5、电介质和能量
高电压技术概念总结

高电压技术概念总结篇一:高电压技术重点知识整理1.电介质的极化:1.)电子位移极化电介质中的带点质点在电场作用下沿电场方向做有限位移,无能量损耗2.)离子位移极化有极微量的能量损耗3.)转向极化4.)空间电荷极化2.电介质的介电常数代表电介质极化程度(气体d=1水d=81蓖麻油d=4.2)3.电介质的电导与金属电导的区别:1.)形成电导电流的带电粒子不同(金属导体:自由电子,电介质:离子)2.)带电粒子数量上的区别4.影响液体介质电导的因素:温度,电场强度。
5.电介质中的能量损耗:P?pV?E2??tg?V?U2?ctg?6.tgδ:介质损耗角,绝缘在交变电压作用下比损耗大小的特征参数7.四种形式电离的产生:撞击电离光电离热电离表面电离8.气体中带电质点的消失:1.)带电质点收电场力的作用流入电极并中和电量2.)带电质点的扩散3.)带电质点的复合9.自持放电:当场强超过临界场强Ecr值时,这种电子崩已可仅由电场的作用而自行维持和发展,不必再有赖于电离因素,这种性质的放电称为自持放电。
10.汤森德理论只是对较均匀电场和??S较小的情况下适用。
11.物理意义:一个电子从阴极到阳极途中因为电子崩(ɑ过程)而造成的正离子数为e这批正离子在阴极上造成的二次自由电子数(r过程)应为:r(e味着那个初始电子有了一个后继电子从而使放电得以自持。
12.帕邢定律:在均匀电场中,击穿电压Ub与气体相对密度?,极间距离S并不具有单独的函数关系,而是仅与他们的积有函数关系,只要??S的乘积不变,Ub 也就不变。
13.流柱放电流程:有效电子(经碰撞游离)——电子崩(畸变电场)——发射光子(在强电场作用下)——产生新的电子崩(二次崩)——形成混质通道(流柱)——由阳极向阴极(阳极流柱)或由阴极向阳极(阴极流柱)击穿14.电晕放电:电晕放电是极不均匀电场所特有的一种自持放电形式,他与其他形式的放电有本质的区别,电晕放电的电流强度并不取决于电源电路中的阻抗,而取决于电极外气体空间的电导,即取决于外施电压的大小,电极形状,极间距离,气体的性质和密度等。
大学物理下 第九章 静电场中的导体和电介质5

2
ε0S C= d
四,静电场的能量 (1)电容器的能量 )
1 Q2 W = CU 2 = 2 2C
(2)静电场的能量 有电场的地方就有能量 )
1 ωe = D E 2
W = ∫ ωe dV
(3)静电场的能量与功的关系 )
A 静 = W
已知 ε r1 : ε r 2 = 1 : 2 ,问 W1 : W2 = ?
