三极管的三种放大电路
三极管放大电路

思考题
•
1.基本放大电路由哪些必不可少的部
分组成?各元件有什么作用?
• 2.试画出PNP型三极管的基本放大电路
,并注明电源的实际极性,以及各极电流
实际方向。
2.2 图解分析法
• 所谓图解法,就是利用三极管的特性曲线,通过 作图来分析放大电路性能的方法。其优点是直观 ,物理意义清楚。
• 2.2.1 静态分析
小知识 输入电阻是从输入端看 放大电路的等效电阻,输出电阻 是从输出端看放大电路的等效电 阻。因此,输入电阻要包括RB , 而输出电路就不能把负载电阻算 进去。
• 思考题 • 1.对于共射极放大电路,为什么通常希望输入
电阻较高为好?
2.4 放大电路静态工作点的稳 定
• .4.1 温度对静态工作点的影响
2.2.3 用图解法分析波形的非线性失真
• 1.由三极管特性的非线性引起的失真
•
三极管的非线性表现在输入特性曲线的弯曲
部分和输出特性曲线间距的不均匀分布。
• 2.静态工作点选择不当引起的失真
•
如果静态工作点没有选择在放大区中间,沿
着负载线偏上或偏下,这时输出电压信号就可能
进入三极管输出特性曲线上的饱和区或截止区,
•
(3)输出电阻
• 小知识 • 射极输出器的特点: • ①电压放大倍数小于1,但近似等于1; • ②输出电压与输入电压同相; • ③输入电阻高,输出电阻低。
*2.5.2 共基极电路
• 1.电路的组成
•
如图2-21(a)所示是一个共基极放大电路,图2-21
(b)是共基极放大电路的交流通路,从图中看出基极是
2.1.2 放大电路的工作原理
• 1.无输入信号时放大器的工作情况
(完整word版)放大电路的工作原理和三种基本放大组态

放大电路的工作原理和三种基本放大组态放大电路里通常是晶体三极管、场效应管、集成运算放大器等,这些器件也称为有源器件。
共射放大电路如图所示。
V cc是集电极回路的直流电源,也是给放大电路提供能量的,一般在几伏到几十伏范围,以保证晶体三极管的发射结正向偏置、集电结反向偏置,使晶体三极管工作在放大区。
R c是集电极电阻,一般在几 K 至几十K 范围,它的作用是把集电极电流i C的变化变成集电极电压u CE的变化。
V BB是基极回路的直流电源,使发射结处于正向偏置,同时通过基极电阻R b提供给基极一个合适的基极电流I BQ,使三极管工作在放大区中适当的区域,这个电流I BQ常称为基极偏置电流,它决定着三极管的工作点,基极偏置电流I BQ是由V BB和基极电阻R b共同作用决定的,基极电阻R b一般在几十KΩ至几百KΩ范围。
如在输入端加上一个较小的正弦信号u i , 通过电容C1加到三极管的基极,从而引起基极电流i B在原来直流I BQ的基础上作相应的变化,由于u i是正弦信号,使i B随u i也相应地按正弦规律变化,这时的i B实际上是直流分流I BQ和交流分量i b迭加后的量。
同时i B的变化使集电极电流 i C 随之变化,因此i C也是直流分量I C和交流分量i c的迭加,但i C要比i B大得多(即β倍)。
电流i C在电阻R C上产生一个压降,集电极电压u CE =V CC-i C R L,这个集电极电压u CE也是由直流分量I C和交流分量 i C两部分迭加的。
这里的 u CE和 i C相位相反,即当 i C增大时, u CE减少。
由于C 2的隔直作用,使只有 u CE的交流分量通过电容C2作为放大电路的输出电压u O。
如电路参数选择适当,u O要比 u I的幅值要大得多,同时 u I与 u O的相位正好相反。
电路中各点的电流、电压波形如图所示。
放大电路的图解法放大电路有三种主要分析方法:一是图解法,二是微变等效电路法,三是计算机辅助分析法。
三极管放大电路原理和组态

