基坑设计计算实例
深基坑支护结构的设计计算

深基坑支护结构的设计计算深基坑支护结构设计计算是指在进行深基坑施工时,为了保证基坑的稳定和安全,需要设计合理的支护结构来抵抗土压力和地下水力,并进行相应的计算与分析。
下面将从设计原则、支护结构类型、计算方法和实例分析等方面进行详细介绍。
设计原则:1.充分了解地质环境:通过钻孔、地质勘探等手段对周边地质环境进行充分了解,确定基坑边坡的稳定性和地下水情况等。
2.综合考虑安全和经济性:在满足基坑稳定要求的前提下,尽量优化支护结构的形式和尺寸,使其既能保证施工安全,又能降低成本。
3.遵循现场施工管理规范:根据施工组织方案和现场管理要求,进行支护结构设计,确保施工操作的可行性和安全性。
支护结构类型:常见的深基坑支护结构主要有以下几种类型:1.土方支撑法:包括开挖后土侧临时支护、钢支撑、混凝土支撑、钻孔锚杆支护等。
2.桩承台围护法:采用桩承台、连续墙等结构形式围护基坑。
3.地下连续墙法:采用成排的连续墙围护基坑,形成闭合空间。
4.排浆松土法:通过水平和垂直排浆井人工排除地下水,减小土体侧压力。
5.钢结构支护法:采用钢桩和钢板桩等结构形式围护基坑。
计算方法:1.土体侧压力计算:根据基坑周边土体的物理力学参数和基坑的几何形状,采用经验公式或数值模拟方法计算土体的侧压力。
2.支护结构稳定性计算:根据支护结构的形式和受力状况,进行结构的静力分析和稳定性校核,计算结构内力和变形等。
3.变形计算:根据支护结构的刚度和土体的变形特性,利用有限元分析方法或基于弹性平衡原理的计算方法,对基坑的变形进行计算。
实例分析:以一些深基坑工程为例,具体讲解支护结构设计计算的流程和方法。
1.地质环境调查:通过钻孔和地质勘探,了解地质层位、土壤性质、地下水位等信息。
2.施工组织方案:根据地质环境和工程要求,制定合理的施工组织方案,确定基坑开挖的顺序和方法。
3.土体侧压力计算:根据开挖的深度和基坑周围土体的物理力学参数,计算土体的侧压力,并确定开挖时的土压力分布。
理正深基坑7.0基坑支护计算例题排桩内支撑

理正深基坑7.0基坑支护计算例题排桩内支撑•相关推荐理正深基坑7.0基坑支护计算例题排桩内支撑深基坑支护设计 3设计单位:X X X 设计院设计人:X X X设计时间:2016-04-11 11:55:10---------------------------------------------------------------------- [ 支护方案 ]---------------------------------------------------------------------- 排桩支护---------------------------------------------------------------------- [ 基本信息 ]---------------------------------------------------------------------- [ 放坡信息 ]---------------------------------------------------------------------- [ 超载信息 ]---------------------------------------------------------------------- [ 附加水平力信息]---------------------------------------------------------------------- [ 土层信息 ]---------------------------------------------------------------------- [ 土层参数 ]---------------------------------------------------------------------- [ 支锚信息 ]---------------------------------------------------------------------- [ 土压力模型及系数调整 ]---------------------------------------------------------------------- 弹性法土压力模型: 经典法土压力模型:---------------------------------------------------------------------- [ 工况信息 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 设计结果 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 结构计算 ]---------------------------------------------------------------------- 各工况:内力位移包络图:地表沉降图:---------------------------------------------------------------------- [ 冠梁选筋结果 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 