最新新人教版八年级下册数学期末知识点复习提纲
新人教版八年级下册数学知识点归纳

新人教版八年级下册数学知识点归纳二次根式【知识回顾】1.二次根式:式子a (a ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a )2=a (a ≥0);(2)5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,?变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.ab =a ·b (a ≥0,b ≥0);bb aa(b ≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,?乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】例3、在根式1)222;2);3);4)275x ab xxy abc ,最简二次根式是()A .1) 2)B .3) 4)C .1) 3)D .1) 4)例5、已知数a ,b ,若2()a b =b -a ,则(?? ) A. a>b??????? B. a<b?? C. a≥b?????????? D. a≤ba (a >0)a (a <0)0(a =0);2、二次根式的化简与计算例1.将根号外的a 移到根号内,得(?? )A.;??B. -;?????C. -;?????D.例2.把(a -b )-1a -b 化成最简二次根式例4、先化简,再求值:11()b abba ab ,其中a=512,b=512.例5、如图,实数a 、b 在数轴上的位置,化简:222()aba b 4、比较数值(1)、根式变形法当0,0ab 时,①如果a b ,则a b ;②如果a b ,则a b 。
八年级下册数学期末知识点整理

八年级下册数学期末知识点整理
一. 整数运算
1. 整数概念和整数的四则运算
2. 整数的乘方运算
3. 整数的绝对值和相反数
二. 分数与比例
1. 分数的概念和分数的加减乘除
2. 分数的化简和约分
3. 分数的比大小
4. 比例和相似
三. 代数初步
1. 代数式和代数运算
2. 代数式的乘方和根式
3. 同类项和合并同类项
4. 一元一次方程
四. 图形初步
1. 平面图形的基本概念
2. 三角形的性质和分类
3. 四边形的性质和分类
4. 圆的基本概念和性质
五. 几何变换
1. 平移、旋转、镜像和翻折的概念和性质
2. 几何变换的刻画和表示
六. 数据统计
1. 数据的收集和整理
2. 数据的图表表示
3. 数据的分析和总结
七. 三角函数
1. 三角函数的概念和计算
2. 三角函数的图像和性质
八. 直线和圆的相关性质
1. 平行线和垂直线的判定和性质
2. 直线和圆的位置关系
3. 圆周角和弧度的概念
以上是八年级下册数学期末的知识点整理。
希望大家能够在复习过程中对这些知识点有所了解,并能够灵活运用。
祝大家取得好成绩!。
新人教版八年级数学下册知识点总结归纳

八年级数学(下册)知识点总结二次根式【知识回顾】1.二次根式:式子a(a≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a)2=a(a≥0);(2)==aa25.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.(a≥0,b≥0);=b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质例1下列各式1其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1)xx--+315;(2)22)-(x例3、在根式1) ,最简二次根式是()a(a>0)a-(a<0)0 (a=0);A .1) 2)B .3) 4)C .1) 3)D .1) 4)例4、已知:的值。
求代数式22,211881-+-+++-+-=x yy x x yy x x x y例5、 (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简与计算 例1. 将根号外的a 移到根号内,得 ( ) A.; B. -; C. -; D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:11()b a b b a a b ++++,其中a=512,51-.例5、如图,实数a 、b 在数轴上的位置,化简 222()a b a b -4、比较数值 (1)、根式变形法当0,0a b >>时,①如果a b >a b >a b <a b <。
新人教版八年级数学下册知识点总结归纳(1)

八年级数学(下册)知识点总结二次根式【知识回顾】1.二次根式:式子a (a ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a )2=a (a ≥0);(2)aa 25.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,?变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.ab =a ·b (a ≥0,b ≥0);bb a a (b ≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,?乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2。
2.勾股定理逆定理:如果三角形三边长a,b,c 满足a 2+b 2=c 2。
,那么这个三角形是直角三角形。
3.直角三角形的性质(1)、直角三角形的两个锐角互余。
可表示如下:∠C=90°∠A+∠B=90°(2)、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°可表示如下:BC=21AB∠C=90°(3)、直角三角形斜边上的中线等于斜边的一半∠ACB=90°可表示如下:CD=21AB=BD=AD a (a >0)a (a <0)0 (a =0);由直角三角形面积公式可得:ch ab 2121(其中a 、b 是直角边,c 是斜边,h 是斜边上的高。
人教版最新八年级数学重要知识点总结(下册)