λ o d a
λ λ U = ∫ + dr 2πε0r 2πε0 (d r ) a -λ λ λ d a λ d = Ln ≈ Ln πε0 a πε0 a
λ λ πε 0 ∴ C0 = = = d d λ U Ln Ln a a πε 0
r
d a
P79 99 讨论
1)通电后维持电压不变插入电介质 ) 2)通电后断开再插入电介质 ) 讨论插入前后的 E,D,U,Q. , , , 令插入前为E , , , (令插入前为 0,D0,U0,Q0) 2) Q = Q 0
4a
UBA = UB∞
场具有球对称性
a
3a
解(1)a < r < 3a
∫∫ D dS = ∫∫ DdS = D4πr = QA
2 S S
Q
4a
a
QA D= 2 4πr
D QA E= = 2 ε0εr 4πε0εr r
3a
r > 4a ∫∫ D dS = D 4 πr = Q + Q A
2 S
Q + QA D= 2 4 πr
∫∫ D dS = Q0
S
E = E0 + E'
9-6,8 ,
E0
讨论 p79
6电介质的极化、电导与损耗课件

电介质的电导
表面电阻RS测试电路
绝缘介质中泄漏电流产生的主要原因:离子导电,而不 是电子导电。
绝缘电阻具有负温度系数。温度越高,参与漏导的离子 (介质本身的或杂质的)越多,则泄漏电流越大,所以绝 缘电阻具有负的温度系。
(1)解离,液体分子或杂质分子在 电场作用下解离为离子;
(2)电极逸出电子,由于高电场的 作用或由于肖特基效应(指在电场作 用下热电子发射增加)从电极逸出电 子;
(3)碰撞电离,与气体中产生电子碰撞电离的情况相 似,在液体中的电子亦因高电场作用被加速到能在碰撞液 体分子时使液体分子电离。当液体中含有气体时,因为气 体中的碰撞电离容易发生,击穿先在气体中发生,击穿电 压亦与为离子; (2)电子的碰撞电离。
3、泊尔 弗仑开尔效应
固体的能带理论指出:固体中的电子被限制在不连续的能带中。 各相邻的能带都由能量间隔互相隔开。在由共价键结合的晶体介质 中,正常情况的各价电子占据充满满带。由晶体缺陷所产生的盈余 电子则处于较高的能带中,这个能带称为导带或空带,处于这个能 带的电子可以在介质中自由活动。导带和满带之间的能量间隔称为
c :介质的介电常数
此时,单位面积极板上的电荷为:
相对介电常数定义:
在式
令:
极化强度及其物理意义
中
P:极化强度
极化强度的物理意义:单位体积中感应的偶极矩。
2、电介质极化种类 极化的基本形式:
(1)、电子位移极化 (2)、离子位移极化 (3)、偶极子转向极化 (4)、热离子极化 (5)、夹层介质界面极化 (6)、空间电荷极化
禁带。
两种导电粒子形成电子电导: 在电场作用下满带中的电子沿电场的反方向移动而填 充空穴,而填充空穴的电子又在它原来的位置上留下空穴, 即空穴将沿电场方向移动。所以这种场合,将由导带中的 传导电子和满带中的空穴一起形成电导,称为电子电导。
《电介质的极化》课件

05 电介质极化实验
电介质极化实验设备
电容器
用于存储电荷和施加电场,需 具备一定容量和耐压能力。
。
监测参数
观察并记录实验过程中电压表 、电流表、电阻表等测量仪表 的读数,记录实验数据。
调整实验条件
可调整施加的电场强度、温度 等实验条件,观察电介质极化 现象的变化。
实验结束
实验结束后,按照要求对实验 数据进行整理和分析。
电介质极化实验结果分析
数据整理
对实验过程中记录的数据进行整 理,绘制相关图表,如电流-电压 曲线、电阻随时间变化曲线等。
总结词
压力增大,电介质极化程度 增加
详细描述
压力增大时,电介质分子间 的距离减小,相互作用增强 ,使得分子更容易沿外电场 方向排列,导致极化程度增
加。
总结词
压力增大,电介质介电常数增大
