实验一 单级放大电路
单级放大电路实验报告

单级放大电路实验报告摘要:本实验通过搭建单级放大电路并进行测量,探讨了放大电路的工作原理、电压放大倍数、输入和输出阻抗等参数的影响。
实验结果表明,单级放大电路在合适的设计和调试下能够实现电压信号的有效放大,但也存在一定的局限性。
引言:放大电路是电子技术中的重要组成部分,能够将弱小的电信号放大为更大的信号,以便后续电路进行处理或驱动。
本实验中,我们研究的是单级放大电路,它是放大电路中最基本的一种,并且具有较为简单的电路结构。
材料与方法:实验所需材料如下:1.1个NPN型晶体管2.2个电阻(分别为R1和R2)3.1个直流电源4.1个信号发生器实验步骤如下:1.按照电路图搭建单级放大电路。
2.调节电阻R1和R2的值,使其满足所需的放大倍数。
3.将信号发生器的输出接入放大电路的输入端。
4.通过示波器观察输出信号,并记录相关数据。
结果与讨论:在本实验中,我们设置放大倍数为20,即输出信号的幅度是输入信号的20倍。
调节电路中的电阻值后,我们成功地获得了期望的输出信号。
我们进一步探讨了输入和输出阻抗对于放大电路性能的影响。
实验结果表明,输入阻抗较大时,放大电路能够更好地接受输入信号,减小了信号源与放大电路之间的负载效应。
而当输出阻抗较小时,放大电路能够更好地推动负载电路,使得输出信号更加稳定。
同时,我们还研究了电压放大倍数与电压源频率的关系。
实验结果显示,当电压源频率较低时,放大倍数较高;而当电压源频率超过一定值后,放大倍数会逐渐减小。
这是因为晶体管的内部电容、电感等因素导致了对高频信号的损耗。
结论:本实验通过搭建单级放大电路并测量,探讨了放大电路的工作原理、电压放大倍数、输入和输出阻抗等参数的影响。
实验结果表明,在合适的设计和调试下,单级放大电路能够实现电压信号的有效放大。
其中,输入和输出阻抗的选择对于放大电路的性能有着重要影响。
此外,电压放大倍数与电压源频率之间存在一定的关联关系,需要根据实际情况进行设计和选择。
单级放大电路实验报告

单级放大电路实验报告实验目的:了解单级放大电路的基本原理和特性,掌握单级放大电路的设计方法。
实验原理:单级放大电路是电子电路中最简单的放大电路之一。
它由一个放大器和一个电源组成,放大器将输入信号放大到一定的幅度,输出给负载。
单级放大电路的输入、输出和电源之间通常采用直接耦合或是通过耦合电容进行交流耦合。
实验中所使用的单级放大电路采用直接耦合。
实验材料和仪器:1. 放大器:使用准确度高、稳定性好的运放,如LM741运放。
2. 电源:直流电源,输入电压为±15V。
3. 信号源:可输出正弦信号,频率为1kHz左右。
4. 示波器:测量输出信号的幅度。
5. 电阻、电容等配件。
实验步骤:1. 按照给定电路图搭建单级放大电路,并接上电源和信号源。
2. 调节信号源输出的幅度和频率,使其能够正常工作。
3. 使用示波器测量输出信号的幅度,并记录。
4. 调节输入信号的幅度,观察输出信号的变化,并记录。
5. 调节输入信号的频率,观察输出信号的变化,并记录。
6. 比较不同输入信号幅度和频率下输出信号的变化,分析单级放大电路的放大特性。
实验结果和分析:根据实验数据和示波器的观察,可以得到单级放大电路的放大特性。
输出信号的幅度随着输入信号幅度的增加而变大,但是当输入信号幅度过大时可能会出现失真现象。
输出信号的频率基本上与输入信号的频率相同,且幅度不会受到输入信号频率的影响。
实验结论:通过实验,我们了解了单级放大电路的基本原理和特性。
单级放大电路可以将输入信号放大到一定的幅度,并且对输入信号的频率没有明显的影响。
但是在使用过程中需要注意输入信号的幅度,避免出现失真的情况。
实验结果与理论相符,说明实验顺利进行。
