2018年广东普通高中学业水平考试数学试卷真题和答案解析
2018年广东省中考数学真题试卷2套(含答案及详细解析)

2018年广东省中考数学真题试卷2套(含答案及详细解析)2018年广东省深圳市中考数学真题一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)6的相反数是()A.﹣6B.C.D.62.(3分)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×1073.(3分)图中立体图形的主视图是()A.B.C.D.4.(3分)观察下列图形,是中心对称图形的是()A.B.C.D.5.(3分)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10B.85,5C.80,85D.80,106.(3分)下列运算正确的是()A.a2•a3=a6B.3a﹣a=2a C.a8÷a4=a2D.7.(3分)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)8.(3分)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2B.∠3=∠4C.∠2+∠4=180°D.∠1+∠4=180°9.(3分)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A.B.C.D.10.(3分)如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3B.C.6D.11.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根12.(3分)如图,A、B是函数y=上两点,P为一动点,作PB∥y轴,P A∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP=S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④二、填空题(每题3分,满分12分)13.(3分)分解因式:a2﹣9=.14.(3分)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.15.(3分)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.16.(3分)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=,则AC=.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5分)计算:()﹣1﹣2sin45°+|﹣|+(2018﹣π)0.18.(6分)先化简,再求值:,其中x=2.19.(7分)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为人,a=,b=.(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?20.(8分)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.21.(8分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.(9分)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cos B=.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.23.(9分)已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x 轴上,请直接写出Q点的坐标.【参考答案】一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A【解析】6的相反数是:﹣6.故选:A.2.B【解析】260000000用科学记数法表示为2.6×108.故选:B.3.B【解析】从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.4.D【解析】A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选:D.5.A【解析】众数为85,极差:85﹣75=10,故选:A.6.B【解析】A、a2•a3=a5,故此选项错误;B、3a﹣a=2a,正确;C、a8÷a4=a4,故此选项错误;D、+无法计算,故此选项错误.故选:B.7.D【解析】∵该直线向上平移3的单位,∴平移后所得直线的解析式为:y=x+3;把x=2代入解析式y=x+3=5,故选:D.8.B【解析】∵直线a,b被c,d所截,且a∥b,∴∠3=∠4,故选:B.9.A【解析】设大房间有x个,小房间有y个,由题意得:,故选:A.10.D【解析】设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=AB tan∠OAB=3,∴光盘的直径为6,故选:D.11.C【解析】∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣,得到b>0,由抛物线与y轴的交点位置得到c>0,A、abc<0,错误;B、2a+b>0,错误;C、3a+c<0,正确;D、ax2+bx+c﹣3=0无实数根,错误;故选:C.12.B【解析】∵点P是动点,∴BP与AP不一定相等,∴△BOP与△AOP不一定全等,故①不正确;设P(m,n),∴BP∥y轴,∴B(m,),∴BP=|﹣n|,∴S△BOP=|﹣n|×m=|12﹣mn|∵P A∥x轴,∴A(,n),∴AP=|﹣m|,∴S△AOP=|﹣m|×n=|12﹣mn|,∴S△AOP=S△BOP,故②正确;如图,过点P作PF⊥OA于F,PE⊥OB于E,∴S△AOP=OA×PF,S△BOP=OB×PE,∵S△AOP=S△BOP,∴OB×PE=OA×PE,∵OA=OB,∴PE=PF,∵PE⊥OB,PF⊥OA,∴OP是∠AOB的平分线,故③正确;如图1,延长BP交x轴于N,延长AP交y轴于M,∴AM⊥y轴,BN⊥x轴,∴四边形OMPN是矩形,∵点A,B在双曲线y=上,∴S△AMO=S△BNO=6,∵S△BOP=4,∴S△PMO=S△PNO=2,∴S矩形OMPN=4,∴mn=4,∴m=,∴BP=|﹣n|=|3n﹣n|=2|n|,AP=|﹣m|=,∴S△APB=AP×BP=×2|n|×=8,故④错误;∴正确的有②③,故选:B.二、填空题(每题3分,满分12分)13.(a+3)(a﹣3)【解析】a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).14.【解析】个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:,故答案为:.15.8【解析】∵四边形ACDF是正方形,∴AC=AF,∠CAF=90°,∴∠EAC+∠F AB=90°,∵∠ABF=90°,∴∠AFB+∠F AB=90°,∴∠EAC=∠AFB,在△CAE和△AFB中,,∴△CAE≌△AFB,∴EC=AB=4,∴阴影部分的面积=×AB×CE=8,故答案为:8.16.【解析】如图,∵AD,BE是分别是∠BAC和∠ABC的平分线,∴∠1=∠2,∠3=∠4,∵∠ACB=90°,∴2(∠2+∠4)=90°,∴∠2+∠4=45°,∴∠EFG=∠2+∠4=45°,过点E作EG⊥AD于G,在Rt△EFG中,EF=,∴FG=EG=1,∵AF=4,∴AG=AF﹣FG=3,根据勾股定理得,AE==,连接CF,∵AD平分∠CAB,BE平分∠ABC,∴CF是∠ACB的平分线,∴∠ACF=45°=∠AFE,∵∠CAF=∠F AE,∴△AEF∽△AFC,∴,∴AC===,故答案为.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.解:原式=2﹣2×++1=3.18.解:原式=把x=2代入得:原式=19.解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.20.(1)证明:∵由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,∴∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=BA∴四边形ACDB是菱形,∵∠ACD与△FCE中的∠FCE重合,它的对角∠ABD顶点在EF上,∴四边形ACDB为△FEC的亲密菱形;(2)解:设菱形ACDB的边长为x,∵四边形ABCD是菱形,∴AB∥CE,∴∠F AB=∠FCE,∠FBA=∠E,△EAB∽△FCE则:,即,解得:x=4,过A点作AH⊥CD于H点,∵在Rt△ACH中,∠ACH=45°,∴,∴四边形ACDB的面积为:.21.解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•=,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.22.解:(1)作AM⊥BC,∵AB=AC,AM⊥BC,BC=2BM,∴CM=BC=1,∵cos B==,在Rt△AMB中,BM=1,∴AB==;(2)连接DC,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE公共角,∴△EAC∽△CAD,∴=,∴AD•AE=AC2=10;(3)在BD上取一点N,使得BN=CD,在△ABN和△ACD中,∴△ABN≌△ACD(SAS),∴AN=AD,∵AN=AD,AH⊥BD,∴NH=HD,∵BN=CD,NH=HD,∴BN+NH=CD+HD=BH.23.