人教版第六章 实数单元达标同步练习

合集下载

人教版七年级数学下册第六章 实数同步练习(含答案)

人教版七年级数学下册第六章 实数同步练习(含答案)

第六章 实数一、单选题1.16的算术平方根是( )A .4B .﹣4C .±4D .22.5的平方根是( )A .25B .25±CD .3.下列各式中,正确的是( )A 4=±B .2=C .3=D 3=-41.147=2.472=0.5325= ) A .24.72B .53.25C .11.47D .114.75.在实数227,3π,0.1010010001中,无理数有( ) A .1 B .2 C .3 D .46.如图,数轴上表示1A 、点B.若点B 关于点A 的对称点为点C ,则点C 所表示的数是( )A 1B .1C .2D 271的整数部分是a ,小数部分是b ,则-a b 的值是( )A 7 B.1C .5D .7-8.下列四个实数中,绝对值最小的数是( )A .-5B .C .1D .49.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数……依此类推,那么12109a a a +++的值是( ) A .8 B .8- C .6 D .6- 10.定义新运算“⊕”⊕a⊕b=1a +1b (其中a 、b 都是有理数),例如:2⊕3=12+13=56,那么3⊕(﹣4)的值是( ) A .⊕712 B .⊕112 C .112 D .712二、填空题11.若1- 2a 与3a -4是同一个数的平方根,则a 的值为_____.121=______.13.比较大小:3________14.用“*”定义新运算:对于任意实数a b 、,都有2*2a b a b =+,如23*423422=⨯+=,=__.三、解答题15.已知正数x 的两个不同的平方根分别是a +3和2a ﹣154.求x ﹣2y +2的值.16.求出下列x 的值.(1)16x 2﹣49=0;(2)24(x ﹣1)3+3=0.17.计算:(1(22+18.已知某正数的两个平方根分别是12a -和4,421a a b ++-的立方根是3,c 数部分.(1)求, , a b c 的值;(2)求2a b c ++的算术平方根.19.观察下列各式:(x -1)(x+1)=x 2-1(x -1)(x 2+x+1)=x 3-1(x -1)(x 3+x 2+x+1)=x 4-1……(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=__________________. (2)你能否由此归纳出一般性规律(x -1)(x n +x n -1+x n -2+…+x+1)=____________.(3)根据以上规律求1+3+32+…+349+350的结果答案1.A 2.D 3.D 4.C 5.C 6.C 7.D 8.C 9.B 10.C知识像烛光,能照亮一个人,也能照亮无数的人。

人教版第六章 实数单元达标检测试卷

人教版第六章 实数单元达标检测试卷

人教版第六章 实数单元达标检测试卷一、选择题1.设n 为正整数,且20191n n <<+,则n 的值为( )A .42B .43C .44D .452.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N3.我们规定一种运算“★”,其意义为a ★b =a 2﹣ab ,如2★3=22﹣2×3=﹣2.若实数x 满足(x +2)★(x ﹣3)=5,则x 的值为( )A .1B .﹣1C .5D .﹣5 4.下列各数中,比-2小的数是( )A .-1B .-5C .0D .1 5.下列各组数中,互为相反数的是( )A .2-与12-B .|2-2C 2(2)-38-D 38-38-6.有下列说法:①在1和22,3一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④ B .①②④ C .②④ D .②7.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个 8.在3.14,237,2-327,π这几个数中,无理数有( ) A .1个B .2个C .3个D .4个 9.下列各组数的大小比较正确的是( )A 56B 3πC .5.329D . 3.1->﹣3.1 1016 )A .4B .4-C .4±D .2±二、填空题11.m 的平方根是n +1和n ﹣5;那么m +n =_____.12.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____.13.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____.14.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是__. 15.若23(2)0y x -+-=,则y x -的平方根_________.16.写出一个大于3且小于4的无理数:___________. 17.27的立方根为 .18.对于任意有理数a ,b ,定义新运算:a ⊗b =a 2﹣2b +1,则2⊗(﹣6)=____.19.对于实数a ,我们规定:用符号[]a 表示不大于[]a 的最大整数,称为a 的根整数,例如:,如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次: 10]33]1=→=这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________.20.用“*”表示一种新运算:对于任意正实数a ,b ,都有*1a b b .例如89914*=,那么*(*16)m m =__________.三、解答题21.先阅读然后解答提出的问题:设a 、b 是有理数,且满足2322+=-a b b a 的值.解:由题意得(3)(20-++=a b ,因为a 、b 都是有理数,所以a ﹣3,b+2也是有理数, 2是无理数,所以a-3=0,b+2=0,所以a=3,b=﹣2, 所以3(2)8=-=-a b .问题:设x 、y 都是有理数,且满足225y 1035x y -+=+x+y 的值.22.阅读下面文字:对于5231591736342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 可以如下计算:原式()()()5231591736342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦()()()5231591736342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++-⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦ 1014⎛⎫=+- ⎪⎝⎭114=- 上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,计算:(1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭ (2)235120192018201720163462⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭ 23.下面是按规律排列的一列数:第1个数:11(1)2--+. 第2个数:()()231112(1)11234⎡⎤⎡⎤----+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦. 第3个数:()()()()2345111113(1)111123456⎡⎤⎡⎤⎡⎤⎡⎤------+++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦. …(1)分别计算这三个数的结果(直接写答案).(2)写出第2019个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.24.阅读下面的文字,解答问题:大家知道2是无理数,而无理是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用21-来表示2的小数部分,事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是2的小数部分,又例如:∵()232273<<,即273<<,∴7的整数部分为2,小数部分为()72-。

人教版七年级数学下册第六章 实数同步练习(包含答案)

人教版七年级数学下册第六章 实数同步练习(包含答案)

第六章 实数一、单选题1.下列各数中,能化为无限不循环小数的是( )A .13B .15C .17D .π22.-8的立方根是 ( )A .-2B .2C .±2D .4 3.9的算术平方根是( )A .3B .﹣3C .±3D .941的相反数是( )A 1B 1C .1-D .15.实数a 、b a b +的结果为( )A .bB .2a b -+C .2a b +D .2a b -6.数22,0.101001000137π-⋯g g (相邻两个1之间的0的个数逐次加1)中,无理数的个数为( )A .2个B .3个C .4个D .5个 7.一个正数的两个平方根分别是21a -与2a -+,则a 的值为( )A .-1B .1C .-2D .28 )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间 9.下列说法正确的是( )A .(﹣3)2的平方根是3B ±4C .1的平方根是1D .4的算术平方根是210.设[a]是有理数,用[a]表示不超过a 的最大整数,如[1,7]=1,[-1]=-1,[0]=0,[-1,2]=-2,则在以下四个结论中,正确的是( ).A .[a]+[-a]=0B .[a]+[-a]等于0或-1C .[a]+[a]≠0D .[a]+[-a]等于0或1二、填空题1130b -=,则 a b +=____________.12__________.13.已知m n 的小数部分,则m+n =________.14.比较大小:15x y的算术平方根为_____.三、解答题16.已知21a -的平方根是3±,421a b ++的算术平方根是5,求2a b -的平方根. 17.解方程:(1)12(1 - x )2= 8 (2)(5x - 1)3 = -6418.计算:(1(2)221-+19.规律探究,观察下列等式:第1个等式:111111434a ⎛⎫==⨯- ⎪⨯⎝⎭第2个等式:2111147347a ⎛⎫==⨯- ⎪⨯⎝⎭ 第3个等式:311117103710a ⎛⎫==⨯- ⎪⨯⎝⎭第4个等式:41111101331013a ⎛⎫==⨯- ⎪⨯⎝⎭ 请回答下列问题:(1)按以上规律写出第5个等式:= ___________ = ___________(2)用含n 的式子表示第n 个等式:= ___________ = ___________(n 为正整数) (3)求1234100a a a a a +++++L L答案1.D 2.A 3.A 4.D 5.A 6.B 7.A 8.D 9.D 10.B11.112.2;1314.>1516. 1.±17.(1)x=-3或x=5;(2)x=35 -.18.(1)32-;(2)0.19.(1)11316⨯;11131316⎛⎫⨯-⎪⎝⎭;(2)[]13(1)(131)n n+-⋅+;13(3111311)n n⎡⎤--+⎢⎣+⎥⎦;(3)100 301。