详细描述
随着压力的增大,介电常数增大,这是因 为压力增大时,分子间的相互作用增强, 使得分子更容易沿外电场方向排列。
电介质极化能量
总结词
描述电介质在极化过程中所吸收或释 放的能量
详细描述
电介质极化能量是指在电场作用下, 电介质内部偶极子发生取向排列所需 的能量或释放的能量。它是衡量电介 质能量与电能转换效率的重要参数。
03 电介质极化影响因素
温度对电介质极化的影响
总结词
温度升高,电介质极化程度降低
详细描述
随着温度的升高,电介质的分子热运动增强,热运动速 度越快,碰撞频率越高,导致电介质分子的原有排列顺 序被打乱,极化程度降低。
静电场中的电介质(2)

23
[例2]如图,两个半径分别为R1和R3的同心导体球面,带电量分 别为+Q、-Q,其中间充满相对介电常数分别为r1和r2的两层各向 同性均匀电介质,它们的分界面为一半径为R2的同心球面。求此 带电体系产生电场的能量。
解: 分析电场分布,求E。
选取球形高斯面,
则
D dS D4r2 Q
S1
D 0rE
S令
D 0rE E
称为电位移矢量
介质场中的高斯定理: D dS q0
S
说明:① D是一个辅助量,真正有意义的是场强 E。
它指出,通过闭合曲面的电位移通量,等于此闭合曲面内所 含的自由电荷。
② q0指曲面内所包含的自由电荷,与极化电荷无关,
E是由空间所有的电荷产生。
10
四、电位移矢量与电场强度的比较
E E0
r
' (1 1 ) r
介质场中的高斯定理
sD dS q0
29
三、电场的能量
e
1 2
DE
W
V edV
V
1 2
D
EdV
V
1 E2dV
2
We
Q2 2C
1 2
C(
UA
UB )2
1 2
Q(
U
A
UB)
四、电容和电容器
孤立导体:
q U
C
先设q 再求C
电容器: q C 先设q 再求C
解:两层介质中有
D1 D2 0 D
0 +
+
+
+
A
+
r1
d1
E1
D 1
0 0r1
E2
昆明理工大学高电压复习资料

第一章1.电介质的概念电介质:具备无传导电子绝缘体的物理特性,在电场中可发生极化的固体、液体、气体,总称为电介质。
绝缘的作用是将电位不等的导体分隔开,使其没有电气的联系能保持不同的电位。
区分:电介质、导体、半导体、磁性材料。
分类:气体:空气,SF6等;固体:陶瓷,橡胶,玻璃,绝缘纸等液体:变压器油;混合绝缘:电缆,变压器等设备按化学结构分:离子性电介质;极性电介质;弱极性及非极性电介质。
补充电介质的电气性能一切电介质在电场的作用下都会出现极化、电导和损耗等电气物理现象。
电介质的电气性能分别用以下几个参数来表示:介电常数εr:反映电介质的极化能力电导率γ(或电阻率ρ):反映电介质的电导介质损耗角正切tgδ:反映电介质的损耗击穿场强E:反映电介质的抗电性能2.电介质的极化类型和特点定义:电介质在电场作用下产生的束缚电荷的弹性位移和偶极子的转向位移现象,称为电介质的极化。
效果:消弱外电场,使电介质的等值电容增大。
物理量:介电常数ε类型:电子位移极化;离子位移极化;转向极化;空间电荷极化。
电子位移极化极化机理:电子偏离轨道介质类型:所有介质建立极化时间:极短,10--15s极化程度影响因素:电场强度(有关)电源频率(无关)温度(无关)极化弹性:弹性消耗能量:无离子位移极化极化机理:正负离子位移介质类型:离子性介质建立极化时间:极短,10-12~10-13 s极化程度影响因素:电场强度(有关)电源频率(无关)温度(随温度升高而略有增加)极化弹性:弹性消耗能量:极微小转向极化极化机理:极性分子转向介质类型:偶极性介质建立极化时间:需时较长,10--2 s极化程度影响因素:电场强度(有关)电源频率(有关)温度(有关)极化弹性:非弹性消耗能量:有空间电荷极化极化机理:电子或正负离子移动介质类型:含离子和杂质离子的介质建立极化时间:很长极化程度影响因素:电场强度(有关)电源频率(低频下存在)温度(有关)极化弹性:非弹性消耗能量:有最明显的空间电荷极化是夹层极化。
