CMOS图像传感器噪声综述

合集下载

CMOS图像传感器的基本原理及设计(整理)

CMOS图像传感器的基本原理及设计(整理)

CMOS图像传感器的底子道理及设计摘要:介绍CMOS图像传感器的底子道理、潜在长处、设计方法以及设计考虑。

关键词:互补型金属-氧化物-半导体图像传感器;无源像素传感器;有源像素传感器1引言20世纪70年代,CCD图像传感器和CMOS图像传感器同时起步。

CCD图像传感器由于灵敏度高、噪声低,逐步成为图像传感器的主流。

但由于工艺上的原因,敏感组件和信号处置电路不克不及集成在同一芯片上,造成由CCD图像传感器组装的摄像机体积大、功耗大。

CMOS图像传感器以其体积小、功耗低在图像传感器市场上独树一帜。

但最初市场上的CMOS图像传感器,一直没有摆脱光照灵敏度低和图像分辨率低的错误谬误,图像质量还无法与CCD图像传感器比拟。

如果把CMOS图像传感器的光照灵敏度再提高5倍~10倍,把噪声进一步降低,CMOS图像传感器的图像质量就可以达到或略微超过CCD图像传感器的程度,同时能保持体积小、重量轻、功耗低、集成度高、价位低等长处,如此,CMOS图像传感器代替CCD图像传感器就会成为事实。

由于CMOS图像传感器的应用,新一代图像系统的开发研制得到了极大的开展,而且随着经济规模的形成,其出产成本也得到降低。

此刻,CMOS图像传感器的画面质量也能与CCD图像传感器相媲美,这主要归功于图像传感器芯片设计的改进,以及亚微米和深亚微米级设计增加了像素内部的新功能。

实际上,更确切地说,CMOS图像传感器应当是一个图像系统。

一个典型的CMOS图像传感器通常包含:一个图像传感器核心〔是将离散信号电平多路传输到一个单一的输出,这与CCD图像传感器很相似〕,所有的时序逻辑、单一时钟及芯片内的可编程功能,比方增益调节、积分时间、窗口和模数转换器。

事实上,当一位设计者购置了CMOS图像传感器后,他得到的是一个包罗图像阵列逻辑存放器、存储器、按时脉冲发生器和转换器在内的全部系统。

与传统的CCD图像系统比拟,把整个图像系统集成在一块芯片上不仅降低了功耗,而且具有重量较轻,占用空间减少以及总体价格更低的长处。

CCD与CMOS图像传感器特点比较_熊平

CCD与CMOS图像传感器特点比较_熊平

收稿日期:2003-12-23.动态综述CCD 与CMOS 图像传感器特点比较熊 平(重庆光电技术研究所,重庆400060)摘 要: 简要介绍了CCD(电荷耦合器件)与CMOS 图像传感器的结构,并对二者的性能特点进行了比较,指出二者在未来的发展中不会出现谁消灭谁的结局。

关键词: CCD;C MOS;图像传感器中图分类号:TN386.5 文献标识码:A 文章编号:1001-5868(2004)01-0001-04Comparison of CCD and CMOS Image SensorsXIONG Ping(Chongqing Optoelectronics Research Institute,Chongqing 400060,CHN)Abstract: The article introduces the struc ture of CCD (charge -coupled device )and C MOS ima ge sensors,followed by comparison of their performances.In predictable future,the result sho ws that neither of them will be replaced with each other.Key words: CCD;C MOS;image sensor1 引言CMOS 与CCD 图像传感器相比,具有功耗低、摄像系统尺寸小、可将信号处理电路与MOS 图像传感器集成在一个芯片上等优点。

但其图像质量(特别是低亮度环境下)与系统灵活性与CCD 的相比相对较低。

由于具有上述特点,它适合大规模批量生产,适用于要求小尺寸、低价格、摄像质量无过高要求的应用,如保安用小型/微型相机、手机、计算机网络视频会议系统、无线手持式视频会议系统、条形码扫描器、传真机、玩具、生物显微计数、某些车用摄像系统等大量商用领域。

图像传感器原理介绍CCD和CMOS介绍V12 课件

图像传感器原理介绍CCD和CMOS介绍V12 课件
34 PPT课件
全景Full-Frame
? 全像 CCD 则是一种架构更简单的感光设计。有鉴于 IL 的缺点, FF改良可以利用整个感光区域(没有暂存区的设计),有效增 大感光范围,同时也适用长时间曝光。其曝光过程和 Interline 相同,不过感光和电荷输出过程是分开。因此,使用 FF CCD 的数字相机在传送电荷信息时必须完全关闭快门,以隔离镜头 入射的光线,防止干扰。这也意味着 FF 必须使用机械快门 (无法使用 IL 的电子 CLOCK 快门),同时也限制了 FF CCD 的 连续拍摄能力。 Full-Frame CCD 大多被用在顶级的数位机背上。
数字相机的快门开启,来自影像的光线穿过这些 马赛克色块会让感光点的二氧化硅材料释放出电 子〈负电〉与电洞〈正电〉。经由外部加入电压, 这些电子和电洞会被转移到不同极性的另一个硅 层暂存起来。电子数的多寡和曝光过程光点所接 收的光量成正比。在一个影像最明亮的部位,可 能有超过 10万个电子被积存起来。
14 PPT课件
CCD外形尺寸信息
15 PPT课件
原理篇
16 的工作需求,业界发展出四种 不同类型的 CCD :
? Linear 线性、 ? Interline扫瞄、 ? 全景 Full-Frame ? Frame-Transfer 全传
17 PPT课件
CCD分辨率
19 PPT课件
黑白CCD的组成结构图
20 PPT课件
彩色CCD的组成结构分图
?CCD 的三层结构:上:增光镜片、中:色块网格 下:感应线路
? 由微型镜头、马赛克分色网格,及垫于最底层的 电子线路矩阵所组成
21 PPT课件
彩色CCD运行图
22 PPT课件
彩色CCD运行图说明