三极管的根本工作管理构造与操作原理三极管的根本构造是两个反向连结的pn接面,如图1所示,可有pnp和npn两种组合。
三个接出来的端点依序称为射极〔emitter, E〕、基极〔base, B〕和集极〔collector, C〕,名称来源和它们在三极管操作时的功能有关。
图中也显示出npn与pnp三极管的电路符号,射极特别被标出,箭号所指的极为n型半导体,和二极管的符号一致。
在没接外加偏压时,两个pn接面都会形成耗尽区,将中性的p型区和n型区隔开。
图1 pnp(a)与npn(b)三极管的构造示意图与电路符号。
三极管的电特性和两个pn接面的偏压有关,工作区间也依偏压方式来分类,这里我们先讨论最常用的所谓〞正向活性区〞(forward active),在此区EB极间的pn接面维持在正向偏压,而BC极间的pn接面那么在反向偏压,通常用作放大器的三极管都以此方式偏压。
图2(a)为一pnp三极管在此偏压区的示意图。
EB接面的耗散区由于在正向偏压会变窄,载体看到的位障变小,射极的电洞会注入到基极,基极的电子也会注入到射极;而BC接面的耗尽区那么会变宽,载体看到的位障变大,故本身是不导通的。
图2(b)画的是没外加偏压,和偏压在正向活性区两种情况下,电洞和电子的电位能的分布图。
三极管和两个反向相接的pn二极管有什么差异呢?其间最大的不同部分就在于三极管的两个接面相当接近。
以上述之偏压在正向活性区之pnp三极管为例,射极的电洞注入基极的n型中性区,马上被多数载体电子包围遮蔽,然后朝集电极方向扩散,同时也被电子复合。
当没有被复合的电洞到达BC接面的耗尽区时,会被此区内的电场加速扫入集电极,电洞在集电极中为多数载体,很快藉由漂移电流到达连结外部的欧姆接点,形成集电极电流IC。
IC的大小和BC间反向偏压的大小关系不大。
基极外部仅需提供与注入电洞复合部分的电子流IBrec,与由基极注入射极的电子流InB? E〔这部分是三极管作用不需要的部分〕。
双极型晶体三极管及其基本放大电路

4、多级放大电路的耦合方式有阻容耦合、变压器耦合、直接耦 合等类型。前级输出即为后级的输入,前级的输出电阻是后 级的信号源内阻,后级的输入电阻是前级的负载电阻。放大 电路的总增益为各级放大倍数的乘积;输入电阻是第一级电 路的输入电阻,输出电阻是最后一级电路的输出电阻。
5、复合管放大电路的分析可以等效成单管放大电路的分析。
模拟电子技术
ห้องสมุดไป่ตู้
双极型晶体三极管及其基本放大电路
晶体管的结构、原理及特性曲线→放大电路的分析方法→由 晶体管构成的三种基本放大电路→多级放大电路和复合管的 分析→放大电路的频率响应。 1、晶体管按照结构分成和两种,按材料分成硅管和锗管,由 于硅管的温度特性较好,所以硅管应用广泛。 晶体管有三种工作状态:
多级放大电路的级数越多,通频带越窄。
模拟电子技术
由于电路中的电抗元件对不同频率的输入信号呈现的电抗值 不同,电路的电压放大倍数是信号频率的函数,即频率响应。 频率响应分为幅频特性和相频特性,可以用波特图表示。
6、单级放大电路的频率响应:在中频段基本与频率无关;在低 频段,电压放大倍数随频率的降低而减小,输出电压与输入 电压之间的相移也发生变化;在高频段,电压放大倍数随频 率的升高而减小,相移也发生变化。
2、放大电路的分析方法有图解法和微变等效模型法两种。图解 法主要用来分析失真和静态工作点,工程计算中主要使用微 变等效模型法。 晶体管的模型有两种,低频为h参数等效模型,高频为混合π 模型。 分析放大电路的步骤为先直流,后交流。即先用直流通路计 算静态工作点,后画出交流通路,用低频小信号模型计算电 压放大倍数、输入电阻和输出电阻等交流参数。 由于静态工作点影响电路的性能,故实用放大电路都要有静 态工作点稳定的措施。
三极管放大电路的简化

