每月所需的费用y (元)与上网时间x (h)的函数关系如图所示,则下列判断错误的是65503012025 50 55ox(h)A. 每月上网时间不足25h 时,选择A 方式最省钱B. 每月上网费用为60元时,B 方式可上网的时间比A 方式多C. 每月上网时间为35h 时,选择B 方式最省钱D. 每月上网时间超过70h 时,选择C 方式最省钱【答案】D13.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长,根据如图,在下列选项中指出白昼时长低于11小时的 节气白昼时长伺咽A.惊蛰B.小满C.立秋D.大寒【答案】D14.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s (单位:m )与时间r (单位:min )之间函数关系的大致图象是B.—°/(min)D.【答案】B15.在平面直角坐标系中,一个智能机器人接到如下指令:从原点0出发,按向右,向上,向右,向下的方向依次不断移动,每次移动Im.其行走路线如图所示,第1次移动到Au 第2次移动到A 2,…,第n 次移动到A ”.则左OA 2A 20i9的面积是16.17.A, 504m 2【答案】A22二次函数y=ax 2+bx+c (a^O)的部分图象如图所示,则下列结论错误的是A. 4a+b=0C. a : c= - 1 : 5【答案】DD.当-1W x W5 时,y>0如图,若二次函数y=ax 2+bx+c (a 尹0)图象的对称轴为x=l,与y 轴交于点C,与x 轴交于点A 、点B ( - 1, 0),则①二次函数的最大值为a+b+c ;②a - b+c<0;(3)b 2 - 4ac<0;④当y>0时,其中正确的个数是【答案】B18. P (3, -4)到x 轴的距离是【答案】419.抛物线y=2(x+2)纤4的顶点坐标为.【答案】(-2,4)20.如图,抛物线y=ax,与直线y=bx+c的两个交点坐标分别为A(-2,4),B(1,1),则方程ax^bx+c的解是.【答案】xi=-2,x2=l21.如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB=m时,矩形土地ABCD的面积最大.【答案】1503, 22.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t-一尸.在2飞机着陆滑行中,最后4s滑行的距离是m.【答案】2423.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.【答案】(4扼-4)24.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(-2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k、b的值;(2)若点D在y轴负半轴上,且满足S acod=|saboc,求点D的坐标.【解析】(1)当X=1时,y=3x=3,.•.点C 的坐标为(1, 3) .将 A ( - 2, 6)、C (1, 3)代入 y=kx+b,得:—2k + 〜=6k + b = 3,解徐’k = -l b = 4(2)由(1)得直线AB 的解析式为y=-x+4.当 y=0 时,有-x+4=0,解得:x=4,.•.点B 的坐标为(4, 0).设点D 的坐标为(0, m ) (m<0),1 nn 1 1 1S acod = — S aboc ,即m = — X — X 4X 3,3 2 3 2解得:m= - 4,.•.点D 的坐标为(0, -4).25.抛物线y=-|x +bx+c 经过点A (3 0, 0)和点B (0, 3),且这个抛物线的对称轴为直线1,顶点121 9 l【解析】(1) •抛物线y = +版+。