cmos图像传感器ppt课件可编辑全文

cmos图像传感器ppt课件可编辑全文

数码相机传感器尺寸
单反相机一般采用的是大尺寸的APS-C画幅感光元 件,而有些卡片相机采用的是1/2.3英寸感光元件,虽 然它们可能都拥1800万像素,但是区别在于二者的单 个像素宽度不同。APS-C画幅、1800万像素感光元件 的每一个像素宽约为4.3微米,而1/2.3英寸、1800万像 素感光元件的每一个像素宽约有1.68微米。
6.6
11.00
1/1.7英寸 7.76
5.82
9.70
1/2.3英寸 6.16
4.62
7.70
1/3.2英寸 4.13
3.05
5.13
面积 864.00 518.94 372.88 332.27 261.80 224.90 116.16 58.08 45.16 28.46 12.60
数码相机的像素:
尾端各有3个像元为虚设单元。
图9.SXGA型图像传感器的像敏区结构
六、典型CMOS图像传感器
SXGA型CMOS成像器件的光谱特性如图10所示。
图10.SXGA型图像传感器的光谱响应特性曲线
六、典型CMOS图像传感器
SXGA型CMOS成像器件的输出特 性如图11所示。曲线的线性段的动 态范围仅为66dB。若采用对数放大
图5.主动式像敏单元结构的基本电路
图6.主动式像敏单元时序图
三、CMOS图像传感器的像敏单元结构
主动式像素结构(Active Pixel Sensor.简称APS), 又叫有源式, 几乎在CMOS PPS像素结构发明的同时,人 们很快认识到在像素内引入缓冲器或放大器可以改善像素 的性能,在CMOS APS中每一像素内都有自己的放大器。集 成在表面的放大晶体管减少了像素元件的有效表面积,降 低了“封装密度”,使40%~50%的入射光被反射。这种传 感器的另一个问题是,如何使传感器的多通道放大器之间 有较好的匹配,这可以通过降低残余水平的固定图形噪声 较好地实现。由于CMOS APS像素内的每个放大器仅在此读 出期间被激发,所以CMOS APS的功耗比CCD图像传感器的 还小。

埋沟型源跟随晶体管对噪声的优化研究

埋沟型源跟随晶体管对噪声的优化研究

埋沟型源跟随晶体管对噪声的优化研究吴萍芯原微电子(上海)股份有限公司摘要:噪声问题是影响CMOS图像传感器图像的最主要问题之一,随着集成电路制造工艺技术的发展和不断进步,源极跟随器(SF)晶体管的栅极面积持续缩小会导致RTS噪声恶化。

本文介绍了一种采用掩埋沟道工艺的CMOS图像传感器,通过对掩埋沟道工艺优化,可以使像素的随机电报信号噪声大幅降低30%以上,大幅提高了图像传感器的信噪比。

关键词:CMOS图像传感器;掩埋沟道;随机电报噪声;信噪比Study on Noise Optimization of Buried Channel SourceFollower TransistorWU PingVeriSilicon Microelectronics(Shanghai)Co.,Ltd.Abstract:Noise is one of the most important problems which will impact the image of CMOS image sensor perfor-mance.With the development of semiconductor manufacturing technology,the continuous shrink of gate length of SF transistor will lead to the deterioration of RTS noise.This paper introduces a CMOS image sensor using buried chan-nel technology.By optimizing the buried channel technology,the random telegraph signal noise of pixels can be great-ly reduced by more than30%,and the signal-to-noise ratio of image sensor is greatly improved. Keywords:CMOS image sensor;pixel;RTS noise;SNR0引言图像传感器芯片(CMOS Image Sensor)是摄像头模组的核心部件,随着集成电路制造工艺技术的发展和不断进步,基于CMOS集成电路技术制造的图像传感器由于其集成度高,功耗低,体积小,工艺简单和成本低等优势,目前在安防监控和手机照相等诸多领域得到了广泛的应用,市场前景十分广泛,对CMOS图像传感器的设计和工艺研究开发具有非常高的景气度和实际意义。

CMOS图像传感器基本原理与应用简介

CMOS图像传感器基本原理与应用简介

CMOS图像传感器原理与应用简介摘要:本文介绍了CMOS图像传感器器件的原理、性能、优点、问题及应对措施,以及CMOS图像传感器的市场状况和一些应用领域。

Brief introduction of principle and applications of CMOS imagesensorAbstract: This paper introduces the principle, performance, advantages also with the problems and solutions of CMOS image sensor. The market status and applications are also given in this essay.北京航空航天大学李育琦1引言图像传感器是将光信号转换为电信号的装置,在数字电视、可视通信市场中有着广泛的应用。

60年代末期,美国贝尔实脸室发现电荷通过半导体势阱发生转移的现象,提出了固态成像这一新概念和一维CCD(Charge-Coupled Device电荷耦合器件)模型器件。

到90年代初,CCD技术已比较成热,得到非常广泛的应用。

但是随着CCD应用范围的扩大,其缺点逐渐暴露出来。

首先,CCD技术芯片技术工艺复杂,不能与标准工艺兼容。

其次,CCD技术芯片需要的电压功耗大,因此CCD技术芯片价格昂贵且使用不便。

目前,最引人注目,最有发展潜力的是采用标准的CMOS(Complementary Metal Oxide Semiconductor 互补金属氧化物场效应管)技术来生产图像传感器,即CMOS图像传感器。

CMOS图像传感器芯片采用了CMOS工艺,可将图像采集单元和信号处理单元集成到同一块芯片上。

由于具有上述特点,它适合大规模批量生产,适用于要求小尺寸、低价格、摄像质量无过高要求的应用,如保安用小型、微型相机、手机、计算机网络视频会议系统、无线手持式视频会议系统、条形码扫描器、传真机、玩具、生物显微计数、某些车用摄像系统等大量商用领域。

