等差数列的前n项和性质ppt课件
合集下载
等差数列前n项和公式课件

6
例1 如图,一个堆放铅笔的 V形
架的最下面一层放一支铅笔,往 上每一层都比它下面一层多一支, 最上面一层放120支。这个V形架 上共放着多少支铅笔?
解:由题意可知,这个V形架上共放着120层铅
笔,且自下而上各层的铅笔数成等差数列,记
为{an},其中 a1=1 , a120=120.根据等差数列前n项 和的公式,得
120 (1120)
S120
2
7 260
答:V形架上共放着 7 260支铅笔。
7
例2 等差数列 10,6,2,2,…前多少项的和是54?
解:设题中的等差数列为{an},前n项和是 Sn,
则a1= 10,d= 6(10) 4,设 Sn=54, 根据等差数列前 n项和公式,得
10n n(n 1) 4 54 n2 6n 27 0
100个101
所以 2x 101100, x=5050.
这个问题,可看成是求等差数列 1,2,3,…, n,…的前100项的和。
3
下面将对等差数列的前n项和公式进行推导
设等差数列a1,a2,a3,… 它的前n 项和是 Sn=a1+a2+…+an-1+an (1) 若把次序颠倒是Sn=an+an-1+…+a2+a1 (2) 由等差数列的性质 a1+an=a2+an-1=a3+an-2=… 由(1)+(2) 得 2sn=(a1+an)+(a1+an)+(a1+an)+..
(m,n,p,q∈N),那么: an+am=ap+aq
2
问题1:1+2+3+…+100=?
4.2.2等差数列的前n项和(第一课时)课件(人教版)

最小值时n的值为(
A.5
√
B.6
C.7
)
D.8
a1
17
解析 由 7a5+5a9=0,得 d =- 3 .
又a9>a5,所以d>0,a1<0.
d
1 a1 1 17 37
d 2
因为函数 y=2x +a1-2x 的图象的对称轴为 x=2- d =2+ 3 = 6 ,
取最接近的整数 6,故 Sn 取得最小值时 n 的值为 6.
已知等差数列{ an }的首项为a1,项数
是n,第n项为an,求前n项和Sn .
S n a1 (a1 d ) (a1 2d ) ... [a1 (n 1)d ], ①
S n an (an d ) (an 2d ) ... [an (n 1)d ], ②
跟踪练习
8.植树节某班20名同学在一段直线公路一侧植树,每人植树一棵,相邻两棵树相距
10米,开始时需将树苗集中放置在某一棵树坑旁边,使每位同学从各自树坑出发前
来领取树苗往返所走的路程总和最小,此最小值为________米.
解析 假设20位同学是1号到20号依次排列,
使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,
由①+②,得
2Sn (a1 an)+(a1 an)+(a1 an)+...+(a1 an)
n个
n(a1 an )
2 S n n(a1 an ) 即Sn
2
求和公式
可知三
求一
等差数列的前n项和的公式:
n(a1 an )
Sn
不含d
A.5
√
B.6
C.7
)
D.8
a1
17
解析 由 7a5+5a9=0,得 d =- 3 .
又a9>a5,所以d>0,a1<0.
d
1 a1 1 17 37
d 2
因为函数 y=2x +a1-2x 的图象的对称轴为 x=2- d =2+ 3 = 6 ,
取最接近的整数 6,故 Sn 取得最小值时 n 的值为 6.
已知等差数列{ an }的首项为a1,项数
是n,第n项为an,求前n项和Sn .
S n a1 (a1 d ) (a1 2d ) ... [a1 (n 1)d ], ①
S n an (an d ) (an 2d ) ... [an (n 1)d ], ②
跟踪练习
8.植树节某班20名同学在一段直线公路一侧植树,每人植树一棵,相邻两棵树相距
10米,开始时需将树苗集中放置在某一棵树坑旁边,使每位同学从各自树坑出发前
来领取树苗往返所走的路程总和最小,此最小值为________米.