专题01正比例函数重难点专练

专题01正比例函数重难点专练

专题01正比例函数重难点专练(原卷版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2019·上海松江区·)已知点(11,x y )和(22,x y )是直线y =-3x 上的两点,且12x x >,则1y 与2y 的大小关系是( )A .1y >2y B .1y =2y C .1y <2y D .不能比较大小2.(2020·上海市云岭实验中学八年级月考)若直线y kx =上每一点都能在直线6y x =-上找到关于x 轴对称的点,则它的解析式是( )A .6y x=B .16y x =C .6y x =-D .16y x =-3.(2020·青浦区实验中学八年级期中)一列货运火车从A 出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货后,火车又匀加速行驶,一段时间后再次开始匀速行驶,那么可以近似的刻画出火车在这段时间内的速度变化情况的是()A .B .C .D .4.(2020·上海市静安区实验中学八年级课时练习)若函数y=(2m+6)x 2+(1﹣m )x 是正比例函数,则m 的值是( )A .m=﹣3B .m=1C .m=3D .m >﹣35.(2021·上海九年级专题练习)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y (米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了30分钟;③乙用12分钟追上甲;④乙到达终点时,甲离终点还有300米.其中正确的结论有( )A.1个B.2个C.3个D.4个6.(2020·安徽八年级期中)将水匀速滴进如图所示的容器时,能正确反映容器中水的高度(h)与时间(t)之间对应关系的图象大致是()A.B.C.D.7.(2021·黑龙江九年级期末)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用时间为t(分钟),所走路程为s (米),s与t之间的函数关系如图所示,则下列说法中,错误的是( )A.小明中途休息用了20分钟B.小明在上述过程中所走路程为7200米C.小明休息前爬山的速度为每分钟60米D.小明休息前后爬山的平均速度相等8.(2021·上海徐汇区·九年级一模)定义:[]x表示不超过实数x的最大整数例如:[]1.71=,35éù=êúëû,1234éù-=-êúëû根据你学习函数的经验,下列关于函数[]y x=的判断中,正确的是()A .函数[]y x =的定义域是一切整数B .函数[]y x =的图像是经过原点的一条直线C .点2(2,2)5在函数[]y x =图像上D .函数[]y x =的函数值y 随x 的增大而增大二、填空题9.(2019·上海市西南模范中学八年级月考)已知函数()f x =,那么()3f =______.10.(2019·上海市西南模范中学八年级月考)当m =_____时,函数()2312m m y m x -+=-是正比例函数,且y 的值随x 的值增大而减小.11.(2019·上海市西南模范中学八年级月考)已知y 与x 的函数如图所示,则y 与x 的函数解析式为______.12.(2018·上海浦东新区·八年级期末)已知函数()f x =,那么()2f -=_____.13.(2019·上海市西延安中学八年级期中)若函数()232my m x -=-是正比例函数,则m =_______.14.(2019·上海市西延安中学八年级期中)已知正比例函数()1y a x =-,若y 的值随着x 的值增大而减小,则a 的取值范围是___.15.(2019·青浦区实验中学八年级期中)函数的定义域是____________________.16.(2020·上海市云岭实验中学八年级月考)函数y =___________________.17.(2019·上海市西延安中学八年级期中)函数y =x 的取值范围是_______.18.(2019·上海市西延安中学八年级期中)已知函数()22,f x x x=-则f =__________.19.(2020·上海八年级期末)已知函数3()f x x x=+,那么f )=_________.20.(2019·上海松江区·)如果正比例函数(21)y k x =-的图像经过原点和第一、第三象限,那么k 的取值范围是___________.21.(2019·上海松江区·)已知点(12)P -,和点Q (a ,4) 在同一个正比例函数的图像上,那么a=___________.22.(2020·上海市风华初级中学八年级月考)已知f (x )=xx 2+,则f =_____.23.(2020·华南理工大学附属实验学校八年级月考)函数的定义域是_______.24.(2020·华南理工大学附属实验学校八年级月考)函数y=12m -x 中,如果y 随x 的增大而减小,那么m 的取值范围是________.25.(2020·华南理工大学附属实验学校八年级月考)某人从甲地行走到乙地的路程S(千米)与时间t(时)的函数关系如图所示,那么此人行走3千米,所用的时间是______(时).26.(2020·上海市金山区教育局八年级期末)函数y =的定义域是______27.(2019·上海市西南模范中学七年级期中)某油箱中有油20升,油从管道中均匀流出,100分钟可以流尽,当流出时间为t 分钟时,油箱中剩余油量为:_____.28.(2019·上海黄浦区·八年级期中)已知等腰三角形的周长为80,腰长为x ,底边长为y .请写出y 关于x 的函数解析式,并求出定义域_______.29.(2021·上海九年级专题练习)函数y _____.30.(2021·上海九年级专题练习)函数y 123x =+的定义域是____.31.(2020·上海市静安区实验中学八年级课时练习)已知正比例函数8xy =,则y 与x 间的比例系数是________.32.(2021·上海九年级专题练习)抛物线231y x =-+关于原点对称的抛物线为______.33.(2020·上海市澧溪中学八年级月考)正比例函数2y x =-的图象经过第______象限.34.(2020·上海市曹杨第二中学附属学校八年级期中)函数y =的定义域是______.35.(2020·上海市曹杨第二中学附属学校八年级期中)王阿姨从家出发,去超市交水电费.返回途中,遇到邻居交谈了一会儿再回到家,如图所示的图像是王阿姨离开家的时间t (分)和离家距离S (米)的函数图像.则王阿姨在整个过程中走得最快的速度是______米/分.36.(2021·上海九年级专题练习)如果函数xy k=(k 为常数)的图像经过点(-1,-2),那么y 随着x 的增大而_______.37.(2021·上海九年级专题练习)已知f (x )=21x -,那么f (3)的值是____.38.(2021·上海九年级专题练习)函数34y x =-的定义域是__________.39.(2021·上海九年级专题练习)函数2y x 1=-的定义域是______.40.(2020·上海松江区·八年级期末)已知()f x kx =,2f =,那么k =___________.41.(2021·上海九年级专题练习)小亮从家骑车上学,先经过一段平路到达A 地后,再上坡到达B 地,最后下坡到达学校,所行驶路程s (千米)与时间t (分钟)的关系如图所示.如果返回时,上坡、下坡、平路的速度仍然保持不变,那么他从学校回到家需要的时间是_______分钟.三、解答题42.(2021·上海九年级专题练习)表示汽车性能的参数有很多,例如:长宽高.轴距.排量.功率.扭矩.转速.百公里油耗等等.为了了解某种车的耗油量,某专业检测人员对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:汽车行驶时间t(h)0123…邮箱剩余油量Q(L)100948882…①根据上表可知,每小时耗油升;②根据上表的数据,写出用Q与t的关系式:;③汽车油箱中剩余油量为55L,则汽车行驶了小时.43.(2020·上海市川沙中学南校八年级期末)小强骑车从家到学校要经过一段先上坡后下坡的路,在这段路上小强骑车的距离s(千米)与骑车的时间t(分钟)之间的函数关系如图所示,请根据图中信息回答下列问题:(1)小强去学校时下坡路长千米;(2)小强下坡的速度为千米/分钟;(3)若小强回家时按原路返回,且上坡的速度不变,下坡的速度也不变,那么回家骑车走这段路的时间是分钟.44.(2019·上海松江区·)已知正比例函数y=kx的图像经过第四象限内一点,,求k的值.++(2 76)P k k45.(2021·上海九年级专题练习)如图,直线l:y,点A1坐标为(1,0),过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1为半径画弧交x轴于点A2;再过点A 2作x 的垂线交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画弧交x 轴于点A 3,…,按此做法进行下去.求:(1)点B 1的坐标和∠A 1OB 1的度数;(2)弦A 4B 3的弦心距的长度.46.(2020·上海市静安区实验中学八年级课时练习)等腰三角形的周长为16cm ,底边长为xcm ,腰长为ycm ,写出y 关于x 的函数的解析式,并求x 的取值范围.47.(2020·上海市静安区实验中学八年级课时练习)若y+1与2x 成正比例,且当3x =-时,y=1.求y 与x 的函数解析式.48.(2020·上海市静安区实验中学八年级课时练习)正比例函数23m y mx -=的图象经过第一、三象限,求m 的值.49.(2019·上海市市西初级中学八年级期末)如图1,某容器外形可看作由,,A B C 三个长方体组成,其中,,A B C 的底面积分别为22225,10,5,cm cm cm C 的容积是容器容积的14(容器各面的厚度忽略不计).现以速度v (单位:3/cm s )均匀地向容器注水,直至注满为止.图2是注水全过程中容器的水面高度h (单位:cm )与注水时间t (单位:s )的函数图象.()1在注水过程中,注满A 所用时间为______________s ,再注满B 又用了______________s ;()2注满整个容器所需时间为_____________s ;()3容器的总高度为____________cm.50.(2020·上海市格致初级中学八年级期中)已知点(2,﹣4)在正比例函数y=kx的图象上.(1)求k的值;(2)若点(﹣1,m)也在此函数y=kx的图象上,试求m的值.。