八年级数学(下册)知识点总结第十六章 二次根式1.二次根式:式子a (a ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 25.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.a≥0,b≥0);=b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.a (a >0)a -(a <0)0 (a =0);【典型例题】1、概念与性质 例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1)x x --+315;(2)22)-(x例3、 在根式1)222;2);3);4)275xa b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4)例4、已知:的值。
求代数式22,211881-+-+++-+-=x yy x x yy x x x y例5、 (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简与计算 例1. 将根号外的a 移到根号内,得 ( ) A.; B. -; C. -; D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:11()ba b b a a b ++++,其中a=512,b=512.例5、如图,实数a 、b 在数轴上的位置,化简 222()a b a b -4、比较数值 (1)、根式变形法当0,0a b >>时,①如果a b >a b >a b <a b <。
新人教版数学八年级下册知识点归纳

八年级下册知识点归纳第十六章 二次根式1、二次根式: 形如)0(≥a a 的式子。
①二次根式必须满足:含有二次根号“”;被开方数a 必须是非负数。
②非负性2、最简二次根式:满足:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式的二次根式。
3、化最简二次根式的方法和步骤:(1)如果被开方数含分母,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数含能开得尽方的因数或因式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。
3、二次根式有关公式(1))0()(2≥=a a a (2)a a =2(3)乘法公式)0,0(≥≥•=b a b a ab(4)除法公式)0,0(φb a ba b a ≥= 4、二次根式的加减法则:先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并。
5、二次根式混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号里的。
第十七章 勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2。
2.勾股定理逆定理:如果三角形三边长a,b,c 满足a 2+b 2=c 2。
,那么这个三角形是直角三角形。
3. 互逆命题:题设、结论正好相反的两个命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理)4.直角三角形的性质(1)直角三角形的两个锐角互余。
°(2)在直角三角形中,30的角所对的直角边等于斜边的一半。
BD (3)如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么 a 2+b 2=c 2。
(4)、直角三角形斜边上的中线等于斜边的一半5、摄影定理:在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项。
①BD AD CD •=2②AB AD AC •=2③AB BD BC •=2 6、常用关系式由三角形面积公式可得:AB •CD=AC •BC第十八章 平行四边形1、平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
新人教版八年级数学下册知识点总结归纳 (1)
八年级数学(下册)知识点总结二次根式【知识回顾】1.二次根式:式子a (a ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 25.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.a≥0,b≥0);=b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.典型例题1.(1). (A )5-(B )5或5-(C )25 (D )5(2). (A )3-(B )3或3-(C )9(D )3(3)计算= ※ .a (a >0)a -(a <0)0 (a =0);(4)实数a ,ba +的化简结果为 ※ .2. (1)x 的取值范围为(※).(A )1x = (B )1x ≥ (C )1x > (D )1x < (2)函数y =x 的取值范围是 ※ .3.(1)下列各式计算正确的是(※). (A )2222-=-(Bab = (C ))9()4(-⨯-=4-9-⨯ (D )336=÷(2)下列各式计算正确的是(※). (A )12223=-(B)2+= (C ))9()4(-⨯-=4-9-⨯(D )336=÷4 (1)(本小题满分6分,各题3分)计算:(1); (20)a >.(2).(本小题满分6分,各题3分)计算:(1)(2))5().(第14题)b ax勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2。
新人教版八年级数学下册知识点归纳总结
八年级数学(下册)知识点总结 第十六章 二次根式 1.二次根式概念:式子a(a≥0)叫做二次根式。 2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。 3.同类二次根式: 二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。 4.二次根式的性质:
(1)(a)2=a (a≥0); (2)aa2 5.二次根式的运算: (1)因式的外移和移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面. (2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.
ab=a·b(a≥0,b≥0); bbaa(b≥0,a>0).
(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.
