幅度调制与解调实验报告
调幅波信号的解调实验报告

调幅波信号的解调实验报告一、实验目的本实验旨在通过解调调幅波信号,了解调幅波的特点、解调原理和应用。
二、实验原理1. 调幅波的特点调幅波是一种将模拟信号转换为载波信号的方法,其特点包括:能够传输音频、视频等模拟信号;易于产生和检测;但容易受到噪声和多径效应的影响。
2. 解调原理解调是指将调制后的信号还原为原始模拟信号的过程。
常见的解调方法包括:包络检波法、相干检波法和同步检波法。
其中,包络检波法是通过检测AM信号的包络来获得原始信号;相干检波法是通过将接收到的AM信号与本地振荡器产生同频率振荡,然后进行相减来获得原始信号;同步检波法则是在接收端使用一个与发送端同步的时钟来还原出原始信息。
3. 实验装置本次实验所需装置如下:(1)函数发生器:用于产生载频及模拟信息。
(2)功率放大器:用于放大载频及模拟信息。
(3)带通滤波器:用于滤除载波及其它高频干扰信号。
(4)检波器:用于解调信号。
(5)示波器:用于观察信号波形。
三、实验步骤1. 按照实验原理所述,连接实验装置。
2. 将函数发生器的输出接到功率放大器的输入端,将功率放大器的输出接到带通滤波器的输入端,将带通滤波器的输出接到检波器的输入端,将检波器的输出接到示波器上。
3. 设置函数发生器产生频率为1kHz、幅度为500mVp-p的正弦信号;设置载频频率为10kHz、幅度为100mVp-p;设置功率放大器增益为20dB;设置带通滤波器截止频率为11kHz~9kHz之间;设置示波器时基和电压增益适当。
4. 观察并记录示波器上解调后的信号,并比较其与原始模拟信号的差异。
四、实验结果与分析在完成实验步骤后,我们观察到了以下结果:1. 示波器上显示出了经过解调后的模拟信号,其幅度和频率与原始模拟信号相同。
2. 通过比较解调前后的信号,我们发现解调后的信号更加平滑,波形更加接近原始信号。
这说明我们成功地将调幅波信号解调出了原始模拟信号,并且解调后的信号比解调前的信号更加接近原始信息。
FSK调制及解调实验报告

FSK调制及解调实验报告FSK调制及解调实验报告一、实验目的1.深入理解频移键控(FSK)调制的基本原理和特点;2.掌握FSK调制和解调的实验方法和技能;3.通过实验观察和分析FSK调制解调的性能和应用。
二、实验原理频移键控(Frequency Shift Keying,FSK)是一种常见的数字调制方法,它利用不同频率的信号代表二进制数据中的“0”和“1”。
在FSK调制中,输入信号被分为两种频率,通常表示为f1和f2,分别对应二进制数据中的“0”和“1”。
FSK调制的基本原理是将输入的二进制数据序列通过频率切换的方式转换为高频信号序列。
具体来说,当输入数据为“0”时,选择频率为f1的信号进行传输;当输入数据为“1”时,选择频率为f2的信号进行传输。
解调过程中,接收端将收到的混合信号进行滤波处理,根据不同的频率将其分离,再通过低通滤波器恢复出原始的二进制数据序列。
三、实验步骤1.FSK调制过程(1) 将输入的二进制数据序列通过串并转换器转换为并行数据序列;(2) 利用FSK调制器将并行数据序列转换为FSK信号;(3) 通过高频信道发送FSK信号。
2.FSK解调过程(1) 通过高频信道接收FSK信号;(2) 利用FSK解调器将FSK信号转换为并行数据序列;(3) 通过并串转换器将并行数据序列转换为原始的二进制数据序列。
四、实验结果与分析1.FSK调制结果与分析在FSK调制实验中,我们选择了两种不同的频率f1和f2分别表示二进制数据中的“0”和“1”。
通过对输入的二进制数据进行FSK调制,我们成功地将原始的二进制数据转换为FSK信号,并可以通过高频信道进行传输。
在调制过程中,我们需要注意信号转换的准确性和稳定性,以确保传输的可靠性。