八年级11月数学练习卷(一)

八年级11月数学练习卷(一)

八年级11月数学练习卷(一) 姓名 成绩一、选择题(每小题只有一个正确答案。

每小题4分,共32分。

)1、将具有下列长度的三条线段首尾顺次相连,能组成直角三角形的是( )A 、1,2,3B 、5,12,13C 、4,5,7D 、9,80,812、2)9(-的值 ( )A 、9B 、-9C 、3D 、-33、一次函数x y =图象向下平移2个单位长度后,对应函数关系式是( )(A )2-=x y (B )x y 2= (C )x y 21=(D )2+=x y 4、点P (-1,2)关于y 轴对称的点的坐标为 ( )A 、(1,-2)B 、(-1,-2)C 、(1,2)D 、(2,1) 5、若532+y x b a 与x y b a 2425-是同类项.则( ).(A )⎩⎨⎧==2,1y x (B )⎩⎨⎧-==1,2y x (C )⎩⎨⎧==2,0y x (D )⎩⎨⎧==1,3y x6、已知正比例函数kx y =(0≠k )的函数值y 随x 的增大而减小,则一次函数k x y +=的 图象大致是( ).(A ) (B ) (C ) (D )7、下列计算中,正确的是( ). A. 532=+ B. 3332=+ C.3935153515==⨯=⨯÷ D. 231)32)(31(-=-=-+ 8 、二元一次方程{52323=+=-y x y x 的解是 ( )A 、 {01==y xB 、{223==y x C 、{232==y x D 、{17-==y x 二、填空题(每空4分,共28分)9、12181= ______________; 10、已知一次函数y=kx+3,请你补充一个条件 ,使y 随x 的增加而减少.11、B (0,-4)在直线b x y +-=图象上,则b = ;12、⎩⎨⎧==1,2y x 方程2x -ay=5的一个解,则a = ; 13、P (3,—4)到x 轴的距离是___________。

第11讲 一次函数的图象与性质(讲练)(解析版)