△ 比较数值的方法
(1)、根式变形法 当0,0ab时,①如果ab,则ab;②如果ab,则ab。 (2)、平方法 当0,0ab时,①如果22ab,则ab;②如果22ab
,则ab。
(3)、分母有理化法 通过分母有理化,利用分子的大小来比较。
例3、比较231与121的大小。 (4)、分子有理化法 通过分子有理化,利用分母的大小来比较。
例4、比较1514与1413的大小。 (5)、倒数法 例5、比较76与65的大小。
a(a>0) a(a<0) 0 (a=0); 例6、比较73与873的大小。 第十七章 勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,
新人教版八年级下册数学知识点归纳
新人教版八年级下册数学学问点归纳二次根式【学问回忆】1.二次根式:式子a 〔a ≥0〕叫做二次根式。
2.最简二次根式:必需同时满意以下条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,假设被开方数一样,那么这几个二次根式就是同类二次根式。
4.二次根式的性质:〔1〕〔a 〕2=a 〔a ≥0〕; 〔2〕 5.二次根式的运算:〔1〕因式的外移和内移:假如被开方数中有的因式可以开得尽方,那么,就可以用它的算术根代替而移到根号外面;假如被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.〔2〕二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. 〔3〕二次根式的乘除法:二次根式相乘〔除〕,将被开方数相乘〔除〕,所得的积〔商〕仍作积〔商〕的被开方数并将运算结果化为最简二次根式.a 〔a >0〕==a a 2a -〔a <0〕0 〔a =0〕;ab =a ·b 〔a≥0,b≥0〕;b ba a=〔b≥0,a>0〕. 〔4〕有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的安排律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】例3、 在根式1)222;2);3);4)275xa b x xy abc +-,最简二次根式是〔 〕 A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例5、数a ,b ,假设2()a b -=b -a ,那么 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简及计算 例1. 将根号外的a 移到根号内,得 ( )A. ;B. -;C. -;D.例2. 把〔a -b 〕-1a -b 化成最简二次根式例4、先化简,再求值:11()ba b b a a b ++++,其中51+,51-.例5、如图,实数a 、b 在数轴上的位置,化简 222()a b a b -4、比较数值 〔1〕、根式变形法当0,0a b >>时,①假如a b >>a b <<例1、比较的大小。
新人教版八年级数学下册知识点总结归纳
八年级数学(下册)知识点总结二次根式【知识回顾】1.二次根式:式子a (a ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 2 5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.ab =a ·b (a≥0,b≥0);b ba a=(b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.a (a >0)a -(a <0)0 (a =0);【典型例题】1、概念与性质 例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1)x x --+315;(2)22)-(x例3、 在根式1)222;2);3);4)275xa b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4)例4、已知:的值。
求代数式22,211881-+-+++-+-=x yy x x yy x x x y例5、 (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简与计算 例1. 将根号外的a 移到根号内,得 ( ) A.; B. -; C. -; D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:11()ba b b a a b ++++,其中a=512+,b=512-. 例5、如图,实数a 、b 在数轴上的位置,化简 :222()a b a b ---4、比较数值 (1)、根式变形法当0,0a b >>时,①如果a b >,则a b >;②如果a b <,则a b <。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学下册知识点总结第十六章 二次根式1.二次根式:式子a (a ≥0)叫做二次根式。
2.二次根式有意义的条件: 大于或等于0。
3.二次根式的双重非负性:a :①0≥a ,②0≥a 附:具有非负性的式子:①0≥a ;②0≥a ;③02≥a4.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
5.同类二次根式:二次根式化成最简二次根式后,若被 相同,则这几个二次根式就是同类二次根式。
6.二次根式的性质: (1)(a )2=a (a ≥0); (2)==a a 27.二次根式的运算:(1)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (2)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.(a ≥0,b ≥0);(b ≥0,a>0). (3)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质 例1下列各式1 其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1)x x --+315; (2)22)-(x=a (a >0)a -(a <0)0 (a =0);例3、 在根式) A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例4、已知:的值。
求代数式22,211881-+-+++-+-=x yy x xy yx x x y例5、 (2009龙岩)已知数a ,b =b -a ,则 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简与计算 例1. 将根号外的a 移到根号内,得 ( ) A.; B. -; C. -; D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:,其中.例5、如图,实数a 、b 在数轴上的位置,化简4、比较数值(1)、根式变形法当0,0a b >>时,①如果a b >>a b <。
例1、比较 (2)、平方法当0,0a b >>时,①如果22a b >,则a b >;②如果22a b <,则a b <。
例2、比较(3)、分母有理化法通过分母有理化,利用分子的大小来比较。
11()ba b b a a b ++++例3、(4)、分子有理化法通过分子有理化,利用分母的大小来比较。
例4、(5)、倒数法例5(6)、媒介传递法适当选择介于两个数之间的媒介值,利用传递性进行比较。
例6、33的大小。
(7)、作差比较法在对两数比较大小时,经常运用如下性质: ①0a b a b ->⇔>;②0a b a b -<⇔< 例7、的大小。