2.FSK解调结果与分析在FSK解调实验中,我们首先接收到了通过高频信道传输过来的FSK信号,然后利用FSK解调器将信号转换为并行数据序列。
最后,通过并串转换器将并行数据序列恢复为原始的二进制数据序列。
FSK调制及解调实验报告

FSK调制及解调实验报告
实验背景和目的:
FSK调制及解调是一种常用的数字调制和解调技术。
FSK调制和解调
主要用于数字通信系统中,通过改变载波频率来表示数字信号的不同符号。
本实验旨在通过对FSK调制和解调技术的实际操作,加深对该技术原理和
应用的理解和掌握。
实验原理:
实验步骤:
1.搭建FSK调制电路:根据实验要求,搭建FSK调制电路,包括信号源、载波发生器、混频器等组成部分。
2.设置调制参数:根据实验要求,设置信号源的频率、调制信号的频
率等参数。
3.进行调制实验:将调制信号通过混频器与频率稳定的载波信号相乘,得到FSK调制信号。
4.搭建FSK解调电路:根据实验要求,搭建FSK解调电路,包括滤波器、频率判决电路等组成部分。
5.进行解调实验:将接收到的FSK信号输入解调电路,通过滤波器滤
除不需要的频率成分,再经过频率判决电路,判断接收到的信号是低频率
还是高频率,从而还原原始数字信号。
6.记录实验结果:记录调制信号和解调信号的波形图,并进行分析。
实验结果和分析:
经过实验操作和数据记录,得到了调制信号和解调信号的波形图。
通
过对比波形图可以看出,解调信号与调制信号基本一致,表明调制和解调
过程基本无误。
实验结果验证了FSK调制和解调技术的可行性和有效性。
结论:
通过本次实验,我们深入了解了FSK调制和解调技术的原理和应用。
通过实际操作和数据记录,我们掌握了FSK调制和解调的实验步骤和方法。
实验结果验证了FSK调制和解调技术的可行性和有效性,对今后的数字通
信系统的设计和实现具有重要的参考价值。
am调制解调系统实验报告

竭诚为您提供优质文档/双击可除am调制解调系统实验报告篇一:Am调制解调系统的设计与分析Am调制解调系统的设计与分析摘要调幅,英文是Amplitudemodulation(Am)。
调幅也就是通常说的中波,范围在503---1060Khz。
调幅是用声音的高低变为幅度的变化的电信号。
调幅是使高频载波信号的振幅随调制信号的瞬时变化而变化。
也就是说,通过用调制信号来改变高频信号的幅度大小,使得调制信号的信息包含入高频信号之中,通过天线把高频信号发射出去,然后就把调制信号也传播出去了。
这时候在接收端可以把调制信号解调出来,也就是把高频信号的幅度解读出来就可以得到调制信号了。
Am调制电路常用于通信系统和其它无线电系统中,特别是在中短波广播通信的领域里更是得到了广泛应用。
原因是Am调制电路简便,设备简单,调制所占的频带窄,并且与之对应的解调接收设备简单,所以Am调制电路常用于通信设备成本低,对通信质量要求不高的场合,如中、短波调幅广播系统一systemview软件简介systemView是一个信号级的系统仿真软件,主要用于电路与通信系统的设计、仿真、能满足从信号处理、滤波器设计,到复杂的通信系统等要求。
systemView借助大家熟悉的windows窗口环境,以模块化和交互式的界面,为用户提供一个嵌入式的分析引擎。
systemView由系统设计窗口和分析窗口两个窗口组成。
所有系统的设计、搭建等基本操作,都是在设计窗口内完成。
分析窗口是用户观察。
systemView数据输出的基本工具,在窗口界面中,有多种选项可以增强显示的灵活性和系统的用途等功能。
在分析窗口最为重要的是接收计算器,利用这个工具我们可以获得输出的各种数据和频域参数,并对其进行分析、处理、比较,或进一步的组合运算。
例如信号的频谱图就可以很方便的在此窗口观察到。
二Am调制原理标准调幅就是常规双边带调制,简称调幅(AF)。
假设调制信号m(t)的平均值为0,将其叠加一个直流偏量后与载波相乘(图1),即可形成调幅信号。
通信电子线路实验报告