2021年中考数学一轮复习讲练测专题11一次函数的图像与性质1、知道一次函数与正比例函数的意义.2、结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式.3、会画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k≠0)探索并理解其性质(k>0或k<0时,图象的变化情况).1.(2020·北京中考真题)有一个装有水的容器,如图所示.容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是()A.正比例函数关系B.一次函数关系C.二次函数关系D.反比例函数关系【答案】B【分析】hcm注水时间为t分钟,根据题意写出h与t的函数关系式,从而可得答案.设水面高度为,【详解】解:设水面高度为,hcm 注水时间为t 分钟,则由题意得:0.210,h t =+所以容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系,故选B .【点睛】本题考查的是列函数关系式,判断两个变量之间的函数关系,掌握以上知识是解题的关键.2.(2020·广西中考真题)直线y =kx +2过点(﹣1,4),则k 的值是( )A .﹣2B .﹣1C .1D .2【答案】A【分析】由直线y =kx +2过点(﹣1,4),利用一次函数图象上点的坐标特征可得出关于k 的一元一次方程,解之即可得出k 值.【详解】解:∵直线y =kx +2过点(﹣1,4),∴4=﹣k +2,∴k =﹣2.故选:A .【点睛】本题考查的是一次函数图像上点的坐标特点,以及利用待定系数法求解一次函数的解析式,掌握一次函数图像上的点满足函数解析式是解题的关键.3.(2020·安徽中考真题)已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()1,2-B .()1,2-C .()2,3D .()3,4 【答案】B【分析】先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可.【详解】∵一次函数3y kx =+的函数值y 随x 的增大而减小,∴k ﹤0,A .当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C .当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意, 故选:B .【点睛】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键.4.(2020·江苏泰州市·中考真题)点(),P a b 在函数32y x =+的图像上,则代数式621a b -+的值等于( )A .5B .3C .3-D .1-【答案】C【分析】把(),P a b 代入函数解析式得32=+b a ,化简得32-=-a b ,化简所求代数式即可得到结果;【详解】把(),P a b 代入函数解析式32y x =+得:32=+b a ,化简得到:32-=-a b ,∴()()621=231=221=-3-+-+⨯-+a b a b .故选:C .【点睛】本题主要考查了通过函数解析式与已知点的坐标得到式子的值,求未知式子的值,准确化简式子是解题的关键.5.(2020·浙江嘉兴市·中考真题)一次函数21y x =--的图象大致是( )A .B .C .D .【答案】D【分析】根据一次函数的图象与系数的关系选出正确选项.【详解】解:根据函数解析式21y x =--,∵k 0<,∴直线斜向下,∵0b <,∴直线经过y 轴负半轴,图象经过二、三、四象限.故选:D .【点睛】本题考查一次函数的图象,解题的关键是能够根据解析式系数的正负判断图象的形状. 6.(2020·山东济南市·中考真题)若m <﹣2,则一次函数()11y m x m =++-的图象可能是( )A .B .C .D .【答案】D【分析】由m <﹣2得出m +1<0,1﹣m >0,进而利用一次函数的性质解答即可.【详解】解:∵m <﹣2,∴m +1<0,1﹣m >0,所以一次函数()11y m x m =++-的图象经过一,二,四象限,故选:D .【点睛】本题考查的是一次函数的图像与性质,不等式的基本性质,掌握一次函数y kx b =+中的,k b 对函数图像的影响是解题的关键 .7.(2020·四川凉山彝族自治州·中考真题)已知一次函数y =(2m +1)x +m -3的图像不经过第二象限,则m 的取值范围( )A .m>-12B .m<3C .-12<m<3D .-12<m≤3 【答案】D【分析】一次函数的图象不经过第二象限,即可能经过第一,三,四象限,或第一,三象限,所以要分两种情况.【详解】当函数图象经过第一,三,四象限时,21030m m ⎧⎨-⎩+><,解得:-12<m <3. 当函数图象经过第一,三象限时,21030m m +>=⎧⎨-⎩,解得m =3. ∴-12<m≤3. 故选D.【点睛】一次函数的图象所在的象限由k ,b 的符号确定:①当k >0,b >0时,函数y =kx +b 的图象经过第一,二,三象限;②当k >0,b <0时,函数y =kx +b 的图象经过第一,三,四象限;③当k <0,b >0时,函数y =kx +b 的图象经过第一,二,四象限;④当k <0,b <0时,函数y =kx +b 的图象经过第二,三,四象限.注意当b =0的特殊情况.8.(2020·西藏中考真题)如图,一个弹簧不挂重物时长6cm ,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y (单位:cm )关于所挂物体质量x(单位:kg )的函数图象如图所示,则图中a 的值是( )A .3B .4C .5D .6【答案】A【分析】 根据题目中的函数解析式,可以求得y 与x 的函数关系式,然后令y =7.5,求出x 的值,即此时x 的值就是a 的值,本题得以解决.【详解】解:设y 与x 的函数关系式为y =kx+b ,6910.5b k b =⎧⎨+=⎩, 解得,k 0.5b 6=⎧⎨=⎩, 即y 与x 的函数关系式是y =0.5x+6,当y =7.5时,7.5=0.5x+6,得x =3,即a 的值为3,故选:A .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.9.(2019·浙江杭州市·中考真题)某函数满足当自变量1x =时,函数值0y =;当自变量0x =时,函数值1y =,写出一个满足条件的函数表达式_____.【答案】1y x =-+或21y x =-+或1y x =-等.【分析】由于题中没有指定是什么具体的函数,可以从一次函数,二次函数等方面考虑,只要符合题中的两个条件即可.【详解】符合题意的函数解析式可以是1y x =-+或21y x =-+或1y x =-等,(本题答案不唯一) 故答案为如1y x =-+或21y x =-+或1y x =-等.【点睛】本题考查一次函数、二次函数的解析式,解题的关键是知道一次函数、二次函数的定义. 10.(2020·贵州黔东南苗族侗族自治州·中考真题)把直线y =2x ﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为_____.【答案】y =2x +3【分析】直接利用一次函数的平移规律进而得出答案.【详解】解:把直线y =2x ﹣1向左平移1个单位长度,得到y =2(x +1)﹣1=2x +1,再向上平移2个单位长度,得到y =2x +3.故答案为:y =2x +3.【点睛】本题考查了一次函数的平移,熟练掌握是解题的关键.11.(2020·天津中考真题)将直线2y x =-向上平移1个单位长度,平移后直线的解析式为________.【答案】21y x =-+【分析】根据直线的平移规律是上加下减的原则进行解答即可.【详解】解:∵直线的平移规律是“上加下减”,∴将直线2y x =-向上平移1个单位长度所得到的的直线的解析式为:21y x =-+; 故答案为:21y x =-+.