CMOS图像传感器的基本原理及设计

CMOS图像传感器的基本原理及设计摘要:介绍CMOS图像传感器的基本原理、潜在优点、设计方法以及设计考虑;关键词:互补型金属-氧化物-半导体图像传感器;无源像素传感器;有源像素传感器1引言20世纪70年代,CCD图像传感器和CMOS图像传感器同时起步;CCD图像传感器由于灵敏度高、噪声低,逐步成为图像传感器的主流;但由于工艺上的原因,敏感组件和信号处理电路不能集成在同一芯片上,造成由CCD图像传感器组装的摄像机体积大、功耗大;CMOS图像传感器以其体积小、功耗低在图像传感器市场上独树一帜;但最初市场上的CMOS图像传感器,一直没有摆脱光照灵敏度低和图像分辨率低的缺点,图像质量还无法与CCD图像传感器相比; 如果把CMOS图像传感器的光照灵敏度再提高5倍~10倍,把噪声进一步降低,CMOS图像传感器的图像质量就可以达到或略微超过CCD图像传感器的水平,同时能保持体积小、重量轻、功耗低、集成度高、价位低等优点,如此,CMOS图像传感器取代CCD图像传感器就会成为事实;由于CMOS图像传感器的应用,新一代图像系统的开发研制得到了极大的发展,并且随着经济规模的形成,其生产成本也得到降低;现在,CMOS图像传感器的画面质量也能与CCD图像传感器相媲美,这主要归功于图像传感器芯片设计的改进,以及亚微米和深亚微米级设计增加了像素内部的新功能;实际上,更确切地说,CMOS图像传感器应当是一个图像系统;一个典型的CMOS图像传感器通常包含:一个图像传感器核心是将离散信号电平多路传输到一个单一的输出,这与CCD图像传感器很相似,所有的时序逻辑、单一时钟及芯片内的可编程功能,比如增益调节、积分时间、窗口和模数转换器;事实上,当一位设计者购买了CMOS图像传感器后,他得到的是一个包括图像阵列逻辑寄存器、存储器、定时脉冲发生器和转换器在内的全部系统;与传统的CCD图像系统相比,把整个图像系统集成在一块芯片上不仅降低了功耗,而且具有重量较轻,占用空间减少以及总体价格更低的优点;2基本原理从某一方面来说,CMOS图像传感器在每个像素位置内都有一个放大器,这就使其能在很低的带宽情况下把离散的电荷信号包转换成电压输出,而且也仅需要在帧速率下进行重置;CMOS图像传感器的优点之一就是它具有低的带宽,并增加了信噪比;由于制造工艺的限制,早先的CMOS图像传感器无法将放大器放在像素位置以内;这种被称为PPS的技术,噪声性能很不理想,而且还引来对CMOS图像传感器的种种干扰;然而今天,随着制作工艺的提高,使在像素内部增加复杂功能的想法成为可能;现在,在像素位置以内已经能增加诸如电子开关、互阻抗放大器和用来降低固定图形噪声的相关双采样保持电路以及消除噪声等多种附加功能;实际上,在Conexant公司前Rockwell半导体公司的一台先进的CMOS摄像机所用的CMOS图传感器上,每一个像素中都设计并使用了6个晶体管,测试到的读出噪声只有1均方根电子;不过,随着像素内电路数量的不断增加,留给感光二极管的空间逐渐减少,为了避免这个比例又称占空因数或填充系数的下降,一般都使用微透镜,这是因为每个像素位置上的微小透镜都能改变入射光线的方向,使得本来会落到连接点或晶体管上的光线重回到对光敏感的二极管区域;因为电荷被限制在像素以内,所以CMOS图像传感器的另一个固有的优点就是它的防光晕特性;在像素位置内产生的电压先是被切换到一个纵列的缓冲区内,然后再被传输到输出放大器中,因此不会发生传输过程中的电荷损耗以及随后产生的光晕现象;它的不利因素是每个像素中放大器的阈值电压都有细小的差别,这种不均匀性就会引起固定图像噪声;然而,随着CMOS图像传感器的结构设计和制造工艺的不断改进,这种效应已经得到显着弱化;这种多功能的集成化,使得许多以前无法应用图像技术的地方现在也变得可行了,如孩子的玩具,更加分散的保安摄像机、嵌入在显示器和膝上型计算机显示器中的摄像机、带相机的移动电路、指纹识别系统、甚至于医学图像上所使用的一次性照相机等,这些都已在某些设计者的考虑之中;3设计考虑然而,这个行业还有一个受到普遍关注的问题,那就是测量方法,具体指标、阵列大小和特性等方面还缺乏统一的标准;每一位工程师在比较各种资料一览表时,可能会发现在一张表上列出的是关于读出噪声或信噪比的资料,而在另一张表上可能只是强调关于动态范围或最大势阱容量的资料;因此,这就要求设计者们能够判断哪一个参数对他们最重要,并且尽可能充分利用多产品的CMOS图像传感器家族;一些关键的性能参数是任何一种图像传感器都需要关注的,包括信噪比、动态范围、噪声固定图形噪声和读出噪声、光学尺寸以及电压的要求;应当知道并用来对比的重要参数有:最大势阱容量、各种工作状态下的读出噪声、量子效率以及暗电流,至于信噪比之类的其它参数都是由那些基本量度推导出来的;对于像保安摄像机一类的低照度级的应用,读出噪声和量子效应最重要;然而对于象户外摄影一类的中、高照度级的应用,比较大的最大势阱容量就显得更为重要;动态范围和信噪比是最容易被误解和误用的参数;动态范围是最大势阱容量与最低读出噪声的比值,它之所以引起误解,是因为读出噪声经常不是在典型的运行速度下测得的,而且暗电流散粒噪声也常常没有被计算在内;信噪比主要决定于入射光的亮度级事实上,在亮度很低的情况下,噪声可能比信号还要大;所以,信噪比应该将所有的噪声源都考虑在内,有些资料一览表中常常忽略散粒噪声,而它恰恰是中、高信号电平的主要噪声来源;而SNRDARK得到说明,实际上与动态范围没有什么两样;数字信噪比或数字动态范围是另一个容易引起混淆的概念,它表明的只是模拟/数字A/D 转换器的一个特性;虽然这可能很重要,但它并不能精确地描述图像的质量;同时我们也应清楚地认识到,当图像传感器具有多个可调模拟增益设置时,模拟/数字转换器的分辨率不会对图像传感器的动态范围产生限制;光学尺寸的概念的模糊,是由于传统观念而致;使用光导摄像管只能在部分范围内产生有用的图像;它的计算包括度量单位的转换和向上舍入的方法;采用向上舍入的方法,先以毫米为单位测量图像传感器的对角线除以16,就能得到以英寸为单位的光学尺寸;例如的尺寸是而不是;假如你选择了一个光学尺寸为的图像传感器,很可能出现图像的四周角落上的映影阴影现象;这是因为有些资料一览表欺骗性地使用了向下舍入的方法;例如,将的尺寸称为,理由很简单:光学尺寸的图像传感器的价格要比光学尺寸的图像传感器的价格低得多,但是这对系统工作性能产生不利影响;所以,设计者应该通过计算试用各种不同的图像传感器来得到想要的性能;CMOS图像传感器的一个很大的优点就是它只要求一个单电压来驱动整个装置;不过设计者仍应谨慎地布置电路板驱动芯片;根据实际要求,数字电压和模拟电压之间尽可能地分离开以防止串扰;因此良好的电路板设计,接地和屏蔽就显得非常重要;尽管这种图像传感器是一个CMOS装置并具有标准的输入/输出I/O电压,但它实际的输入信号相当小,而且对噪声也很敏感;到目前为止,已设计出高集成度单芯片CMOS图像传感器;设计者力求使有关图像的应用更容易实现多功能,包括自动增益控制AGC、自动曝光控制AEC、自动平衡AMB、伽玛样正、背景补偿和自动黑电平校正;所有的彩色矩阵处理功能都集成在芯片中;CMOS图像传感器允许片上的寄存器通过I2C总线对摄像机编程,具有动态范围宽、抗浮散且几乎没有拖影的优点;4CMOS-APS的潜在优点和设计方法4.1CMOS-APS胜过CCD图像传感器的潜在优点CMOS