解析 假设20位同学是1号到20号依次排列,
使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,
由①+②,得
2Sn (a1 an)+(a1 an)+(a1 an)+...+(a1 an)
n个
n(a1 an )
2 S n n(a1 an ) 即Sn
2
求和公式
可知三
求一
等差数列的前n项和的公式:
n(a1 an )
Sn
不含d
等差数列前n项和的性质ppt课件

解析: 方法一:设 an=a1+(n-1)d,bn=b1+(n-1)e.
取 n=1,则ab11=TS11=12,所以 b1=2a1.所Βιβλιοθήκη 以Sn Tn=
na1+nn- 2 1d nb1+nn- 2 1e
=
a1+n-2 1d b1+n-2 1e
=
a1+n2d-d2 2a1+n2e-2e
=
3n2+n 1,
一个等差数列的前10项之和为100,前100项之和为10,求 前110项之和.
由题目可获取以下主要信息: ①S10=100,S100=10;②此数列为等差数列. 解答本题可充分利用等差数列前n项和的有关性质解答.
[解题过程] 方法一:设等差数列{an}的公差为 d,前 n 项和为 Sn,则 Sn=na1+nn-2 1d.
3.设等差数列{an}的前n项和为Sn.若S9=72,则a2+a4+a9 =________.
解析: 由等差数列的性质S9=9a5=72,a5=8,a2+a4+a9 =a1+a5+a9=3a5=24,故填24.
答案: 24
4.(1)等差数列{an}中,a2+a7+a12=24,求 S13. (2)等差数列{an}的公差 d=12,且 S100=145, 求 a1+a3+a5+…+a99. 解析: (1)∵a2+a12=a1+a13=2a7, 又 a2+a7+a12=24,∴a7=8. ∴S13=13a12+a13=13×8=104. (2)∵S100=(a1+a3+…+a99)+(a2+a4+…+a100) =2(a1+a3+…+a99)+50d=145, 又 d=12,∴a1+a3+…+a99=60.
an=Sn-Sn-1=n2-3n+1-[(n-1)2-3(n-1)+1] =2n-4,
等差数列前n项求和ppt

公式理解
01
公式意义
等差数列的前n项和公式表示等 差数列前n项的和,其中首项为 a1,公差为d,项数为n。
公式结构
02
03
公式参数
公式由首项、公差、项数和求和 符号组成,反映了等差数列的特 性。
首项a1表示等差数列的第一项, 公差d表示相邻两项的差,项数n 表示等差数列的项数。
公式应用
应用场景一
等差数列前n项求和
目录
• 等差数列的定义与性质 • 等差数列的前n项和公式 • 等差数列求和的常见方法 • 等差数列求和的实际应用 • 等差数列求和的注意事项
01
等差数列的定义与性质
定义
总结词
等差数列是一种常见的数列,其特点是任意两个相邻项的差是一个常数。
详细描述
等差数列是一种有序的整数集合,其中任意两个相邻项的差都等于一个常数,这个常数被称为公差。等差数列的 一般形式为 a_n = a_1 + (n-1)d,其中 a_n 是第 n 项,a_1 是第一项,d 是公差。
02
等差数列的前n项和公式
公式推导
公式推导方法一
利用等差数列的性质,将前n项和表示为n/2乘以首项与末项的平均值,再利用等差数列的通项公式, 推导出前n项和公式。
公式推导方法二
利用等差数列的求和公式,将前n项和表示为首项与末项的和乘以项数再除以2,同样利用等差数列的通 项公式,推导出前n项和公式。
日常生活中的应用
购物清单
在购物时,等差数列求和公式可用于计算购 物清单中商品的总价,以便快速计算出总花 费。
工资计算
在工资计算中,等差数列求和公式可用于计算工资 总额,以便计算税款和扣除项。
日常理财
在理财中,等差数列求和公式可用于计算定 期存款、基金定投等理财产品的收益。
等差数列的前n项和公式的性质及应用 课件

因为 S2k=2ka1+12×2k(2k-1)d=8a1+42,
所以 8a1+42=54,故 a1=32,
所以此数列的首项是32,公差是32,项数为 8.