【点睛】本题考查的是一次函数的图像与几何变换,熟知“上加下减”的原则是解决本题目的关键. 12.(2020·山东临沂市·中考真题)点1,2m ⎛⎫-⎪⎝⎭和点(2,)n 在直线2y x b =+上,则m 与n 的大小关系是_________.【答案】m <n【分析】先根据直线的解析式判断出函数的增减性,再根据两点的横坐标大小即可得出结论.【详解】解:∵直线2y x b =+中,k=2>0,∴此函数y 随着x 的增大而增大, ∵12-<2, ∴m <n .故答案为:m <n .【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键. 13.(2020·四川成都市·中考真题)一次函数(21)2y m x =-+的值随x 值的增大而增大,则常数m 的取值范围为_________. 【答案】12m >【分析】根据一次函数的性质得2m-1>0,然后解不等式即可.【详解】解:因为一次函数(21)2y m x =-+的值随x 值的增大而增大,所以2m-1>0. 解得12m >. 故答案为:12m >. 【点睛】本题考查了一次函数的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.14.(2020·辽宁丹东市·中考真题)一次函数2y x b =-+,且0b >,则它的图象不经过第_________象限.【答案】三【分析】根据一次函数的性质,即可得到答案.【详解】解:在一次函数2y x b =-+中,∵20-<,0b >,∴它的图象经过第一、二、四象限,不经过第三象限;故答案为:三【点睛】本题考查了一次函数的性质,熟练掌握0k <,0b >,经过第一、二、四象限是解题的关键.15.(2020·江苏宿迁市·中考真题)已知一次函数y =2x ﹣1的图象经过A (x 1,1),B (x 2,3)两点,则x 1_____x 2(填“>”“<”或“=”).【答案】<【分析】由k =2>0,可得出y 随x 的增大而增大,结合1<3,即可得出x 1<x 2.【详解】解:∵k =2>0,∴y 随x 的增大而增大.又∵1<3,∴x 1<x 2.故答案为:<.【点睛】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记“当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小”.16.(2020·江苏南京市·中考真题)将一次函数24y x =-+的图象绕原点O 逆时针旋转90,所得到的图像对应的函数表达式是__________.【答案】122y x =+ 【分析】 根据原一次函数与x,y 轴的交点坐标,并求出旋转后这两点对应的坐标,再由待定系数法求解一次方程的表达式即可.【详解】∵一次函数的解析式为24y x =-+,∴设与x 轴、y 轴的交点坐标为()2,0A 、()0,4B ,∵一次函数24y x =-+的图象绕原点O 逆时针旋转90,∴旋转后得到的图象与原图象垂直,旋转后的点为()10,2A 、()1-4,0B , 令y ax b =+,代入点得12a =,2b =, ∴旋转后一次函数解析式为122y x =+. 故答案为122y x =+. 【点睛】本题主要考查了一次函数图像与几何变换,正确把握互相垂直的两直线的位置关系是解题的关键.17.(2020·湖南中考真题)已知一次函数y =kx +b (k ≠0)的图象经过A (3,18)和B (﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y =kx +b (k ≠0)的图象与反比例函数y =m x (m ≠0)的图象只有一个交点,求交点坐标.【答案】(1)一次函数的解析式为y =2x +12;(2)(﹣3,6).【分析】(1)直接把(3,18),(﹣2,8)代入一次函数y =kx +b 中可得关于k 、b 的方程组,再解方程组可得k 、b 的值,进而求出一次函数的解析式;(2)联立一次函数解析式和反比例函数解析式可得2x 2+12x ﹣m =0,再根据题意得到△=0时,两函数图像只有一个交点,解方程即可得到结论.【详解】解:(1)把(3,18),(﹣2,8)代入一次函数y =kx +b (k ≠0),得31828k b k b +=⎧⎨-+=⎩, 解得212k b =⎧⎨=⎩,∴一次函数的解析式为y =2x +12;(2)∵一次函数y =kx +b (k ≠0)的图象与反比例函数y =mx(m ≠0)的图象只有一个交点,∴212y x my x =+⎧⎪⎨=⎪⎩只有一组解, 即2x 2+12x ﹣m =0有两个相等的实数根, ∴△=122﹣4×2×(﹣m )=0, ∴m =-18.把m =-18代入求得该方程的解为:x =-3, 把x =-3代入y =2x +12得:y =6, 即所求的交点坐标为(-3,6). 【点睛】本题主要考查了用待定系数法确定一次函数的解析式,运用判别式△求两个不同函数的交点坐标;特别地,小题(2)联立一次函数解析式和反比例函数解析式,运用只有一个交点时△=0的知识点,是解答本小题关键所在.18.(2020·北京中考真题)在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数y x =的图象平移得到,且经过点(1,2). (1)求这个一次函数的解析式;(2)当1x >时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,直接写出m 的取值范围. 【答案】(1)1y x =+;(2)2m ≥ 【分析】(1)根据一次函数(0)y kx b k =+≠由y x =平移得到可得出k 值,然后将点(1,2)代入y x b =+可得b 值即可求出解析式;(2)由题意可得临界值为当1x =时,两条直线都过点(1,2),即可得出当12x m >>,时,(0)y mx m =≠都大于1y x =+,根据1x >,可得m 可取值2,可得出m 的取值范围.【详解】(1)∵一次函数(0)y kx b k =+≠由y x =平移得到, ∴1k =,将点(1,2)代入y x b =+可得1b =, ∴一次函数的解析式为1y x =+;(2)当1x >时,函数(0)y mx m =≠的函数值都大于1y x =+,即图象在1y x =+上方,由下图可知:临界值为当1x =时,两条直线都过点(1,2), ∴当12x m >>,时,(0)y mx m =≠都大于1y x =+, 又∵1x >,∴m 可取值2,即2m =, ∴m 的取值范围为2m ≥. 【点睛】本题考查了求一次函数解析式,函数图像的平移,一次函数的图像,找出临界点是解题关键.考点一一次函数图像与系数的关系例1.(2020·明光市明湖学校八年级月考)若一次函数y=kx+b的图象经过第一、二、四象限,则一次函数y=bx+k的图象大致是()A. B. C. D.【答案】D【分析】根据一次函数y=kx+b图象在坐标平面内的位置关系先确定k,b的取值范围,再根据k,b 的取值范围确定一次函数y=bx+k图象在坐标平面内的位置关系,从而求解.【详解】解:∵一次函数y=kx+b过一、二、四象限,∴则函数值y随x的增大而减小,图象与y轴的正半轴相交∴k<0,b>0,∴一次函数y=bx+k的图象y随x的增大而增大,与y轴负半轴相交,∴一次函数y=bx+k的图象经过一三四象限.故选:D.【点睛】本题考查了一次函数的性质.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0;一次函数y=kx+b图象与y轴的正半轴相交⇔b>0,一次函数y=kx+b图象与y轴的负半轴相交⇔b<0,一次函数y=kx+b图象过原点⇔b=0.【变式训练】=+的图象如图所示,则下列结论正确的1.(2020·湖南益阳市·中考真题)一次函数y kx b是()A .0k <B .1b =-C .y 随x 的增大而减小D .当2x >时,0kx b +<【答案】B 【分析】根据一次函数的图象与性质判断即可. 