APS胜过CCD图像传感器的潜在优点包括1~5:1消除了电荷反复转移的麻烦,免除了在辐射条件下电荷转移效率CTE的退化和下降;2工作电流很小,可以防止单一振动和信号闭锁;3在集成电路芯片中可进行信号处理,因此可提供芯迹线,模/数转换的自调节,也能提供由电压漂移引起的辐射调节;与硅探测器有关,需要解决的难题和争论点包括1~2:1在体材料界面由于辐射损伤而产生的暗电流的增加问题;2包括动态范围损失的阈值漂移问题;3在模/数转换电路中,定时和控制中的信号闭锁和单一扰动问题;4.2CMOS-APS的设计方法CMOS-APS的设计方法包括:1为了降低暗电流而进行研制创新的像素结构;2使用耐辐射的铸造方法,再研制和开发中等尺寸“dumb”哑成像仪通过反复地开发最佳像素结构;3研制在芯片上进行信号处理的器件,以适应自动调节本身电压Vt的漂移和动态范围的损失;4研制和开发耐辐射单一扰动环境的定时和控制装置;5研制和加固耐辐射的模/数转换器;6寻找低温工作条件,以便在承受最大幅射强度时,找到并证实最佳的工作温度;7研制和开发大尺寸、全数字化、耐辐射的CMOS-APS,以便生产;8测试、评价和鉴定该器件的性能;9引入当代最高水平的组合式光学通信/成像系统测试台;5像素电路结构设计目前,已设计的CMOS图像传感器像素结构有:空隙积累二极管HAD型结构、光电二极管型无源像素结构、光电二极管型有源像素结构、对数变换积分电路型结构、掩埋电荷积累和敏感晶体管阵列BCAST型结构、低压驱动掩埋光电二极管LV-BPD型结构、深P阱光电二极管型结构、针型光电二极管PPD结构和光栅型有源像素结构等;5.1CMOS PPS像素结构设计光电二极管型CMOS无源像素传感器CMOS-PPS的结构自从1967年Weckler首次提出以来实质上一直没有变化,其结构如图1所示;它由一个反向偏置的光敏二极管和一个开关管构成;当开关管开启时,光敏二极管与垂直的列线连通;位于列线末端的电荷积分放大器读出电路保持列线电压为一常数,并减小KTC噪声;当光敏二极管存贮的信号电荷被读出时,其电压被复位到列线电压水平,与此同时,与光信号成正比的电荷由电荷积分放大器转换为电荷输出;单管的PD-CMOS-PPS允许在给定的像素尺寸下有最高的设计填充系数,或者在给定的设计填充系数下,可以设计出最小的像素尺寸;另外一个开关管也可以采用,以实现二维的X Y 寻址;由于填充系数高且没有许多CCD中多晶硅叠层,CMOS-PPS像素结构的量子效率较高;但是,由于传输线电容较大,CMOS-PPS读出噪声较高,典型值为250个均方根电子,这是致命的弱点;5.2CMOS-APS的像素结构设计几乎在CMOS-PPS像素结构发明的同时,科学家很快认识到在像素内引入缓冲器或放大器可以改善像素的性能;虽然CMOS图像传感器的成像装置将光子转换为电子的方法与CCD相同,但它不是时钟驱动,而是由晶体三极管作为电荷感应放大器;在一些CMOS图像传感器中,每组像素的顶端有一个放大器,每个像素只有一个作为阈值电流值开关的三极管;开关像素中的电荷为放大器充电,其过程类似DRAM中的读取电路,这种传感器被称为PPS;PPS的结构很简单,它具有高填充系数;各像元没有很多的多晶硅层覆盖,其量子效率很高,但是PPS的读取干扰很高,只适应于小阵列传感器;在CMOS-APS中每一像素内都有自己的放大器;CMOS-APS的填充系数比CMOS-PPS的小,集成在表面的放大晶体管减少了像素组件的有效表面积,降低了“封装密度”,使40%~50%的入射光被反射;这种传感器的另一个问题是,如何使传感器的多通道放大器之间有较好的匹配,这可以通过降低残余水平的固定图形噪声较好地实现;由于CMOS-APS像素内的每个放大器仅在此读出期间被激发,所以CMOS-APS的功耗比CCD图像传感器的还小;与CMOS-PPS相比,CMOS-APS的填充系数较小,其设计填充系数典型值为20%~30%,接近内线转换CCD的值;5.2.1光敏二极管CMOS-APSPD-CMOS-APS的像素结构1968年,Noble描述了PD-CMOS-APS;后来,这种像素结构有所改进;PD-CMOS-APS的像素结构如图2所示;高性能CMOS APS由美国哥伦比亚大学电子工程系和喷气推进实验室JPL在1994年首次研制成功,像素数为128×128,像素尺寸为40μm×40μm,管芯尺寸为×,采用μmCMOSn阱工艺试制,动态范围为72dB,固定图形噪声小于%饱和信号水平;固定图形噪声小于%饱和信号水平;1997年日本东芝公司研制成功了640×480像素光敏二极管型CMOS APS,其像素尺寸为μm×μm,具有彩色滤色膜和微透镜阵列;2000年美国Foveon公司与美国国家半导体公司采用μmCMOS工艺研制成功4096×4096像素CMOS APS10,像素尺寸为5μm×5μm,管芯尺寸为22mm×22mm,这是迄今为止世界上集成度最高、分辨率最高的CMOS固体摄像器件;有关CMOS APS的工作原理、发展现状及其应用,笔者已作过详细介绍6~8;因为光敏面没有多晶硅叠层,PD-CMOS-APS的量子效率较高,它的读出噪声由复位噪声限制,典型值为75均方根电子~100均方根电子;PD-CMOS-APS的每个像素采用3个晶体管,典型的像元间距为15μm;PD-CMOS-APS适宜于大多数低性能应用;5.2.2光栅型CMOS APSPG-CMOS-APS的像素结构1993年由JPL最早研制成功PG-CMOS-APS并用于高性能科学成像的低光照明成像;PG-CMOS-APS结合了CCD和X Y寻址的优点,其结构如图3所示;光栅信号电荷积分在光栅PG下,浮置扩散点A复位电压为VDD,然后改变光栅脉冲,收集在光栅下的信号电荷转移到扩散点,复位电压水平与信号电压水平之差就是传感器的输出信号;当采用双层多晶硅工艺时,PG与转移栅TX之间要恰当交叠;在光栅与转移栅之间插入扩散桥,可以采用单层多晶硅工艺,这种扩散桥要引起大约100个电子的拖影;光栅型CMOS