高电压知识
第一章:电介质的基本电气特性1、电介质的极化:在外加电场作用下,电介质中的正负电荷将沿着电场方向做有限的位移或者转向,形成力矩,这种现象叫做电介质的极化。
2、极化的基本形式:(1)电子式极化(这个过程主要是由电子在电场作用下的位移所造成,故称为电子式极化)。
其特点:电子式极化存在于所有电介质中;由于电子异常轻小,因此电子式极化所需时间极短,其极化响应速度最快,通常相当于紫外线的频率范围;电子式极化具有弹性;电子式极化消耗的能量可以忽略不计,因此称之为“无损极化”。
(2)离子式极化在离子式结构的电介质中,当有外电场作用时,则除了促使各个离子内部产生电子式极化之外,还将产生正负离子的相对位移,使正负离子按照电厂的方向进行有序排列,形成极化,这种极化称为离子式极化。
其特点:不受频率影响,可在所有频率范围内发生;极化是弹性的;消耗的能量亦可忽略不计。
(3)偶极子式极化。
在极性分子结构的电介质中,当有外电场作用时,偶极子受到电场力的作用而转向电场的方向,这种极化被称为偶极子式极化,或转向极化。
其特点:为有损极化,而且极化时间也较长;受频率影响很大,频率增加,εr减小;温度对极性电介质的εr 也有很大影响,在T<Tw时,随着T增大会使分子间作用力下降,导致εr 增大,在T>Tw时,T增大会导致分子热运动增大,从而εr下降。
(4)空间电荷极化。
特点:消耗能量,为有损极化;仅在低频下发生,相当于电导。
(5)夹层极化。
夹层介质在外电场作用下的极化称为夹层极化,其极化过程特别缓慢,所需时间由几秒到几十分钟,甚至更长,且极化过程伴随着有较大的能量损失,属于有损极化。
或分为两大类:有损极化和无损极化。
无损极化包括电子式极化和离子式极化,有损极化包括偶极子式极化和空间电荷极化。
夹层极化是空间电荷极化的一种特殊形式。
3、吸收现象:当直流电压U加在固体电介质时,通过介质中的电流将随时间而衰减,最终达到某一稳定值,这种现象称为吸收现象。
第五讲 静电场中的能量
Vi
除 qi 以外所有电荷在 qi 出激发的电势。
2、自能: 一个孤立带电体系其静电能一般称为自能或固有能。 从功的角度定义:
将带电体系的各部分电荷,从无限远分离的状态,聚集成 带电体状态时,外力反抗电场力所做的功。
设 带电体电量为Q,元电荷dq从无穷远整个电荷过程中 外界反抗电场力做元功:
dA udq
-
A dA
0
Q
Q
0
q 1 2 dq Q C 2C
C
dq
dq
U
Q CU
W 1 1 Q CU 2 QU 2 2 2C
2
设电容器正负极板的电荷 +Q,-Q,两极板的电势 代入静电体系的总静电能公式:
1 2 1 1 W Q jU j [(QU ) (QU )] QU 2 j 1 2 2
U2
4 0 R2
Q2
4 0 r
Q1
1、2两球的总静电能:
1 Q1 Q2 1 Q2 Q1 W Q1 ( ) Q2 ( ) 2 4 0 R1 4 0 r 2 4 0 R2 4 0 r Q12 Q2 QQ 1 2 8 0 R1 8 0 R2 4 0 r
2
此式也是1、2两球球面激发的静电场能量。
解2: 带电体系的总静电能等于两球的自能与两球的相互作用 能之和。
W W 12 自 1 W 自2 W
1 Q12 W自1 Q1U1 2 4 0 R1
2 1 Q2 W自2 Q2U 2 2 4 0 R2
可以将两球看成点电荷,求互能:
,
1 W QU 2
结论:该式是电容器的总静电能
03-静电场中的导体
(平行板电容)
2)当 R2 R1 时,