【详解】由图象知,k ﹥0,且y 随x 的增大而增大,故A 、C 选项错误; 图象与y 轴负半轴的交点坐标为(0,-1),所以b=﹣1,B 选项正确; 当x ﹥2时,图象位于x 轴的上方,则有y ﹥0即+kx b ﹥0,D 选项错误, 故选:B . 【点睛】本题考查一次函数的图象与性质,利用数形结合法熟练掌握一次函数的图象与性质是解答本题的关键.2.(2020·江苏镇江市·中考真题)一次函数y =kx +3(k ≠0)的函数值y 随x 的增大而增大,它的图象不经过的象限是( ) A .第一 B .第二C .第三D .第四【答案】D 【分析】根据一次函数y =kx +3(k ≠0)的函数值y 随x 的增大而增大,可以得到k >0,与y 轴的交点为(0,3),然后根据一次函数的性质,即可得到该函数图象经过哪几个象限,不经过哪个象限,从而可以解答本题. 【详解】解:∵一次函数y =kx +3(k ≠0)的函数值y 随x 的增大而增大, ∴k >0,该函数过点(0,3),∴该函数的图象经过第一、二、三象限,不经过第四象限, 故选:D . 【点睛】本题考查了一次函数的性质及一次函数的图象.解答本题的关键是明确题意,利用一次函数的性质解答.考点二 一次函数的性质例2. (2020·湖北省直辖县级行政单位·中考真题)对于一次函数2y x =+,下列说法不正确的是( ) A .图象经过点()1,3 B .图象与x 轴交于点()2,0- C .图象不经过第四象限 D .当2x >时,4y <【答案】D 【分析】根据一次函数的图像与性质即可求解. 【详解】A.图象经过点()1,3,正确;B.图象与x 轴交于点()2,0-,正确C.图象经过第一、二、三象限,故错误;D.当2x >时,y >4,故错误; 故选D . 【点睛】此题主要考查一次函数的图像与性质,解题的关键是熟知一次函数的性质特点. 【变式训练】1.(2020·广东广州市·中考真题)一次函数31y x =-+的图象过点()11,x y ,()121,x y +,()132,x y +,则( )A .123y y y <<B .321y y y <<C .213y y y <<D .312y y y <<【答案】B 【分析】根据一次函数的图象分析增减性即可. 【详解】因为一次函数的一次项系数小于0,所以y 随x 增减而减小. 故选B . 【点睛】本题考查一次函数图象的增减性,关键在于分析一次项系数与零的关系.2.(2020·辽宁丹东市·中考真题)一次函数2y x b =-+,且0b >,则它的图象不经过第_________象限. 【答案】三 【分析】根据一次函数的性质,即可得到答案. 【详解】解:在一次函数2y x b =-+中, ∵20-<,0b >,∴它的图象经过第一、二、四象限,不经过第三象限; 故答案为:三 【点睛】本题考查了一次函数的性质,熟练掌握0k <,0b >,经过第一、二、四象限是解题的关键.考点三 求一次函数的解析式例3(2020·湖南郴州市·中考真题)小红在练习仰卧起坐,本月1日至4日的成绩与日期具有如下关系:小红的仰卧起坐成绩y 与日期x 之间近似为一次函数关系,则该函数表达式为__________. 【答案】y=3x+37. 【分析】利用待定系数法即可求出该函数表达式.【详解】解:设该函数表达式为y=kx+b ,根据题意得:40243k b k b +⎧⎨+⎩==, 解得337k b ⎧⎨⎩==,∴该函数表达式为y=3x+37. 故答案为:y=3x+37. 【点睛】本题考查了一次函数的应用,会利用待定系数法求出一次函数的解析式是解题的关键. 【变式训练】1.(2020·江西中考真题)在平面直角坐标系中,点O 为坐标原点,抛物线223y x x =--与y 轴交于点A ,与x 轴正半轴交于点B ,连接AB ,将Rt OAB 向右上方平移,得到Rt O A B '''△,且点O ',A '落在抛物线的对称轴上,点B '落在抛物线上,则直线A B ''的表达式为( ) A .y x = B .1y x =+C .12y x =+D .2y x =+【答案】B 【分析】先求出A 、B 两点的坐标和对称轴,先确定三角形向右平移了1个单位长度,求得B′的坐标,再确定三角形向上平移5个单位,求得点A′的坐标,用待定系数法即可求解. 【详解】解:当y=0时,2230x x --=,解得x 1=-1,x 2=3, 当x=0时,y=-3, ∴A (0,-3),B (3,0), 对称轴为直线12bx a=-=, 经过平移,A '落在抛物线的对称轴上,点B '落在抛物线上, ∴三角形Rt OAB 向右平移1个单位,即B′的横坐标为3+1=4, 当x=4时,y=42-2×4-3=5,∴B′(4,5),三角形Rt OAB 向上平移5个单位, 此时A′(0+1,-3+5),∴A′(1,2), 设直线A B ''的表达式为y=kx+b , 代入A′(1,2),B′(4,5),可得254k bk b =+⎧⎨=+⎩ 解得:11k b =⎧⎨=⎩,故直线A B ''的表达式为1y x =+, 故选:B . 【点睛】本题考查二次函数的图象和与坐标轴的交点坐标、图形的平移和待定系数法求一次函数表达式等知识点,解题的关键是熟练掌握二次函数的图形和性质.2.(2020·贵州黔西南布依族苗族自治州·中考真题)如图,正比例函数的图象与一次函数y =-x +1的图象相交于点P ,点P 到x 轴的距离是2,则这个正比例函数的解析式是________.【答案】y =-2x 【分析】首先将点P 的纵坐标代入一次函数的解析式求得其横坐标,然后代入正比例函数的解析式即可求解. 【详解】∵点P 到x 轴的距离为2, ∴点P 的纵坐标为2,∵点P 在一次函数y =-x +1上, ∴2=-x +1,解得x =-1, ∴点P 的坐标为(-1,2). 设正比例函数解析式为y =kx ,把P (-1,2)代入得2=-k ,解得k =-2, ∴正比例函数解析式为y =-2x , 故答案为:y =-2x . 【点睛】本题考查了用待定系数法求正比例函数解析式,及两函数交点问题的处理能力,熟练的进行点与线之间的转化计算是解题的关键.考点四 一次函数式图像的平移变换例4. (2020·山东日照市·中考真题)将函数y =2x 的图象向上平移3个单位,则平移后的函数解析式是( ) A .y =2x +3 B .y =2x ﹣3C .y =2(x +3)D .y =2(x ﹣3)【答案】A 【分析】直接利用一次函数“上加下减”的平移规律即可得出答案. 【详解】解:∵将函数y =2x 的图象向上平移3个单位, ∴所得图象的函数表达式为:y =2x +3. 故选:A . 【点睛】本题考查一次函数图象与几何变换,正确记忆“左加右减,上加下减”的平移规律是解题关键. 【变式训练】1.(2020·四川内江市·中考真题)将直线21y x =--向上平移两个单位,平移后的直线所对应的函数关系式为( ) A .25y x =-- B .23y x =--C .21y x =-+D .23y x =-+【答案】C【分析】向上平移时,k的值不变,只有b发生变化.【详解】解:原直线的k=-2,b=-1;向上平移两个单位得到了新直线,那么新直线的k=-2,b=-1+2=1.∴新直线的解析式为y=-2x+1.故选:C.【点睛】本题主要考查了一次函数图象的变换,求直线平移后的解析式时要注意平移时k和b的值发生变化.2.(2020·四川广安市·中考真题)一次函数y=2x+b的图象过点(0,2),将函数y=2x+b 的图象向上平移5个单位长度,所得函数的解析式为________.【答案】y=2x+7【分析】将点(0,2)代入一次函数解析式中,即可求出原一次函数解析式,然后根据平移方式即可求出结论.【详解】解:将点(0,2)代入y=2x+b中,得2=b∴原一次函数解析式为y=2x+2将函数y=2x+2的图象向上平移5个单位长度,所得函数的解析式为y=2x+2+5=2x+7 故答案为:y=2x+7.【点睛】此题考查的是求一次函数解析式和图象的平移,掌握利用待定系数法求一次函数解析式和一次函数的平移规律是解题关键.。