法二:设此数列的首项为 a1,公差为 d,项数为 2k(k∈N*),
S奇=24, 根据题意,得S偶=30,
a2k-a1=221,
12ka1+a2k-1=24, 即12ka2+a2k=30,
和 30,最后一项与第一项之差为221,求此数列的首项、公差以及项数. [解析] 法一:设此数列的首项为 a1,公差为 d,项数为 2k(k∈N*),
S奇=24, 由已知得S偶=30,
a2k-a1=221,
S偶-S奇=6, 所以a2k-a1=221,
kd=6,
k=4,
即2k-1d=221, 解得d=32.
②若项数为 2n-1,则 S2n-1=(2n-1)an(an 为中间项)且 S 奇-S 偶= an , n-1
SS偶 奇=___n____.
(3)若 Sn 为数列{an}的前 n 项和,则{an}为等差数列等价于Snn是等差 数列. (4)若{an}、{bn}都为等差数列,Sn、Sn′为它们的前 n 项和,则abmm= SS′2m2- m1-1. (5)项数(下标)的“等和”性质: Sn=na12+an=nam+2an-m+1.
()
A.130
B.65
C.70
D.以上都不对
解析:S13=a1+2 a13×13=a5+2 a9×13=130.
答案:A
3.已知某等差数列共 20 项,其所有项和为 75,偶数项和为 25,则
公差为( )
A.5
B.-5
C.-2.5
D.2.5
等差数列前n项和(公开课)PPT课件

数学建模
等差数列的前n项和公式也可以用于数学建模,例如在解决一 些实际问题时,可以利用等差数列的前n项和来建立数学模型 ,从而更好地理解和解决这些问题。
在物理中的应用
物理学中的等差数列
在物理学中,有些物理量呈等差数列 分布,例如光的波长、音阶的频率等 ,等差数列的前n项和公式可以用于 计算这些物理量的总和。
物理学中的级数求和
在物理学中,有些级数的求和问题可 以用等差数列的前n项和公式来解决 ,例如在求解一些物理问题的近似解 时,可以利用等差数列的前n项和来 简化计算。
在经济中的应用
金融投资
在金融投资中,有些投资组合的收益 呈等差数列分布,例如定期存款、基 金定投等,等差数列的前n项和公式 可以用于计算这些投资组合的总收益 。
CHAPTER 02
等差数列的前n项和公式
等差数列前n项和的定义
01
02
03
定义
等差数列的前n项和是指 从第一项到第n项的所有 项的和。
符号表示
记作Sn,其中S表示总和 ,n表示项数。
举例
对于等差数列2, 4, 6, ..., 2n,前n项和为Sn = 2 + 4 + 6 + ... + 2n。
等差数列前n项和(公开 课)ppt课件
汇报人:可编辑
2023-12-23
CONTENTS
目录
• 等差数列的概念 • 等差数列的前n项和公式 • 等差数列前n项和的特例 • 等差数列前n项和的应用 • 习题与解答
CHAPTER 01
等差数列的概念
等差数列的定义
等差数列是一种常见的数列,其 中任意两个相邻项的差是一个常
等差数列前n项和的公式推导
推导方法
等差数列的前n项和公式也可以用于数学建模,例如在解决一 些实际问题时,可以利用等差数列的前n项和来建立数学模型 ,从而更好地理解和解决这些问题。
在物理中的应用
物理学中的等差数列
在物理学中,有些物理量呈等差数列 分布,例如光的波长、音阶的频率等 ,等差数列的前n项和公式可以用于 计算这些物理量的总和。
物理学中的级数求和
在物理学中,有些级数的求和问题可 以用等差数列的前n项和公式来解决 ,例如在求解一些物理问题的近似解 时,可以利用等差数列的前n项和来 简化计算。
在经济中的应用
金融投资
在金融投资中,有些投资组合的收益 呈等差数列分布,例如定期存款、基 金定投等,等差数列的前n项和公式 可以用于计算这些投资组合的总收益 。
CHAPTER 02
等差数列的前n项和公式
等差数列前n项和的定义
01
02
03
定义
等差数列的前n项和是指 从第一项到第n项的所有 项的和。
符号表示
记作Sn,其中S表示总和 ,n表示项数。
举例
对于等差数列2, 4, 6, ..., 2n,前n项和为Sn = 2 + 4 + 6 + ... + 2n。
等差数列前n项和(公开 课)ppt课件
汇报人:可编辑
2023-12-23
CONTENTS
目录
• 等差数列的概念 • 等差数列的前n项和公式 • 等差数列前n项和的特例 • 等差数列前n项和的应用 • 习题与解答
CHAPTER 01
等差数列的概念
等差数列的定义
等差数列是一种常见的数列,其 中任意两个相邻项的差是一个常
等差数列前n项和的公式推导
推导方法
4.2.2 第1课时 等差数列的前n项和课件ppt
(2)设Sn为等差数列{an}的前n项和,若S3=3,S6=24,则a9=
(3)在等差数列{an}中,若a1=1,an=-512,Sn=-1 022,则公差d=
.