APS每个像素采用5个晶体管,典型的像素间距为20μm最小特征尺寸;采用μmCMOS工艺将允许达到5μm的像素间距;浮置扩散电容的典型值为10-14F量级,产生20μV/e的增益,读出噪声一般为10均方根电子~20均方根电子,已有读出噪声为5均方根电子的报道;CMOS图像传感器的设计分为两大部分,即电路设计和工艺设计,CMOS图像传感器的性能好坏,不仅与材料、工艺有关,更重要的是取决于电路设计和工艺流程以及工艺参数设计;这对设计人员提出更高的要求,设计人员面要宽,在设计中,不但要懂电路、工艺、系统方面的知识,还要有较深的理论知识;这个时代对设计者来说是一个令人兴奋和充满挑战的时代;计算机辅助设计技术为设计者提供了极大的方便,但图像系统的用途以及目标用户的范围由制造商决定;如果用户装有Windows95的系统,那么就要确定图像系统不是Windows98的;如果你只是为了获取并存储大量的低分辨率图像,那就不要选择一个能够提供优质图像但同时会产生更多数据以致于无法存储的高分辨率图像传感器;现在还存在许多非标准的接口系统;现在仅供数字相机所使用可装卸存储介质就包括PCMCIA卡、东芝Toshiba的速闪存储器及软磁盘;重要的是,要根据产品未来所在的工作环境,对样品进行细致的性能评估;5.3CCD和CMOS系统的设计CCD图像传感器和CMOS图像传感器在设计上各不相同,对于CCD图像传感器,不能在同一芯片上集成所需的功能电路;因此,在设计时,除设计光敏感部分即CCD图像传感器外,还要考虑设计提供信号和图像处理的功能电路,即信号读出和处理电路,这些电路需要在另外的基片上制备好后才能组装在CCD图像传感器的外围;而CMOS图像传感器则不同,特别是CMOS APS可以将所有的功能电路与光敏感部分光电二极管同时集成在同一基片上,制作成高度集成化的单芯片摄像系统;与前者相比,成本低、制备容易、体积小、微型化、功耗低,虽然开始有人认为光照灵敏度不如CCD图像传感器的高,并且暗电流和噪声比较大,近来由于改进了电路设计,采用亚微米和深亚微米光刻技术,使CMOS图像传感器的性能得到改善;已经具备与CCD图像传感器进行竞争的条件,21世纪,CMOS摄像器件将成为信息获取与处理领域的佼佼者;到那时,单芯片摄像机和单芯片数码相机将进入千家万户;这些都得益于CMOS APS为人们提供了高度集成化的系统,如图4所示;图5示出CMOS数码相机的框图,从中可见数码相机设计的复杂性;霍尔器件是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁传感器产品族,并已得到广泛的应用;本文简要介绍其工作原理、产品特性及其典型应用;图39霍尔电流传感器在逆变器中的应用CS为霍尔电流传感器图40霍尔电流传感器在UPS中的应用1、2、3均为霍尔电流传感器图41霍尔电流传感器在电子点焊机中的应用在逆变器中的应用在逆变器中,用霍尔电流传感器进行接地故障检测、直接侧和交流侧的模拟量传感,以保证逆变器能安全工作;应用线路如图39所示;在不间断电源中的应用如图40所示,霍尔电流传感器1发出信号并进行反馈,以控制晶闸管的触发角,电流传感器2发出的信号控制逆变器,传感器3控制浮充电源;用霍尔电流传感器进行控制,保证逆变电源正常工作;由于其响应速度快,特别适用于计算机中的不间断电源;在电子点焊机中的应用在电子点焊机电源中,霍尔电流传感器起测量和控制作用;它的快速响应能再现电流、电压波形,将它们反馈到可控整流器A、B,可控制其输出;用斩波器给直流迭加上一个交流,可更精确地控制电流;用霍尔电流传感器进行电流检测,既可测量电流的真正瞬时值,,又不致引入损耗,如图41所示;用于电车斩波器的控制电车中的调速是由调整电压实现的;将霍尔电流传感器和其它组件配合使用,并将传感器的所有信号输入控制系统,可确保电车正常工作;其控制原理示图42霍尔电流传感器在电车斩波器中的应用图43在变频调速电机中的应用I,R,S,T均为霍尔电流传感器图44用于电能管理的霍尔电流传感器图45霍尔接地故障检测器的原理和结构于图42;图中,SCR1是主串联晶闸管,SCR2为辅助晶闸管,Lo、Co组成输入滤波器,Ls是平滑扼流圈,M1~M5是霍尔电流传感器;在交流变频调速电机中的应用用变频器来对交流电机实施调速,在世界各发达国家已普遍使用,且有取代直流调速的趋势;用变频器控制电机实现调速,可节省10%以上的电能;在变频器中,霍尔电流传感器的主要作用是保护昂贵的大功率晶体管;由于霍尔电流传感器的响应时间短于1μs,因此,出现过载短路时,在晶全管未达到极限温度之前即可切断电源,使晶体管得到可靠的保护,如图43所示;用于电能管理图44给出一种用于电能管理的电流传感器的示意图;图中,12是通电导线,11是导磁材料带,17是霍尔组件,19是霍尔组件的输入、输出引线;由此构成的电流传感器,可安装到配电线路上进行负载管理;霍尔器件的输出和计算机连接起来,对用电情况进行监控,若发现过载,便及时使受控的线路断开,保证用电设备的安全;用这种装置,也可进行负载分配及电网的遥控、遥测和巡检等;在接地故障检测中的应用在配电和各种用电设备中,可靠的接地是保证配电和用电设备安全的重要措施;采用霍尔电流传感器来进行接地故障的自动监测,可保证用电安全;图45示出一种霍尔接地故障监测装置;在电网无功功率自动补偿中的应用电力系统无功功率的自动补偿,是指补偿容量随负荷和电压波动而变化,及时准确地投入和切除电容器,避免补偿过程中出现过补偿和欠补偿的不合理和不经济,使电网的功率因数始终保持最佳;无功功率的自动采样若用霍尔电流、电压传感器来进行,在保证“及时、准确”上具有显着的优点;因为它们的响应速度快,且无相位差,如图46所示;图46电网无功功率自动补偿控制器的原理框图霍尔钳形电流表将磁芯做成张合结构,在磁芯开口处放置霍尔器件,将环形磁芯夹在被测电流流过的导线外,即可测出其中流过的电流;这种钳形表既可测交流也可测直流;图48示出一种数字钳形交流电流表的线路;用钳形表可对各种供电和用电设备进行随机电流检测;电功率测量使负载电压变换,令其与霍尔器件的工作电流成比例,将负载电流通入磁芯绕组中,作为霍尔电流传感器的被测电流,即可构成霍尔功率计;由霍尔器件输出的霍尔电压来指示功率,其工作原理如图49所示;在电力工频谐波分析仪中的应用在电力系统中,电网的谐波含量用电力工频谐波仪来进行测试;为了将被测电压和电流变换成适合计算机A/D采样的电压,将各种电力工频谐波分析仪的取样装置,如电流互感器、电压互感器、电阻取样与光隔离耦合电路等和霍尔电流传感取样测试对比,结果表明霍尔电流传感器最为适用;对比结果如表8所示;表8电力工频谐波分析仪中使用的3种接口部件的比较LEM模块是一种霍尔零磁通电流传感器接口部件性能、特点在开关电源中的应用近代出现的开关电源,是将电网的非稳定的交流电压变换成稳定的直流电压输出的功率变换装置;无论是电压控制型还是电流控制型开关电源,均采用脉冲宽度调制,借助驱动脉冲宽度与输出电压幅值之间存在的某种比例关系来维持恒压输出;其中,宽度变化的脉冲电压或电流的采样、传感等均需用电流、电压传感器来完成;霍尔电流、电压传感器以其频带宽、响应时间快以及安装简便而成为首选的电流、电压传感器;在大电流检测中的应用在冶金、化工、超导体的应用以及高能物理例如可控核聚变试验装置中都有许多超大型电流用电设备;用多霍尔探头制成的电流传感器来进行大电流的测量和控制,既可满足测量准确的要求,又不引入插入损耗,还免除了像使用罗果勘斯基线圈法中需用的昂贵的测试装置;图47示出一种用于DⅢ-D托卡马克中的霍尔电流传感器装置;采用这种霍尔电流传感器,可检测高达到300kA的电流;。