解:(1)把点代入,解得:a=1,∴抛物线的解析式为:;(2)由知A(,﹣2),设直线AB解析式为:y=kx+b,代入点A,B的坐标,得:,解得:,∴直线AB的解析式为:y=﹣2x﹣1,易求E(0,1),,,若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△F AE,∴,∴,设点P(t,﹣2t﹣1),则:解得,,由对称性知;当时,也满足∠OPM=∠MAF,∴,都满足条件,∵△POE的面积=,∴△POE的面积为或.(3)若点Q在AB上运动,如图1,设Q(a,﹣2a﹣1),则NE=﹣a、QN=﹣2a,由翻折知QN′=QN=﹣2a、N′E=NE=﹣a,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴==,即===2,∴QR=2、ES=,由NE+ES=NS=QR可得﹣a+=2,解得:a=﹣,∴Q(﹣,);若点Q在BC上运动,且Q在y轴左侧,如图2,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=、SE=﹣a,在Rt△SEN′中,(﹣a)2+12=a2,解得:a=,∴Q(﹣,2);若点Q在BC上运动,且点Q在y轴右侧,如图3,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=、SE=﹣a,在Rt△SEN′中,(﹣a)2+12=a2,解得:a=,∴Q(,2).综上,点Q的坐标为(﹣,)或(﹣,2)或(,2).2018年广东省中考数学真题一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0B.C.﹣3.14D.22.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107C.1.442×108D.0.1442×1083.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.4.(3分)数据1、5、7、4、8的中位数是()A.4B.5C.6D.75.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4B.x≥4C.x≤2D.x≥27.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△P AD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.12.(3分)分解因式:x2﹣2x+1=.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x=.14.(3分)已知+|b﹣1|=0,则a+1=.15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣118.(6分)先化简,再求值:•,其中a=.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?【参考答案】一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.C【解析】根据实数比较大小的方法,可得﹣3.14<0<<2,所以最小的数是﹣3.14.故选:C.2.A【解析】14420000=1.442×107,故选:A.3.B【解析】根据主视图的定义可知,此几何体的主视图是B中的图形,故选:B.4.B【解析】将数据重新排列为1、4、5、7、8,则这组数据的中位数为5故选:B.5.D【解析】A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.6.D【解析】移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x≥2,故选:D.7.C【解析】∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.8.B【解析】∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵AB∥CD,∴∠B=∠D=40°,故选:B.9.A【解析】∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.10.B【解析】分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.二、填空题(共6小题,每小题3分,满分18分)11.50°【解析】弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.12.(x﹣1)2【解析】x2﹣2x+1=(x﹣1)2.13.2【解析】根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.14.2【解析】∵+|b﹣1|=0,∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a+1=2.故答案为:2.15.π【解析】连接OE,如图,∵以AD为直径的半圆O与BC相切于点E,∴OD=2,OE⊥BC,易得四边形OECD为正方形,∴由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD=22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.16.(2,0)【解析】如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).三、解答题(一)17.解:原式=2﹣1+2=3.18.解:原式=•=2a,当a=时,原式=2×=.19.解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.20.解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.21.解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+20)=300人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.22.证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.23.解:(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:,解得:,所以二次函数的解析式为:y=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°=,设DC为y=kx﹣3,代入(,0),可得:k=,联立两个方程可得:,解得:,所以M1(3,6);②若M在B下方,设MC交x轴于点E,则∠OEC=45°﹣15°=30°,∴OE=OC•tan60°=3,设EC为y=kx﹣3,代入(3,0)可得:k=,联立两个方程可得:,解得:,所以M2(,﹣2),综上所述M的坐标为(3,6)或(,﹣2).24.(1)证明:连接OC,在△OAD和△OCD中,∵,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,又AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)证明:∵tan∠ABC==2,∴设BC=a、则AC=2a,∴AD=AB==,∵OE∥BC,且AO=BO,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE==2a,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切;(3)解:连接AF,∵AB是⊙O的直径,∴∠AFD=∠BAD=90°,∵∠ADF=∠BDA,∴△AFD∽△BAD,∴=,即DF•BD=AD2①,又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,∴=,即OD•DE=AD2②,由①②可得DF•BD=OD•DE,即=,又∵∠EDF=∠BDO,∴△EDF∽△BDO,∵BC=1,∴AB=AD=、OD=、ED=2、BD=、OB=,∴=,即=,解得:EF=.25.解:(1)由旋转性质可知:OB=OC,∠BOC=60°,∴△OBC是等边三角形,∴∠OBC=60°.故答案为60.(2)如图1中,∵OB=4,∠ABO=30°,∴OA=OB=2,AB=OA=2,∴S△AOC=•OA•AB=×2×2=2,∵△BOC是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,∴AC==2,∴OP===.(3)①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC 于点E.则NE=ON•sin60°=x,∴S△OMN=•OM•NE=×1.5x×x,∴y=x2.∴x=时,y有最大值,最大值=.②当<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin60°=(8﹣1.5x),∴y=×ON×MH=﹣x2+2x.当x=时,y取最大值,y<,③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y=•MN•OG=12﹣x,当x=4时,y有最大值,最大值=2,综上所述,y有最大值,最大值为.。
2018届广州市普通高中毕业班综合测试(一)(文数试题) 含答案

4 4 4 4 $ & + &4 7 $ ( ( +4 -. 3 % " & *, & % ! % ! %
!
!
4 & " " %
% ! 4 4 # ! # (' 3 (' O3$ %+ & + 4& % % % !
!
! (' (' (+ # # 槡 +1 3$ 3 % & " "4 &# ' ! # '
+ ( & $ " , ! ) ! # $ ' " %