环梁选筋结果 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 截面计算 ]---------------------------------------------------------------------- 钢筋类型对应关系:d-HPB300,D-HRB335,E-HRB400,F-RRB400,G-HRB500,P-HRBF335,Q-HRBF400,R-HRBF500---------------------------------------------------------------------- [ 整体稳定验算 ]----------------------------------------------------------------------计算方法:瑞典条分法应力状态:有效应力法条分法中的土条宽度: 0.40m滑裂面数据整体稳定安全系数 Ks = 1.619 圆弧半径(m) R = 15.313 圆心坐标X(m) X = -0.492 圆心坐标Y(m) Y = 7.058---------------------------------------------------------------------- [ 抗倾覆稳定性验算 ]------------------------------第一文库网 ---------------------------------------- 抗倾覆安全系数:p, 对于内支撑支点力由内支撑抗压力决定;对于锚杆或锚索,支点力为锚杆或锚索的锚固力和抗拉力的较小值。
基坑完整计算书

新世纪·星城F地块基坑支护方案基坑支护工程计算书韶关地质工程勘察院二零一二年五月一、计算参数选择(1)本基坑挡土安全等级按三级考虑,基坑侧壁重要性系数γ取0.9;(2)地面超载:3、基坑顶使用荷载为坑顶15KPa。
(3)地下水位:基坑外侧取开挖面以下1.0m;基坑内侧取坑底以下1.0m;(4)计算软件采用理正深基坑计算软件(版本号:FSPW6.01);(5)土层参数选取(采用勘察报告参数值并结合当地工程经验选取)各土层参数选取值---------------------------------------------------------------------- 验算项目: 1-1剖面---------------------------------------------------------------------- [ 验算简图 ] ----------------------------------------------------------------------[ 验算条件 ]----------------------------------------------------------------------[ 基本参数 ]所依据的规程或方法:《建筑基坑支护技术规程》JGJ 120-99基坑深度: 5.250(m)基坑内地下水深度: 6.000(m)基坑外地下水深度: 1.000(m)基坑侧壁重要性系数: 0.900土钉荷载分项系数: 1.250土钉抗拉抗力分项系数: 1.300整体滑动分项系数: 1.300[ 坡线参数 ]坡线段数 1序号水平投影(m) 竖向投影(m) 倾角(°)1 2.015 5.250 69.0[ 土层参数 ]土层层数 2序号土类型土层厚容重饱和容重粘聚力内摩擦角钉土摩阻力锚杆土摩阻力水土 (m) (kN/m^3) (kN/m^3) (kPa) (度) (kPa) (kPa)1 素填土 5.800 17.5 17.5 10.0 10.0 25.0 25.0 合算2 粘性土 8.400 18.0 18.0 22.0 20.0 50.0 50.0 合算[ 超载参数 ]超载数 1序号超载类型超载值(kN/m) 作用深度(m) 作用宽度(m) 距坑边线距离(m) 形式长度(m)1 局部均布 15.000 0.000 10.000 0.185 条形[ 土钉参数 ]土钉道数 3序号水平间距(m) 垂直间距(m) 入射角度(度) 钻孔直径(mm) 长度(m) 配筋1 1.400 1.000 15.0 110 8.000 1D222 1.400 1.400 15.0 110 10.000 1D223 1.400 1.400 15.0 110 12.000 1D22[ 花管参数 ]基坑内侧花管排数 0基坑内侧花管排数 0[ 锚杆参数 ]锚杆道数 0[ 坑内土不加固 ][ 内部稳定验算条件 ]考虑地下水作用的计算方法:总应力法土钉拉力在滑面上产生的阻力的折减系数: 0.500*******************************************************************[ 验算结果 ]*******************************************************************[ 局部抗拉验算结果 ]工况开挖深度破裂角土钉号土钉长度受拉荷载标准值抗拔承载力设计值抗拉承载力设计值满足系数 (m) (度) (m) Tjk(kN) Tuj(kN) Tuj(kN) 抗拔抗拉1 1.300 39.5 02 2.600 39.5 1 8.000 23.3 46.3 114.0 1.767 4.3543 