.
.
分析利用等差数列的通项公式和前n项和公式列方程进行计算求解.
答案 (1)81 (2)15
(3)-171
解析 (1)设等差数列{an}的公差为d,
= 3,
则
3(-1)
Sn=20n+ 2
=
3 2 37
n
+
n.
2
2
令 Sn≤438,即 3n2+37n-876≤0 且 n∈N*,解得 n≤12.
所以最般思路
变式训练 3甲、乙两物体分别从相距70 m的两处同时相向运动,甲第1分钟
438万元.则该研究所最多可以建设的实验室个数是(
A.10
B.11 C.12 D.13
)
答案 C
解析 设第 n 实验室的建设费用为 an 万元,其中 n∈N*,
设等差数列{an}的公差为 d,由题意可得
7 -2 = 5 = 15,
解得
3 + 6 = 21 + 7 = 61,
1 = 20,
+5n=70,
2
素养形成
利用Sn与an的关系式求通项公式
典例 已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn= 2+n-4.
(1)求证:{an}为等差数列;
(2)求出{an}的通项公式.
分析在等式2Sn= 2 +n-4中,令n取n-1,可得2Sn-1= 2 −1 +n-5.两式相减,利
和公式中“知三求二”的问题,一般是通过通项公式和前n项和公式联立方
等差数列的前n项求和公式ppt课件
则 2Sn nn 1
Sn
nn 1
2
4
推导
下面对等差数列前n项公式进行推导
设等差数列 a1,a2,a3,… 它的前n 项和是 Sn=a1+a2+…+an-1+an (1) 若把次序颠倒是 Sn=an+an-1+…+a2+a1 (2) 由(1)+(2) 得 2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+.. 由等差数列的性质 a1+an=a2+an-1=a3+an-2=… 由(1)+(2) 得 2Sn=(a1+an)+(a1+an)+(a1+an)+..
高斯的问题,可以看成是求等差数列 1,2,3,…, n,…的前100项的和,求:1+2+3+4+…+n=?
如果令 Sn=1 + 2 + 3 + ... +(n-2)+(n-1)+ n
颠倒顺序得 Sn=n+(n-1)+(n-2)+ ... + 3 + 2 + 1
将两式相加 2Sn=(1+n)+(2+n-1)+...+(n+1)
例2 已知一个等差数列{an}的前10项的和是310,前
20项的和是1220 .求等差数列的前n项和的公式
例3 求集合M={m|m=7n, n是正整数, 且m<100}的元素
个数, 并求这些元素的和.
7
解:将题中的等差数列记为{an},Sn代表该数列的前n项
等差数列前n项和性质上课用ppt课件
等差数列的性质应用:
例、已知一个等差数列的总项数为奇数, 且奇数项之和为77,偶数项之和为 66,求中间项及总项数。
解:由 S奇 S偶 中间项
得中间项为11 又由 S奇 S偶 143 得 n 13
等差数列{an}前n项和的性质的应用
例6.两等差数列{an} 、{bn}的前n项和分
别是Sn和Tn,且 Sn 7n 1
13a1+13×6d<0
24 d 3 7
(2)
∵
Sn
na1
1 2
n(n 1)d
1
n(12 2d ) n(n 1)d
2
d n2 (12 5d )n
2
2 5 12
∴Sn图象的对称轴为 n
由(1)知 24 7
d
3
2d
∴Sn有最大值.