( ( , # ' 7;' %6 ¦Ef(§^+ (" ($" 8+ ' 8 7+'& " * ! !
+ Y X ¨ © ( ª i j / « i j ( ! ¬' - . %$ ( !
-
! ! !' ! ! c±+ =' %6 $ =+ 3 ' ®¯°(\j <' !+ ! !' 6 ;+ 槡 % +!槡 )' = +" !槡 )&=# ," !槡 !# & ! 槡 ) 槡
!!=>?@
!"#$%&'()*("+,-. /0.12"+3!"#45 6789:2; # " <.=>?@ABCDEFGHI2BCJK" LMN: O.12"#PQ'R%STUV /0WXYC2"#Z[\]:2>? ! " ^_` 6abc2d`efWXYC2$C g4hij]YCkl"#IhCm2 'n /0WXYC2"#opqr2TU s4t$C" "#uvwxCm yz.1kl{|}'RIh2~Cm" ) " $mCm :4$ C" % "
2018年高考广东理科数学A卷及详细答案 精品

2018年普通高等学校招生全国统一考试(广东卷)数学(理科) 试卷类型:A 成本文参考公式:柱体的体积公式V =Sh ,其中S 为柱体的底面积,h 为柱体的高;线性回归方程 y bxa =+ 中系数计算公式为 1122211()()()nnii i ii i nniii i xx y y x yx y b xx xnxη====---==--∑∑∑∑,ay bx =-,其中,x y 表示样本均值; 若n 是正整数,则()n n a b a b -=-12(n n a a b --++ (2)1n n ab b --+).一、 选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数z 满足()12i z +=,其中i 为虚数单位,则z = A .1i + B. 1i -C. 22i +D.22i -2.已知集合(){,A x y =∣,x y 为实数,且}221xy +=,(){,B x y =∣,x y 为实数,且}y x =,则A B 的元素个数为A.0 B.1 C.2 D.3 3.若向量a, b, c 满足a ∥b 且a ⊥c ,则(2)⋅+=c a bA.4 B.3C.2D.04.设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列结论恒成立的是 A.()()f x g x +是偶函数 B.()()f x g x -是奇函数 C.()()f x g x +是偶函数 D.()()f x g x -是奇函数5.在平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定。
若(,)M x y 为D 上的动点,点A的坐标为,则=⋅z OM OA 的最大值为A. B. C .4D .36.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为 A .12 B .35 C .23 D .347.如下图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为A.B.C.D.8.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的,若T ,V 是Z 的两个不相交的非空子集,T V Z = 且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A.,T V 中至少有一个关于乘法是封闭的B. ,T V 中至多有一个关于乘法是封闭的C.,T V 中有且只有一个关于乘法是封闭的D. ,T V 中每一个关于乘法都是封闭的二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
广东省高中数学学业水平考试试卷含答案(共3套)

2021年广东省普通高中学业水平考试数学测试卷(时间:90分钟满分:150分)一、选择题(共15小题,每小题6分,共90分)1.已知集合M={-1,0,1},N={0,1,2},则M∪N=()A.{-1,0,1,2}B.{-1,0,1}C.{-1,0,2}D.{0,1}2.点(,4)在直线l:ax-y+1=0上,则直线l的倾斜角为()A.30°B.45°C.60°D.120°3.已知a=(4,2),b=(6,y),且a⊥b,则y的值为()A.-12B.-3C.3D.124.若a<b<0,则下列不等式:①|a|>|b|;②;③>2;④a2<b2中,正确的有()A.1个B.2个C.3个D.4个5.已知α是第二象限角,sin α=,则cos α=()A.-B.-C.D.6.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是()A.y=x-2B.y=x-1C.y=x2-2D.y=lo x7.不等式组表示的平面区域是()8.一个容量为20的样本数据,组(10,20](20,30](30,40](40,50](50,60](60,70]距频234542数则样本在(10,50]上的频率为()A.B.C.D.9.cos 40°sin 80°+sin 40°sin 10°=()A.B.-C.cos 50°D.10.函数y=log2(x2-3x+2)的递减区间是()A.(-∞,1)B.(2,+∞)C.D.11.从1,2,3,4,5中随机取出两个不同的数,其和为奇数的概率为()A. B.C. D.12.将函数y=sin的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析式是()A.y=sin xB.y=sinC.y=sinD.y=sin13.已知l,m,n为三条不同的直线,α,β,γ为三个不同的平面,则下列判断正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n∥β,α⊥β,则m⊥nC.若α∩β=l,m∥α,m∥β,则m∥lD.若α∩β=m,α∩γ=n,l⊥m,l⊥n,则l⊥α14.函数f(x)=log2x+x-2的零点所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)15.已知向量在正方形网格中的位置如图所示,若=λ+μ,则λ+μ=()A.2B.-2C.3D.-3二、填空题(共4小题,每小题6分,共24分)16.函数y=a x-1+1(a>0,且a≠1)的图象恒过定点.17.等差数列{a n}中,a2=3,a3+a4=9,则a1a6=.18.某学院A,B,C三个专业共有1 200名学生,为了调查这些学生勤工俭学的情况,拟用分层抽样的方法抽取一个容量为120的样本.已知该学院A专业有380名学生,B专业有420名学生,则该学院C专业应抽取名学生.19.设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则∠A的度数为.三、解答题(共3小题,每小题12分,共36分)20.已知向量a=,b=(sin x,cos 2x),x∈R,设函数f(x)=a·b.(1)求f(x)的最小正周期;(2)求f(x)在上的最大值和最小值.21.如图,直三棱柱(侧棱与底面垂直的棱柱)ABC-A1B1C1中,点G是AC的中点.(1)求证:B1C∥平面A1BG;(2)若AB=BC,AC=AA1,求证:AC1⊥A1B.22.已知函数f(x)=1+-xα(α∈R),且f(3)=-.(1)求α的值;(2)求函数f(x)的零点;(3)判断f(x)在(-∞,0)上的单调性,并给予证明.答案:1.A【解析】因为集合M={-1,0,1},N={0,1,2},所以M∪N={-1,0,1,2}.2.C【解析】∵点(,4)在直线l:ax-y+1=0上,∴a-4+1=0,∴a=,即直线l的斜率为,直线l的倾斜角为60°.3.A【解析】因为a=(4,2),b=(6,y),且a⊥b,所以a·b=0,即4×6+2y=0,解得y=-12.故选A.4.C【解析】对于①,根据不等式的性质,可知若a<b<0,则|a|>|b|,故正确;对于②,若a<b<0,两边同除以ab,则,即,故正确;对于③,若a<b<0,则>0,>0,根据基本不等式即可得到>2,故正确;对于④,若a<b<0,则a2>b2,故不正确.故选C.5.B【解析】∵α是第二象限角,sin α=,∴cos α=-=-.故选B.6.A【解析】∵y=x-1是奇函数,y=lo x不具有奇偶性,故排除B,D;又函数y=x2-2在区间(0,+∞)上是单调递增函数,故排除C.故选A.7.B【解析】由题意可知,(0,0)在x-3y+6=0的下方,满足x-3y+6≥0;(0,0)在直线x-y+2=0的下方,不满足x-y+2<0.故选B.8.D【解析】根据题意,样本在(10,50]上的频数为2+3+4+5=14,所求的频率为P=.故选D.9.D【解析】cos 40°sin 80°+sin 40°sin 10°=cos 40°cos 10°+sin 40°sin 10°=cos(40°-10°)=.10.A【解析】由x2-3x+2>0,得x<1或x>2,又y=log2(x3-3x+2)的底数是2,所以在(-∞,1)上递减.故选A.11.C【解析】从1,2,3,4,5中随机取出两个不同的数,共有(1,2)(1,3)(1,4)(1,5)(2,3)(2,4)(2,5)(3,4)(3,5)(4,5)10种,和为奇数的有6种,故P=.12.C【解析】将函数y=sin的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得函数y=sin,再将所得的图象向左平移个单位,得函数y=sin,即y=sin.故选C.13.C【解析】可采用排除法.A中平行于同一平面的两条直线可以平行,可以相交,也可以异面,所以A 错误;B中直线m,n可以相交,可以平行,也可以异面,所以B错误;D中条件可推出m,n⊂α,且l⊥m,l⊥n,但m,n不一定相交,故不能推出l⊥α,所以D错误.