最新人教版初中数学七年级下册第六章《实数》单元综合练习题(含答案)

最新人教版初中数学七年级下册第六章《实数》单元综合练习题(含答案)

人教版七年级数学下册第六章实数单元检测题一、选择题(每题3分,共30分)1.-3的绝对值是()A.33B.-33 C. 3 D.132.下列实数中无理数是()A. 1.21B.3-8 C.3-32 D.2273. 下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0个B.1个C.2个D.3个4.下列说法正确的是 ()A.无限小数是无理数B.不循环小数是无理数C.无理数的相反数还是无理数D.两个无理数的和还是无理数5.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20 B.x20=2 C.x±20=20 D.x3=±206.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是17.下列四个数中的负数是()A.﹣22 B.2)1( C.(﹣2)2 D.|﹣2|8无理数一定是无限不循环小数②算术平方根最小的数是零③﹣6是(﹣6)2的一个算术平方根④﹣=其中正确的是()A.①②③B.②③④C.①②④D.①③④9. 已知3≈1.732,30≈5.477,那么300 000≈()A.173.2 B.±173.2 C.547.7 D.±547.7二、填空题(本大题共8小题,共32分)1.比较大小:(填写“<”或“>”)2.观察分析下列数据,寻找规律:0,3,6,3,12,15,18,…,那么第13个数据是________.3.已知实数m满足+=,则m=.4.已知,a23<b,且a、b是两个连续的整数,则|a+b|= .5.若的值在两个整数a与a+1之间,则a=.6.如图,正方形ABCD被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm2和2cm2,那么两个长方形的面积和为cm2.7.请写出一个大于8而小于10的无理数:.8.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是.三、解答题(38分)1.(6分)已知实数a,b满足a-14+|2b+1|=0,求b a的值.2.(6分)已知,求的算术平方根.3.(6分)计算:(1)9×(﹣32)+4+|﹣3|(2) .4.(本题8分)将下列各数填在相应的集合里.π,3.141 592 6,-0.456,3.030 030 003…(每两个3之间依次多1个0).有理数集合:{ …}; 无理数集合:{ …}; 正实数集合:{ …}; 整数集合:{ …}.5.(12分)数学活动课上,张老师说:“2是无理数,无理数就是无限不循环小数,同学们,你能把2的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用(2-1)表示它的小数部分.”张老师说:“晶晶同学的说法是正确的,因为1<2<4,所以1<2<2,所以2的整数部分是1,将这个数减去其整数部分,差就是小数部分.”亮亮说:“既然如此,因为2<5<3,所以5的小数部分就是(5-2)了.”张老师说:“亮亮真的很聪明.”接着,张老师出示了一道练习题:已知8+3=x+y,其中x是一个整数,且0<y<1,请你求出2x+(3-y)2 019的值.参考答案:人教版七年级数学下册第六章实数能力检测卷一.选择题(共10小题)1.16的平方根是()A.4 B.-4 C.16或-16 D.4或-42.下列各等式中计算正确的是()A±4 B C=-3 D= 3 23.若方程2(4)x-=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a-4是19的算术平方根D.b+4是19的平方根4.给出下列说法:①-2是49;③;④2的平)A.0个B.1个C.2个D.3个5.如果-b是a的立方根,则下列结论正确的是()A.3b-=a B.-b=3a C.b=3a D.3b=a6.已知一个正数的两个平方根分别为3a-1和-5-a,则这个正数的立方根是()A.-2 B.2 C.3 D.47.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是()A.9,10 B.10,11 C.11,12 D.12,138)A.线段AB上B.线段BC上C.线段CD上D.线段DE上9.已知a、b均为正整数,且a>,b>,则a+b的最小值为( )A.6 B.7 C.8 D.910.在实数,3.1415926,π2,,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有( )A.2个B.3个C.4个D.5个二.填空题(共6小题)11.4的平方根是; 的立方根是.12.非零整数x、y 0,请写出一对符合条件的x、y的值:.13.一个正方体,它的体积是棱长为2cm的正方体的体积的8倍,则这个正方体的棱长是cm.14.5x+9的立方根是4,则2x+3的平方根是.15小的无理数.16.数轴上从左到右依次有A、B、C三点表示的数分别为a、b其中b为整数,且满足|a+3|+|b-2|=b-2,则b-a= .三.解答题(共7小题)17.求出下列x的值.(1)16x2-49=0;(2)24(x-1)3+3=0.18.计算|1|++-19.已知|a|=5,b 2=4,c 3=-8. (1)若a<b,求a+b 的值; (2)若abc>0,求a-3b-2c 的值.20.已知a+1的算术平方根是1,-27的立方根是b-12,c-3的平方根是±2,求a+b+c 的平方根.21.阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a-b=a÷b,那么a 与b 就叫做“差商等数对”,记为(a,b).例如: 4-2=4÷2;932-=9÷3;21(1)2⎛⎫--- ⎪⎝⎭=1÷(1);2⎛⎫-- ⎪⎝⎭则称数对91(4,2),,3,,122⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭是“差商等数对”.根据上述材料,解决下列问题: (1)下列数对中,“差商等数对”是______(填序号);①(-8.1,-9),②11,,22⎛⎫⎪⎝⎭③+ (2)如果(x,4)是“差商等数对”,请求出x 的值;22.对于实数a ,我们规定:用符号的最大整数,称为a 的根整数,例如:=3,=3.(1)仿照以上方法计算:==.(2)若=1,写出满足题意的x 的整数值人教版七年级数学下册能力提升卷:第六课实数一.选择题(共10小题) 1.下列计算错误的是( ) A .-3+2=-1B .(-0.5)×3×(-2)=3C .232⎛⎫- ⎪⎝⎭=-3D -1.12 ) A .8B .-8C .2D .-23.如果-b 是a 的立方根,则下列结论正确的是( ) A .3b -=aB .-b=3aC .b=3aD .3b =a4.-125 ) A .-2B .4C .-8D .-2或-85.小明在作业本上做了4=-5;②=4=-6,他做对的题有( ) A .1道B .2道C .3道D .4道6.数轴上A 、B 两点表示的数分别是-3和3.则表示的点位于A 、B 两点之间的是( )A .πB .-4CD .1037.实数a ,b 在数轴上的位量如图所示,则下列结论正确的是( ) A .|a+b|=a-bB .|a-b|=a-bC .|a+b|=-a-bD .|a-b|=b-a8.在数3,(---中,大小在-1和2之间的数是( )A .-3B .-(-2)C .0D 9.下列各数中:是无理数的有( )A .1个B .2个C .3个D .4个10.已知a,b为两个连续整数,且,<<则a+b的值为()a bA.9 B.8 C.7 D.6二.填空题(共6小题)11.64的平方根是,立方根是,算术平方根是.12.若30.3670=30.7160, 3.670=1.542,则3367== .13.若m的立方根,则m+3=14.|4|-=15.写出一个比4大且比5小的无理数:.161的值在两个整数a与a+1之间,则a= .三.解答题(共8小题)17.求出下列x的值(1)4(x-1)2-36=0(2)27(x+1)3=-6418.(1+.(2|119.已知一个正数的两个平方根分别为a和3a-8 (1)求a的值,并求这个正数;(2)求217a-的立方根.20.把下列各数的序号填在相应的大括号内:①-17;②π;③8||;5--④31;-⑤1;36⑥-0.92;⑦23;-+⑧-;⑨1.2020020002;正实数{ }负有理数{ }无理数{ }从以上9个数中选取2个有理数,2个无理数,用“+、-、×、÷”中的3种不同的运算符号将选出的4个数进行运算(可以用括号),使得计算结果为正整数,列出式子并计算.22.已知2a-1的平方根是±3,已知2a-1的平方根是±3,3a+b-9的立方根是2,c的整数部分,求a+b+c的平方根.23.如图,面积为30的长方形OABC 的边OA 在数轴上,O 为原点,OC=5,将长方形OABC 沿数轴水平移动,O,A,B,C 移动后的对应点分别记为1111,,,,O A B C 移动后的长方形1111O A B C 与原长方形OABC 重叠部分的面积记为S . (1)当S 恰好等于。