三极管放大电路的简化三极管放大电路的简化1. 引言在电子领域中,三极管是一种常见而重要的电子器件,被广泛应用于放大和开关电路中。
三极管放大电路是其中一种常见的应用,其通过三极管的放大作用,实现对电信号的放大。
本文将以三极管放大电路为主题,深入探讨其简化的理论及应用。
2. 三极管的基本原理三极管是一种多极管的电子元件,由发射极、基极和集电极组成。
它基于半导体材料的电流控制特性,可以实现对电流的放大效果。
在放大电路中,三极管起到放大电压和电流的作用,使输入信号得以放大,并输出更大的信号。
三极管放大电路主要分为共射、共集和共基三种基本结构。
3. 三极管放大电路的简化模型在实际应用中,为了方便分析和计算,可以将三极管放大电路进行简化。
简化模型主要包括:(1)直流等效电路模型:将三极管的交流行为略去,只考虑其直流工作状态,该模型主要用于分析直流偏置点以及对静态工作点的设计;(2)交流等效电路模型:将三极管的直流偏置点固定,只考虑其交流信号的传输和放大,该模型主要用于分析交流放大倍数和频率响应特性;(3)T模型和π模型:这两种模型是用于近似表示三极管输入和输出的电压和电流关系,可以更方便地进行分析和计算。
4. 三极管放大电路的应用三极管放大电路在电子设备中有广泛的应用,主要包括:(1)音频放大器:三极管放大电路能够将低电压的音频信号放大至足够驱动扬声器的电平,实现音频的放大;(2)射频放大器:在通信系统中,三极管放大电路可用于射频信号的放大,增强信号的传输和接收质量;(3)视频放大器:三极管放大电路可用于视频信号的放大,提高视频信号的清晰度和亮度。
5. 个人观点和理解在我看来,三极管放大电路的简化是电子学中的重要概念之一。
通过简化,我们可以更加方便地理解和分析电路的工作原理,并进行相应的设计和优化。
通过研究三极管放大电路的简化模型,我们可以更好地理解电子器件的特性,为实际应用提供有针对性的解决方案。
总结与回顾通过本文的探讨,我们了解到三极管放大电路作为一种重要的电子应用,其简化模型有助于我们深入地研究和理解其工作原理。
2-6晶体管放大电路的三种组态

2.6 三极管放大电路的三种组态
第2章 三极管及其放大电路
13
2.6 三极管放大电路的三种组态
第2章 三极管及其放大电路
2. 6. 2 共集电极放大电路 共集基本放大电路如图2—33所示,集电极作为交流信号 所示, 共集基本放大电路如图 所示 的公共端,由发射极取出输出信号,因此也称为射极输出器。 的公共端,由发射极取出输出信号,因此也称为射极输出器。 假定BJT的(β=80,rbe=lk ,RL=3k 。放大电路的静态和 假定 的 = , 动态分析如下: 动态分析如下:
图2—33共集电极电路静态分析 共集电极电路静态分析
7
2.6 三极管放大电路的三种组态
第2章 三极管及其放大电路
1.静态分析 静态分析
根据直流通路图2—33 (b)求解 点: 求解Q点 根据直流通路图 求解
UCC = IBQRb +UBEQ + (1+ β )IBQRe
IBQ =
UCC −UBEQ Rb + (1+ β)Re
Rb2 UB = ⋅ UCC Rb1 + Rb2
UB − UBE ICQ ≈ IEQ = Re
IBQ =
ICQ
β
UCEQ = UCC − ICQ Rc − IEQ Re
2
2.6 三极管放大电路的三种组态
第2章 三极管及其放大电路
2. 动态分析
微变等效电路如图2—32所示,电压放大倍数、输 所示,电压放大倍数、 微变等效电路如图 所示 入电阻和输出电阻求解如下。 入电阻和输出电阻求解如下。
& & & ' U o = I e ( Re // RL ) = (1 + β ) I b RL
三极管放大电路说说三极管放大的基本电路

三极管放大电路,说说三极管放大的基本电路 三极管放大电路,说说三极管放大的基本电路三极管是电流缩小气件,有三个极,折柳叫做集电极C,基极B,发射极E。
分红NPN和PNP两种。
我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基础原理。
下面的理解仅看待NPN型硅三极管。
如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。
这两个电流的方向都是流起程射极的,所以发射极E上就用了一个箭头来表示电流的方向。
三极管的放大作用就是:集电极电流受基极电流的管制(假定电源能够提供应集电极足够大的电流的话),并且基极电流很小的变化,会惹起集电极电流很大的变化,且变化餍足肯定的比例干系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β通常远大于1,例如几十,几百)。
借使我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,招致了Ic很大的变化。
如果集电极电流Ic是流过一个电阻R的,那么遵循电压计算公式U=R*I能够算得,这电阻上电压就会发生很大的变化。
我们将这个电阻上的电压取进去,就获得了放大后的电压信号了。
三极管 微波三极管广州首套房贷利率优吉峰农三极管在现实的放大电路中行使时,还必要加适当的偏置电路。
这有几个由来。
首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必需在输入电压大到一定水平后才华孕育发生(对于硅管,常取0.7V)。
当基极与发射极之间的电压小于0.7V时,基极电流就可以以为是0。
但实际中要放大的信号不时远比0.7V要小,如果不加偏置的话,这么小的信号就不够以引起基极电流的改动(由于小于0.7V时,基极电流都是0)。
如果我们事前在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,事实上三极管作用。
三极管 饱和 截止 放大