中南大学《通信电子线路》实验报告学院信息科学与工程学院题目调制与解调实验学号专业班级姓名指导教师实验一振幅调制器一、实验目的:1.掌握用集成模拟乘法器实现全载波调幅和抑止载波双边带调幅的方法。
2.研究已调波与调制信号及载波信号的关系。
3.掌握调幅系数测量与计算的方法。
4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。
二、实验内容:1.调测模拟乘法器MC1496正常工作时的静态值。
2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。
3.实现抑止载波的双边带调幅波。
三、基本原理幅度调制就是载波的振幅(包络)受调制信号的控制作周期性的变化。
变化的周期与调制信号周期相同。
即振幅变化与调制信号的振幅成正比。
通常称高频信号为载波信号。
本实验中载波是由晶体振荡产生的10MHZ高频信号。
1KHZ的低频信号为调制信号。
振幅调制器即为产生调幅信号的装置。
在本实验中采用集成模拟乘法器MC1496来完成调幅作用,图2-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。
D、V7、V8为差动放大器V5与V6的恒流源。
进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接1KΩ电位器,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚⑹、⑿之间)输出。
图2-1 MC1496内部电路图用1496集成电路构成的调幅器电路图如图2-2所示,图中VR8用来调节引出脚①、④之间的平衡,VR7用来调节⑤脚的偏置。
器件采用双电源供电方式(+12V,-9V),电阻R29、R30、R31、R32、R52为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态。
psk调制解调实验报告

psk调制解调实验报告PSK调制解调实验报告引言:在现代通信系统中,调制解调是一项重要的技术,它能够将数字信号转化为模拟信号以便在信道中传输,并在接收端将模拟信号恢复为数字信号。
相位移键控(Phase Shift Keying,PSK)调制解调技术是一种常用的数字调制技术,本实验旨在通过实际操作,加深对PSK调制解调原理的理解。
实验目的:1. 了解PSK调制解调原理;2. 掌握PSK调制解调的实验操作;3. 分析调制解调过程中的误码率。
实验装置:1. 信号发生器;2. 调制解调器;3. 示波器;4. 计算机。
实验步骤:1. 搭建实验装置,将信号发生器与调制解调器相连,调制解调器再与示波器相连;2. 设置信号发生器的频率和幅度,选择合适的PSK调制方式;3. 通过调制解调器将数字信号转化为模拟信号,并通过示波器观察调制后的波形;4. 将调制后的信号输入到解调器中,通过示波器观察解调后的波形;5. 通过计算机对解调后的信号进行误码率分析。
实验结果:在实验中,我们选择了二进制相位键控(Binary Phase Shift Keying,BPSK)调制方式进行实验。
通过调制解调器将数字信号转化为模拟信号后,我们观察到示波器上出现了两种不同相位的波形,即0°和180°相位差。
这符合BPSK调制的特点,即将二进制数字0和1分别映射为不同的相位。
在解调过程中,我们将调制后的信号输入到解调器中,通过示波器观察到解调后的波形与原始数字信号一致。
这表明解调器能够正确恢复出原始的数字信号。
通过计算机对解调后的信号进行误码率分析,我们发现在理想情况下,误码率为0。
然而,在实际通信系统中,由于信道噪声等因素的影响,误码率往往不为0。
因此,我们需要采取一定的纠错编码技术来提高系统的可靠性。
实验结论:本实验通过实际操作,加深了对PSK调制解调原理的理解。