2019春人教版八年级数学下册课件:期末复习精炼 第十九章 一次函数(共33张PPT)


函数y=-
x+5的图象l1分别与x,y轴交于A,B两点,
正比例函数的图象l2与l1交于点C(m,4). (1)求m的值及l2的解析式; (2)求S△AOC-S△BOC的值; (3)一次函数y=kx+1的图象 为l3,且l1,l2,l3不能围成三 角形,直接写出k的值.
三、解答题
解:(1)把C(m,4)代入一次函数y=得4=m+5. x+5,可
A.x>
B.
< x<
C.x<
D.0<x<
一、选择题
3.(2018抚顺)一次函数y=-x-2的图象经过( D ) A.第一、二、三象限 C.第一、三、四象限 B.第一、二、四象限 D.第二、三、四象限
4. (2017陕西)若一个正比例函数的图象经过A(3, -6),B(m,-4)两点,则m的值为( A ) A. 2 B. 8 C. -2 D. -8
A. 小涛家离报亭的距离是900 m B. 小涛从家去报亭的平均速度是 60 m/min C. 小涛从报亭返回家中的平均速 度是80 m/min D. 小涛在报亭看报用了15 min
一、选择题
4. 如图M19-6所示是本地区一种产品30天的销售图象, 图①是产品日销售量y(单位:件)与时间t(单位:天) 的函数关系,图②是一件产品的销售利润z(单位:元) 与时间t(单位:天)的函数关系,已知日销售利润=日 销售量×一件产品的销售利润,下列结论错误的是 ( C) A. 第24天的销售量 为200件 B. 第10天销售一件 产品的利润是15元 C. 第12天与第30天 这两天的日销售利润相等 D. 第30天的日销售利润是750元
三、解答题
(3)∵一次函数y=kx+1的图象为l3,且l1,l2,l3不能 围成三角形, ∴当l3经过点C(2,4)时,k= 当l2,l3平行时,k=2; 当l1,l3平行时,k=故k的值为 或 2或 . . ;