人教版第六章 实数单元达标专项训练学能测试试卷

人教版第六章 实数单元达标专项训练学能测试试卷

人教版第六章 实数单元达标专项训练学能测试试卷一、选择题1.对一组数(x,y)的一次操作变换记为P 1(x,y),定义其变换法则如下:P 1(x,y)=(x+y,x-y),且规定P n (x,y)=P 1(P n-1(x,y))(n 为大于1的整数),如:P 1(1,2)=(3,-1),P 2(1,2)= P 1(P 1(1,2))= P 1(3,-1)=(2,4),P 3(1,2)= P 1(P 2(1,2))= P 1(2,4)=(6,-2),则P 2017(1,-1)=( ).A .(0,21008)B .(0,-21008)C .(0,-21009)D .(0,21009)2.下列结论正确的是( )A .无限小数都是无理数B .无理数都是无限小数C .带根号的数都是无理数D .实数包括正实数、负实数3.将不大于实数a 的最大整数记为[]a ,则33⎡⎤-=⎣⎦( )A .3-B .2-C .1-D .0 4.下列选项中的计算,不正确的是( )A .42=±B .382-=-C .93±=±D .164= 5.有理数a ,b 在数轴上对应的位置如图所示,则下列结论成立的是( )A .a+b> 0B .a -b> 0C .ab>0D .0a b> 6.下列说法正确的是( )A .14是0.5的平方根 B .正数有两个平方根,且这两个平方根之和等于0 C .27的平方根是7D .负数有一个平方根 7.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( )A .1或﹣1B .-5或5C .11或7D .-11或﹣7 8.观察下列各等式:231-+=-5-6+7+8=4-10-l1-12+13+14+15=9-17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是( )A .-130B .-131C .-132D .-1339.设n 为正整数,且n 65n+1,则n 的值为( )A .5B .6C .7D .8 10.已知一个正数的两个平方根分别是3a +1和a +11,这个数的立方根为( )A .4B .3C .2D .0 二、填空题11.一个数的平方为16,这个数是 .12.数轴上表示1、2的点分别为A 、B ,点A 是BC 的中点,则点C 所表示的数是____.13.m 的平方根是n +1和n ﹣5;那么m +n =_____.14.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是__. 15.49的平方根是________,算术平方根是______,-8的立方根是_____. 16.为了求2310012222+++++的值,令2310012222S =+++++,则234101222222S =+++++,因此101221S S -=-,所以10121S =-,即231001*********+++++=-,仿照以下推理计算23202013333+++++的值是____________.17.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.18.已知a 、b 为两个连续的整数,且a 19b ,则a +b =_____.19.已知2(21)10a b ++-=,则22004a b +=________.20.0.050.55507.071≈≈≈≈,按此规500_____________三、解答题21.观察下列各式:(x -1)(x+1)=x 2-1(x -1)(x 2+x+1)=x 3-1(x -1)(x 3+x 2+x+1)=x 4-1……(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=__________________.(2)你能否由此归纳出一般性规律(x -1)(x n +x n -1+x n -2+…+x+1)=____________. (3)根据以上规律求1+3+32+…+349+350的结果.22.观察下列计算过程,猜想立方根.13=1 23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为,又由203<19000<303,猜想19683的立方根十位数为,验证得19683的立方根是(2)请你根据(1)中小明的方法,猜想 ; .请选择其中一个立方根写出猜想、验证过程。

人教版七年级下册数学:第六章《实数》达标检测卷(含答案)

人教版七年级下册数学:第六章《实数》达标检测卷(含答案)

人教版七年级下册数学达标检测卷 【检测内容:第六章 实数 满分:120分】一、选择题(每小题3分,共30分)1. 数4的算术平方根是( )A .2B .-2C .±2D .22. 下列各数中,属于无理数的是( )A .13B .1.414C .2D .4 3. 面积为4的正方形的边长是( )A .4的平方根B .4的算术平方根C .4开平方的结果D .4的立方根 4. 在实数|-3.14|,-3,-3,π中,最小的数是( )A .-3B .-3C .|-3.14|D .π5. 如图,A ,B ,C ,D 是数轴上的四个点,其中最适合表示无理数π的是( )A.点AB.点BC.点CD.点D6. 23(1)-的立方根是( )A .-1B .0C .1D .±17. 实数10( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间8. 下列计算正确的是( )A 2(3)- 3B 35-35C 36 6D .0.360.69. 若8x m y 与6x 3y n 的和是单项式,则(m +n )3的平方根为( )A.±8B.8C.±4D.410. 已知x 是整数,当|x 30取最小值时,x 的值是( )A .5B .6C .7D .8二、填空题(每小题3分,共24分)11. .(填“>”“<”或“=”)12. 0.50.5.(填“>”“=”或“<”)13. 1的值在两个整数a与a+1之间,则a=.14. 自由落体的公式为h=12gt2(g为重力加速度,g≈9.8 m/s2).若物体下落的高度h为78.4 m,则下落的时间t是s.15. 观察下列各式:;=;…,请用你发现的规律写出第8个式子.16. 若实数a+b的平方根是±4,实数13a的立方根是-2,则16a+b的平方根为.17. 一般地,如果x4=a(a≥0),则称x为a的四次方根.一个正数a的四次方根有两个,它们互为相反数,.10,则m=.18. 对于两个不相等的实数a,b,定义一种新的运算:a*b(a+b>0),如3*2那么15*(6*3)=.三、解答题(共66分)19. (8分)计算:(-2)2+-1|20. (8分)已知实数2a-3的平方根是±5,求2a-b的平方根.21. (9分)如图,一只蚂蚁从点A沿数轴向右爬2个单位长度到点B,点A,设点B表示的数为m.(1)求m 的值;(2)求|m -1|+|m +2022|的值.22. (9分)有一个长、宽之比为5∶2的长方形小路,其面积为20 m 2.(1)求这个长方形小路的长和宽;(2)用10块大小相同的正方形地板砖刚好把这个小路铺满,求这种地板砖的边长.(结果保留根号)23. (10分)已知M =43n m -+m +3的算术平方根,N =2432m n n -+-n -2的立方根,试求M -N 的值.24. (10分)阅读下面的文字,2是无理数,而无理数是无限不循环小数,2的小数部分我们不可能全部写出来.而2<2,2-12的小数部分.请解答下列问题:29的整数部分是 ,小数部分是 ;(2)10a 15的整数部分为b ,求a +b 10.25. (12分)如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162 cm2.(1)求正方形纸板的边长;(2)若将该正方形纸板进行裁剪,然后拼成一个体积为343 cm3的正方体,求剩余纸板的面积.参考答案1. A2. C3. B4. B5. D6. C7. C8. D9. A 10. A11. <12. >13. 514. 415.1810=11016. ±617. ±1018.2719. 解:原式=41-3.20. 解:∵2a-3的平方根是±3,∴2a-3=9,则a=6.5,∴2b+3=25,则b=11,∴2a-b =1,∴2a-b的平方根是±1.21. 解:(1)m=2.(2)|m-1|+|m+2022|=|2-1|+|2+2022|=|1|+|2024|-1+2024=2023.22. 解:(1)设长方形小路的长为5x m,则宽为2x m.根据题意,得5x·2x=20,即x2=2,∴x或x=-舍去). 答:长方形小路的长为m,宽为m.(2)(m).23. 解:由已知得n-4=2,2m-4n+3=3,解得m=12,n=6,∴M N,∴M-N.24. 解:(1)5 5(2)∴∴a=3.<<∴∴b=3,∴a+b-3+30.25. 解:(1)根据题意,=18(cm),即正方形纸板的边长为18 cm.(2)根据题意,拼成的正方体的边长为=7(cm),则拼成正方体需要纸板的面积为7×7×6=294(cm2),剩余纸板的面积为162×2-294=30(cm2).。

【3套打包】郑州市人教版初中数学七年级下册第六章《实数》单元综合练习题(解析版)