通过观察调制解调过程中的波形变化和分析误码率,我们了解到PSK调制解调技术在数字通信系统中的重要性。
振幅调制与解调设计报告
振幅调制与解调设计报告⾼频电⼦线路课程设计实验报告《振幅调制与解调电路设计》信息学院 09电⼦B班吴志平 0915212020⼀、设计⽬的:1、通过实验掌握调幅与检波的⼯作原理。
2、掌握⽤集成模拟乘法器实现全载波调幅和抑制波双边带调幅的⽅法和过程,并研究已调波与⼆输⼊信号的关系。
3、进⼀步了解调幅波的原理,掌握调幅波的解调⽅法。
4、掌握⽤集成电路实现同步检波的的⽅法。
5、掌握调幅系数测量与计算的⽅法。
⼆、设计内容:1.调测模拟乘法器MC1496正常⼯作时的静态值。
2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。
3.实现抑⽌载波的双边带调幅波。
4.完成普通调幅波的解调5.观察抑制载波的双边带调幅波的解调三、设计原理:幅度调制就是载波的振幅(包络)受调制信号的控制作周期性的变化。
变化的周期与调制信号周期相同。
即振幅变化与调制信号的振幅成正⽐。
通常称⾼频信号为载波信号,低频信号为调制信号,调幅器即为产⽣调幅信号的装置。
调幅波的解调即是从调幅信号中取出调制信号的过程,通常称之为检波。
调幅波解调⽅法有⼆极管包络检波器和同步检波器,在此,我们主要研究同步检波器。
同步检波器:利⽤⼀个和调幅信号的载波同频同相的载波信号与调幅波相乘,再通过低通滤波器滤除⾼频分量⽽获得调制信号。
本设计采⽤集成模拟器1496来构成调幅器和解调器。
图4-1为1496芯⽚内部电路图,它是⼀个四象限模拟乘法器的基本电路,电路采⽤了两组差动对由V1—V4组成,以反极性⽅式相连接;⽽且两组差分对的恒流源⼜组成⼀对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限⼯作。
D、V7、V8为差动放⼤器 V5与 V6的恒流源。
进⾏调幅时,载波信号加在 V1—V4的输⼊端,即引脚的⑧、⑩之间;调制信号加在差动放⼤器V5、V6的输⼊端,即引脚的①、④之间,②、③脚外接 1KΩ电位器,以扩⼤调制信号动态范围,⼰调制信号取⾃双差动放⼤器的两集电极(即引出脚(6)、(12)之间)输出。
psk调制与解调实验报告
psk调制与解调实验报告PSK调制与解调实验报告引言:调制与解调是通信领域中非常重要的技术,它们被广泛应用于无线通信、卫星通信、光纤通信等领域。
相位移键控调制(Phase Shift Keying, PSK)是一种常见的数字调制技术,本实验旨在通过实践,深入了解PSK调制与解调的原理和实际应用。
一、实验目的本实验的主要目的是掌握PSK调制与解调的基本原理,熟悉其实际应用,并通过实验验证理论知识的正确性。
二、实验器材1. 信号发生器2. 频谱分析仪3. 示波器4. 电脑及相关软件三、实验原理1. PSK调制PSK调制是利用不同相位表示数字信号的一种调制技术。
常见的PSK调制方式有二进制相移键控调制(Binary Phase Shift Keying, BPSK)和四进制相移键控调制(Quadrature Phase Shift Keying, QPSK)等。
BPSK调制将0和1分别映射为相位为0和π的两种状态,而QPSK调制则将00、01、10和11分别映射为相位为0、π/2、π和3π/2的四种状态。
2. PSK解调PSK解调是将接收到的PSK信号转化为数字信号的过程。
解调的关键是从接收到的信号中提取出相位信息。
常用的解调方法有相干解调和非相干解调。
相干解调需要与发送信号保持相位同步,而非相干解调则不需要。
四、实验步骤1. 设置信号发生器的频率和幅度,选择合适的PSK调制方式。
2. 连接信号发生器和频谱分析仪,观察并记录调制后的信号频谱。
3. 将调制后的信号输入到示波器中,观察并记录波形。