故选C.14.B【解析】函数f(x)=log2x+x-2的图象在(0,+∞)上连续不断,f(1)=0+1-2<0,f(2)=1+2-2>0,故函数f(x)=log2x+x-2的零点所在的区间是(1,2).故选B.15.A【解析】设小正方形边长为1.以A为原点,AD所在直线为x轴,与AD垂直的直线为y轴建立直角坐标系,那么=(1,0),=(1,2),=(2,-2),那么解得λ=-1,μ=3,所以λ+μ=2.故选A.16.(1,2)【解析】当x-1=0,即x=1时,y=2.∴函数y=a x-1+1(a>0,且a≠1)的图象恒过定点(1,2).17.14【解析】由等差数列的通项公式可得,a3+a4=2a1+5d=9,a1+d=3,所以a1=2,d=1,所以a1a6=2×7=14.18.40【解析】抽样比为1∶10,而C学院的学生有1 200-380-420=400(名),所以按抽样比抽取40名.19.90°【解析】根据正弦定理,可得sin B cos C+sin C cos B=sin2A⇔sin(B+C)=sin 2A,而sin(B+C)=sin A,所以sin A=sin 2A,所以sin A=1,所以∠A=90°.20.【解】f(x)=·(sin x,cos 2x)=cos x sin x-cos 2x=sin 2x-cos 2x=cos sin 2x-sin cos 2x=sin.(1)f(x)的最小正周期为T==π,即函数f(x)的最小正周期为π.(2)∵0≤x≤,∴-≤2x-.由正弦函数的性质知,当2x-,即x=时,f(x)取得最大值1.当2x-=-,即x=0时,f(x)取得最小值-,因此,f(x)在上的最大值是1,最小值是-.21.证明:(1)如图,连接AB1,交A1B于点O,连接OG.在△B1AC中,∵G,O分别为AC,AB1的中点, ∴OG∥B1C.又∵OG⊂平面A1BG,B1C⊄平面A1BG,∴B1C∥平面A1BG.(2)∵在直三棱柱ABC-A1B1C1中,AA1⊥底面ABC,BG⊂平面ABC,∴AA1⊥BG.∵G为棱AC的中点,AB=BC,∴BG⊥AC.∵AA1∩AC=A,∴BG⊥平面ACC1A1,∴BG⊥AC1.设AC=2,则AG=1,AA1=.在Rt△ACC1和Rt△A1AG中,tan∠AC1C=tan∠A1GA=,∴∠AC1C=∠A1GA.又∠AC1C+∠C1AC=90°,∴∠A1GA+∠C1AC=90°,∴A1G⊥AC1.∵BG∩A1G=G,∴AC1⊥平面A1BG.∵A1B⊂平面A1BG,∴AC1⊥A1B.22.【解】(1)由f(3)=-,得1+-3α=-,解得α=1.(2)由(1),得f(x)=1+-x.令f(x)=0,即1+-x=0,也就是=0,解得x=.经检验,x=是1+-x=0的根,所以函数f(x)的零点为.(3)函数f(x)=1+-x在(-∞,0)上是减函数.证明如下:设x1,x2∈(-∞,0),且x1<x2,则f(x1)-f(x2)==(x2-x1).因为x1<x2<0,所以x2-x1>0,x1x2>0,所以f(x1)-f(x2)>0,即f(x1)>f(x2),所以f(x)=1+-x在(-∞,0)上是减函数.2021年广东省普通高中学业水平考试数学模拟测试卷(时间:90分钟满分:150分)一、选择题(本大题共15小题.每小题6分,满分90分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M={-1,0,1,2},N={x|-1≤x<2},则M∩N=()A.{0,1,2}B.{-1,0,1}C.MD.N2.对任意的正实数x,y,下列等式不成立的是()A.lg y-lg x=lgB.lg (x+y)=lg x+lg yC.lg x3=3lg xD.lg x=3.已知函数f(x)=,设f(0)=a,则f(a)=()A.-2B.-1C.D.04.定义在R上的函数f(x)的图象关于直线x=2对称,且f(x)在(-∞,2)上是增函数,则()A.f(-1)<f(3)B.f(0)>f(3)C.f(-1)=f(3)D.f(0)=f(3)5.圆E经过三点A(0,1),B(2,0),C(0,-1),且圆心在x轴的正半轴上,则圆E的标准方程为()A.+y2=B.+y2=C.+y2=D.+y2=6.已知向量a=(1,1),b=(0,2),则下列结论正确的是()A.a∥bB.(2a-b)⊥bC.|a|=|b|D.a·b=37.某校高一(1)班有男、女学生共50人,其中男生20人,用分层抽样的方法,从该班学生中随机选取15人参加某项活动,则应选取的男、女生人数分别是()A.6和9B.9和6C.7和8D.8和78.如图所示,一个空间几何体的正视图和侧视图都是矩形,俯视图是正方形,则该几何体的体积为()A.1B.2C.4D.89.若实数x,y满足则z=x-2y的最小值为()A.0B.-1C.-D.-210.如图,O是平行四边形ABCD的两条对角线的交点,则下列等式正确的是()A. B.C. D.11.设△ABC的内角A,B,C的对边分别为a,b,c,若a=,b=2,c=,则C=()A. B. C. D.12.函数f(x)=4sin x cos x,则f(x)的最大值和最小正周期分别为()A.2和πB.4和πC.2和2πD.4和2π13.如图,在正方体ABCD-A1B1C1D1中,E,F,G,H分别为棱AA1,B1C1,C1D1,DD1的中点,则下列直线中与直线EF 相交的是()A.直线CC1B.直线C1D1C.直线HC1D.直线GH14.设函数f(x)是定义在R上的减函数,且f(x)为奇函数,若x1<0,x2>0,则下列结论不正确的是()A.f(0)=0B.f(x1)>0C.f≤f(2)D.f≤f(2)15.已知数列{a n}的前n项和S n=2n+1-2,则a1+a2+…+a n=()A.4B.4C. D.二、填空题(本大题共4小题,每小题6分,满分24分)16.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地……”,则该人最后一天走的路程为。
2018届广州市普通高中毕业班综合测试(一)(理数试题) 含答案

槡
出
+ ) " 1!9'
#' ( ( ! ' ' # ' # %&(" $(" :( :#+ )" )" ! ' ' ' & % ' ## # & % #' ## # & % + $ + $ + ! ) # + # $ " ( !
版
! ! & # ) 0 ( # ( " /!-./012345678 + + " ! # " " ! " # "
社
# # ' # " ,#&+& %&! &. ) + ! && & . $ . ) +" ! &. ) ." $ & &# &. ) + " ! " -()*+' ! " ,!'(" ! & -
考
* %& $$%+) " # " # #" # "
试
研
$mCm' :4$ C" ) "
研
! ' # # ' ; 5" " m' 95" !# ' ' . " ' ' + # %" # % ( !# "( '
2018年广州市普通高中毕业班综合测试一(一模)理科数学答案及评分细则

4 m2 12 . m2 4
所以 SABQ
解法 2:依题意直线 l 的斜率存在,设其方程为 y k x 4 ,
y k x 4 , 2 2 2 由 x2 得 4k +1 y 8ky 12k 0 . 2 y 1, 4
2 2
当 n 1 时, a1 1 也符合上式. 所以数列 an 的通项公式 an 4n 3 n N
*
.
第 1 页 共 16 页
数学(理科)答案 A
(2) n 1 时,
a1 1 ,所以 b1 2a1 2 . b1 2
a1 a2 b1 b2 an 1 5 4n 5 , bn 2
max
2
当且仅当 t 32 时,即 m 2 7 时, SABQ 所以 ABQ 面积的最大值为
3 = . 4
3 . 4
【求 ABQ 面积的另解:因为点 Q 1, 0 到直线 l 的距离为 d
3 1 m2
.
| AB | 1 m2 ( y1 y2 )2 4 y1 y2 1 m2 1 6 m2 12 .】 d | AB | 2 m2 4
2
2
3 ,所以 b 2 a 2 c 2 1 .
所以点 G 的轨迹 C 的方程为
x2 y2 1. 4
(2)解法 1:依题意可设直线 l : x my 4 .
x my 4, 2 2 由 x2 ,得 (m 4) y 8my 12 0 . 2 y 1, 4
3 . 4
2018年广东省中考数学试卷(含答案与解析)
数学试卷第2页(共30页) 绝密★启用前广东省2018年初中学业水平考试数学(考试时间100分钟,满分120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.四个实数0,13, 3.14-,2中,最小的数是()A.0B.13C. 3.14-D.22.据有关部门统计,2018年“五一”小长假期间,广东各大景点共接待游客约14 420 000人次,将数14 420 000用科学记数法表示为()A.71.44210⨯B.70.144210⨯C.81.44210⨯D.80.144210⨯3.如图,由5个相同正方体组合成的几何体,它的主视图是()A B C D(第3题)4.数据1,5,7,4,8的中位数是()A.4B.5C.6D.75.下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形6.不等式313x x-+≥的解集是()A.4x≤B.4x≥C.2x≤D.2x≥7.在ABC△中,点D,E分别为边AB,AC的中点,则ADE△与ABC△的面积之比为,,()A.12B.13C.14D.168.如图,AB CD∥,且100DEC∠=,40C∠=,则B∠的大小是,,()A.30B.40C.50D.60(第8题)9.关于x的一元二次方程230x x m-+=有两个不相等的实数根,则实数m的取值范围为,,()A.94m<B.94m≤C.94m>D.94m≥10.如图,点P是菱形ABCD边上的一动点,它从点A出发沿A B C D→→→路径匀速运动到点D,设PAD△的面积为y,点P的运动时间为x,则y关于x的函数图象大致为,,( )A B C D(第10题)二、填空题(本大题共6小题,每小题4分,共24分)11.