图像传感器

根据In-Stat统计资料显示,CMOS传感器的全球销售额到2004年可望突破18亿美元,CMOS将以62%的年复合 成长率快速成长,逐步侵占CCD器件的应用领域。特别是在2013年快速发展的手机应用领域中,以CMOS图像传感 器为主的摄相模块将占领其80%以上的应用市场。
CMOS图像传感器属于新兴产品市场,其市场占有率变化不如成熟产业那般恒常不变,例如在1999年时,CMOS 市场中,按照出货比例排名依序为Agilent、OmniVision、STM和Hyundai,其市场占有率分别为24%、22%、14% 和14%,其中STM是欧洲厂商,Hyundai是韩国厂商;但只经过一年后的市场竞争,Agilent和OmniVision出货排 名顺序仍然分居一、二,且市场占有率分别提升到37.7%和30.8%,而STM落居第四,市场占有率大幅滑落至4.8%, 至于Hyundai更是大幅衰退只剩2.1%的市场占有率,值得一提的是Photobi在2000年度的大幅成长,全球市场占 有率快速成长至13.7%,排名全球第三。这三家厂商出货量就占全球出货量的82.2%。从中可以分析,这个产业的 厂商集中度相当密集,所以观察上述三家厂商的动态和发展,可看出许产业和技术未来发展方向。
2014年初,美国Foveon公司公开展示了其最新发展的Foveon X3技术,立即引起业界的高度。Foveon X3是 全球第一款可以在一个像素上捕捉全部色彩的图像传感器阵列。传统的光电耦合器件只能感应光线强度,不能感 应色彩信息,需要通过滤色镜来感应色彩信息,我们称之为Bayer滤镜。而Foveon X3在一个像素上通过不同的深 度来感应色彩,最表面一层感应蓝色、第二层可以感应绿色,第三层感应红色。它是根据硅对不同波长光线的吸 收效应来达到一个像素感应全部色彩信息,已经有了使用这种技术的CMOS图像传感器,其应用产品是“Sigma SD9”数码相机。

CMOS图像传感器工作原理及研究报告

CMOS图像传感器的工作原理及研究摘要:介绍了CMOS图像传感器的工作原理,比较了CCD图像传感器与CMOS图像传感器的优缺点,指出了CMOS图像传感器的技术问题和解决途径,综述了CMOS图像传感器的现状和发展趋势。

1 引言自从上世纪60年代末期,美国贝尔实验室提出固态成像器件概念后,固体图像传感器便得到了迅速发展,成为传感技术中的一个重要分支,它是PC机多媒体不可缺少的外设,也是监控中的核心器件。

互补金属氧化物半导体<CMOS)图像传感器与电荷耦合器件<CCD)图像传感器的研究几乎是同时起步,但由于受当时工艺水平的限制,CMOS图像传感器图像质量差、分辨率低、噪声降不下来和光照灵敏度不够,因而没有得到重视和发展。

而CCD器件因为有光照灵敏度高、噪音低、像素少等优点一直主宰着图像传感器市场。

由于集成电路设计技术和工艺水平的提高,CMOS图像传感器过去存在的缺点,现在都可以找到办法克服,而且它固有的优点更是CCD器件所无法比拟的,因而它再次成为研究的热点。

70年代初CMOS传感器在NASA的Jet Pro pul sion Laboratory(JPL>制造成功,80年代末,英国爱丁堡大学成功试制出了世界第一块单片CMOS型图像传感器件,1995年像元数为<128×128)的高性能CMOS有源像素图像传感器由喷气推进实验室首先研制成功[1],1997年英国爱丁堡VLSI Ver sion公司首次实现了CMOS图像传感器的商品化,就在这一年,实用CMOS技术的特征尺寸已达到0.35mm,东芝研制成功了光敏二极管型APS,其像元尺寸为5.6mm×5.6mm,具有彩色滤色膜和微透镜阵列,2000年日本东芝公司和美国斯坦福大学采用0.35mm技术开发的CMOS-APS已成为开发超微型CMOS摄像机的主流产品。

2 技术原理CCD型和CMOS型固态图像传感器在光检测方面都利用了硅的光电效应原理,不同点在于像素光生电荷的读出方式。

CCD与CMOS图像传感器的六大硬件技术指标

CCD与CMOS图像传感器的六大硬件技术指标大家可能有这样的疑问,同样是高清网络摄像机为什么图像效果会有差异呢?使用同样的配件,为什么晚上的效果也不同呢?其实这是与我们使用的sensor(即图像传感器)的硬件技术指标相关的,不管是CCD还是CMOS图像传感器,主要有“像素、靶面尺寸、感光度、电子快门、帧率、信噪比”这六大硬件技术指标。