人教版七年级数学下册第六章实数单元测试题(含分析)一、 (共 10 小,每小 3 分,共 30分 )1.(-2) 2的算平方根是 ()A.-2B.±2 C . 2 D.2.察一数据,找律:0、、、、、⋯,那么第10 个数据是 ()A .B .C . 7 D.3.以下法正确的选项是 ()A . 0.25 是 0.5 的一个平方根B.正数有两个平方根,且两个平方根之和等于0C. 72的平方根是7D.数有一个平方根4.假如一个正数的平方根2a+1 和3a- 11,a= ()A .±1B .1C .2 D.95.以下法正确的选项是()A .-1 的倒数是1B.-1 的相反数是- 1C. 1 的立方根是±1D. 1 的算平方根是16.的平方根 ()A.±8B.±4C.±2 D. 47.在以下数:、、、、- 1.010 010 001 ⋯中,无理数有 ()2A.1个B.2个C.3个D. 4个8.介于以下哪两个整数之()A.0与1B.1与2C.2与3 D. 3 与 49.数-1的相反数是()A.-1-B.+1C. 1-D.-110.计算 |2-|+ | - 3|的结果为 ()A . 1B.-1C. 5-2 D.2 -5二、填空题 (共 8 小题,每题 3 分,共 24 分)11.当 m≤ ________时,存心义.12.当的值为最小值时,a=________.13.若a2= 9,则 a 3= ________.14.若 x2- 49= 0,则 x=________.15.一个立方体的体积是9,则它的棱长是________.16.已知第一个正方体纸盒的棱长为 6 cm,第二个正方体纸盒的体积比第一个纸盒的体积大127 cm3,则第二个纸盒的棱长是________ cm.17.的整数部分是 ________.18.数轴上点A,点 B 分别表示实数,- 2,则A、 B 两点间的距离为________.三、解答题(共8 小题,共66 分)19.( 8 分)计算:(1)|-|+ |-1|-|3-|;(2)-++.20. ( 8 分)求知足以下等式的x 的值:(1)25 x2= 36;(2)( x- 1)2= 4.21. (6 分)我们知道:是一个无理数,它是无穷不循环小数,且1<< 2,则我们把1叫做的整数部分,-1叫做的小数部分.假如的整数部分为a,小数部分为b,求代数式a+b 的值.22. ( 6 分)已知一个正数的平方根分别是3x+2 和 4x- 9,求这个数.23.(8分)已知:|2|(c-5)2= 0,求:+-的值.a-++24. ( 8 分)已知M=是m+3的算术平方根,N=是n-2的立方根,试求 M-N 的值.25.( 10 分)请依据如下图的对话内容回答以下问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.26.( 12分)我们来看下边的两个例子: () 2= 9×4, (× )2=()2×( )2= 9×4,和×都是 9×4 的算术平方根,而9×4 的算术平方根只有一个,因此=× .()2= 5×7, ( × )2= ( )2×(7)2= 5×7,和×都是 5×7 的算术平方根,而 5×7 的算术平方根只有一个,因此__________. (填空 )(1)猜想:一般地,当 a≥0,b≥0时,与× 之间的大小关系是如何的?(2)运用以上结论,计算:的值.答案分析1.【答案】 C【分析】 (- 2)2= 4.4 的算平方根是 2.2.【答案】B【分析】0=,=,=,=,=通数据找律可知,第,=n 个数,⋯,那么第10 个数据:=.3.【答案】B【分析】 A.0.5 是 0.25 的一个平方根,故 A ;C. 72= 49,49 的平方根是±7,故 C ;D.数没有平方根,故 D .4.【答案】 C【分析】依据意得:2a+ 1+ 3a-11= 0,移归并得: 5a= 10,解得: a= 2.5.【答案】 D【分析】 A. - 1 的倒数是- 1,故;B.- 1 的相反数是1,故;C. 1 的立方根是1,故;D. 1 的算平方根是1,正确6.【答案】 C【分析】因= 4,又因 ( ±2)2= 4,因此的平方根是±2.7.【答案】 C【分析】、、-1.010 010 001⋯是无理数.28.【答案】 C【分析】因4< 5< 9,因此 2<<3.9.【答案】 C【分析】数- 1 的相反数是- (-1)=1-.10.【答案】 C【分析】原式=2-+3-=5-2.11.【答案】 3【分析】要使根式存心义,则3- m≥0,解得 m≤3.12.【答案】2【分析】由于≥0,因此的最小值为0,3a -6= 0,解得:a= 2.13.【答案】±27【分析】由于a2= 9,因此 a =±3,因此a3=±27.14.【答案】±7【分析】∵ x2- 49= 0,∴ x2= 49,∴ x=±7.15.【答案】【分析】建立方体的棱长为a,则 a3=9,因此 a =.16.【答案】 7【分析】依据题意得:=7,则第二个纸盒的棱长是7 cm.17.【答案】 4【分析】由于16< 17< 25,因此 4<<5,因此的整数部分是 4.18.【答案】 2【分析】-(-2)=2.19.【答案】解: (1)原式=-+-1-3+=2-4;(2)原式=- (- 2)+ 5+ 2= 2+ 5+2= 9.【分析】(1) 依据绝对值的意义去绝对值获得原式=-+-1-3+,而后归并即可;(2)先进行开方运算获得原式=- (- 2)+ 5+2,而后进行加法运算.20.【答案】解: (1)把系数化为1,得 x2=,开平方得,x=±6;5(2)开平方得, x-1=±2,x=±2+ 1,即 x= 3 或- 1. 【分析】 (1)先把系数化为1,再利用平方根定义解答;(2)把 x-1 看作整体,再利用平方根定义解答.21.【答案】解:由于27< 50< 64,因此3<< 4,因此的整数部分a= 3,小数部分 b=- 3.因此 a+ b= 3+- 3=.【分析】先依照立方根的性质估量出的大小,而后可求得a, b 的值,最后辈入计算即可.22.【答案】解:一个正数的平方根分别是3x+ 2 和 4x- 9,则 3x+ 2+ 4x- 9= 0,解得: x= 1,故 3x+ 2= 5,即该数为 25.【分析】利用平方根的定义直接得出x 的值,从而求出这个数.23.【答案】解:由于|a- 2|++ (c- 5)2= 0,因此a= 2, b=- 8, c= 5.因此原式=+-=- 2+ 4-5=- 3.【分析】第一依照非负数的性质求得a、 b、c 的值,而后辈入求解即可.24.【答案】解:由于M=是 m+ 3 的算术平方根,N=是 n- 2 的立方根,因此可得:m- 4= 2,2m- 4n+3= 3,解得: m= 6, n= 3,把 m= 6, n= 3 代入 m+ 3= 9, n- 2=1,因此可得M= 3,N= 1,把 M=3, N=1 代入 M-N=3- 1=2.【分析】依据算术平方根及立方根的定义,求出M、 N 的值,代入可得出M- N 的值.325.【答案】解: (1)设魔方的棱长为xcm,可得: x = 216,解得: x= 6.答:该魔方的棱长 6 cm.(2)设该长方体纸盒的长为 ycm,6y2= 600, y2= 100, y=10.答:该长方体纸盒的长为10 cm.【分析】 (1)依据立方根,即可解答;(2)依据平方根,即可解答.26.【答案】解:依据题人教版七年级数学下册第六章实数能力检测卷一.选择题(共10 小题)1.16 的平方根是()A.4B. -4C. 16 或 -16D.4 或 -42.以下各等式上当算正确的选项是()A.16 =±4B.327 =-9C.( 3)2 =-3D.9=3243.若方程(x4)2=19的两根a和b,且a>b,以下中正确的选项是()A. a 是 19 的算平方根B. b 是 19 的平方根C. a-4 是 19 的算平方根D. b+4 是 19 的平方根4.出以下法:① -2 是 4 的平方根;②9 的算平方根是9;③327 =-3;④2的平方根是2.此中正确的法有()A.0 个B.1 个C.2 个D.3 个5.假如 -b 是 a 的立方根,以下正确的选项是()A.b3 =a B. -b= a3C. b= a3D.b3 =a6.已知一个正数的两个平方根分3a-1 和 -5-a,个正数的立方根是()A. -2B. 2C. 3D.47.若一个正方形的面7,它的周介于两个相整数之,两个相整数是()A.9,10B. 10,11C. 11,12D.12,138.如,在数上表示无理数8 的点落在()A.段 AB 上B.段 BC上C.段 CD上D.段 DE 上9.已知 a、 b 均正整数,且a>, b>, a+b 的最小 ()A. 6B. 7C. 8D. 910.在数2,,,,, 0.1010010001⋯(相两个 1, 3.1415926 ,π中一次多 1 个0)中,无理数有 ()A.2 个B.3 个C.4 个D.5 个二.填空(共 6 小)11. 4 的平方根是;16的立方根是.12.非零整数x、 y 足x3y =0,写出一切合条件的x、 y 的:.13.一个正方体,它的体积是棱长为2cm 的正方体的体积的8 倍,则这个正方体的棱长是cm.14. 5x+9 的立方根是4,则15.写出一个比7 大且比2x+3 的平方根是11 小的无理数..16.数轴上从左到右挨次有A、B、C 三点表示的数分别为a、b、10,此中 b 为整数,且满足|a+3|+|b-2|=b-2,则b-a=.三.解答题(共7 小题)17.求出以下x 的值.(1)16x2-49=0;3(2)24(x-1) +3=0.18.计算3( 1)3327( 2)2|13|19.已知 |a|=5,b 2=4,c3=-8.(1)若 a<b,求 a+b 的值;(2)若 abc>0,求 a-3b-2c 的值.20.已知 a+1 的算术平方根是1,-27 的立方根是b-12,c-3 的平方根是± 2,求 a+b+c 的平方根.21.阅读资料:我们定义:假如两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对” .即:假如 a-b=a÷b,那么 a 与 b 就叫做“差商等数对”,记为 (a,b).比如:4-2=4 ÷ 2;9 3 =9÷3;221( 1)=1÷( 1);22则称数对 (4,2),9,3,11 是“差商等数对”.依据上述资料,解决以下问题:2,2(1)以下数对中,“差商等数对”是______(填序号);① (-8.1,-9),②1,1, ③(222,2)22(2)假如 (x,4)是“差商等数对”,恳求出x 的值;22.关于实数 a,我们规定:用符号[a ]表示不大于a的最大整数,称[a]为 a 的根整数,比如:[ 9]=3,[ 10]=3.(1)模仿以上方法计算:[ 4]=;[37]= .(2)若[x]=1,写出知足题意的x 的整数值人教版七年级下册第六章实数单元同步测试一、选择题1、以下说法正确的选项是()A.负数没有立方根B.一个正数的立方根有两个,它们互为相反数C.假如一个数有立方根,则它必有平方根D.不为 0 的任何数的立方根,都与这个数自己的符号同号2、以下语句中正确的选项是()A.-9 的平方根是 -3B.9 的平方根是 3C.9 的算术平方根是3D.9 的算术平方根是 33、以下说法中正确的选项是()A、若 a 为实数,则a0 B 、若 a 为实数,则 a 的倒数为1a C、若 x,y 为实数,且x=y ,则x y D 、若 a 为实数,则a204、估量28 7 的值在A. 7 和8之间B. 6 和 7 之间C. 3 和4之间D. 2 和 3 之间5、以下各组数中,不可以作为一个三角形的三边长的是()A 、 1、 1000、 1000B 、 2、 3、5C 、 32,42 ,52D 、 3 8 , 3 27 , 3 646、以下说法中,正确的个数是( )(1)- 64 的立方根是- 4;( 2)49 的算术平方根是7 ;(3)1的立方根为1;(4)1是27341的平方根。