同圆中,已知AB所对的圆心角是100,则AB所对的圆周角是.12.分解因式:=+-122xx.13.一个正数的平方根分别是1x+和5x-,则x=.14.已知01=-+-bba,则=+1a.15.如图,在矩形ABCD中,2,4==CDBC,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)(第15题) (第16题)16.如图,已知等边三角形11OA B,顶点1A在双曲线3(0)y x=>上,点1B的坐标为(2,0).过点1B作121B A OA∥交双曲线于点2A,过点2A作2211A B A B∥交x轴于点2B,得到第二个等边三角形122B A B;过点2B作2312B A B A∥交双曲线于点3A,过点3A作3322A B A B∥交x轴于点3B,得到第三个等边三角形233B A B;……以此类推,则点6B 毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第1页(共30页)的坐标为.三、解答题(本大题共3小题,共18分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分6分)计算:11 220182-⎛⎫--+ ⎪⎝⎭.18.(本小题满分6分)先化简,再求值:22221644a aaa a-+-,其中a.19.(本小题满分6分)如图,BD是菱形ABCD的对角线,75CBD∠=.(1)请用尺规作图法,作AB的垂直平分线EF,垂足为点E,交AD于点F.(不要求写作法,但保留作图痕迹)(2)在(1)的条件下,连接BF,求DBF∠的度数.(第19题)四、解答题(本大题共3小题,共21分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分7分)某公司购买了一批A,B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3 120元购买A型芯片的条数与用4 200元购买B型芯片的条数相等.(1)求:该公司购买的A,B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求:购买了多少条A型芯片?21.(本小题满分7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为人.(2)把条形统计图补充完整.(3)若该企业有员工10000人,请估计该企业这周的工作量完成情况为“剩少量”的员工有多少人.(第21题)22.(本小题满分7分)如图,在矩形ABCD中,ADAB>,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:ADF CED△≌△.(2)求证:DEF△是等腰三角形.(第22题)数学试卷第3页(共30页)数学试卷第4页(共30页)数学试卷 第5页(共30页) 数学试卷 第6页(共30页)五、解答题(本大题共3小题,共27分.解答应写出文字说明、证明过程或演算步骤) 23.(本小题满分9分)如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于,A B 两点,直线y x m =+过顶点C 和点B .(1)求m 的值.(2)求函数2(0)y ax b a =+≠的解析式.(3)抛物线上是否存在点M ,使得15MCB ∠=?若存在,请求出点M 的坐标;若不存在,请说明理由.(第23题)24.(本小题满分9分)如图,在四边形ABCD 中,AB AD CD ==,以AB 为直径的O 经过点C ,连接,AC OD 交于点E .(1)求证:OD BC ∥.(2)若tan 2ABC ∠=,求证:DA 与O 相切.(3)在(2)条件下,连接BD 交于O 于点F ,连接EF ,若1BC =,求EF 的长.(第24题)25.(本小题满分9分)已知Rt OAB △,90OAB ∠=,30ABO ∠=,斜边4OB =,将Rt OAB △绕点O 顺时针旋转60,得Rt ODC △,如题1图,连接BC . (1)填空:OBC ∠=;(2)如题1图,连接AC ,作OP AC ⊥,垂足为点P ,求OP 的长度.(3)如题2图,点,M N 同时从点O 出发,在OCB △边上运动,点M 沿O C B →→路径匀速运动,点N 沿O B C →→路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为每秒1.5个单位长度,点N 的运动速度为每秒1个单位长度,设运动时间为x s ,OMN △的面积为y .求:当x 为何值时y 取得最大值,最大值为多少?(结果分母可保留根号)(第25题)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________4广东省2018年全国中考试卷精选数学答案解析2.【答案】A【解析】714420000 1.44210=⨯. 【考点】科学记数法. 3.【答案】B【解析】从正面看这个几何体,从左边起第一列有2层,第二列有1层,第三列有1层. 【考点】三视图中的主视图. 4.【答案】B【解析】将数据重新排列为1、4、5、7、8,则这组数据的中位数为5. 【考点】中位数. 5.【答案】D【解析】A 项,是轴对称图形,也是中心对称图形,故此选项错误; B 项,是轴对称图形,也是中心对称图形,故此选项错误; C 项,不是轴对称图形,是中心对称图形,故此选项错误; D 项,是轴对称图形,不是中心对称图形,故此选项正确. 故选:D .【考点】轴对称图形及中心对称图形的概念. 6.【答案】D【解析】移项,得:331x x +-≥, 合并同类项,得:24x ≥, 系数化为1,得:2x ≥, 故选:D .【考点】解不等式. 7.【答案】C5/15【解析】∵点D 、E 分别为边AB 、AC 的中点, ∴DE 为ABC △的中位线, ∴DE BC ∥, ∴ADE ABC △∽△, ∴21()4ADE ABC S DE S BC ==△△. 故选:C .【考点】三角形的中位线,三角形中位线的性质,相似三角形的性质. 8.【答案】B【解析】∵100DEC ∠=,40C ∠=, ∴40D ∠=, 又∵AB CD ∥, ∴40B D ∠=∠=, 故选:B .【考点】平行四边形的性质,坐标与图形性质. 9.【答案】A【解析】∵关于x 的一元二次方程230x x m +=-有两个不相等的实数根, ∴224(3)410b ac m ∆=-=-⨯⨯->, ∴94m <. 故选:A .【考点】一元二次方程根的判别式. 10.【答案】B【解析】当点P 沿A B →路径匀速运动时,y 与x 成正比例关系,且y 随x 的增大而增大,运动到点B 时PAD △的面积最大;当点P 沿B C →路径匀速运动时,y 最大且保持不变;当点P 沿C D →路径匀速运动时,y 与x 成一次函数关系,且y 与x 的增大而减小. 【考点】动点问题的函数图象. 二、填空题 11.【答案】50【解析】∵同圆中,同弧所对的圆周角的度数等于它所对的圆心角度数的一半,∴AB 所对的圆周角是50. 【考点】圆周角定理.612.【答案】2(1)x -【解析】由完全平方公式,得2221(1)x x x -+=-. 【考点】分解因式. 13.【答案】2【解析】根据题意知150x x ++-=, 解得:2x =, 故答案为:2.【考点】平方根的性质,相反数的性质. 14.【答案】2【解析】∵1|0|b -=, ∴10b -=,0a b -=, 解得:1b =,1a =, 故12a +=. 故答案为:2.【考点】二次根式的性质,绝对值的性质,解方程. 15.【答案】π【解析】连接OE ,如图,∵以AD 为直径的半圆O 与BC 相切于点E , ∴2OD =,OE BC ⊥, 易得四边形OECD 为正方形,∴由弧DE 、线段EC 、CD 所围成的面积2290π224π360OECD EODS S ⋅⋅=-=-=-正方形扇形,∴阴影部分的面积124(4π)π2=⨯⨯--=. 故答案为π.【考点】矩形的判定与性质,切线的性质,全等三角形的判定与性质,扇形的面积公式. 16.【答案】【解析】如图,作2A C x ⊥轴于点C ,设1B C a =,则2A C =,7/15112OC OB B C a =+=+,2(2)A a +.∵点2A在双曲线0)y x =>上,∴(2)3a a a +==解得1a -,或1a =(舍去),∴211222OB OB B C =+=+=∴点2B 的坐标为;作3A D x ⊥轴于点D ,设2B D b =,则3AD b =,22OD OB B D b =+=,2(2,)A b b +.∵点3A 在双曲线0)y x x=>上, ∴)3b b=,解得b =b =,∴3222OB OB B D =+=∴点3B 的坐标为;同理可得点4B 的坐标为即(4,0); …,∴点n B 的坐标为,∴点6B 的坐标为. 故答案为.【考点】等边三角形的性质,解直角三角形,利用反比例函数的解析式求点的坐标.三、解答题 17.【答案】解:原式212=3=-+【解析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出答案. 【考点】实数的运算.18.【答案】解:原式22(4)(4)4(4) =2aa aa a aa+-=+-当a时,原式2=.【解析】原式先因式分解,再约分即可化简,继而将a的值代入计算.【考点】分式的化简求值.19.【答案】解:(1)如图,EF即为所求.(2)如图,∵BD是菱形ABCD的对角线,75CBD∠=,∴75ABD CBD∠=∠=,∴2150ABC CBD∠=∠=.∵AD BC∥,∴18030A ABC∠=-∠=.∵EF是AB的垂直平分线,∴FA FB=,∴30FBA A∠=∠=,∴753045DBF ABD ABF∠=∠-∠=-=.【解析】(1)分别以A、B为圆心,大于12AB长为半径画弧,过两弧的交点作直线即可;(2)根据DBF ABD ABF∠=∠-∠计算即可.【考点】基本作图,线段垂直平分线的性质,菱形的性质.四、解答题20.