单级放大电路的实验报告

单级放大电路的实验报告哎呀,大家好!今天咱们聊聊单级放大电路,听起来挺高大上的吧?其实它就是个小玩意儿,能把微弱的信号放大,哇,简直就像魔法一样!想想看,平时咱们听音乐,看到的那些大喇叭,其实都是靠这些小电路来工作的。
你说,科技真是无处不在,连耳边的音乐也离不开它。
咱们得知道什么是单级放大电路。
简单来说,就是通过一个增益设备,把输入信号放大。
好比你在聚会上大声说话,周围人听不见,你得用麦克风来放大声音,让每个人都能听得见。
这种电路最常用的就是运算放大器(OpAmp),它可是电路里的超级英雄,拯救了无数微弱信号,真是厉害呀!咱们实验的时候,首先准备了一些器材。
电源、运算放大器、几根电阻线,还有一个小喇叭。
哇,光是看到这些东西,心里就开始乐了,感觉自己马上就要变成电路高手了。
于是,大家都摩拳擦掌,准备大显身手。
就要把这些器材组装起来了。
小心翼翼地接线,生怕弄错了。
手一抖,哎呀,电线就乱成一团,跟过年的爆竹似的,哈哈,别说,我一边接线一边笑,真是有点丢人!然后,打开电源,心里那个小紧张啊,生怕出现什么意外。
听说过实验出错的事,心里不免打鼓。
可是,天公作美,电路一开,喇叭里传来了声音,哇塞,简直像是开启了新世界的大门!看着那微弱的信号被放大,心里像打了鸡血一样,那个激动啊,真是过瘾。
大家都欢呼起来,仿佛在庆祝什么盛大的节日,瞬间气氛热烈得不得了。
在这个过程中,我们还观察到了增益的变化。
当我们调节电阻值时,喇叭的声音也跟着变化,感觉自己像是在调音台上玩耍。
低音炮响起,高音清脆,真是让人耳朵都要怀孕了,哈哈!这就是电路的魅力所在,原来只要稍微一动手,声音就能变得如此美妙,简直像是掌握了音乐的魔法。
实验中也遇到了一些小麻烦。
比如,有一次电源连接不稳,喇叭发出的声音像是被卡住了,咯吱咯吱的声音简直让人崩溃,像是在听一场毫无节奏的音乐会。
大家纷纷开始讨论,试图找出问题的所在。
最后还是经过反复检查,终于发现是接头松了,哈哈,真是小失误引发的大笑话!实验快结束时,大家都在分享各自的心得。
单级放大电路实验报告

单级放大电路实验报告实验报告-单级放大电路1. 引言单级放大电路是一种常见的电子电路,用于放大输入信号的幅度。
该电路可以应用于各种声音放大器、音频放大器等实际应用中。
本实验旨在通过设计和构建单级放大电路,了解其工作原理和性能。
2. 实验材料- 电源- 耳机- 电阻- 电容- 电位器- 三极管等器件3. 实验步骤3.1 设计电路根据实验要求和材料提供的参数,设计所要构建的单级放大电路。
3.2 收集所需器件根据电路设计,收集所需的电阻、电容、三极管等器件。
3.3 组装电路按照电路设计将所需器件按照正确的连接方式组装成电路。
3.4 连接电源将电源正、负极正确连接到电路上,注意电压大小不超过器件的额定值。
3.5 调节电位器根据实际需要,通过调节电位器的阻值来调节输出信号的幅度。
3.6 测试使用耳机或其他输出设备来实时测试电路的放大效果,检查输出信号的幅度是否满足要求。
4. 实验结果和分析根据实验数据和实时测试,在调节电位器阻值的不同情况下,记录输出信号的幅度和音质。
根据实验结果对电路进行评估和分析,并提出改进的建议。
5. 结论单级放大电路是一种常见的电子电路,可用于放大输入信号的幅度。
本实验通过设计和构建单级放大电路,并进行实时测试,对其工作原理和性能进行了了解。
在实验中,我们调节了电位器的阻值来调整输出信号的幅度,并观察了输出信号的变化。
实验结果表明,电路可以有效地放大输入信号,并满足实际需求。
6. 注意事项6.1 在实验中,注意安全使用电源,避免电压过高导致器件损坏或危险情况发生。
6.2 在调节电位器时,注意不要超过其额定阻值范围,以免损坏电位器或其他器件。