由上得 6 5 12 13 即 6 n 13
A.63 B.45 C.36 D.27
例3.在等差数列{an}中,已知公差d=1/2,且
a1+a3+a5+…+a99=60,a2+a4+a6+…+a100=A( )
A.85 B.145 C.110 D.90
等差数列的性质应用:
例4、已知等差数列an 的前10项之和
为140,其中奇数项之和为125 , 求第6项。
前n项的和分别为Sn和Tn,则
an bn
S2n1 T2 n 1
等差数列的性质应用:
例1、已知一个等差数列前n项和为25, 前2n项的和为100,求前3n项和。
3.等差数列{an}前n项和的性质的应用 例2.设等差数列{an}的前n项和为Sn,若
S3=9,S6=36,则a7+a8+a9=( B)
等差数列的前n项和课件
详细描述
当等差数列的公差d等于0时,数列中的每一项都相等,此时等差数列退化为常 数列。在这种情况下,前n项和公式将简化为求单一数值的和。
当d≠0时,等差数列前n项和的公式简化
总结词:公式简化
详细描述:当公差d不等于0时,等差数列前n项和的公式可以通过求和公式进行简化。具体来说,可以使用等差数列的通项 公式和求和公式来推导出一个更简单的公式,用于计算前n项和。
等差数列前n项和与首末项的和的关 系
等差数列前n项和等于首末项的和乘以项数再除以2。
THANKS
感谢观看
等差数列前n项和公式的变种形式
等差数列前n项和的平方公式
等差数列前n项和的平方等于首项与末项的平方和加上4倍的第二项到倒数第二项的各 项之和。
等差数列前n项和与中间项的和
等差数列前n项和等于中间项与其余各项和的平均值乘以项数。
等差数列前n项和公式的极限形式
等差数列前n项和的极限
当n趋向于无穷大时,等差数列前n项和的极限等于首 项与末项的和除以2。
等差数列的前n项和ppt课件
• 等差数列的定义与性质 • 等差数列的前n项和公式 • 等差数列前n项和的特例 • 等差数列前n项和的实际应用 • 等差数列前n项和的扩展知识
01
等差数列的定义与性质
等差数列的定义
定义
等差数列是一种常见的数列,其 中任意两个相邻项的差是一个常 数,这个常数被称为公差。
前n项和公式的应用
前n项和公式在数学、物理、工程等 领域有广泛的应用。
前n项和公式可以用于解决等差数列 相关的问题,如求和、比较大小等。 此外,该公式还可以用于解决一些实 际问题,如计算存款利息、评估投数列退化为常数列
总结词
等差数列退化为常数列
当等差数列的公差d等于0时,数列中的每一项都相等,此时等差数列退化为常 数列。在这种情况下,前n项和公式将简化为求单一数值的和。
当d≠0时,等差数列前n项和的公式简化
总结词:公式简化
详细描述:当公差d不等于0时,等差数列前n项和的公式可以通过求和公式进行简化。具体来说,可以使用等差数列的通项 公式和求和公式来推导出一个更简单的公式,用于计算前n项和。
等差数列前n项和与首末项的和的关 系
等差数列前n项和等于首末项的和乘以项数再除以2。
THANKS
感谢观看
等差数列前n项和公式的变种形式
等差数列前n项和的平方公式
等差数列前n项和的平方等于首项与末项的平方和加上4倍的第二项到倒数第二项的各 项之和。
等差数列前n项和与中间项的和
等差数列前n项和等于中间项与其余各项和的平均值乘以项数。
等差数列前n项和公式的极限形式
等差数列前n项和的极限
当n趋向于无穷大时,等差数列前n项和的极限等于首 项与末项的和除以2。
等差数列的前n项和ppt课件
• 等差数列的定义与性质 • 等差数列的前n项和公式 • 等差数列前n项和的特例 • 等差数列前n项和的实际应用 • 等差数列前n项和的扩展知识
01
等差数列的定义与性质
等差数列的定义
定义
等差数列是一种常见的数列,其 中任意两个相邻项的差是一个常 数,这个常数被称为公差。
前n项和公式的应用
前n项和公式在数学、物理、工程等 领域有广泛的应用。
前n项和公式可以用于解决等差数列 相关的问题,如求和、比较大小等。 此外,该公式还可以用于解决一些实 际问题,如计算存款利息、评估投数列退化为常数列
总结词
等差数列退化为常数列
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
(2)由已知,得S8=8a1 a8 8解4 得a8a8,=39,
2
2
又∵a8=4+(8-1)d=39,∴d=5.