【答案】解:(1)设A型芯片的单价为x元,则B型芯片的单价为(9)x+元,根据题意,得312042009x x=+,89/15解得26x =.经检验,26x =是原方程的解. ∴26935+=(元).∴A ,B 型芯片的单价分别是26元,35元.(2)设购买A 型芯片a 条,则购买B 型芯片(200)a -条, 根据题意,得2635(200)6280a a +-=,解得80a =.∴购买了80条A 型芯片.【解析】(1)找准等量关系,正确列出分式方程; (2)找准等量关系,正确列出一元一次方程. 【考点】分式方程的应用,一元一次方程的应用. 21.【答案】(1)800 (2)补全条形统计图如图.(3)估计该企业这周的工作量完成情况为“剩少量”的员工有280100003500800⨯=(人). 【解析】1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可; (3)用总人数乘以样本中“剩少量”人数所占百分比可得. 【考点】条形统计图和扇形统计图的综合运用.22.【答案】证明:(1)∵四边形ABCD 是矩形,且矩形沿AC 折叠, ∴AD BC CE AE AB CD ====,,DAC ACB ECA ∠=∠=∠, EAC BAC DCA ∠=∠=∠.10∴DAC EAC ECA DCA ∠-∠=∠-∠, 即DAE ECD ∠=∠, ∴(SAS)ADE CED △≌△.(2)由(1)知,ADE CED △≌△, ∴DEF EDF ∠=∠∴DF EF =. ∴DEF △是等腰三角形.【解析】(1)根据矩形的性质结合折叠的性质找出AD CE =、AE CD =; (2)利用全等三角形的性质找出DEF EDF ∠=∠.【考点】全等三角形的判定与性质,翻折变换,矩形的性质. 五、解答题23.【答案】解:(1)∵直线y x m =+过点(0,3)C -, ∴3m =-.(2)由(1)知,直线的解析式为3y x =-, ∴令3y =,得3x =.∴(3,0)B . ∵点(3,0)B ,(0,3)C -在抛物线上,90,3,a b b +=⎧∴⎨=-⎩解得1,33.a b ⎧=⎪⎨⎪=-⎩ ∴2133y x =-. (3)存在.当点M 在点B 上方时,设CM 交OB 于点D ,如图1.∵点(0,3)C -,(3,0)B , ∴3OB OC ==,11/15∴45OCB OBC ∠=∠=.∵15MCB ∠=,∴30tan OCD OD OC OCD ∠=∴=∠,∴D .∴可得直线CD的解析式为3y =-.联立方程组23,13,3y y x ⎧=-⎪⎨=-⎪⎩解得12120,3, 6.x x y y ⎧=⎧=⎪⎨⎨=-=⎪⎩⎩∴M .当点M 在点B 下方时,设CM 与x 轴交于点D ,如图2.∵15,45MCB OCB ∠=∠=,∴60OCD ∠=,∴tan OD OC OCD =∠=∴D∴可得直线CD的解析式为33y x =-.联立方程组23,13,3y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩解得12120,3, 2.x x y y ⎧=⎧=⎪⎨⎨=-=-⎪⎩⎩∴2)M -.综上所述,抛物线上存在点M ,使得15MCB ∠=,点M 的坐标为M 或2)M -.【解析】(1)把(0,3)C -代入直线y x m =+中解答即可;(2)把0y =代入直线解析式得出点B 的坐标,再利用待定系数法确定函数关系式即可;(3)分M 在BC 上方和下方两种情况进行解答即可.【考点】二次函数综合题.24.【答案】(1)证明:如图1,连接OC .∵,,OA OC AD CD OD OD ===,∴OAD OCD △≌△,∴ADO CDO ∠=∠.又∵AD CD =,∴,AE CE OD AC =⊥,∴OE 是ABC △的中位线,∴OD BC ∥.(2)证明:如图1,连接OC .∵AB 为O 的直径,∴90ACB ∠=. ∵tan 2,2ACABC BC ∠=∴=.又由(1)知,OD BC ∥,∴,tan 2AOD ABC AOD ∠=∠∴∠=.∵2AD CD AB OA ===, ∴2,2,2ADADCDADACOA OB OC OB BC ==∴===,∴DAC OBC △∽△.∴ACD BCO ∠=∠.∵AB 是O 的直径,∴90ACB ∠=,即90,90BCO OCA ACD OCA ∠+∠=∴∠+∠=,13/15即90OCD ∠=.由(1)知,,90OAD OCD OAD OCD ∴∠=∠=△≌△,∴OA DA ⊥.又∵OA 为O 的半径,∴DA 与O 相切.(3)解:如图2,连接,OC AF .∵AB 是O 的直径,∴90AFB ∠=,∴90AFD ∠=.由(1)知,90AED ∠=,∴点,,,A E F D 在以AD 为直径的圆上.易知ABD △是等腰直角三角形,∴AFD △是等腰直角三角形,∴45DEF DAF ABD ∠=∠==∠.∵FDE ODB ∠=∠,∴FDE ODB △∽△,∴EF DE BO DB=. ∵1,tan 2BC ABC =∠=,∴2,1AC AE EC =∴==.∴AB =∴2OB DE =∴=.∴cos AB BD ABD ===∠∵,EF DE BO DB ==,解得EF = 【解析】(1)连接OC ,证OAD OCD △≌△得ADO CDO ∠=∠,由AD CD =知DE AC ⊥,再由AB 为直径知BC AC ⊥,从而得OD BC ∥;(2)根据tan 2ABC ∠=可设BC a =、则2AC a =、AD AB ==,证OE 为中位线知12OE a =、12AE CE AC a ===,进一步求得2DE a =,再AOD △中利用勾股定理逆定理证90OAD ∠=即可得;(3)先证AFD BAD △∽△得2DF BD AD =①,再证AED OAD △∽△得2OD DE AD =②,由①②得DF BD OD DE =,即DF DE OD BD =,结合EDF BDO ∠=∠知EDF BDO △∽△,据此可得EF DE OB BD =,结合(2)可得相关线段的长,代入计算可得.【考点】与圆有关的位置关系,圆的综合题.25.【答案】(1)60(2)∵60,OBC OB OC ∠==,∴OBC △为等边三角形.∴4OC BC OB ===.∵90ABC ABO OBC ∠=∠+∠=,∴ABC OAB ∠=∠,∴AO BC ∥.在Rt ABO △中,∵30,4ABO OB ∠==,∴2AB AO ==.∴AC == ∴1122AOC S AO AB AC OP==△, ∴7OP =. (3)①当803x ≤≤时,过点N 作NE OC ⊥,交OC 于点E .15/15则3,2NE OM x ==,∴21322y x x x =⨯=. 此时,该抛物线的对称轴为y 轴,当83x =时,y取得最大值,max y =②当843x <<时,过点M 作MF OB ⊥,交OB 于点F,则3),2MF x ON x =-=,∴2138))223y x x x =⨯-=-+. 此时,该抛物线的对称轴为83x =.∵0,∴当843x <<时,y 随x的增大而减小,∴y . ③当2445x ≤≤时,点,M N 均在线段BC 上,则5122MN x =-,∴15(12)22y x =⨯-⨯=+∵0,∴y 随x 的增大而减小, ∴当4x =时,y取得最大值,max y =综上所述,当83x =时,y取得最大值,最大值为3. 【解析】(1)只要证明OBC △是等边三角形即可;(2)求出AOC △的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当803x ≤<时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE OC ⊥且交OC 于点E .②当843x ≤<时,M 在BC 上运动,N 在OB 上运动. ③当2445x <≤时,M 、N 都在BC 上运动,作OG BC ⊥于G . 【考点】几何变换综合题,30度的直角三角形的性质,等边三角形的判定和性质,三角形的面积.。
广东2018年文数高考试题(word档含答案解析)
绝密★启用前2018年普通高等学校招生全国统一考试(广东卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}02A =,,{}21012B =--,,,,,则A B =A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设1i2i 1iz -=++,则z = A.0B .12C .1D 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12C D 5.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A .B .12πC .D .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =7.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC + 8.已知函数()222cos sin 2f x x x =-+,则 A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A. B . C .3D .210.在长方体1111ABCD A BC D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为 A .8B.C.D.11.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -= A .15BCD .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.16.△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.三、解答题:共70分。
最新-广东省广州市2018学年高二数学水平测试试题新人教A版精品
3
C. 2
D.