3.900 39.5 1 8.000 7.2 40.7 114.0 5.022 14.0782 10.000 29.0 60.0 114.0 1.8393.4964 5.250 39.5 1 8.000 7.2 34.9 114.0 4.304 14.0782 10.000 29.0 54.2 114.0 1.661 3.4963 12.000 88.1 101.9 114.0 1.028 1.150[ 内部稳定验算结果 ]工况号安全系数圆心坐标x(m) 圆心坐标y(m) 半径(m)1 1.479 0.881 7.115 3.2282 1.495 -0.757 7.728 5.3803 1.388 -2.368 8.312 7.5374 1.332 -3.293 8.142 8.783[ 外部稳定计算参数 ]所依据的规程:《建筑地基基础设计规范》GB50007-2002土钉墙计算宽度: 20.000(m)墙后地面的倾角: 0.0(度)墙背倾角: 60.0(度)土与墙背的摩擦角: 10.0(度)土与墙底的摩擦系数: 0.300墙趾距坡脚的距离: 0.000(m)墙底地基承载力: 250.0(kPa)抗水平滑动安全系数: 1.300抗倾覆安全系数: 1.600[ 外部稳定计算结果 ]重力: 842.5(kN)重心坐标: ( 9.718, 2.910)超载: 150.0(kN)超载作用点x坐标: 7.200(m)土压力: 55.9(kN)土压力作用点y坐标: 1.785(m)基底平均压力设计值 50.1(kPa) < 250.0基底边缘最大压力设计值 62.1(kPa) < 1.2*250.0抗滑安全系数: 2.317 > 1.300抗倾覆安全系数: 48.701 > 1.600---------------------------------------------------------------------- [ 支护方案 ]2-2剖面---------------------------------------------------------------------- 天然放坡支护---------------------------------------------------------------------- [ 基本信息 ]---------------------------------------------------------------------- [ 放坡信息 ]---------------------------------------------------------------------- [ 超载信息 ]---------------------------------------------------------------------- [ 土层信息 ]---------------------------------------------------------------------- [ 土层参数 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 设计结果 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 整体稳定验算 ]----------------------------------------------------------------------天然放坡计算条件: 计算方法:瑞典条分法 应力状态:总应力法基坑底面以下的截止计算深度: 0.00m 基坑底面以下滑裂面搜索步长: 5.00m 条分法中的土条宽度: 0.40m---------------------------------------------------------------------- [ 支护方案 ]3-3剖面---------------------------------------------------------------------- 天然放坡支护---------------------------------------------------------------------- [ 基本信息 ]---------------------------------------------------------------------- [ 放坡信息 ]---------------------------------------------------------------------- [ 超载信息 ]---------------------------------------------------------------------- [ 土层信息 ]----------------------------------------------------------------------[ 土层参数 ]---------------------------------------------------------------------- [ 设计结果 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 整体稳定验算 ]----------------------------------------------------------------------天然放坡计算条件: 计算方法:瑞典条分法 应力状态:总应力法基坑底面以下的截止计算深度: 0.00m 基坑底面以下滑裂面搜索步长: 5.00m 条分法中的土条宽度: 0.40m---------------------------------------------------------------------- [ 支护方案 ]4-4剖面---------------------------------------------------------------------- 天然放坡支护---------------------------------------------------------------------- [ 基本信息 ]---------------------------------------------------------------------- [ 放坡信息 ]---------------------------------------------------------------------- [ 超载信息 ]---------------------------------------------------------------------- [ 土层信息 ]---------------------------------------------------------------------- [ 土层参数 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 设计结果 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 整体稳定验算 ]----------------------------------------------------------------------天然放坡计算条件: 计算方法:瑞典条分法 应力状态:总应力法基坑底面以下的截止计算深度: 0.00m 基坑底面以下滑裂面搜索步长: 5.00m 条分法中的土条宽度: 0.40m---------------------------------------------------------------------- [ 支护方案 ]出土口---------------------------------------------------------------------- 天然放坡支护---------------------------------------------------------------------- [ 基本信息 ]---------------------------------------------------------------------- [ 放坡信息 ]---------------------------------------------------------------------- [ 超载信息 ]---------------------------------------------------------------------- [ 土层信息 ]---------------------------------------------------------------------- [ 土层参数 ]---------------------------------------------------------------------- [ 设计结果 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 整体稳定验算 ]----------------------------------------------------------------------天然放坡计算条件: 计算方法:瑞典条分法 应力状态:总应力法基坑底面以下的截止计算深度: 0.00m 基坑底面以下滑裂面搜索步长: 5.00m 条分法中的土条宽度: 0.40m。
启明星计算基坑整个过程计算书

1 3-1粉土 0.83 20.1 11.10 29.10 0.00 0.00
2 3-2粉粘 4.30 18.8 11.80 12.90 0.00 0.00
3 4粉粘 2.70 19.5 12.50 12.10 0.00 0.00
4 5-1粉粘 10.10 19.6 16.40 16.60 0.00 0.00
3.7 整体稳定计算
对于单个圆弧滑面的整体稳定安全系数计算方法如下。
3.7.1 瑞典条分法-总应力法
上列式中:
式中: Ks─ 整体稳定安全系数; Nj─ 土钉、锚杆、微型桩、排桩在滑弧上产生的抗滑力标准值; ci─ 第i分条滑裂面处土体(或水泥土, 乘折减系数后的c)的粘聚力; φi─ 第i分条滑裂面处土体(或水泥土, tgφ乘折减系数后的φ)的内摩擦角; Ka─ 主动土压力系数; Li─ 第i分条滑动面弧长; Gi─ 第i分条土条(包括水泥土)重量; Wi─ 第i分条土条受到的水浮力; Wi'─ 第i分条土条受到坑内水位以下那部分水的水浮力 (当地下 水位高于开挖面时,坑内水位取开挖面,否则取地下水位); ui─ 第i分条土条底部中心处的孔隙隙水压力,即为该点处 的静水压力;若考虑土性,则对水土合算的土层取0; 静水压力与浸润线有关,当地下水低于开挖面时,浸润 线就是地下水位线;当地下水高于开挖面时,浸润 线如下:
3.4.1 土体水平向基床系数的计算
3.4.1.1 m法
kp=mz,m为土层的水平向基床系数随深度增长的比例系数,z为计算点距离开挖面的深度(对于主动侧就是 距桩顶的距离);
3.5 地表沉降计算
3.5.1 同济抛物线模式
地表沉降范围x0与三角形模式相同。 各点的沉降:
上列式中: Sw― 支护结构侧移面积; H― 基坑开挖深度;
20米深基坑SMW工法桩支护设计方案(图文并茂)

稳定。
返回汇报纲要
四、对本方案的补充说明
1. 基坑监测补充:①边坡土体及围护桩体深层水平位移观测(测斜);②钢立柱 的变形观测;③型钢支撑的应力、应变观测。
2. 应急处理补充:针对本基坑周边环境,采用可回收锚杆作为本基坑的应急处理 措施。
3. 预留护壁土体:在现有岩土工程勘察报告揭示的地层条件下。通过采用天汉软 件验算,在考虑坡脚加固、坡体轻型井点降水等措施,结果表明坑内预留护壁 土是完全稳定的。若各位专家对此仍有质疑,我司在工程正式实施前可对该区 域地层情况进行针对性的专项勘察,以便做出更准确的处理方案。
4. 型钢内支撑:我司提出的型钢内支撑方案,需同地下室主体结构配合,在目前 现阶段掌握的资料,显然设计深度上还不够完善,因此需与设计院进一步沟通, 确认相关设计参数(如尺寸等)。但,这并不影响基坑围护整体方案的稳定和 实施。
基坑第三层钢管斜支撑平面布置图
预设在底板
换
上的牛腿
撑
示
意
钢管斜支撑
钢筋混凝土扶壁墙
1.钢管支撑一端支撑在腰梁,一端支撑在底板斜牛腿上。支撑间距9.45m,支撑钢管规 格为直径609,壁厚12mm,材质Q235。
2.腰梁中心标高-14.800,通长设置,砼强度等级C30;中心结构底板处设置钢筋砼牛腿, 砼强度等级C30。
5. 对于业主计划9月25日开工,结合我司提交的方案,诸如帷幕桩、围护桩、降水 井均可先行施工,另考虑结构图纸设计需要时间,建议土方暂不开挖,避免产 生费用;如果业主基于开工考虑要求进行土方开挖,基坑大面积开挖也是可以 的。
6. 如果业主选择我们的方案,根据现阶段图纸深度,可立即开展施工招标。另建 议业主关于基坑应作为整体发包。
深基坑计算书

Qimsta严同济启明星基坑支护结构专用软件FRWS7.0基坑工程计算书1工程概况该基坑设计总深4.0m,按二级基坑、选用《国家行业标准一建筑基坑支护技术规程(JGJ120-99)》进行设计计算,计算断面编号:1。
1.1 土层参数续表地下水位埋深:。
1.2基坑周边荷载地面超载:O.OkPa邻近荷载:邻近荷载的作用方式:2开挖与支护设计基坑支护方案如图:细砂屮砂中砂基坑工程基坑支护方案图2.1挡墙设计•挡墙类型:钻孔灌注桩; •嵌入深度:11.0m ; •露出长度:0.000m ; •桩径:1200mm •桩间距:1500mm27.0m65.000.00软弱上细砂粉质黏七粉砂0蚀陀 V !1混凝土等级:C30;止水帷幕厚度:1.000m;止水帷幕嵌入深度:11.000m2.2工况顺序该基坑的施工工况顺序如下图所示:匸况1:开挖至400(液亦3计算原理描述3.1围护墙主动侧土压力计算3.1.1朗肯主动土压力深度z处第i层土的主动土压力强度的标准值e ak,i按下列公式计算:采用水土合算或计算点在水位以上时:益=9亠工丫沁也-2c iy[K~尺(小于0取0)K at=tgX45^-^/2)采用水土分算且计算点在水位以下时:空广[旷f ;v旳-(一也)人氏;厂工屁尸- (小于0取0)严酋(4亍—亿/2)对于矩形土压力模式,自重部分须扣除坑内土的自重(对水位以下的分算土层,扣除有效自重;坑内水位取坑底位置,天然水位在坑底以下就取天然水位)。
式中:丫j—第j层土的天然重度;丫w—水的重度,取10kN/m3;△ h j—第j层土的厚度;h wa,i —地下水位;C i、o'—第i层土的内聚力、有效内聚力;『、『’一第i层土的内摩擦角、有效内摩擦角; q—超载。
3.1.2 经验土压力心3.1.3邻近荷载的影响邻近荷载对土压力的影响有两种思路,一种是按照一定方式增加墙体范围内土体的自重,种方式为直接增加侧向土压力,如下图五种方式都可归结为这两种思路。
基坑降水计算
基坑降水计算1.降水影响半径确定影响半径的方法很多,在矿坑涌水量计算中常用库萨金和吉哈尔特经验公式作近似计算。
当设计的矿山进行了大降深群孔抽水试验或坑道放水试验时,为了推求较为准确的影响半径,可利用观测孔网资料为基础的图解法进行推求。
1.1、经验公式法计算影响半径的主要经验公式见表1。
表1 计算影响半径的经验公式公式作者应用条件公式中符号说明库萨金计算潜水含水层群井、基坑、矿山巷道的影响半径,有时也用于承压含水层R-影响半径,m;O-抽水时的涌水量,m3/d;H-承压水和潜水含水层的厚度,m;K-渗透系数,m/d;h-抽水时的水柱高度,m;S-抽水时的水位降深,m;ω-单位面积内的渗透量,m3/h;μ-给水度;t-由开始抽水至稳定下降漏斗形成的时间,h;l-自然条件下的水力坡度吉哈尔特潜水及承压水抽水初期确定影响半径库萨金潜水舒尔米潜水维别尔潜水苏洛夫和卡赞斯基计算泄水沟和排水渠的影响半径柯泽尼潜水完整井维别尔承压水别里托夫斯基潜水苏洛夫卡赞与斯基根据渗透值确定单孔或单井长期抽水影响半径引用值特罗扬斯基潜水完整井1.2、图解法当设计矿山做了大降深群孔抽水或坑道放水试验时,为了推求较为准确的影响半径,可利用观测孔实测资料,用图解法确定影响半径。