人教版七年级数学下册第六章 实数同步练习(包含答案)

第六章 实数一、单选题1.4的算术平方根是( )A .±4B .4C .±2D .22.下列说法正确的是( )A .﹣5是﹣25的平方根B .3是(﹣3)2的算术平方根C .(﹣2)2的平方根是2D .8的平方根是±4 3.下列计算正确的是( )A B =±2 C 3=- D .6=± 4.若m <0,则m 的立方根是( )A .√m 3B .−√m 3C .±√m 3D .√−m 35.若a 是(−4)2的平方根,b 的一个平方根是2,则a +b 的立方根为( )A .0B .2C .0或2D .0或−2 6.下列四个实数中,是无理数的是( )A .0B .3-C .17D 7.如图,数轴上A ,B 两点的位置如图所示,则下列说法中,能判断原点一定位于A 、B 之间的是( )A .0a b +>B .0ab <C .||a b >D .a 、b 互为倒数 8.下列无理数中,与4最接近的是( )A B C D 9.按一定规律排列的一列数依次是23、1、87、119、1411、1713…按此规律,这列数中第100个数是( )A .299199B .299201C .301201D .30320310.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则7×6!的值为( )A .42!B .7!C .6!D .6×7! 二、填空题11.已知一个正数的两个平方根分别为26m -和3m +,则()1820m -的值为__________.124=,则数a 的平方根是__________.13.比较大小:4“>”或“<”填空).14.已知4的整数部分为a ,小数部分为b ,那么a b =_________.15.对于任意实数a , b ,定义一种新运算“⊕”,使得2a b ab a ⊕=-,例如22525=26⊕=⨯-,那么(1)3-⊕=___________________.三、解答题16.求下列各式中的x :(1)2x 2=8(2)(x ﹣1)3﹣27=017.已知4a 2b +的算术平方根,a 1a -18.的小数部分.的整数部分是2的小数﹣2.问题:(1(2)已知x+y ,其中x 是一个整数,且0<y <1,求出3x+y )的值 19.探索与应用.先填写下表,通过观察后再回答问题:(1)表格中x = ;y= ;(2)从表格中探究a①≈3.16≈ ;① 1.8=180,则a = ;(3) 2.289≈0.2289=,则z=答案1.D2.B3.A4.A5.C6.D7.B8.C9.B10.B11.112.8±13.>14.315.-416.(1)x=±2;(2)x=417.218.(12;(2)33 19.(1) 0.1,10;(2) 31.62,32400;(3) 0.012。

人教版七年级数学下册第六章 实数同步练习(含答案)

第六章 实数一、单选题1.16的算术平方根是( )A .4B .4±C .8±D .82.4的平方根是( )A .2B .±2CD .3.已知正数m 的平方根是3x ﹣2和5x +6,则m 的值是( )A .﹣12 B .72 C .494 D .﹣724.若a 2=162=-, 则a+b 的值是( )A .12B .12或-4C .12或4D .-12或-4 5.下列说法正确的是( )A .25的平方根是5B .﹣22的算术平方根是2C .0.8的立方根是0.2D .56 是2536的一个平方根6.下列说法中,正确的是( )A .带根号的数都是无理数B .不带根号的数一定是有理数C .无限小数都是无理数D .无理数是无限不循环小数7.下列各组数中互为相反数的是( )A .﹣3与13 B .﹣(﹣2)与﹣|﹣2| C .5D .﹣28.实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.ac>0B.|b|<|c|C.a>﹣d D.b+d>0 9.下列各数中,介于2和3之间的数是()ABCD10.如果规定符号“⊗”的意义为a⊗b=aba b+,则2⊗(﹣3)的值是()A.6B.﹣6C.65D.65-二、填空题11_______.120.6941.442_____13.已知8的整数部分是a,小数部分是b,则a b-=____.14.如果记221xyx=+=f(x),并且f(1)表示当x=1时y的值,即f(1)=2211211=+;f(12)表示当x=12时y的值,即f(12)=221()12151()2=+;……那么f(1)+f(2)+f(12)+f(3)+f(13)+…+f(n)+f(1n)=___________(结果用含n的代数式表示).三、解答题15.求下列各式中 x 的值.(1)24250x -=;(2)3(2)8x -=.16.一个正数m 的平方根是31x -与3x -m 的值.17.已知2a 1-,a 4b -的立方根是4-.()1求a 和b 的值;()2求2a b +的平方根.18.定义:对于一个数x ,我们把[x ]称作x 的相伴数;若x ≥0,则[x ]=x ﹣1;若x <0,则[x ]=x +1.例:[0.5]=﹣0.5.(1)求[32]、[﹣1]的值; (2)当a >0,b <0时,有[a ]=[b ],试求代数式(b ﹣a )3﹣3a +3b 的值; (3)解方程:[x ]+[x +2]=1.19.观察下列等式:第1个等式:111111323a ⎛⎫==⨯- ⎪⨯⎝⎭第2个等式:2111135235a ⎛⎫==⨯- ⎪⨯⎝⎭ 第3个等式:3111157257a ⎛⎫==⨯- ⎪⨯⎝⎭第4个等式:4111179279a ⎛⎫==⨯- ⎪⨯⎝⎭L L请回答下列问题:(1)按以下规律列出第5个等式:5a =______________=________________; (2)用含n 的代数式表示第n 个等式:n a _______________=_______________(n 为正整数)(3)求123100a a a a ++++L 的值.(4)计算:1111824489800++++L答案1.A2.B3.C4.C5.D6.D7.B8.D9.A10.A11.3 12.6.9413.12-;14.12 n-15.(1)52x=±;(2)x=416.-1217.(1)a的值为4,b的值为17(2)5±18.(1)12,0;(2)-14;(3)12x=-或12.19.(1)1911⨯,111()2911⨯-;(2)1(21)(21)n n-+,111()22121n n⨯--+;(3)100201;(4)49 200。