3
4
4
8. 已知某几何体的三视图如图 1 所示 , 其中俯视图
是腰长为 2 的等腰梯形 , 则该几何体的体积为
A. 4 3
B.
83
4 正视图
4
3
侧视图
C. 12 3
D.
24 3
9. 已知向量 a 1, n , b
结论中正确的是
n,1 , 其中 n
1 , 则下列
俯视图 图1
A . a b // a b B.
秘密★启用前
2018 学年度广州市高中二年级学生学业水平测试数 学
本试卷共 4 页 . 满分 150 分 . 考试用时 120 分钟 .
注意事项:
1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和准考证号填写在答题卡
指定的位置上 .
2.选择题每小题选出答案后, 用 2B 铅笔把答题卡上对应题目的答案标号涂黑; 如需改
1
D.
2
2
最小正周期为 2 的奇函数
最小正周期为 的奇函数
6. 在等比数列 an 中 , 若 a3a6 9, a2a4a5 27 , 则 a2 的值为
A. 2
B.
3
C.
4
D.
9
7. 如果实数 x 、 y 满足条件
y 1, 2x y 1 0, 则 2 x x y 1 0.
y 的最大值为
A. 1
B.
5
编号分别为 A1 , A2, A3, , A12 的 12 名篮球运动员在某次篮球比赛中的得分记录如下
:
运动员编号
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12
(完整版)2018年广东省中考数学试题含答案解析(Word版)
2018年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.22.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107 C.1.442×108D.0.1442×1083.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.75.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥27.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D 路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.12.(3分)分解因式:x2﹣2x+1=.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x=.14.(3分)已知+|b﹣1|=0,则a+1=.15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x 轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣118.(6分)先化简,再求值:•,其中a=.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB 绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?2018年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.2【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣3.14<0<<2,所以最小的数是﹣3.14.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107 C.1.442×108D.0.1442×108【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:14420000=1.442×107,故选:A.【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是B中的图形,故选:B.【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.7【分析】根据中位数的定义判断即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5故选:B.【点评】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥2【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x≥2,故选:D.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.7.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.【分析】由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,进而可得出DE∥BC及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.【解答】解:∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出DE∥BC是解题的关键.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B=∠D=40°.【解答】解:∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵AB∥CD,∴∠B=∠D=40°,故选:B.【点评】本题考查了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D 路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD 上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是50°.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.(3分)分解因式:x2﹣2x+1=(x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x=2.【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.【点评】本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.14.(3分)已知+|b﹣1|=0,则a+1=2.【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.【解答】解:∵+|b﹣1|=0,∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a+1=2.故答案为:2.【点评】此题主要考查了非负数的性质以及绝对值的性质,正确得出a ,b 的值是解题关键.15.(3分)如图,矩形ABCD 中,BC=4,CD=2,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 π .(结果保留π)【分析】连接OE ,如图,利用切线的性质得OD=2,OE ⊥BC ,易得四边形OECD 为正方形,先利用扇形面积公式,利用S 正方形OECD ﹣S 扇形EOD 计算由弧DE 、线段EC 、CD 所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【解答】解:连接OE ,如图, ∵以AD 为直径的半圆O 与BC 相切于点E ,∴OD=2,OE ⊥BC ,易得四边形OECD 为正方形,∴由弧DE 、线段EC 、CD 所围成的面积=S 正方形OECD ﹣S 扇形EOD =22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.16.(3分)如图,已知等边△OA 1B 1,顶点A 1在双曲线y=(x >0)上,点B 1的坐标为(2,0).过B 1作B 1A 2∥OA 1交双曲线于点A 2,过A 2作A 2B 2∥A 1B 1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点B n的规律是解题的关键.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣1【分析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出答案.【解答】解:原式=2﹣1+2=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)先化简,再求值:•,其中a=.【分析】原式先因式分解,再约分即可化简,继而将a的值代入计算.【解答】解:原式=•=2a,当a=时,原式=2×=.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于常考题型.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为800人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?【分析】(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【解答】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+20)=300人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【解答】解:(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:,解得:,所以二次函数的解析式为:y=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°=,设DC为y=kx﹣3,代入(,0),可得:k=,联立两个方程可得:,解得:,所以M1(3,6);②若M在B下方,设MC交x轴于点E,则∠OEC=45°﹣15°=30°,∴OE=OC•tan60°=3,设EC为y=kx﹣3,代入(3,0)可得:k=,联立两个方程可得:,解得:,所以M2(,﹣2),综上所述M的坐标为(3,6)或(,﹣2).【点评】此题主要考查了二次函数的综合题,需要掌握待定系数法求二次函数解析式,待定系数法求一次函数解析式等知识是解题关键.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.【分析】(1)连接OC,证△OAD≌△OCD得∠ADO=∠CDO,由AD=CD知DE⊥AC,再由AB为直径知BC⊥AC,从而得OD∥BC;(2)根据tan∠ABC=2可设BC=a、则AC=2a、AD=AB==,证OE 为中位线知OE=a、AE=CE=AC=a,进一步求得DE==2a,再△AOD 中利用勾股定理逆定理证∠OAD=90°即可得;(3)先证△AFD∽△BAD得DF•BD=AD2①,再证△AED∽△OAD得OD•DE=AD2②,由①②得DF•BD=OD•DE,即=,结合∠EDF=∠BDO知△EDF∽△BDO,据此可得=,结合(2)可得相关线段的长,代入计算可得.【解答】解:(1)连接OC,在△OAD和△OCD中,∵,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,又AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)∵tan∠ABC==2,∴设BC=a、则AC=2a,∴AD=AB==,∵OE∥BC,且AO=BO,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE==2a,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切;(3)连接AF,∵AB是⊙O的直径,∴∠AFD=∠BAD=90°,∵∠ADF=∠BDA,∴△AFD∽△BAD,∴=,即DF•BD=AD2①,又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,∴=,即OD•DE=AD2②,由①②可得DF•BD=OD•DE,即=,又∵∠EDF=∠BDO,∴△EDF∽△BDO,∵BC=1,∴AB=AD=、OD=、ED=2、BD=、OB=,∴=,即=,解得:EF=.【点评】本题主要考查圆的综合问题,解题的关键是掌握等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及勾股定理逆定理等知识点.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB 绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=60°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?【分析】(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤时,M在OC上运动,N 在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当<x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.【解答】解:(1)由旋转性质可知:OB=OC,∠BOC=60°,∴△OBC是等边三角形,∴∠OBC=60°.故答案为60.(2)如图1中,∵OB=4,∠ABO=30°,∴OA=OB=2,AB=OA=2,=•OA•AB=×2×2=2,∴S△AOC∵△BOC是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,∴AC==2,∴OP===.(3)①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.则NE=ON•sin60°=x,∴S=•OM•NE=×1.5x×x,△OMN∴y=x2.∴x=时,y有最大值,最大值=.②当<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin60°=(8﹣1.5x),∴y=×ON×MH=﹣x2+2x.当x=时,y取最大值,y<,③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y=•MN•OG=12﹣x,当x=4时,y有最大值,最大值=2,综上所述,y有最大值,最大值为.【点评】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
'. ;. 2018年1月广东省普通高中学业水平考试 数学试卷(B卷) 一、选择题:本大题共15小题. 每小题4分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.