6.3 注意选择合适的耳机或输出设备进行测试,以保证实验结果的准确性。
6.4 在实验结束后,注意关闭电源,拆除电路,并妥善保存实验数据及相关器件。
以上是单级放大电路实验报告的一般框架和内容,具体实验步骤和结果会根据实验需求和实际情况有所差异。
在撰写报告时,需要详细描述实验步骤、结果分析和结论,并注意阐述实验中的注意事项,以保证实验的安全性和准确性。
实验一单级共射放大电路

实验一单级共射放大电路实验单级共发射放大电路胡军2010117114实验目的1。
熟悉常用电子仪器的使用2。
掌握放大器静态工作点的调试方法及其对放大器电路性能的影响3.掌握放大器动态性能参数的测试方法4.进一步掌握单级放大电路的工作原理实验仪器1。
示波器2。
信号发生器3。
数字万用表4。
交流毫伏表5。
DC稳压器静态测试实验原理和测量方法电路图如下:注意:由于实验箱负载RL=10k1.电路参数变化对静态工作点的影响放大器的基本任务是无失真地放大信号,实现输入变化对输出变化的控制效果。
为了使放大器正常工作,除了保证放大器电路的正常工作电压外,还应该有一个合适的静态工作点。
放大器的静态工作点是指流经三极管的直流IBQ和ICQ中的发射极电阻R6和R7,管的C极和E极之间的直流电压UCEQ,以及放大器输入端短路时B极和E极的直流电压ube。
工作原理如下①基极电压UB由RB和RB2的部分电压作用固定从图中可以看出,UB =?Rb2*VccRb?在RB2公式中,铷、RB2和VCC是固定的,不随温度变化,所以基本势是一个确定的值。
(2)通过工业工程的负反馈,限制集成电路的变化,保持工作点稳定。
具体稳定过程如下:T??Ic??Ie??Ue??Ube??Ib??Ic?静态工作点2的理论计算。
电路的静态工作点可由以下关系确定: UB =RB2 * CRB?Rb2 Ub?Ube ReIc?Uce?Vcc?Ic(Rc?关于)?从以上公式可以看出,当管道确定后,改变VCC、RB、RB2、RC(或RE)的任何参数值都会导致静态工作点的改变当电路参数确定后,静态工作点主要由RP调整由于高工作点,输出信号波形容易出现饱和失真。
工作点低,输出波形易于截止失真。
然而,当输入信号太大时,电子管将工作在非线性区域,输出波形将产生双向失真当输出波形不是很大时,静态工作点的设置应该很低,以减少电路的静态损耗。
3.测量和调整调整放大器电路静态工作点的方法一般有两种(1)将放大电路的输入端(即ui=0)短路,使其工作在DC状态,用DC电压表测量三极管c和e之间的电压,并调整电位计RP,使UCE略低于电源电压的1/2(本实验中UCE为4V)。
单级交流放大电路实验原理

单级交流放大电路实验原理1. 引言说到单级交流放大电路,首先得让我们把脑袋里的那些复杂的公式和电路图先放一边,轻松点儿想象一下。
想象你在家里放音乐,声音小得跟蚊子嗡嗡似的,听得你心烦意乱。
此时,你只需要一个简单的放大器,嘿,声音立马就能嗨起来!这就是单级交流放大电路的魅力所在,能把微弱的信号放大到听得见、看得见的程度,简直就像给声音穿上了“超级战衣”!2. 基本原理2.1 什么是单级交流放大电路?单级交流放大电路,听名字就知道是个放大器,不就是把小声音变大吗?不过,它可不简单哦。
这个小家伙主要由三部分构成:输入信号源、放大器本身和输出负载。
就好比一场表演,输入信号源就像是一个小演员,放大器是舞台,而输出负载则是观众们,只有演员在舞台上表演,才能让观众们开心地鼓掌。
简单来说,就是把输入的微弱信号经过放大器一番“修整”,最后在输出端放出更强的信号。
2.2 放大原理那么,它是怎么工作的呢?放大器的核心是一个叫做晶体管的“小东西”,这个晶体管就像是个调皮的孩子,能根据输入信号的变化来调节输出信号的大小。