人教版第六章 实数单元达标检测试题

人教版第六章 实数单元达标检测试题一、选择题1.下列说法错误的是( )A .﹣4是16的平方根B 2C .116的平方根是14D 5 2.下列命题中,真命题是( )A .实数包括正有理数、0和无理数B .有理数就是有限小数C .无限小数就是无理数D .无论是无理数还是有理数都是实数3.在有理数中,一个数的立方等于这个数本身,这种数的个数为( )A .1B .2C .3D .44.2,估计它的值( )A .小于1B .大于1C .等于1D .小于05.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式(代数式中a 换成b ,b 换成a ,代数式保持不变).下列三个代数式:①2()a b -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( ) A .①② B .①③ C .②③ D .①②③6.下列各式正确的是( )A 4=±B 143=C 4=-D 4=7.实数 )A 3<<B .3<C 3<<D 3<<8.1是a 的相反数,那么a 的值是( )A .1B .1C .D 9.某数的立方根是它本身,这样的数有( ) A .1 个 B .2 个 C .3 个 D .4 个10.已知m 是整数,当|m 取最小值时,m 的值为( ) A .5 B .6 C .7D .8 二、填空题11.观察下面两行数:2,4,8,16,32,64…①5,7,11,19,35,67…②根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果).12.若x +1是125的立方根,则x 的平方根是_________.13.若实数a 、b 满足240a b ++-=,则a b=_____. 14.写出一个3到4之间的无理数____.15.m 的平方根是n +1和n ﹣5;那么m +n =_____.16.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.17.对于任意有理数a ,b ,定义新运算:a ⊗b =a 2﹣2b +1,则2⊗(﹣6)=____.18.用“*”表示一种新运算:对于任意正实数a ,b ,都有*1a b b =+.例如89914*=+=,那么*(*16)m m =__________. 19.如图,数轴上的点A 能与实数15,3,,22---对应的是_____________20.11133+=112344+=113455+=,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.三、解答题21.阅读型综合题对于实数x y ,我们定义一种新运算(),L x y ax by =+(其中a b ,均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x y ,叫做线性数的一个数对.若实数 x y ,都取正整数,我们称这样的线性数为正格线性数,这时的x y ,叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L = ,31,22L ⎛⎫=⎪⎝⎭ ; (2)已知(),3L x y x by =+,31,222L ⎛⎫= ⎪⎝⎭.若正格线性数(),18L x kx =,(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由.22.先阅读然后解答提出的问题:设a 、b 是有理数,且满足2322+=-a b b a 的值.解:由题意得(3)(20-++=a b ,因为a 、b 都是有理数,所以a ﹣3,b+2也是有理数,2是无理数,所以a-3=0,b+2=0,所以a=3,b=﹣2, 所以3(2)8=-=-a b .问题:设x 、y 都是有理数,且满足225y 1035x y -+=+,求x+y 的值.23.请回答下列问题:(1)17介于连续的两个整数a 和b 之间,且a b <,那么a = ,b = ; (2)x 是172+的小数部分,y 是171-的整数部分,求x = ,y = ; (3)求()17yx -的平方根. 24.我们在学习“实数”时画了这样一个图,即“以数轴上的单位长为‘1’的线段作一个正方形,然后以原点O 为圆心,正方形的对角线长为半径画弧交数轴于点A”,请根据图形回答下列问题:(1)线段OA 的长度是多少?(要求写出求解过程)(2)这个图形的目的是为了说明什么?(3)这种研究和解决问题的方式体现了 的数学思想方法.(将下列符合的选项序号填在横线上)A .数形结合B .代入C .换元D .归纳25.(1)如图,分别把两个边长为1cm 的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为_______cm ;(2)若一个圆的面积与一个正方形的面积都是22cm π,设圆的周长为C 圆,正方形的周长为C 正,则C 圆_____C 正(填“=”或“<”或“>”号);(3)如图,若正方形的面积为2400cm ,李明同学想沿这块正方形边的方向裁出一块面积为2300cm 的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?26.你会求(a ﹣1)(a 2012+a 2011+a 2010+…+a 2+a+1)的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:()()2111a a a-+=-,()()23111a a a a-++=-,()()324111a a a a a-+++=-,(1)由上面的规律我们可以大胆猜想,得到(a﹣1)(a2014+a2013+a2012+…+a2+a+1)=利用上面的结论,求:(2)22014+22013+22012+…+22+2+1的值是.(3)求52014+52013+52012+…+52+5+1的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】分别根据平方根的定义,算术平方根的定义判断即可得出正确选项.【详解】A.﹣4是16的平方根,说法正确;B.2,说法正确;C.116的平方根是±14,故原说法错误;D.,说法正确.故选:C.【点睛】此题考查了平方根以及算术平方根的定义,熟记相关定义是解题的关键.2.D解析:D【分析】直接利用实数以及有理数、无理数的定义分析得出答案.【详解】A、实数包括有理数和无理数,故此命题是假命题;B、有理数就是有限小数或无限循环小数,故此命题是假命题;C、无限不循环小数就是无理数,故此命题是假命题;D、无论是无理数还是有理数都是实数,是真命题.故选:D.【点睛】此题主要考查了命题与定理,正确掌握相关定义是解题关键.3.C解析:C【分析】设这个数为x, 根据题意列出关于x 的方程,求出方程的解即可.【详解】解:设这个数为x ,根据题意得:3x x =,解得:x=0或-1或1,共3个;故选:C .【点睛】此题考查了有理数的立方,熟练掌握运算法则是解本题的关键.4.A解析:A【分析】首先根据479<<可以得出23<<2的范围即可. 【详解】∵23<<,∴22232-<<-,∴021<<,2-的值大于0,小于1.所以答案为A 选项.【点睛】本题主要考查了无理数的估算,熟练找出无理数的整数范围是解题关键.5.A解析:A【分析】在正确理解完全对称式的基础上,逐一进行判断,即可得出结论.【详解】解:根据信息中的内容知,只要任意两个字母交换,代数式不变,就是完全对称式,则:①(a-b )2=(b-a )2;是完全对对称式.故此选项正确.②将代数式ab+bc+ca 中的任意两个字母交换,代数式不变,故ab+bc+ca 是完全对称式, ab+bc+ca 中ab 对调后ba+ac+cb ,bc 对调后ac+cb+ba ,ac 对调后cb+ba+ac ,都与原式一样,故此选项正确;③a 2b+b 2c+c 2a 若只ab 对调后b 2a+a 2c+c 2b 与原式不同,只在特殊情况下(ab 相同时)才会与原式的值一样∴将a 与b 交换,a 2b+b 2c+c 2a 变为ab 2+a 2c+bc 2.故a 2b+b 2c+c 2a 不是完全对称式.故此选项错误,所以①②是完全对称式,③不是故选择:A .【点睛】本题是信息题,考查了学生读题做题的能力.正确理解所给信息是解题的关键.6.D解析:D【分析】根据算术平方根的定义逐一判断即可得解.【详解】4=,故原选项错误;=,故原选项错误;D. 4=,计算正确,故此选项正确.故选D.【点睛】此题主要考查了算术平方根,解题的关键是掌握算术平方根的定义.7.D解析:D【分析】先把3化成二次根式和三次根式的形式,再把3做比较即可得到答案.【详解】解:∵3==∴3=<3=>3<<,故D 为答案.【点睛】本题主要考查了实数的大小比较,能熟练化简二次根式和三次根式是解题的关键,当二次根式和三次根式无法再化简时,可把整数化成二次根式或者三次根式的形式再做比较.8.A解析:A【详解】只有符号不同的两个数,我们称这两个数互为相反数,则1)1=-=-a 考点:相反数的定义9.C解析:C【分析】根据立方根的定义,可以先设出这个数,然后列等式进行求解.【详解】设这个说为a,=,a∴3a=a,∴a=0或±1,故选C.【点睛】本题考查立方根,熟练掌握立方根的定义是解题关键.10.B解析:B【分析】根据绝对值是非负数,所以不考虑m为整数,则m取最小值是0,又0的绝对值为0,令0m=,得出m=m的整数可得:m =6.【详解】解:因为m取最小值,∴=,m∴=,m解得:m=240m=,∴<<,且m更接近6,m67∴当6m=时,m有最小值.故选:B.【点睛】本题考查绝对值的非负性,以及估算二次根式的大小,理解并熟练掌握绝对值的非负性是本题解题关键;在估算二次根式大小的时候,先算出二次根式的平方,再看这个平方在哪两个平方数之间,就相应的得出二次根式在哪两个整数之间,即可估算出二次根式的大小.