等差数列前n项和的性质
等差数列前n项和的性质.
(1)项数(下标)的“等和”性质:
Sn
n a1
2
an
nam
anm1
2
(2)项的个数的“奇偶”性质:
等差数列{an}中,公差为d: ①若共有2n项,则S2n=n(an+an+1); S偶-S奇=nd;S偶∶S奇= an+1∶an;
而a1+an=a2+an-1=a3+an-2=a4+an-3,所以4(a1+an)=88,所
以a1+an=n2(2a,12 an)
所以Sn=
=11n=286,所以n=26.故所求的项数为26.
【典例】(12分)在等差数列{an}中,a1=25,S17=S9,求Sn 的最大值. 【审题指导】题目给出首项和S17=S9等条件,欲求Sn的最 大值可转化为二次函数求最值,或利用通项公式an求n使得 an≥0,an+1<0或利用性质求出大于或等于零的项.
n(n×(1)-5)=
2
5 n2 1 n. 22
答案: 5 n2 1 n
22
4.等差数列{an}的前n项和为Sn,若a2=1,a3=3,则
故n=13时,Sn有最大值169.
……………………12分
【误区警示】对解答本题时易犯错误的具体分析如下:
1.在等差数列{an}中,已知a1=4,a6=6,则前6项和S6=( )
(A)70 (B)35 (C)30 (D)12
【解析】选C.S6=(6 a1 a6)=6=(340.6)
2
2
2.等差数列{an}的前n项和为Sn,若a3+a17=10,则
方法二:先求出公差d=-2(同方法一), ………………6分
∵a1=25>0,故{an}为递减数列,由
a a
n n
得0
1<0
25 25
(2 n 解1)得 0
2n<0
,
nn>…11…231212………………9分
即12 1<n 又13n1∈. N*
2
2
∴当n=13时,Sn有最大值S13=13×251+3(123 1)×(-2)
S19=( )
(A)55 (B)95
(C)100 (D)不能确定
【解析】选B.S19=1(9 a12 a19)=1(9=a9325.a17)
3.已知数列{an}的通项an=-5n+2,则其前n项和
Sn=_______.
【解析】an+1-an=-5,∴{an}是等差数列.a1=-3,
d=-5,∴Sn=-3n+
d
110
1 099 100
11=0 -110190. (
2
11 50
)
故此数列的前110项之和为-110.
方法二:数列S10,S20-S10,S30-S20,…,S100-S90,S110-S100成等差 数列,设其公差为D,前10项和为10S10+102 9·D=S100=10 D=-22,∴S110-S100=S10+(11-1)D =100+10×(-22)=-120.
的变形形式:Sn=
d 2
n2
(a1
d 2
)n 或Sn=An2+Bn.
2.依据等差数列的性质得到的结论.
(1)当n为奇数时,Sn= na n1;
2
(2)Sn
n
=a1+(n-1)d .
2
【特别提醒】注意应用等差数列性质来简化计算过程,同时在解
题过程中还应注意已知与未知的联系及整体思想的运用.
【例1】已知等差数列{an}.
【规范解答】方法一:设公差为d,由S1 1=)d25× 9 (9 9…1…)d…, …………3分
2
2
解得d=-2,………………………………………………6分
∴Sn=25n+n(n2 ×1)(-2)=-(n-13)2+169, ………9分 由二次函数性质得,当n=13时,Sn有最大值169. ……12分
∴S110=-120+S100=-110.
【例】已知等差数列{an}的前4项和为25,后4项和为63, 前n项和为286,求项数n.