三极管饱和截止放大三极管是一种常用的电子元件,具有饱和、截止和放大等特性。
在电子电路中,三极管的工作状态可分为饱和状态、截止状态和放大状态。
本文将详细介绍三极管的这三种状态及其在电路中的应用。
一、饱和状态饱和状态是指三极管的输入电流较大,输出电流达到最大值的状态。
当三极管处于饱和状态时,其集电极-发射极之间的电压较低,且接近于零。
此时,三极管的输出电流几乎不受控制,主要由输入电流决定。
饱和状态的三极管具有低电压降和高电流增益的特点,适用于需要大电流放大的电路中。
二、截止状态截止状态是指三极管的输入电流较小,输出电流几乎为零的状态。
当三极管处于截止状态时,其集电极-发射极之间的电压较高,且接近于电源电压。
此时,三极管的输出电流非常小,可以忽略不计。
截止状态的三极管可以用于开关电路中,通过控制输入电流的大小来控制输出电路的开关状态。
三、放大状态放大状态是指三极管的输入电流适中,输出电流经过放大的状态。
当三极管处于放大状态时,其集电极-发射极之间的电压介于饱和状态和截止状态之间。
此时,三极管的输出电流受到输入电流和电压的控制,可以实现信号的放大。
放大状态的三极管被广泛应用于放大电路中,用于增强信号的幅度。
在实际电路中,三极管的工作状态可以通过控制输入电流和输入电压来实现。
当输入电流和输入电压适合三极管的工作状态要求时,三极管可以正常工作并实现相应的功能。
因此,在电路设计中,需要根据具体的应用需求选择合适的工作状态。
三极管的饱和、截止和放大状态在电子电路中扮演着重要的角色。
饱和状态适用于需要大电流放大的电路,如功放电路;截止状态适用于开关电路,如触发器电路;放大状态适用于信号放大电路,如放大器电路。
了解三极管的这三种状态及其应用,对于电子电路的设计和实现具有重要的意义。
三极管的饱和、截止和放大状态是其常见的工作状态。
饱和状态适用于大电流放大,截止状态适用于开关控制,放大状态适用于信号放大。
在电路设计中,根据具体需求选择合适的工作状态,能够实现电路的正常工作和功能实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三极管的三种放大电路
三极管是一种常用的电子元件,它具有放大信号的特性,因此被广泛应用于各种放大电路中。
三极管的三种放大电路分别是共射放大电路、共基放大电路和共集放大电路。
1. 共射放大电路
共射放大电路是最常见的三极管放大电路之一,它的特点是输入信号与输出信号都是相对于电源地的。
在共射放大电路中,三极管的发射极作为输入端,集电极作为输出端,基极则起到控制信号的作用。
共射放大电路的工作原理是:当输入信号加在基极上时,三极管的发射极电流会发生相应的变化,进而改变集电极电流,实现对输入信号的放大。
由于共射放大电路具有较大的电压增益和较小的输入阻抗,因此常用于需要较大信号放大的场合,如音频放大电路。
2. 共基放大电路
共基放大电路是另一种常见的三极管放大电路,它的特点是输入信号与输出信号都是相对于基极的。
在共基放大电路中,三极管的基极作为输入端,发射极作为输出端,集电极则起到控制信号的作用。
共基放大电路的工作原理是:当输入信号加在基极上时,三极管的发射极电流会发生相应的变化,进而改变集电极电流,实现对输入信号的放大。
由于共基放大电路具有较大的电流增益和较小的输出
阻抗,因此常用于需要较大电流放大的场合,如射频放大电路。
3. 共集放大电路
共集放大电路是三极管放大电路中的第三种形式,它的特点是输入信号与输出信号都是相对于集电极的。
在共集放大电路中,三极管的集电极作为输入端,发射极作为输出端,基极则起到控制信号的作用。
共集放大电路的工作原理是:当输入信号加在集电极上时,三极管的发射极电流会发生相应的变化,进而改变集电极电流,实现对输入信号的放大。
由于共集放大电路具有较小的电压增益和较大的输入阻抗,因此常用于需要较小信号放大的场合,如电压跟随器。
三极管的三种放大电路各有其特点和应用场合,合理选择和设计放大电路对于实现信号的有效放大至关重要。
在实际应用中,需要根据具体的要求和条件来选择合适的放大电路,并进行相应的电路设计和优化。
通过合理的选择和设计,三极管的放大电路能够在各种电子设备和电路中发挥出良好的放大效果,提升信号质量和系统性能。