你想想,输入的信号就像是小溪流水,而晶体管则是那块石头,流过的水被石头挡住,水流就会在石头后面聚集,形成更大的水流。
在这个过程中,电流的变化就能把小信号放大,变成大信号,哇,真是太神奇了!3. 实验步骤3.1 实验准备在实验之前,我们得先准备好一些必要的设备,像是电源、信号发生器、示波器和一些电阻、电容。
这些都是我们实验的“好帮手”,没它们可不行哦。
信号发生器就好比是个乐队指挥,给我们提供音乐;示波器则像是个观察员,让我们可以看到电流变化的样子。
准备好这些之后,我们就可以开始我们的“音乐会”了!3.2 连接电路接下来,最重要的就是把这些设备连接起来。
按照电路图把每个元件连接好,就像拼图一样,找对位置,才能把这幅画拼完整。
连接好之后,检查一遍,确保没有遗漏的地方。
然后,慢慢地给电路通电,哇,神奇的事情发生了!我们的输入信号在经过放大器之后,变得更强了,音量也随之提升,真是让人耳目一新。
模拟电路应用实验—晶体管单级放大电路实验报告

模拟电路应用实验—晶体管单级放大电路实验报告实验目的:1. 理解晶体管的结构与基本特性2. 掌握晶体管单级放大电路的构成方法与基本性能3. 学习测量电路中的关键参数4. 熟悉使用实验仪器(万用表、示波器、信号发生器等)实验原理:晶体管是由三个层(P、N、N或P、P、N)构成的半导体三极管。
由于晶体管有较高的输入电阻和较低的输出电阻,且电压放大系数大,因此被广泛应用于电子放大、开关、调制等方面。
晶体管单级放大电路是将晶体管作为电压放大器的基本电路。
其基本电路图如下:晶体管单级放大电路可以分为两种工作状态:放大状态和截止状态。
当输入信号较小时,晶体管工作于放大状态;当输入信号较大时,晶体管工作于截止状态。
实验步骤:1. 按照电路图连接晶体管单级放大电路,连接好信号源,示波器和万用表。
2. 打开电源并调节工作电压,保证晶体管正常工作。
3. 测量输入电压和输出电压的大小,计算增益。
4. 改变输入信号的频率,观察输出信号的频率变化并做相关测量。
5. 改变负载电阻的大小,观察输出信号的变化并做相关测量。
实验结果:1. 在输入电压为300mv时,输出电压为1.2v,计算增益为4。
2. 在变化输入信号频率时,输出信号的频率也随之变化;当输入信号频率到达10KHz 时,输出信号的频率无法再跟随增加。
3. 在改变负载电阻的大小时,输出信号的电压随之变化,当负载电阻小于100欧时,输出信号失真,不能正常工作。
实验结论:通过本次实验,我们了解了晶体管单级放大电路的基本原理和电路构成方法,在实际操作中熟悉了各种仪器的使用方法。
同时我们还学会了测量了电路中的关键参数,如输入电压、输出电压、增益等。
实验的结果表明,晶体管单级放大电路是一种有效的电压放大器,在实际应用中有着广泛的应用前景。
实用文档之实验一 单级交流放大电路 实验报告

实用文档之"实验一单级交流放大电路"一、实验目的1.熟悉电子元器件和模拟电路实验箱,2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。
3.学习测量放大电路Q点,AV ,ri,ro的方法,了解共射极电路特性。
4.学习放大电路的动态性能。
二、实验仪器1.示波器2.信号发生器3.数字万用表三、实验原理1.三极管及单管放大电路工作原理。
以NPN三极管的共发射极放大电路为例说明三极管放大电路的基本原理:三极管的放大作用是:集电极电流受基极电流的控制,并且基极电流很小的变化,会引起集电极电流很大的变化,。
如果将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic 很大的变化。