二、填空题11.515【分析】由已知条件可得:①中各数都符合2n的形式,②中各数比①中对应数字大3,按此规律即可求得①、②中第8个数的值,再求和即可.【详解】根据题意可知,①中第8个数为28=256;②第8解析:515【分析】由已知条件可得:①中各数都符合2n的形式,②中各数比①中对应数字大3,按此规律即可求得①、②中第8个数的值,再求和即可.【详解】根据题意可知,①中第8个数为28=256;②第8个数为28+3=259,故它们的和为256+259=515,故答案为:515.【点睛】考查了要求学生通过观察,分析、归纳发现其中的规律,解题关键是找出①②中各数间的规律.12.±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x+1=,解得:x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正解析:±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.13.﹣【解析】根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则=﹣.故答案是﹣.解析:﹣12【解析】根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则ab=﹣12.故答案是﹣12.14.π(答案不唯一).【解析】考点:估算无理数的大小.分析:按要求找到3到4之间的无理数须使被开方数大于9小于16即可求解.解:3到4之间的无理数π.答案不唯一.解析:π(答案不唯一).【解析】考点:估算无理数的大小.分析:按要求找到3到4之间的无理数须使被开方数大于9小于16即可求解.解:3到4之间的无理数π.答案不唯一.15.11【分析】直接利用平方根的定义得出n的值,进而求出m的值,即可得出答案.【详解】解:由题意得,n+1+n﹣5=0,解得n=2,∴m=(2+1)2=9,∴m+n=9+2=11.故答解析:11【分析】直接利用平方根的定义得出n的值,进而求出m的值,即可得出答案.【详解】解:由题意得,n+1+n﹣5=0,解得n=2,∴m=(2+1)2=9,∴m+n=9+2=11.故答案为11.【点睛】此题主要考查了平方根,正确利用平方根的定义得出n的值是解题关键.16.5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.解析:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.【分析】根据公式代入计算即可得到答案.【详解】∵a⊗b=a2﹣2b+1,∴2⊗(﹣6)=22﹣2×(﹣6)+1=4+12+1=17.故答案为:17.【点睛】此题考查新定义计算公式,正解析:【分析】根据公式代入计算即可得到答案.【详解】∵a⊗b=a2﹣2b+1,∴2⊗(﹣6)=22﹣2×(﹣6)+1=4+12+1=17.故答案为:17.【点睛】此题考查新定义计算公式,正确理解公式并正确计算是解题的关键.18.+1【分析】首先正确理解题目要求,然后根据给出的例子进行计算即可.【详解】m*(m*16)=m*(+1)=m*5=+1.故答案为:+1.【点睛】此题考查实数的运算,解题的关键是要【分析】首先正确理解题目要求,然后根据给出的例子进行计算即可.【详解】m*(m*16)=m*)=m*5=..【点睛】此题考查实数的运算,解题的关键是要掌握运算法则.19.【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A点位置附近的点和实数,即可得到答案.【详解】解:∵数轴的正方向向右,A点在原点的左边,∴A为负数,从数轴可以看出,A点在和之间,解析:【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A点位置附近的点和实数1-.2【详解】解:∵数轴的正方向向右,A点在原点的左边,∴A为负数,-之间,从数轴可以看出,A点在2-和1<=-,故不是答案;2刚好在2-和1-之间,故是答案;1->-,故不是答案;12是正数,故不是答案;故答案为.【点睛】本题主要考查了数轴的基本概念、实数的比较大小,要掌握能从数轴上已标出的点得到有用的信息,学会实数的比较大小是解题的关键.20.【分析】观察分析可得,,,则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式,找(1)n n =+≥ 【分析】=(2=+(3=+n(n ≥1)的等式表示出来是(1)n n =+≥ 【详解】由分析可知,发现的规律用含自然数n(n ≥1)的等式表示出来是(1)n n =+≥(1)n n =+≥ 【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n 表示的等式即可.三、解答题21.(1)5,3;(2)有正格数对,正格数对为()26L ,【分析】(1)根据定义,直接代入求解即可;(2)将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+求出b 的值,再将(),18L x kx =代入(),3L x y x by =+,表示出kx ,再根据题干分析即可.【详解】解:(1)∵(),3L x y x y =+∴()2,1L =5,31,22L ⎛⎫= ⎪⎝⎭3 故答案为:5,3;(2)有正格数对. 将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+, 得出,1111323232L b ⎛⎫=⨯+⨯= ⎪⎝⎭,, 解得,2b =, ∴()32L x y x y =+,,则()3218L x kx x kx =+=, ∴1832x kx -=∵x ,kx 为正整数且k 为整数 ∴329k +=,3k =,2x =,∴正格数对为:()26L ,. 【点睛】本题考查的知识点是实数的运算,理解新定义是解此题的关键.22.7或-1.【分析】根据题目中给出的方法,对所求式子进行变形,求出x 、y 的值,进而可求x+y 的值.【详解】解:∵2210x y -=+∴()22100x y --+-=,∴2210x y --=0-=0∴x=±4,y=3当x=4时,x+y=4+3=7当x=-4时,x+y=-4+3=-1∴x+y 的值是7或-1.【点睛】本题考查实数的运算,解题的关键是弄清题中给出的解答方法,然后运用类比的思想进行解答.23.(1)4;b =(2−4;3(3)±8【分析】((1)由16<17<25a ,b 的值; (2)根据(1)的结论即可确定x 与y 的值;(3)把(2)的结论代入计算即可.【详解】解:(1)∵16<17<25,∴4<5,∴a =4,b =5,故答案为:4;5;(2)∵4<5,∴6+2<7,由此整数部分为6,∴x −4,∵4<5,∴3-1<4,∴y =3;;3(3)当x ,y =3时,)y x =)3=64, ∴64的平方根为±8.【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“逐步逼近”是估算的一般方法,也是常用方法.24.;(2)数轴上的点和实数是一一对应关系;(3)A.【分析】(1)首先根据勾股定理求出线段OB 的长度,然后结合数轴的知识即可求解; (2)根据数轴上的点与实数的对应关系即可求解;(3)本题利用实数与数轴的对应关系即可解答.【详解】解:(1)OB 2=12+12=2,∴OB ,∴OA =(2)数轴上的点和实数是一一对应关系(3) 这种研究和解决问题的方式,体现的数学思想方法是数形结合.故选A.【点睛】本题主要考查了实数与数轴之间的关系,此题综合性较强,不仅要结合图形,还需要熟悉平方根的定义.也要求学生了解数形结合的数学思想.25.(1;(2)<;(3)不能裁剪出,详见解析(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm ,∴小正方形的面积为1cm 2,∴两个小正方形的面积之和为2cm 2,即所拼成的大正方形的面积为2 cm 2,cm ,(2)∵22r ππ=,∴r =∴2=2C r π=圆,设正方形的边长为a∵22a π=,∴a∴=4C a =正∴1C C ===<圆正故答案为:<;(3)解:不能裁剪出,理由如下:∵长方形纸片的长和宽之比为3:2,∴设长方形纸片的长为3x ,宽为2x ,则32300x x ⋅=,整理得:250x =,∴22(3)9950450x x ==⨯=,∵450>400,∴22(3)20x >,∴320x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.26.(1)a 2015﹣1;(2)22015﹣1;(3)2015514-.(1)根据已知算式得出规律,即可得出答案.(2)先变形,再根据规律得出答案即可.(3)先变形,再根据规律得出答案即可.【详解】(1)由上面的规律我们可以大胆猜想,(a﹣1)(a2012+a2011+a2010+…+a2+a+1)=a2015﹣1,故答案为:a2015﹣1;(2)22014+22013+22012+…+22+2+1=(2﹣1)×(22014+22013+22012+…+22+2+1)=22015﹣1,故答案为:22015﹣1;(3)52014+52013+52012+…+52+5+1=14×(5﹣1)×(52014+52013+52012+…+52+5+1)=2015514.【点睛】本题考查了实数运算的规律题,掌握算式的规律是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版第六章 实数单元达标同步练习 一、选择题 1.如图将1、2、3、6按下列方式排列.若规定(,)mn表示第m排从左向右第n