40 R1 R2 C 40 R1 (孤立导体球电容) R2
5、 电容器的串、并联
1)、电容器的并联:
Q1
C Ci
i
+
Q2
Qi
-
等效
C
+
U
-
U
Q1 C1U
Q2 C2U
Qi CiU
C C1 C2 Ci
Q Q1 Q2 Qi C U U
2)、电容器的串联:
+
U1 U2
1 1 C i Ci
等效
Ui
-
+
C
-
U
U U1 U2 Ui
Q C1 U1 Q C2 U2 Q Ci Ui
U
Q Q C U U1 U 2 U i
Ui 1 U1 U 2 C Q Q Q
A
q
+ + +
q
+
q
+
总结:
空腔导体(无论接地与否)将使腔内不 受外场影响。 接地空腔导体将使外部空间不受腔内电 场的影响。
四、静电应用:Van de Graff
起电机
四、静电应用:静电除尘
应用静电除尘技术 处理煤输送线翻车机房煤尘污染
例:如图:在一个接地的导体球附近有一个 点电荷q。求导体球表面上感应电荷电量Q。
内容提纲 •静电场中的导体 •静电场中的电介质、介质中的高斯定理 •电容器和电容 •静电场的能量和能量密度
1-5 静电场中的导体与电介质
一、 导体的静电平衡 1、 金属导体模型 2、 静电感应 - 中性 + + +q - 导体 +
静电场的能量 能量密度
C = 4πεo R1 ,
孤立导体球电容。 孤立导体球电容。 ②R2 –R1= d , R2 ≈R1 = R
4πε o R 1 R 2 C = R 2 − R1
C = 4πεo R2 d = ε o S d
平行板电容器电容。 平行板电容器电容。
③
圆柱形电容器
板间电场
R2
R1 l
解:设两极板带电 ± q
Q C= = C 1 + C 2 U
C
22、电容器的串联 、 特点 每个电容器极板所带的电量相等 总电压
Q Q 1 1 U = U 1 + U 2 = + = + Q C1 C 2 C1 C 2 等效电容
C= Q 1 = 1 1 U + C1 C 2
C1
C2
等效
1 1 1 = + C C1 C 2
讨论
C = ∑ Ci
i
并联电容器的电容等于 各个电容器电容的和。 各个电容器电容的和。 串联电容器总电容的倒数 等于各串联电容倒数之和。 等于各串联电容倒数之和。
1 1 =∑ C i Ci
当电容器的耐压能力不被满足时, 当电容器的耐压能力不被满足时,常用串并联 使用来改善。 使用来改善。 串联使用可提高耐压能力 并联使用可以提高容量 电介质的绝缘性能遭到破坏,称为击穿。 电介质的绝缘性能遭到破坏,称为击穿。 击穿 所能承受的不被击穿的最大场强叫做击穿场强或 所能承受的不被击穿的最大场强叫做击穿场强或 击穿场强 介电强度。 介电强度。
球形
柱形
平行板
R1 R2
R1
R2
d
4 4、电容器的作用 、 •在电路中:通交流、隔直流; 在电路中:通交流、隔直流; 在电路中 •与其它元件可以组成振荡器、时间延迟电路等; 与其它元件可以组成振荡器、 与其它元件可以组成振荡器 时间延迟电路等; •储存电能的元件; 储存电能的元件; 储存电能的元件 •真空器件中建立各种电场; 真空器件中建立各种电场; 真空器件中建立各种电场 •各种电子仪器。 各种电子仪器。 各种电子仪器 5 、电容器电容的计算 5、 计算电容的一般步骤为: 计算电容的一般步骤为: •设电容器的两极板带有等量异号电荷; 设电容器的两极板带有等量异号电荷 设电容器的两极板带有等量异号电荷; •求出两极板之间的电场强度的分布; 求出两极板之间的电场强度的分布; 求出两极板之间的电场强度的分布 •计算两极板之间的电势差; 计算两极板之间的电势差; 计算两极板之间的电势差 •根据电容器电容的定义求得电容。 根据电容器电容的定义求得电容。 根据电容器电容的定义求得电容