4. 通过解调器将接收到的信号转化为数字信号。
5. 使用电脑及相关软件进行信号解调的仿真实验,比较实验结果与理论分析的差异。
五、实验结果与分析1. 调制实验结果根据实验步骤中的设置,我们可以通过频谱分析仪观察到调制后的信号频谱。
根据不同的PSK调制方式,频谱图上会出现不同的频率成分。
通过观察波形,我们可以看到相位的变化对应着信号的变化。
fsk调制及解调实验报告
FSK调制及解调实验报告简介在通信领域,频移键控(Frequency Shift Keying,FSK)调制和解调是常见的数字调制技术,广泛应用于无线通信和数据传输系统中。
本实验报告将详细介绍FSK调制和解调的原理、实验步骤和结果分析。
原理FSK调制是利用不同频率的载波信号来表示数字信息。
在FSK调制中,两个不同频率的载波信号代表了两个不同的数字信号。
例如,在二进制数字通信中,0可以用低频率表示,而1可以用高频率表示。
FSK调制的原理是通过将数字信号转化为频率信息并将其叠加到载波信号上。
通过调整载波频率来传输数字信号的不同值。
FSK解调是将接收到的FSK信号恢复为原始数字信号。
解调过程包括接收信号的滤波和判决两个主要步骤。
滤波用于消除噪声和非目标频率分量,而判决用于确定接收信号所代表的数字信号的值。
实验步骤1.搭建实验电路–使用信号发生器生成两个不同频率的正弦波,分别作为两个载波信号。
–将数字信号源与信号发生器连接,使得数字信号源能够控制载波信号的频率。
–将两个载波信号叠加,并将叠加后的信号送入模拟调制电路。
–将模拟调制电路的输出连接到示波器,以便观察FSK调制后的信号波形。
2.观察和分析调制波形–调整信号发生器的频率和数字信号源的输入,观察调制后的波形特征。
–分析不同数字信号输入时,调制波形的频率变化情况。
–根据调制波形的特点,判断FSK调制是否正确实现。
3.进行FSK解调实验–将调制后的信号输入到解调电路中。
–使用合适的滤波器,滤除噪声和非目标频率分量。
–通过判决电路,将解调后的信号恢复为原始数字信号。
4.观察和分析解调结果–使用示波器观察解调后信号的波形特征。
–将解调后的信号与原始数字信号进行比较,分析解调的准确性和误差情况。
实验结果和分析经过搭建实验电路、观察、分析和解调实验,我们得到了以下实验结果和分析:1.根据观察得知,调制后的波形在不同数字信号输入时,频率发生了明显的变化。
这表明FSK调制成功。
通信原理实验报告-实验七 振幅键控(ASK)调制与解调实验 实验八 移频键控FSK调制与解调实验 实验九 移相键
观察 ASK 解调输出“OUT1”处波形,并与信号源产生的 PN 码进行比较:
4 / 17
创
2、 打开电源, 将模块 7 上的拨码开关 S2 拨为 “ASK-NRZ” 频率的 16 倍, 如: “ASK-NRZ” 选 8K 时,S2 选 128K,即拨“1000” 。观察模块 4 上信号输出点“ASK-DOUT”处的波形, 把电位器 W3 逆时针拧到最大, 并缓慢调节电位器 W1 (改变判决门限) , 直到在 “ASK-DOUT” 处观察到稳定的 PN 码。
低通 滤 波器 抽样 判决 器 解调信号 输出
耦合 电路
位 同 步 信号
(b)相干方式
五、 实验步骤
一、ASK 调制实验 1、将信号源模块和模块 3、4、7 固定在主机箱上。 2、关闭电源,按照下表进行实验连线: 源端口 信号源:PN(8K) 信号源: 64K 同步正弦波 目的端口 模块 3:ASK-NRZ 模块 3:ASK 载波 连线说明 S4 拨为 1100,PN 是 8K 伪随机序 列 提供 ASK 调制载波,幅度为 4V
3、打开电源模块 3 上拨码开关 S1(为“11” )都拨上。 观测并记录 FSK 调制输出的波形,CH1 接 FSK-NRZ 信号做示波器的触发源,CH2 接 FSK-OUT 输出的波形。