个数,则(5,4)与(15,8)表示的两数之积是( ).

A.1 B.2 C.3 D.6

2.对于每个正整数n,设()fn表示(1)nn的末位数字.例如:(1)2f(12的末位数字),(2)6f(23的末位数字),(3)2f(34的末位数字),…则(1)(2)(3)(2019)ffff的值为( )

A.4040 B.4038 C.0 D.4042 3.已知x、y为实数,且34x+(y﹣3)2=0.若axy﹣3x=y,则实数a的值是( )

A.14 B.﹣14 C.74 D.﹣

7

4 4.有下列命题: ①无理数是无限不循环小数;②平方根与立方根相等的数有1和0;③过一点有且只有一条直线与这条直线平行;④邻补角是互补的角;⑤实数与数轴上的点一一对应. 其中正确的有( ) A.1个 B.2个 C.3个 D.4个

5.下列一组数2211-8,3,0,2,0.010010001...7223,,,(相邻两个1之间依次增加一个0),其中无理数的个数有( ) A.0个 B.1个 C.2个 D.3个

6.若a是16的平方根,b是64的立方根,则a+b的值是( ) A.4 B.4或0 C.6或2 D.6

7.在实数:3.14159,364,1.010010001....,4.21••,,227中,无理数有( ) A.1个 B.2个 C.3个 D.4个

8.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④17是17的平方根.其中正确的有( ) A.0个 B.1个 C.2个 D.3个

9.2的平方根为( )

A.4 B.±4 C.2 D.±2 10.下列实数中,..31-40.2π0-8647,3,,,,,无理数的个数有( ) A.1个 B.2个 C.3个 D.4个

二、填空题

11.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=.

例如:(-3)☆2= 32322 = 2. 从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a,b(a≠b)的值,并计算a☆b,那么所有运算结果中的最大值是_____. 12.观察下面两行数: 2,4,8,16,32,64…①

5,7,11,19,35,67…②

根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果). 13.若x+1是125的立方根,则x的平方根是_________.

14.若实数a、b满足240ab,则ab=_____.

15.观察下列算式: ①246816=2(28)+16=16+4=20; ②4681016=2(410)+16=40+4=44;… 根据以上规律计算:3032343616=__________ 16.若221210abc,则abc=__________. 17.49的平方根是________,算术平方根是______,-8的立方根是_____. 18.设a,b都是有理数,规定 3abab,则48964=__________. 19.若x、y分别是811的整数部分与小数部分,则2x-y的值为________.

20.如图,数轴上的点A能与实数15,3,,22对应的是_____________

三、解答题 21.读一读,式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为1001nn,这里“∑”是求和符号.例如:1+3+5+7+9+…+99,即从1开始的100以内的连续奇数的和,可表示为501(21)nn,又知13+23+33+43+53+63+

73+83+93+103可表示为1031nn.通过对以上材料的阅读,请解答下列问题.

(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为_________.

(2)1+12+13+…+110用求和符号可表示为_________.

(3)计算6211nn()=_________.(填写最后的计算结果) 22.观察下列等式:111122,1112323,1113434 ,

将以上三个等式两边分别相加得:11111111112233422334=13144

(1)猜想并写出:

1

n(n1) = .

(2)直接写出下列各式的计算结果: ①1111...12233420152016= ;

②1111...122334(1)nn= ; (3)探究并计算:1111...24466820142016. 23.阅读下列解题过程: (1)2211(54)54545254(54)(54)(5)(4);

(2)11(65)6565(65)(65); 请回答下列问题: (1)观察上面解题过程,请直接写出

1

1nn的结果为__________________.

(2)利用上面所提供的解法,请化简:

11111......122334989999100



24.观察下列等式: ①111122, ②1112323, ③1113434.

将以上三个等式两边分别相加,得 1111111113111223342233444

.

(1)请写出第④个式子

(2)猜想并写出:

1

n(n1)= .

(3)探究并计算:

111244668…1

100102.

25.阅读理解. ∵4<5<9,即2<5<3. ∴1<5﹣1<2 ∴5﹣1的整数部分为1, ∴5﹣1的小数部分为5﹣2. 解决问题:已知a是17﹣3的整数部分,b是17﹣3的小数部分. (1)求a,b的值; (2)求(﹣a)3+(b+4)2的平方根,提示:(17)2=17. 26.如图,以直角△AOC的直角顶点O为原点,以OC,OA所在直线为x轴和y轴建立平面直角坐标系,点A(0,a),C(b,0)满足280abb.

(1)点A的坐标为________;点C的坐标为________. (2)已知坐标轴上有两动点P,Q同时出发,P点从C点出发沿x轴负方向以每秒2个单位长度的速度匀速移动,Q点从O点出发沿y轴正方向以每秒1个单位长度的速度匀速移动,点P到达O点整个运动随之结束.AC的中点D的坐标是(4,3),设运动时间为t秒.问:是否存在这样的t,使得△ODP与△ODQ的面积相等?若存在,请求出t的值;若不存在,请说明理由. (3)在(2)的条件下,若∠DOC=∠DCO,点G是第二象限中一点,并且y轴平分∠GOD.点E是线段OA上一动点,连接接CE交OD于点H,当点E在线段OA上运动的过程中,探究∠GOA,∠OHC,∠ACE之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).

【参考答案】***试卷处理标记,请不要删除 一、选择题 1.B 解析:B 【分析】 首先从排列图中可知:第1排有1个数,第2排有2个数,第3排有3个数,然后抽象出第5排第4个数,第15排第8个数,然后可以得到答案. 【详解】 解:(5,4)表示第5排从左往右第4个数是2,(15,8) 表示第15排第8个数,从上面排列图中可以看出奇数行1排在最中间,所以第15行最中间是1,且为第8个,所以1和 2的积是2. 故本题选B. 【点睛】 本题是规律题的呈现,考查学生的从具体情境中抽象出一般规律,考查学生观察与归纳能力. 2.A 解析:A 【分析】 首先根据已知得出规律,f(1)=2(1×2的末位数字),f(2)=6(2×3的末位数字),f(3)=2(3×4的末位数字),f(4)=0,f(5)=0,f(6)=2,f(7)=6,f(8)=2,f(9)=0,…,找出规律,进而求出即可.

【详解】 解:∵f(1)=2(1×2的末位数字),f(2)=6(2×3的末位数字),f(3)=2(3×4的末位数字),f(4)=0,f(5)=0,f(6)=2,f(7)=6,f(8)=2,f(9)=0, …,

∴每5个数一循环,分别为2,6,2,0,0…, ∴2019÷5=403…4, ∴f(1)+f(2)+f(3)+…+f(2019) =2+6+2+0+0+2+6+2+…+2+6+2+0 =403×(2+6+2)+10 =4040 故答案为:A. 【点睛】 此题主要考查了数字变化规律,根据已知得出数字变化以及求出f(1)+f(2)+f(3)+…+f(2019)=403×(2+6+2)+10是解题关键. 3.A 解析:A

相关文档
最新文档