(一)自然数直角座标图解法在直角座标上,将抽水孔与分布在同一直线上的各观测孔的同一时刻所测得的水位连结起来,尚曲线趋势延长,与抽水前的静止水位线相交,该交点至抽水孔的距离即为影响半径(见图1)。
观测孔较多时,用图解法确定的影响半径较为准确。
(二)半对数座标图解法在横座标用对数表示观测孔至抽水孔的距离,纵座标用自然数表示抽水主孔及观测孔水位降深的直角座标系中,将抽水主孔的稳定水位降深及同时刻的观测孔水位降低标绘在相应位置,连结这两点并延长与横座标的交点即为影响半径(见图2)。
当有两个或两个以上观测孔时,以观测孔稳定水位降深绘图更准些。
1.3、影响半径经验数值根据岩层性质、颗粒粒径及单位涌水量与影响半径的关系来确定影响半径,见表2与表3。
第3章 基坑工程设计计算
d a / tan za d (3a b) / tan
k
p0b b 2a
za d a / tan或za d (3a b) / tan
k 0
p0 基础底面附加压力标准值(KPa) d、b 基础埋置深度、基础宽度(m)
a 支护结构外边缘至基础水平距离(m) 附加荷载扩散角(°),宜取45° za 支护结构顶面至附加竖向应力计算点
4)计算O点处桩墙前侧主动土压力强度ea1及后侧被动 土压力强度ep1;
5)根据作用在支护结构上的全部水平作用力平衡条件∑x=0和绕墙底端力矩平衡条件∑M=0求得z与t0; 6)根据最大弯矩点处剪力为零,求出最大弯矩点及最大弯矩值Mmax。
2. 布鲁姆(Blum)法
布鲁姆简化计算法的计算简图如下图所示,桩墙底部后侧出现的被动土压力
1)基床系数C随深度成正比例增加。即:
m:比例系数。
C mz
按此图式来计算桩在外荷作用下各截面内力的方法通常简称为“m”法。
2)基床系数C在第一个零变位点以下(Z≥t时): C=K=常量
当0≤Z≤t时,C沿深度成曲线变化(可近似地假定为按直线增加)。 K值可按实测确定。 按此图式计算桩在外荷作用下的各面截内力的方法,通常简称为“K”法。
Kp
cos2
cos(
cos2 ( ) )[1 sin( )sin(
)
]2
cos( ) cos( )
库伦土压力理论只适用于无粘性土,并且假设滑动面 为平面,而实际的滑动面可能为曲面,导致主动土压力偏小, 被动土压力偏大。
3.2.2 水压力
水
水
土
土
合
分
算
算
“土、水压力的分、合算”原则 “分算”原则适用于土孔隙中存在自由的重力水或土的渗透性较好
原创-基坑支护设计(理正基坑单元计算)
深基坑支护设计设计单位:设计人:设计时间:2015-12-29 09:53:43---------------------------------------------------------------------- [ 支护方案 ]---------------------------------------------------------------------- 连续墙支护---------------------------------------------------------------------- [ 基本信息 ]---------------------------------------------------------------------- [ 附加水平力信息 ]---------------------------------------------------------------------- [ 土层信息 ]---------------------------------------------------------------------- [ 土层参数 ]---------------------------------------------------------------------- [ 支锚信息 ]---------------------------------------------------------------------- [ 土压力模型及系数调整 ]---------------------------------------------------------------------- 弹性法土压力模型: 经典法土压力模型:---------------------------------------------------------------------- [ 工况信息 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 设计结果 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 结构计算 ]---------------------------------------------------------------------- 各工况:内力位移包络图:地表沉降图:---------------------------------------------------------------------- [ 