图 8-1 FSK 载波(CH1 是 64K 同步正弦波,CH2 是 128K 同步正弦波)
原
创
图 8-2 FSK 调制波形(CH1 是 8kb/s 伪随机码,CH2 是 FSK 调制)
2 / 17
= S (t ) cos ω c t
式中,Ts 为码元间隔, g (t ) 为持续时间 [-Ts/2,Ts/2] 内任意波形形状的脉冲(分析时一 般设为归一化矩形脉冲),而 S (t ) 就是代表二进制信息的随机单极性脉冲序列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号幅度调制与解调实验
一. 实验目的
1. 通过本实验熟悉信号的幅值调制与解调原理。
2. 了解信号调制与解调过程中波形和频谱的变化,加深对调制与解调的理解。
二. 实验原理
在测试技术中,信号调制与解调是工程测试信号在传输过程中常用的一种调理方法,主要是为了解决微弱缓变信号的放大以及信号的传输问题。
设测量信号为)(t x ,高频载波信号为)2cos()(φπ+=ft t z 。
信号调制过程就是将两者相乘,调幅波信号为:
(1)
信号解调就是将调幅波信号再与高频载波信号相乘,有:
)4cos()()(2cos )()(212t f t x t x t f t x t y z z m ππ+
== (2) 信号由x(t)和2倍载波频率的高频信号两部分组成,用低通滤波器滤除信号中的高频部分就可以得到测量信号x(t),这种方法称为同步解调。
图1 信号的幅度调制与同步解调过程
实际中调制与解调在不同的设备上实现,载波频率可以严格一致,但相位很难同步,式(2)变为:
)2cos()2cos()()(φππ+=t f t f t x t y z z m (3) 解调过程与同步解调类似,但必须保证x(t)为正信号;对双极性的测量信号x(t),则用一个偏置电平将信号抬高为单极性的正信号,然后再进行调制与解调处理,故称为偏置调制。
图2 测量信号的偏置处理
三. 实验内容
1.信号的同步调制与解调观察。
2.信号的偏置调制和过调失真现象观察。
3.信号调制中的重迭失真现象观察。
四. 实验仪器和设备
1. 计算机1台
2. DRVI快速可重组虚拟仪器平台1套
3. 打印机1台
五. 实验步骤
1.运行DRVI主程序,点击DRVI快捷工具条上的"联机注册"图标,选择其中的“DRVI
采集仪主卡检测”或“网络在线注册”进行软件注册。
2.在DRVI地址信息栏中输入WEB版实验指导书的地址,在实验目录中选择“信号的同
步调制与解调实验”,建立实验环境,观察信号与调制与解调过程中的信号波形变化。
图3信号同步调制与解调实验
3.在DRVI地址信息栏中输入WEB版实验指导书的地址,在实验目录中选择“信号的偏
置调制与解调实验”,建立实验环境,观察偏置调制与解调过程中的信号过调失真。
图4 信号同步调制与解调实验
4.在DRVI地址信息栏中输入WEB版实验指导书的地址,在实验目录中选择“信号载波
频率对调制解调影响实验”,建立实验环境,观察调制与解调过程中的信号重迭失真。
图5信号载波频率对调制解调结果的影响
5. 在上述实验中添加频谱分析功能,观察信号调制与解调过程中信号频谱的变化。
六. 实验报告要求
1. 简述实验目的和原理,画出实验的装配图。
2. 拷贝实验系统运行界面,插入到Word 格式的实验报告中,用Winzip 压缩后通过Email
上交实验报告。
七. 思考题
1. 信号经过幅度调制以后,解调时在什么情况下会出现波形失真现象?
2. 信号的频率调制和幅度调制有何区别?
3. 信号的频率调制公式为:)*)]([2cos()(0φπ++=t t x f A t y ,利用Signal VBScript 设
计一个频率调制系统:
图6 (a)锯齿波调频 (b)正弦波调频
然后再利用信号周期过零检测算法设计一个调频信号解调系统。