下面简单的为大家介绍一下这些硬件指标,以便于大家进一步了解高清网络摄像机。

像素:传感器上有许多感光单元,它们可以将光线转换成电荷,从而形成对应于景物的电子图像。

而在传感器中,每一个感光单元对应一个像素(Pixels),像素越多,代表着它能够感测到更多的物体细节,从而图像就越清晰,像素越高,意味着成像效果越清晰。

关联一下我们中维世纪的产品:100W网络摄像机分辨率是1280X720,两个值相乘得出的就是像素值,就是近100万个像素点,130W的分辨率是1280X960,像素值就是近130万个像素点。

从图像效果上看,130W的效果比100W的要好一些。

靶面尺寸:图像传感器感光部分的大小,一般用英寸来表示。

和电视机一样,通常这个数据指的是这个图像传感器的对角线长度,如常见的有1/3英寸,靶面越大,意味着通光量越好,而靶面越小则比较容易获得更大的景深。

比如1/2英寸可以有比较大的通光量,而1/4英寸可以比较容易获得较大的景深。

”关联一下我们中维世纪的产品:100W产品是1/4英寸,130W是1/3英寸,200W是1/2.7英寸,大家从画面上就能感知到上面提到的靶面尺寸的不同带来的图像画质的变化。

感光度:即是通过CCD或CMOS以及相关的电子线路感应入射光线的强弱。

感光度越高,感光面对光的敏感度就越强,快门速度就越高,这在拍摄运动车辆,夜间监控的时候尤其显得重要。

这就是解释了为什么不同的摄像机夜视会有很大差别,感光度的单位是V/LUX-SEC,V(伏)就是我们通常说的电压的单位,LUX-SEC:是光强弱的单位,这个比值越大,夜视效果越好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CMOS图像传感器及噪声研究综述宗宗摘要目前,图像传感器市场主要有CMOS图像传感器和CCD图像传感器。

CCD图像传感器由于其较高的填充因子FF(Fill Factor)和较低的固定模式躁声FPN(Fix Pattern Noise)已经得到广泛的应用,但因其存在着多电压,高功耗,低速度,难与CMOS集成等缺点,限制了它的应用,特别是在要求低电压低功耗的移动设备中应用。

CMOS图像传感器上世纪60年代就已经出现,但因工艺和技术原因,存在严重的噪声问题,性能不够完善严重影响图像质量还被废弃。

但自20世纪90年代以来进人世纪年代,由于对小型化、低功耗和低成本成像系统消费需要的增加, 芯片制造技术和信号处理技术的发展,为新一代低噪声、优质图像和高彩色还原度的CMOS传感器的开发铺平了道路, CMOS传感器的性能因此大大提高, CMOS图像传感器成为固体图像传感器的研究开发热点。

但在光线较暗条件下,CMOS图像传感器的噪声问题比较突出,这与器件和工艺本身关系较大。

对于CMOS图像传感器噪声的研究有助于解决其不足,以保证其优势可以发挥,无论是对噪声的抑制,还是对器件工艺改进的引导都有较大意义。

图像传感器市场比较大,对于兴起的CMOS图像传感器研发也是具有实际意义的。

本综述首先对目前CMOS图像传感器所用的技术和原理进行了研究介绍,然后分别从CMOS本身晶体管和光电二极管噪声研究和当前技术结构所拥有的噪声进行了研究介绍,最后自己分析了减小噪声的大致方向。

一CMOS图像传感器主流结构CMOS图像传感器的概念最早出现在20世纪60年代,但当时由于大规模集成电路工艺的限制未能进行研究。

普遍意义上的CMOS图像传感器的研究是从80年代早期开始,而从实验室走向产品化则是在90年代早期。

CMOS图像传感器的研发大致经历了3个阶段:CMOS无源像素传感器(CMOS—PPS。

Passive Pixel Sensor)阶段、CMOS有源像素传感器(CMOS—APS,Active Pixel Sensor)阶段和CMOS数字像素传感器(CMOS—DPS,Digital Pixel Sensor)阶段。

图1 CMOS图像传感器像素结构1.1 无源像素传感器PPS像元结构简单、面积很小。

所以在给定的单元尺寸下,可设计出最高的填充系数(FiFactor.FF 又称“孔径系数”,即像元中有效光敏单元面积与像元总面积之比);在给定的设计填充系数下,单元尺寸可设计的最小。

并且,由于填充系数高和没有类似许多CCD中的多晶硅层叠,无源像素结构可获得较高的“量子效率”(即光生电子与入射光子数量之比),从而有利于提高器件的灵敏度。

但是这种结构存在着2个方面的不足:其一,各像元中开关管的导通阈值难以完全匹配,所以即使器件所接受的入射光线完全均匀一致,其输出信号仍会形成某种相对固定的特定图形,也就是所谓的“固有模式噪声”(Fixed Pattern Noise,FPN),致使PPS的读出噪声很大,典型值为250个均方根电子,较大的固有模式噪声的存在是其致命的弱点;其二.光敏单元的驱动能量相对较弱,当图像传感器规模不断增大后,总线上电容相应增加传感器读出速度大幅降低,故而列线不宜过长以期减小其分布参数的影响。

受多路传输线寄生电容及读出速率的限制,PPS难以向大型阵列发展。

1.2 有源像素传感器这种结构相对无源像素传感器结构在像素单元里增加了有源放大管,于是减小了读出噪声并且它的读出速度也较快;由于有源像元的驱动能力较强,列线分布参数的影响相对较小,因而有利于制作像元阵列较大的器件;另外,由于有源放大管仅在读出状态下才工作,所以CMOS有源像素传感器的功耗比CCD图像传感器的还小。

这种结构的APS量子效率比较高,由于采用了新的消噪技术,输出图形信号质量比以前有许多提高,读出噪声一般为75~100个电子。

而像元本身具备的行选功能,对二维图像输出控制电路的简化颇有益处。

但是,有源像素传感器在提高性能的同时也付出了增加像素单元面积和减小“填充系数(Fill Factor)”的代价。

APS像元结构复杂,与PPS像元结构相比(无源像元的孔径效率多在60%~80%之间),其填充系数较小,设计填充系数典型值为20%~30%,与行间转移CCD接近,因而需要一个较大的单元尺寸。

为了补偿有源像素填充系数不高引起的不足,CMOS器件往往借用CCD制造工艺中现有的“微透镜”技术就是在器件芯片的常规制作工序完成后,再利用光刻技术在每个像元的表面直接制作一个微型光学透镜借以对入射光进行会聚,使之集中投射于像元的光敏单元,从而可将有源像元的有效填充系数提高2~3倍,提高信号质量。