如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I可以算得,这电阻上电压就会发生很大的变化。
我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。
2.放大电路静态和动态测量方法。
放大电路良好工作的基础是设置正确的静态工作点。
因此静态测试应该是指放大电路静态偏置的设置是否正确,以保证放大电路达到最优性能。
放大电路的动态特性指对交流小信号的放大能力。
因此动态特性的测试应该指放大电路的工作频带,输入信号的幅度范围,输出信号的幅度范围等指标。
四、实验内容及步骤1.装接电路与简单测量图1.1 工作点稳定的放大电路(1)用万用表判断实验箱上三极管V 的极性和好坏,电解电容C 的极性和好坏。
测三极管B 、C 和B 、E 极间正反向导通电压,可以判断好坏;测电解电容的好坏必须使用指针万用表,通过测正反向电阻。
三极管导通电压UBE=0.7V 、UBC=0.7V ,反向导通电压无穷大。
(2)按图1.1所示,连接电路(注意:接线前先测量+12V 电源,关断电源后再连线),将RP 的阻值调到最大位置。
2.静态测量与调整接线完毕仔细检查,确定无误后接通电源。
改变R P ,记录I C 分别为0.5mA 、1mA 、1.5mA 时三极管V 的β值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
45
实验一 单级放大电路
一、实验目的
1、熟悉Multisim9软件的使用方法。
2、掌握放大器静态工作点的仿真方法及其对放大器性能的影响。
3、学习放大器静态工作点、电压放大倍数、输入电阻、输出电阻的仿真方法,了解共射极
电路特性。
二、虚拟实验仪器及器材
双踪示波器 信号发生器 交流毫伏表 数字万用表
三、实验步骤
1.启动multisim如图所示
2.点击菜单栏上place/component,弹出如下所示的select a component对话框
46
3.在group下拉菜单中选择basic,如图所示
4.选中RESISTOR,此时在右边列表中选中1.5kΩ 5%电阻,点击OK按钮。此时该电阻随鼠标
一起移动,在工作区适当位置点击鼠标左键,如下图所示
5.同理,把如下所示的所有电阻放入工作区
47
6.同样,如下图所示选取电容10uF两个,放在工作区适当位置
结果如下:
7.同理如下所示,选取滑动变阻器
48
8.同理选取三极管
9.选取信号源
10.选取直流电源
11.选取地
49
12.最终,元器件放置如下
13.元件的移动与旋转,即:单击元件不放,便可以移动元件的位置;单击元件(就是选中元件),
鼠标右键,如下图所示,便可以旋转元件。
14.同理,调整所有元件如下图所示
50
15.把鼠标移动到元件的管脚,单击,便可以连接线路。如下图所示
16.同理,把所有元件连接成如下所示电路
17.选择菜单栏options/sheet properties,如图所示
51
18.在弹出的对话框中选取show all ,如下所示
19.此时,电路中每条线路出上便出现编号,以便为后来仿真。
20.如果要在2N222A的e端加上一个100欧电阻,可以先选中“3”这条线路,然后按键盘del
键,就可以删除。如下图所示
21.之后,点击菜单栏上place/component,弹出如下所示的select a component对话框,选取
BASIC_VIRTUAL,然后选取RESISTOR_VIRTUAL,再点击OK按钮。
注意:这是虚拟电阻(都带有_VIRTUAL),因为只有虚拟电阻才能更改其阻值!同样,电容,
电感,三极管等等元件,只有虚拟元件才能更改其参数.