冠梁选筋结果 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 环梁选筋结果 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 截面计算 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 整体稳定验算 ]----------------------------------------------------------------------计算方法:瑞典条分法应力状态:总应力法条分法中的土条宽度: 0.40m滑裂面数据整体稳定安全系数 K s = 0.716圆弧半径(m) R = 32.445圆心坐标X(m) X = -6.177圆心坐标Y(m) Y = 16.641----------------------------------------------------------------------[ 抗倾覆稳定性验算 ]----------------------------------------------------------------------抗倾覆安全系数:p, 对于内支撑支点力由内支撑抗压力决定;对于锚杆或锚索,支点力为锚杆或锚索的锚固力和抗拉力的较小值。
基坑排水计算
一:基坑采用明沟排水,积水池抽水的方式,因此采用大井法估算其基底流入的水量之和。
①渗流量谁之和采用以下公式计算:Q1=1.366KS (2H−S )lg R r 0+ 6.28KSr 01.56+r 0m 0(1+1.185lg R 4m 0)公式中:Q —基坑总涌水量K —土的渗透系数(m/d )由设计10−5cm/sec 换算得72m/d S —抽水时坑内水位下降值(m ),本计算中为积水坑高度1m H —抽水前基坑以上的水位高度(m ),本计算中为1mR —抽水影响半径(m ),查表得出小砾石为500m —600m ,本计算采用600mr 0—引用假想半径,由于本计算中为矩形基坑,r 0=ηa+b 4计算,由b a =80150=0.54查表得出:η=1.16−1.140.6−0.4x (0.54−0.4)+1.14=1.154 r 0=1.154X 150+804=66.355m 0—从坑底到下卧不透水层的距离(m ),本计算中为3m因此由以上计算公式得出:Q1=592.64m ³②最大降雨量基坑蓄水总量为:由最大日降水量324.4~434.8mm 得出,本计算日最大降雨量为440mm ,考虑到实际情况,采用0.5系数计算;Q2=0.44x150X80=5280m ³即基坑日均总水量为:Q=Q1+Q2=5280+592.64=5872.64m ³二,拟采用四台抽水泵抽水,则水泵所需功率为:N =K 0QH 075η1x η2公式中K 0—安全系数,取2Q —基坑的涌水量,本计算中为Q =Q 24=5872.6424=244.7m ³/hH 0—包括扬水、吸水及由各种阻力所造成的水头损失在内的总高度,本公式取14mη1—水泵效率,一般取0.40—0.50,本计算中取0.45 η2—动力机械效率,一般取0.75—0.85,本计算中取0.8即:N =0.25X 2x244.7x1475x0.45x0.8=63.44kw查表得出,本工程适用4台4PN 型泥浆泵抽取基坑积水。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
. . . . . . . 优质资料 . . [锚杆设计举例] 某高层建筑的基坑开挖深度H=13m,土质为砂土与卵石等,其主动区土的平均重度a=19KN/m3,摩擦角a=40°,被动区的319.5/,45ppKNm,
各层土的聚力以零计,地面荷载q=10kN/m2。若决定采用Φ800mm钻孔桩(桩距1.5m)与一层锚杆的基坑支护方案,试进行锚杆设计。 [设计过程] 1、 土层锚杆布置
护桩入土深度计算 土层锚杆头部距地面4.5m,水平间距1.5m,锚孔孔径Φ140mm,锚杆向下倾斜13° 2、计算护桩入土深度t
主动土压力系数:240450.2172aKtg
被动土压力系数:245455.832pKtg 主动土压力:22112.062132aaaEHtKt . . . . . . . 优质资料 . . 地面荷载引起压力:22.1713aaEqHtKt
被动土压力:22156.8432pppEtKt,0BM,得: 2.062(13+t)2×[2/3(13+t)-4.5]+2.17(13+t) ×[0.5(13+t)-4.5] -56.843t2(2/3t+13-4.5)=0 解三次方程t=2.26m,最后取护桩入土深度t=2.30m;关于护桩的入土深度可用试算法确定。 3、锚杆所承受的水平力Th 由护桩入土深度t=2.30m,可知道每延米的主动与被动土压力: Ea1=0.5×19×(13+2.30)2×0.217=482.5(kN/m) Ea2=10×(13+2.30)×0.217=33.2(kN/m) Ep=0.5×19.5×2.32×5.83=301(kN/m) 由0DM,可求出锚杆所承受的水平力每延米T’h: '
122.3132.3132.3132.34.50333hpaaTEEE
得:'229.9(/)hTKNm。