最新沪科版初中数学八年级上册12.2第1课时正比例函数的图象和性质1优质课教案

12.2 一次函数第1课时正比例函数的图象和性质1.认识正比例函数的意义,掌握正比例函数解析式的特点;(重点)2.理解和掌握正比例函数图象的性质,能利用所学知识解决相关实际问题;(难点)3.经历利用正比例函数图象直观分析正比例函数性质的过程,体会数形结合的思想方法和研究函数的方法,形成合作交流、独立思考的学习习惯.一、情境导入生活中,我们常常见到各式各样的钟表.时钟的秒针每旋转一圈,表示时间过了1min;旋转两圈,表示时间过了2min……那么,秒针走过的圈数与经过的时间之间的关系如何表示呢?二、合作探究探究点一:一次函数与正比例函数【类型一】一次函数与正比例函数的识别下列函数关系式中,哪些是一次函数,哪些是正比例函数?(1)y=-x-4; (2)y=5x2-6;(3)y=2πx; (4)y=-x 2;(5)y=1x;(6)y=8x2+x(1-8x).解析:首先看每个函数的表达式能否变形转化为y=kx+b(k≠0,k、b是常数)的形式,如果x的次数是1,则是一次函数,否则不是一次函数;在一次函数中,如果常数项b=0,那么它是正比例函数.解:(1)是一次函数,不是正比例函数;(2)不是一次函数,也不是正比例函数;(3)是一次函数,也是正比例函数;(4)是一次函数,也是正比例函数;(5)不是一次函数,也不是正比例函数;(6)是一次函数,也是正比例函数.方法总结:一个函数是一次函数的条件:自变量是一次整式,一次项系数不为零;判断一个函数是正比例函数的条件:自变量是一次整式,一次项系数不为零,常数项为零.【类型二】根据一次函数与正比例函数的定义求字母的值已知函数y=(m-5)xm2-24+m+1.(1)若它是一次函数,求m的值;(2)若它是正比例函数,求m的值.解析:(1)要使函数是一次函数,根据一次函数的定义x的指数m2-24=1,且一次项系数m-5≠0;(2)要使函数是正比例函数,除了满足上述条件外,还需加上m+1=0这个条件.解:(1)因为y=(m-5)xm2-24+m+1是一次函数,所以m=±5且m≠5,所以m=-5.所以当m=-5时,函数y=(m-5)xm2-24+m+1是一次函数;(2)因为y=(m-5)xm2-24+m+1是一次函数,所以m2-24=1且m-5≠0且m+1=0.所以m=±5且m≠5且m=-1,这样的m不存在,所以函数y=(m -5)xm2-24+m+1不可能为正比例函数.方法总结:函数是一次函数,则k≠0,且自变量的次数为1.当b=0时,一次函数为正比例函数.探究点二:正比例函数的图象和性质【类型一】正比例函数的图象已知正比例函数y=kx(k≠0),当x=-1时,y=-2,则它的图象大致是( )解析:将x=-1,y=-2代入正比例函数y=kx(k≠0)中,求出k的值为2,即可根据正比例函数的性质判断出函数的大致图象,故选C.方法总结:本题考查了正比例函数的图象,知道正比例函数的图象是过原点的直线,且当k>0时,图象过第一、三象限;当k<0时,图象过第二、四象限.【类型二】正比例函数的性质(x1,y1)、P2(x2,已知正比例函数y=-kx的图象经过第一、三象限,Py)、P3(x3,y3)三点在函数y=(k-2)x的图象上,且x1>x3>x2,则y1,y2,y3的大2小关系为( )A.y1>y3>y2 B.y1>y2>y3C.y1<y3<y2 D.y3>y2>y1解析:由y=-kx的图象经过第一、三象限,可知-k>0即k<0,∴k-2<0.由正比例函数的性质可知,y=(k-2)x的函数值y随x的增大而减小,则由x>x3>x2得y1<y3<y2.故选C.1方法总结:正比例函数y=kx(k≠0)的函数值y随x的变化情况由k的符号决定.k>0时,y随x的增大而增大;k<0时,y随x的增大而减小.探究点三:两点法画正比例函数的图象画出函数y=-2x的图象.解析:当x=0时,y=0;当x=1时,y=-2.经过原点O(0,0)和点A(1,-2)作直线,则这条直线就是函数y=-2x的图象.解:如图所示.方法总结:作函数图象的一般步骤:列表,描点,连线,正比例函数的图象是经过原点的直线,只需再另外找一点就可作出图象.三、板书设计正比例函数的图象和性质错误!本节内容第一次涉及一个具体的函数的学习和研究,要让学生体会研究函数的方法步骤和知识结构,因此,本课的教与学的活动,要学生有比较清醒的方案意识.教学中随着一环扣一环的提问、练习、点拨,突出教学目标.通过观察—比较—交流—归纳,利用图象和解析式的统一化抽象为具体,降低了难度,突破了正比例函数的性质这一难点.让学生进行课堂小结,不仅使学生从总体上把握知识,强化知识的理解和记忆,还培养了学生良好的个性和思维品质.。

2019年陕西省中考数学试题及参考答案(word解析版)

2019年陕西省初中毕业学业考试数学试卷(满分120分,考试时间120分钟)第一部分(选择题共30分)一、选择题(共10小题,每小题3分,共30分。

每小题只有一个选项是符合题意的)1.计算:(﹣3)0=()A.1 B.0 C.3 D.﹣2.如图,是由两个正方体组成的几何体,则该几何体的俯视图为()A.B.C.D.3.如图,OC是∠AOB的角平分线,l∥OB,若∠1=52°,则∠2的度数为()A.52°B.54°C.64°D.69°4.若正比例函数y=﹣2x的图象经过点O(a﹣1,4),则a的值为()A.﹣1 B.0 C.1 D.25.下列计算正确的是()A.2a2•3a2=6a2B.(﹣3a2b)2=6a4b2C.(a﹣b)2=a2﹣b2D.﹣a2+2a2=a26.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A.2+B.+C.2+D.37.在平面直角坐标系中,将函数y=3x的图象向上平移6个单位长度,则平移后的图象与x轴的交点坐标为()A.(2,0)B.(﹣2,0)C.(6,0)D.(﹣6,0)8.如图,在矩形ABCD中,AB=3,BC=6,若点E,F分别在AB,CD上,且BE=2AE,DF=2FC,G,H分别是AC的三等分点,则四边形EHFG的面积为()A.1 B.C.2 D.49.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°10.在同一平面直角坐标系中,若抛物线y=x2+(2m﹣1)x+2m﹣4与y=x2﹣(3m+n)x+n关于y 轴对称,则符合条件的m,n的值为()A.m=,n=﹣B.m=5,n=﹣6 C.m=﹣1,n=6 D.m=1,n=﹣2第二部分(非选择题共90分)二、填空题(共4小题,每小题3分,共12分)11.已知实数﹣,0.16,,π,,,其中为无理数的是.12.若正六边形的边长为3,则其较长的一条对角线长为.13.如图,D是矩形AOBC的对称中心,A(0,4),B(6,0),若一个反比例函数的图象经过点D,交AC于点M,则点M的坐标为.14.如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为.三、解答题(共11小题,共78分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档