(8)、求商比较法它运用如下性质:当a>0,b>0时,则: ①1aa b b>⇔>; ②1aa b b<⇔<例8、比较5与2+ 5、规律性问题例1. 观察下列各式及其验证过程:, 验证:;验证:. (1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果,并进行验证; (2)针对上述各式反映的规律,写出用n(n≥2,且n 是整数)表示的等式,并给出验证过程.4415第十七章 勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么c b a 222=+。
应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则c ,b =,a =)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边。
2.勾股定理逆定理:如果三角形三边长a ,b,c 满足c b a 222=+,那么这个三角形是直角三角形。
应用: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法。
(定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边)3、勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③勾股数扩大相同的的倍数依然是一组新的勾股数。
如ka,kb,kc 4.直角三角形的性质(1)直角三角形的两个锐角互余。
可表示如下:∠C=90°⇒∠A+∠B=90° (2)在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°⇒BC=21AB∠C=90° (3)、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90°⇒CD=21AB=BD=ADD 为AB 的中点5.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理) 6、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90° BD AD CD ∙=2⇒ AB AD AC ∙=2CD ⊥AB AB BD BC ∙=2 7、常用关系式由三角形面积公式可得:AB ∙CD=AC ∙BC8、直角三角形的判定1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理:如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
9、命题、定理、证明 1、命题的概念判断一件事情的语句,叫做命题。
理解:命题的定义包括两层含义: (1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。
2、命题的分类(按正确、错误与否分) 真命题(正确的命题)命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
3、公理人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。
4、定理用推理的方法判断为正确的命题叫做定理。
5、证明判断一个命题的正确性的推理过程叫做证明。
6、证明的一般步骤(1)根据题意,画出图形。
(2)根据题设、结论、结合图形,写出已知、求证。
(3)经过分析,找出由已知推出求证的途径,写出证明过程。
10、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
三角形中位线定理的作用:位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
11、数学口诀.平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
第十八章 平行四边形一.平行四边形1、定义:两组对边分别平行的四边形是平行四边形. 2.平行四边形的性质ABD OC角:平行四边形的邻角互补,对角相等; 边:平行四边形两组对边分别平行且相等; 对角线:平行四边形的对角线互相平分; 面积:①S=底⨯高=ah ; 3.平行四边形的判定方法:①两组对边分别平行的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形; 一组平行且相等的四边形是平行四边形;④两组对角分别相等的四边形是平行四边形; ⑤对角线互相平分的四边形是平行四边形;二、特殊的平行四边形 (一)矩形1、矩形的定义:有一个角是直角的平行四边形是矩形2、矩形的性质①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;3、矩形的判定:⎪⎭⎪⎬⎫+边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321⇒四边形ABCD 是矩形. (二)菱形1、定义:有一组邻边相等的平行四边形是菱形。
2、菱形的性质:①边:四条边都相等;②角:对角相等、邻角互补; ③对角线:对角线互相垂直平分且每条对角线平分每组对角;3、菱形的判定方法:⎪⎭⎪⎬⎫+行四边形)对角线互相垂直的平()四个边都相等(一组邻边等)平行四边形(321⇒四边形四边形ABCD 是菱形. (三)正方形1、定义:有一组邻边相等且有一个直角的平行四边形叫做正方形2、正方形的性质: ①边:四条边都相等;②角:四角都是直角; ③对角线:对角线互相垂直平分且相等,每条对角线平分每组对角。
3、正方形的判定方法: ⎪⎭⎪⎬⎫++++一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321⇒四边形ABCD 是正方形.(四)三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半. 如图:∵DE 是△ABC 的中位线A D BCAD BC O CD BAOCD ABE DCBA∴DE ∥BC ,DE=21BC(五)几种特殊四边形的面积问题① 设矩形ABCD 的两邻边长分别为a ,b ,则S 矩形=ab .② 设菱形ABCD 的一边长为a ,高为h ,则S 菱形=ah ;若菱形的两对角线的长分别为b ,c ,则S 菱形=bc 21③ 设正方形ABCD 的一边长为a ,则a S 2=正方形;若正方形的对角线的长为b ,则bS 221=正方形四边形一基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线.二定理:中心对称的有关定理※1.关于中心对称的两个图形是全等形.※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分. ※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.三 公式:1.S 菱形 =21ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) 2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高)3.S 梯形 =21(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线) 四 常识:※1.若n 是多边形的边数,则对角线条数公式是:2)3n (n .2.规则图形折叠一般“出一对全等,一对相似”. 3.如图:平行四边形、矩形、菱形、正方形的从属关系.4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .注意:线段有两条对称轴.第十九章 一次函数一.常量、变量:在一个变化过程中,数值发生变化的量叫做 变量 ;数值始终不变的量叫做 常量 。