52
22.最后,电路如下:
注意:该电路当中元件阻值与前面几个步骤中阻值不一样,更改的方法是:比如(要把R3从5.1
千欧更改为20千欧),选中R3电阻,右键,如图所示:
之后,重新选取20千欧电阻便会自动更换。
53
23.单击仪表工具栏中的第一个(即:万用表),放置如下图所示
24.单击工具栏中运行按钮,便进
行数据的仿真。之后,双击图标,就可以观察三极管e端对地的直流电压。如图所示
,然后,单击滑动变阻器,,会出现一个
虚框,之后,按键盘上的A键,就可以增加滑动变阻器的阻值,shift+A便可以降低其阻值。
25.静态数据仿真:
1、调节滑动变阻器的阻值,使万用表的数据为2.2V。
2、执行菜单栏中simulate/analyses/DC Operating Point…
3、如下所示操作
54
注意:$1就是电路图中三极管基级上的1,$3,$6分别是发射极和集电极上的3和6
4、点击对话框上的Simulate,如下图所示
5、结果是:
6、记录数据,填如下表:
仿真数据(对地数据)单位:V 计算数据 单位:V
基 级 集电极 发射级
Vbe Vce Rp
★Rp的值,等于滑动变阻器的最大阻值乘上百分比。
26.动态仿真一
1、单击仪表工具栏中的第四个(即:示波器Oscilloscope),放置如下图所示,并且连
接电路。
(注意:示波器分为2个通道,每个通道有+和—,连接时只需用+即可,示波器默认的
地已经连接好的。观察波形图时会出现不知道那个波形是那个通道的,解决方法是更改连接通道
的导线颜色,即:右键击导线,弹出),单击wire color,可以更改颜
色,同时示波器中波形颜色也随之改变)
55
2、右击V1,出现,单击properties,出现
对话框,把Voltage 的数据改为10mV,Freguency的数据改为
1kHz,确定。
3、.单击工具栏中运行按
钮,便进行数据的仿真。
4、双击图标,得如下波形:
★:如果波形太密或者幅度太小,可以调整Scale里边的数据,如果还不清楚,可以看第一章中
示波器的使用
5、记录波形,并说出他们的相位有何不同
27动态仿真二
1、删除负载电阻R6,重新连接示波器如图所示
56
2、重新启动仿真,波形如下:
★可以单击T1和T2的箭头,移动如图所示的竖线,就可以读出输入和输出的峰值。
注意:峰峰值变为有效值除以22
记录数据如下表: (注 此表为RL为无穷)
仿真数据(注意 填写单位) 计算
Vi有效值 V0有效值
Av
3、其他不变,分别加上5.1k欧和330欧的电阻,如下图所示,并填表
57
填表:
仿真数据(注意填写单位) 计算
RL Vi V0 Av
5.1KΩ
330Ω
4、其他不变,增大和减小滑动变阻器的值,观察V0的变化,并记录波形。
Vb Vc Ve
画出波形
Rp增大
Rp减小
★ 如果效果不明显,可以适当增大输入信号
28.动态仿真三
1、测量输入电阻Ri
在输入端串联一个5.1k的电阻,如图所示,并且连接一个万用表,如图连接。启动
仿真,记录数据,并填表。
☆万用表要打在交流档才能测试数据
58
填表:
仿真数据(注意填写单位) 计算
信号发生器有效电压值 万用表的有效数据
Ri
2、测量输出电阻R0
如图所示: ☆万用表要打在交流档才能测试数据,其数据为VL
如图所示:☆万用表要打在交流档才能测试数据,其数据为V0
59
填表:
仿真数据 计算
VL V0 R0
29.思考题
1、画出如下电路:
2、如何把元件水平翻转和垂直翻转呢?如图所示
3、如何更改元件的数值呢?
4、如果去掉实验中的R7既是100欧电阻,输出波形有何变化?动手仿真看一看。
5、元件库中有些元件后带有VIRTUAL,它表示什么意思?