由于锚杆的水平间距为1.5m,则每根锚杆实际承受的水平力为: '1.51.5229.9344.8()hhTTKN
4、锚杆承载力Tu 锚杆的轴向拉力设计值为:344.8353.8()cos13cos13htTNkN
若取锚杆抗拔安全系数K=1.5,则锚杆的极限抗拔力为: 1.5353.8530.7utTKNKN 5、锚杆非锚固段长度L0 锚固段地层为稍密的土层, . . . . . . . 优质资料 . . BE=(13+2.3-4.5)tg(45°-37°/2)=5.38m 在△BEF中,由正弦定理有:
锚杆长度计算图 BE/sin∠BFE=BF/sin∠BEF,∠BFE=(90°-13°)+(45°-37°/2)=103.5° ∠BEF=90°-(45°-37°/2)=63.5°
则:5.38sin63.5sin103.5BF,由此非锚固段长度Lo=5.0m。
6、锚杆锚固段长度Le 初选锚固段长度为Le,0点为锚固段中点,有: BO=BF+FO=5+Le/2
Le
BO=BF+FO+5+
2
=4.5+BOsin134.55sin13(1)20119371.5353.8(2)3.140.141937oLehCKhtghtgKNtLeDhtg
. . . . . . . 优质资料 . . 解得:Le=12m 锚杆总长度为17m。 7、拉杆材料选择 查表9-5,选择Ⅱ级冷拉钢筋做拉杆材料,其fk=430MPa,则所需钢筋截
面面积:2353.8823()430tkNKNAmmfMPa
由此,用单根Φ35mmⅡ级冷拉钢筋,其横截面积为962mm2。 8、锚杆支承腰梁的设计 对支承腰梁进行抗弯验算时,可将两桩之间的一段槽钢简化为一简支梁,支点在两边的挡土桩上,锚杆荷载作用在梁的中点,最大弯矩发生在梁的中点: M=PL/4=Nt×1.5/4=132.7kN·m
取钢材2
17/WkNcm,则有:22132.710780.617xWMWcm
经查表,采用2根28C的槽钢背靠背布置,间距25cm,其Wx=2*392.6=785.2(cm3),强度满足要求。 9、深部破裂面稳定性验算 假定δ=0,则Eah和E1h看作是水平向作用力: 132.37.0537.85122cos13acrtg
. . . . .
. . 优质资料 . . 深部破裂面稳定性验算
127.05132.310.671.5193393.7()21.5773.7()ahaa
GkNEEEkN
E1h=(0.5×19×7.052×0.217+10×7.05×0.217) ×1.5=175.2kN
则由有关公式可得: 11maxahhhahh
EEGEtgEtgtgTHtgtg
=773.7175.23393.74037.8727.7()13134037.8tgkNtgtg max727.72.111.5344.8hs
h
TKT
深部破裂面稳定性无问题。
[单撑(单锚)板桩墙设计实例]-按“自由支座”设计: 某基坑工程深6m,(地表均布超载40KN/m2)按φ=30°,γ=17kN/m3, C=0,桩顶拉锚。试进行板桩墙的支护设计。 . . . . . . . 优质资料 . . [设计过程] 1.绘土压力分布简图,得Ka=0.309,Kp=3.0 2.假设t1值,并取η=0.5。
取312112120,02323aapHtMKtKHt,试算得t1=4m。
若不考虑η=0.5,即容许变形足够大时,或被动土压力乘以增大系数,则t1=2.3即可。 3.求支撑力Ra 22
1122aapapREEHtKtK=17/2(6+4)2
·0.309-
17/2·42·3·0.5=58.65kN/m; 4、求最大弯矩Mmax 设距地表为h处作用在板桩上的剪力为零:
2258.650,4.7362170.309aaRhKhmm
,可用。则
33max174.7358.654.730.30918566aahKNMRhKm
kNm
5、板桩截面尺寸 如为钢材取212WkNcm,3max18500154212WMcmWm
按表选用:实际入土深度t=1.1t1=1.1×4=4.4m,而支拉力Ra在设计时也应适当增大,1.351.3558.6580aakNRRm计。 . . . . .
. . 优质资料 . . [单撑(拉锚)板桩设计例题]-按“固定支座”设计,已知条件同前。
[设计过程] 1、 绘土压力分布与等值梁弯矩图 0.3093apKK,1760.30931.5aakNeHKm
1、求to:0.689aopaetmKK 2、取d点为等值梁下端支点0dM 202323aaoaoooeetHRHttt
,代入已知数得,38.8
a
kNRm
20,66.72323aaoooooeHettkNPHtHHPm
3、求Mmax
最大弯矩的作用点:202aaRhK,238.83.846170.309hmm可用; 33max173.8438.83.840.30999.466aahKNMRhKm
kNm
4、计算板桩的最小入土深度t1 23opa
xx
PXKKx,
6666.72.961730.309opaPXmKK
t1=t0+X=0.689+2.96=3.65m,t=(1.1~1.2)t1=4.02~4.38 取t=4.1m,则板桩全长6+4.1m=10.1m 5、板桩截面尺寸:30.7499.461312cmWm(选择)
6、1.3552.38aakNRRm计。(完毕)