深亚微米技术的采用将会大幅提高填充率。

1.3 数字像素图像传感器上面提到的无源像素传感器和有源像素传感器的像素读出均为模拟信号,于是它们又通称为模拟像素传感器。

近年来,美国斯坦福大学提出了一种新的CMOS 图像传感器结构一数字像素传感器(DPS),在像素单元里集成了ADC(Analog—to —Digital Convertor)和存储单元,如图1(c)所示。

由于这种结构的像素单元读出为数字信号,其它电路都为数字逻辑电路,因此数字像素传感器的读出速度极快,具有电子快门的效果,非常适合高速应用,而且它不像读出模拟信号的过程,不存在器件噪声对其产生干扰。

另外,由于DPS充分利用了数字电路的优点,因此易于随着CMOS工艺的进步而提高解析度,性能也将很快达到并超过CCD图像传感器,并且实现系统的单片集成。

数字像素图像传感器的主要缺点在于因为增加了像素单元的晶体管数目而需要较大的像素单元面积,而且随着芯片加工工艺的不断发展,接口电压在不断降低,漏电流也在不断增加,DPS的设计和制造也面临着较大的挑战。

目前,这种传感器还处于研究阶段。

以上介绍了3种不同类型的图像传感器结构,其中发展最快的是CM0S—APS。

这种类型的图像传感器器件已经进入商品化和实用化阶段,但是对全面改善CM0S—APS性能的研究工作还在深入进行。

CMOS图像传感器能够快速发展,一是基于固体图像传感器技术的研究成果,二是得益于CMOS集成电路工艺技术的成熟。

在CMOS取代CCD的进程中.生产工艺将是弥补CMOS图像质量和亮度不足的关键。

1.4 4T-APS结构上一节介绍了3种不同传感器结构,其中主流为APS结构。

这其中3T-APS和4T-APS是最常用的。

3T-APS像素由于自身结构的关系, 暗电流不能得到很好的控制, 性能难以满足较高的要求为满足需要,4T-APS 像素结构应运而生, 它比3T-APS像素有更小的噪声, 更好的性能同时要求控制部分更加复杂。

在CISs像素的各种结构中,3T像素有很高的填充因子(FillFactor,FF),但其对KT/C噪声的抑制能力较差;而5T及更复杂的像素结构由于其较低的FF,很难在超大规模CISs中应用.4T-APS像素结构是目前CISs的主流结构之一,该结构有利于相关双采样(CorrelatedDoubleSampling,CDS)技术的运用,有效抑制噪声,并且有较高的FF,利于扩展动态围,常应用于大阵列的CISs设计中.4T-APS像素结构如图1所示,该结构由钳位光电二极管(Pinned-Photodiode,PPD)、传输管MTG、复位管MRST、源极跟随器MSF和行选管MRS组成。

图2 Pinned型4T-APS像素结构示意图二CIS噪声分析噪声一直是限制CMOS图像传感器占领市场的重要因素之一。

目前用于科学研究的高性能CCD能达到的噪声水平为3~5个电子,而CMOS图像传感器则为300-500个电子。

CMOS图像传感器的主要噪声来源有像素光敏单元的光电二极管,场效应管及图像传感器工作时产生的其它噪声。

其中光电二极管产生的噪声有热噪声,散粒噪声,产生复合噪声及电流噪声。

MOS场效应管,包括放大器中的场效应管和用于行列选址模拟开关的场效应管,引起的噪声主要有热噪声,诱生栅极噪声及电流噪声。

而光敏阵列和MOS场效应管构成的CMOS图像传感器在工作中,还会引进其它的噪声,比如复位噪声(KTC噪声)和空间噪声等。

图3 CMOS 图像传感器在信号传递过程中产生的的各种噪声示意图2.1 时间噪声分析在噪声分析过程中,我们可以用时间域随机过程和空间域随机过程来描述CMOS图像传感器信号传送过程中产生的各种噪声。

在图像最终输出的信号中我们得到的是时空域统一的图像噪声。

关于时间噪声随光强变化而变化的趋势我们在第四小节的三维噪声模型实验来验证,时间噪声也称为随机噪声,在这一部分我们主要考虑的时间噪声有热噪声,散粒噪声,复位噪声,低频噪声等。

(1) 热噪声热噪声是由于光电器件中电子的随机热振动产生的,存在于任何电子器件和电阻中,比如场效应管的导电沟道电阻。

在场效应管中,电子的随机运动导致沟道电势的起伏,栅极电压的波动,从而产生热噪声。

它是一种白噪声。

1928 年,奈奎斯特提出了热噪声的均方电压表达式为:f KT U RMS ∆=42其中,K 是玻尔兹曼(Boltzmann)常数,T 是器件的绝对工作温度,Δf 为带宽。

热噪声可以通过降低器件工作温度来抑制。

(2) 散粒噪声散粒噪声服从泊松分布,是由于光电传感器件工作时所加的偏置电流中的电子越 过光电二极管的PN 结时所产生的,散粒噪声的电流均方值为:f qI i RMS ∆=022其中,q 为单个电子电荷量, 0I 为所加的偏置电流的值,由式中我们可以看出,散 粒噪声的大小与偏置电流的值成正比。

降低散粒噪声的一个方法是减小偏置电流,但 是可能会引起光电响应度的降低和光电响应非线性的升高。

(3) 产生复合噪声产生复合噪声是光电子器件所特有的噪声,是由于光生载流子的产生和复合围绕 一个均值涨落,引起电流起伏,从而形成噪声。

产生复合噪声的表达式如下:222020214τωτρ+∆=f I i 其中, 为光生载流子产生率,τ 是载流子寿命,ω 为测量频率。

(4) 1/f 噪声1/f 噪声也称低频噪声,电流噪声。

产生的原因比较复杂,光敏元件中的低频噪声是由于器件工艺杂质或缺陷损伤引起的,而在场效应管中,则与MOS 管的表面状态相关。

因其大小与频率成正比,所以叫1/f 噪声。

它的电流均方值为:βαf f kI i nf∆=2其中, α ,β 和k 都是常数,I 为器件中的电流。

由式中我们可以看出,低频噪声的大小于工作频率成反比,因此提高工作频率可以减小低频噪声,但是由于CMOS 传感器帧频的限制,CMOS 器件的工作频率不可能很高,低频噪声是不可避免的。

2.2 空间噪声分析空间噪声有固定模式噪声(FPN ),光响应非均匀性,热图案噪声等。

相关文档
最新文档