【审题指导】题目给出前4项和与后4项和,可利用等差数
列项数(下标)的“等和”性质:
Sn=
n(a1 2
a n)
n(a来m 求a得nm.1)
2
【规范解答】因为a1+a2+a3+a4=25,an-3+an-2+an-1+an=63.
②若共有2n+1项,则S2n+1=(2n+1)an+1; S偶-S奇=-an+1;S偶∶S奇=n∶(n+1); ③“片段和”性质: 等差数列{an}中,公差为d,前k项的和为Sk,则Sk,S2k-Sk, S3k-S2k,…,Smk-S(m-1)k,…构成公差为k2d的等差数列.
【例2】Sn是等差数列{an}的前n项和,且S10=100,S100=10,
(1)a1= 5 , a15= 3 , Sn=-5,求n和d;(2)a1=4,S8=172,求a8和d.
6
2
【审题指导】根据等差数列前n项和公式解方程.
【规范解答】(1)∵a15= 5+(15-1)d= 3 ,∴d= 1 .
6
2
6
又Sn=na1+n n 1· d=-5,解得n=15,n=-4(舍).
求S110.
【规范解答】方法一:设等差数列{an}的公差为d,前n项和
为Sn,则Sn=na1+n
n 2
1
d.
由已知得
10a1
10 2
9
d
100,①
100a1
100 2
99
d
10,②
①×10-②,整理得d= 11代, 入①,得a1=
50
1 099 . 100
∴S110=110a1+110
109 2
【思考】
等差数列前n项和的有关计算
【名师指津】 1.等差数列前n项和的应用
(1)等差数列前n项和公式,共涉及到五个量a1、n、d、an、 Sn.若已知其中三个量,可求另外两个量,也就是我们说的“知 三求二”,其方法一般是通过通项公式和前n项和公式联立方
程(组)求解.
(2)在利用等差数列前n项和公式解题时,常常要联系该公式
=169.
…………………………………………12分
方法三:先求出公差d=-2(同方法一), ………………6分
由S17=S9,得a10+a11+…+a17=0,
而a10+a17=a11+a16=a12+a15=a13+a14,
故a13+a14=0
…………………………………………9分
∵d=-2<0,a1>0,∴a13>0,a14<0.
(2)由已知,得S8=8a1 a8 8解4 得a8a8,=39,
2
2
又∵a8=4+(8-1)d=39,∴d=5.
等差数列前n项和的性质
等差数列前n项和的性质.
(1)项数(下标)的“等和”性质:
Sn
n a1
2
an
nam
anm1
2
(2)项的个数的“奇偶”性质:
等差数列{an}中,公差为d: ①若共有2n项,则S2n=n(an+an+1); S偶-S奇=nd;S偶∶S奇= an+1∶an;
而a1+an=a2+an-1=a3+an-2=a4+an-3,所以4(a1+an)=88,所
以a1+an=n2(2a,12 an)
所以Sn=
=11n=286,所以n=26.故所求的项数为26.
【典例】(12分)在等差数列{an}中,a1=25,S17=S9,求Sn 的最大值. 【审题指导】题目给出首项和S17=S9等条件,欲求Sn的最 大值可转化为二次函数求最值,或利用通项公式an求n使得 an≥0,an+1<0或利用性质求出大于或等于零的项.
n(n×(1)-5)=
2
5 n2 1 n. 22
答案: 5 n2 1 n
22
4.等差数列{an}的前n项和为Sn,若a2=1,a3=3,则
故n=13时,Sn有最大值169.
……………………12分
【误区警示】对解答本题时易犯错误的具体分析如下:
1.在等差数列{an}中,已知a1=4,a6=6,则前6项和S6=( )
(A)70 (B)35 (C)30 (D)12
【解析】选C.S6=(6 a1 a6)=6=(340.6)
2
2
2.等差数列{an}的前n项和为Sn,若a3+a17=10,则
方法二:先求出公差d=-2(同方法一), ………………6分
∵a1=25>0,故{an}为递减数列,由
a a
n n
得0
1<0
25 25
(2 n 解1)得 0
2n<0
,
nn>…11…231212………………9分
即12 1<n 又13n1∈. N*
2
2
∴当n=13时,Sn有最大值S13=13×251+3(123 1)×(-2)
S19=( )
(A)55 (B)95
(C)100 (D)不能确定
【解析】选B.S19=1(9 a12 a19)=1(9=a9325.a17)
3.已知数列{an}的通项an=-5n+2,则其前n项和
Sn=_______.