1、已知集合1,0,1,2M,|12Nxx,则MN( ) A.0,1,2 B.1,0,1 C.M D.N
2、对任意的正实数,xy,下列等式不成立的是( ) A.lglglgyyxx B.lg()lglgxyxy C.3lg3lgxx D.lnlgln10xx
3、已知函数31,0()2,0xxxfxx,设(0)fa,则()=fa( ) A.2 B.1 C.12 D.0
4、设i是虚数单位,x是实数,若复数1xi的虚部是2,则x( ) A.4 B.2 C.2 D.4 5、设实数a为常数,则函数2()()fxxxaxR存在零点的充分必要条件是( ) A.1a B.1a C.14a D.14a
6、已知向量(1,1)a,(0,2)b,则下列结论正确的是( ) A.//ab B.(2)abb C.ab D.3ab
7、某校高一(1)班有男、女学生共50人,其中男生20人,用分层抽样的方法,从该班学生中随机选取15人参加某项活动,则应选取的男、女生人数分别是( ) '. ;. A.69和 B.96和 C.78和 D.87和
8、如图所示,一个空间几何体的正视图和侧视图都是矩形,俯视图是正方形,则该几何体的体积为( )
A.1 B.2 C.4 D.8
9、若实数,xy满足1000xyxyx,则2zxy的最小值为( ) A.0 B.1 C.32 D.2 10、如图,o是平行四边形ABCD的两条对角线的交点,则下列等式正确的是( ) A.DADCAC B.DADCDO
C.OAOBADDB D.AOOBBCAC
11、设ABC的内角,,ABC的对边分别为,,abc,若3,2,13abc,则C( ) A.56 B.6 C.23 D.3
12、函数()4sincosfxxx,则()fx的最大值和最小正周期分别为( ) A.2和 B.4和 C.22和 D.42和
13、设点P是椭圆2221(2)4xyaa上的一点,12FF,是椭圆的两个焦点,若1243FF,则12PFPF( ) '. ;. A.4 B.8 C.42 D.47
14、设函数()fx是定义在R上的减函数,且()fx为奇函数,若10x,20x,则下列结论不正确的是( )
A.(0)0f B.1()0fx C.221()(2)fxfx D.111()(2)fxfx
15、已知数列na的前n项和122nnS,则22212naaa( ) A.24(21)n B.124(21)n C.4(41)3n D.14(42)3n
二、填空题:本大题共4小题,每小题4分,满分16分. 16、双曲线221916xy的离心率为 . 17、若2sin()23,且0,则tan . 18、笔筒中放有2支黑色和1支红色共3支签字笔,先从笔筒中随机取出一支笔,使用后放回笔筒,第二次再从笔筒中随机取出一支笔使用,则两次使用的都是黑色笔的概率为 .
19、圆心为两直线20xy和3100xy的交点,且与直线40xy相切的圆的标准方程是 . 三、解答题:本大题共2小题. 每小题12分,满分24分. 解答须写出文字说明、证明过程和演算步骤.
20、若等差数列na满足138aa,且61236aa. (1)求na的通项公式; (2)设数列nb满足12b,112nnnbaa,求数列nb的前n项和nS. '. ;. 21、如图所示,在三棱锥PABC中,PAABC平面,PBBC,F为BC的中点,DE垂直平分PC,且DE分别交ACPC,于点,DE.
(1)证明://EFABP平面; (2)证明:BDAC. '.
;. 2018年1月广东省普通高中学业水平考试 数学试卷(B卷)答案解析 一、选择题:本大题共15小题. 每小题4分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.
1、B 解析:101MN,,,故选B. 2、B 解析:对于B项,令1xy,则lg()lg2lg10xy,而lglg0xy,显然不成立,故选B.
3、C 解析:3(0)011af 11()(1)22faf,故选C.
4、D 解析:(1)1(1)(1)22xxixxiiii 242xx,故选D. 5、C 解析:由已知可得,11404aa,故选C. 6、B 解析:对于A项,12-010,错误; 对于B项,2(2,0)ab,(0,2)b,则20+020(2)abb,正确; 对于C项,2,2ab,错误; 对于D项,10122ab,错误. 故选B. 7、A 解析:抽样比为1535010k,则应抽取的男生人数为320=6()10人,应抽取的女生人数为3(5020)9()10人,故选A.
8、C 解析:由三视图可知,该几何体为长方体,长为2,宽为2,高为1,则体积为2214V,故选C.
9、D 解析:(快速验证法)交点为11(0,1),(0,0),(,)22,则2zxy分别为32,0,2,所以z'. ;. 的最小值为2,故选D. 10、D 解析:对于A项,DADCCA,错误; 对于B项,2DADCDO,错误; 对于C项,OAOBADBAADBD,错误; 对于D项,AOOBBCABBCAC,正确. 故选D. 11、A 解析:由余弦定理,得222222(3)2(13)3cos22232abcCab,又0C 5=6C,故选A.
12、A 解析:()2sin2fxxmax()2fx,最小正周期为22T,故选A. 13、B 解析:1243223FFcc 2222(23)4164acba 122248PFPFa,故选B.
14、D 解析:对于A项,()fx为R上的奇函数 (0)0f,正确; 对于B项,()fx为R上的减函数 110()(0)0xfxf,正确; 对于C项,20x2222222111221xxxxxxx(当且仅当,即时等号成立)
22
1()(2)fxfx,正确;
对于D项,10x 111111111()22xxxxxx '.
;. 11
1()(2)(2)fxffx,错误. 故选D.
15、C 解析:当2n时,1122(22)2222nnnnnnnnaSS;当1n时,211222aS适合上式. 222()(2)4nnnnnanNa
2
na是首项为4,公比为
4的等比数列 222124(14)4(41)143nnnaaa,故选C.
二、填空题:本大题共4小题,每小题4分,满分16分. 16、53 解析:由已知,得2293,164aabb 222916255cabc 双曲线的离心率为53cea.
17、52 解析:2sin()cos23,且0 2225sin1cos1()33 sin535tancos322.
18、49 解析:224339P. 19、22(4)(2)2xy 解析:联立203100xyxy得4(4,2)2xy圆心为 则圆心(4,2)到直线40xy的距离为22424211d,故圆的半径为2 圆的标准方程为22(4)(2)2xy.
三、解答题:本大题共2小题. 每小题12分,满分24分. 解答须写出文字说明、证明过程和演算步骤.
20、解:(1)设等差数列na的公差为d. '. ;. 1311
1
61211
828236511362aaaadaaaadadd
2(1)22nann 数列na的通项公式为2nan.
(2)由(1)知,2nan 1122(1)2222nnnbaannn 2(1)224nbnn 又12b适合上式 24()nbnnN
122(24)2nnbbnn
数列nb是首项为2,公差为2的等差数列.
22(1)2(2)232nnnSnnnnnn
21、解:(1)证明:DE垂直平分PC E为PC的中点 又F为BC的中点 EF为BCP的中位线 //EFBP 又,EFABPBPABP平面平面 //EFABP平面 (2)证明:连接BE PBBC,E为PC的中点 PCBE DE垂直平分PC PCDE
又BEDEE,,BEDEBDE平面 PCBDE平面 又BDBDE平面 PCBD ,PAABCBDABC平面平面 PABD
又PCPAP,,PCPAPAC平面 BDPAC平面 又ACPAC平面 BDAC