【解析】an+1-an=-5,∴{an}是等差数列.a1=-3,
d=-5,∴Sn=-3n+
d
110
1 099 100
11=0 -110190. (
2
11 50
)
故此数列的前110项之和为-110.
方法二:数列S10,S20-S10,S30-S20,…,S100-S90,S110-S100成等差 数列,设其公差为D,前10项和为10S10+102 9·D=S100=10 D=-22,∴S110-S100=S10+(11-1)D =100+10×(-22)=-120.
的变形形式:Sn=
d 2
n2
(a1
d 2
)n 或Sn=An2+Bn.
2.依据等差数列的性质得到的结论.
(1)当n为奇数时,Sn= na n1;
2
(2)Sn
n
=a1+(n-1)d .
2
【特别提醒】注意应用等差数列性质来简化计算过程,同时在解
题过程中还应注意已知与未知的联系及整体思想的运用.
【例1】已知等差数列{an}.
【规范解答】方法一:设公差为d,由S1 1=)d25× 9 (9 9…1…)d…, …………3分
2
2
解得d=-2,………………………………………………6分
∴Sn=25n+n(n2 ×1)(-2)=-(n-13)2+169, ………9分 由二次函数性质得,当n=13时,Sn有最大值169. ……12分
∴S110=-120+S100=-110.
【例】已知等差数列{an}的前4项和为25,后4项和为63, 前n项和为286,求项数n.
【审题指导】题目给出前4项和与后4项和,可利用等差数
列项数(下标)的“等和”性质:
Sn=
n(a1 2
a n)
n(a来m 求a得nm.1)
2
【规范解答】因为a1+a2+a3+a4=25,an-3+an-2+an-1+an=63.
②若共有2n+1项,则S2n+1=(2n+1)an+1; S偶-S奇=-an+1;S偶∶S奇=n∶(n+1); ③“片段和”性质: 等差数列{an}中,公差为d,前k项的和为Sk,则Sk,S2k-Sk, S3k-S2k,…,Smk-S(m-1)k,…构成公差为k2d的等差数列.
【例2】Sn是等差数列{an}的前n项和,且S10=100,S100=10,
(1)a1= 5 , a15= 3 , Sn=-5,求n和d;(2)a1=4,S8=172,求a8和d.
6
2
【审题指导】根据等差数列前n项和公式解方程.
【规范解答】(1)∵a15= 5+(15-1)d= 3 ,∴d= 1 .
6
2
6
又Sn=na1+n n 1· d=-5,解得n=15,n=-4(舍).
求S110.
【规范解答】方法一:设等差数列{an}的公差为d,前n项和
为Sn,则Sn=na1+n
n 2
1
d.
由已知得
10a1
10 2
9
d
100,①
100a1
100 2
99
d
10,②
①×10-②,整理得d= 11代, 入①,得a1=
50
1 099 . 100
∴S110=110a1+110
109 2
【思考】
等差数列前n项和的有关计算
【名师指津】 1.等差数列前n项和的应用
(1)等差数列前n项和公式,共涉及到五个量a1、n、d、an、 Sn.若已知其中三个量,可求另外两个量,也就是我们说的“知 三求二”,其方法一般是通过通项公式和前n项和公式联立方
程(组)求解.
(2)在利用等差数列前n项和公式解题时,常常要联系该公式
=169.
…………………………………………12分
方法三:先求出公差d=-2(同方法一), ………………6分
由S17=S9,得a10+a11+…+a17=0,
而a10+a17=a11+a16=a12+a15=a13+a14,
故a13+a14=0
…………………………………………9分
∵d=-2<0,a1>0,∴a13>0,a14<0.