光时域反射仪的主要技术指标

合集下载

《OTDR使用方法》

《OTDR使用方法》

AB
彩屏显示,亮度可调
两年再校准周期
整理课件
49
对于具体事件 如:光纤链路中因熔接、连接器、弯曲等因素
造成的缺陷 致使光传输特性发生变化时
对每个事件 : 距离、损耗、反射 对每个光纤段 : 段长、段损耗dB或dB/Km 对整个光纤链路:链长度、链损耗dB
整理课件
50
• 开机说明ห้องสมุดไป่ตู้面
主界面
整理课件
掌上型 OTDR — Palm OTDR使用介绍
整理课件
1
主要内容
OTDR 技术简介 palm OTDR 操作简介 总结
整理课件
2
一 光及其特性:
• 1. 光是一种电磁波。可见光部分波长范 围是: 390~760nm(毫微米).大于 760nm部分是红外光,小于390nm部分 是紫外光。光纤中应用的是:850, 1300,1310,1550,1625。
整理课件
13
影响光纤传输的因素
衰减 主要因素有: 本征,弯曲,挤压,杂质,不均匀和对接等。 色散 主要有: 模式色散、材料色散、波导色散。
导致的结果—限制了光信号的无中继传输距离
整理课件
14
法兰盘综述
光纤法兰盘就是把光纤的两个端面精密对接起来 ,以使发射光纤输出的光能量能最大限度地耦合到 接收光纤中去,并使由于其介入光链路而对系统造 成的影响减到最小,这是光纤连接器的基本要求。
SC法兰盘
整理课件
17
光纤的损耗
1550 nm : 0.2 ~ 0.3dB/Km 1310 nm : 0.35 ~ 0.5 dB/Km 850 nm : 2.3 ~ 3.4 dB/Km 光纤熔接点损耗:0.2dB/点 光纤熔接点 1点/2km

横河AQ7275光时域反射仪

横河AQ7275光时域反射仪

日本横河AQ7275光时域反射仪
新型光时域反射仪AQ7275。

这是继AQ7270之后,横河推出的同系列新款光通信测试产品。

AQ7270在业内享有广泛盛誉,被公认为光缆铺设和维护工程的得力工具。

新推出的AQ7275(OTDR)在前者基础上显著提高了测试性能:可快速测量光缆线路长度与损耗,光缆线路故障点定位的测量时间只有前代机型的三分之一;电池工作时间最大可延长至原来的两倍;支持新的稳定光源选件、可见光源选件;同时具备8.4英寸的LCD显示,快速启动(小于10秒)、0.8m短的盲区以及单键操作等便捷特性。

*全自动模式:单键运行,无需担心测量条件设定
*标准程序模式:按照预设的测量程序,单键测量
*设置向导:弹出设置向导,相当随机说明书
*有光探测和报警功能(保护功能):有效避免线路有光损坏仪表
*高清晰8.4英寸TFT彩色显示器:重量轻、结构紧凑、仅重2.8KG
*USB接口便于数据存储和处理
仿真软件: AQ7932仿真软件
支持AQ7275、AQ7270、AQ7260的测量数据,可以通过PC来对曲线进行分析、编辑以及生成和打印报告。

光缆测试标准数值

光缆测试标准数值

光缆测试标准数值===========在光缆测试过程中,需要对多个方面进行评估,以确保光缆的性能符合预期。

本篇文档将介绍光缆测试标准中涉及的主要数值,包括衰减值、透过率、信号延迟、信号畸变、温度影响、机械强度、环境适应性和耐腐蚀性等方面的评估标准。

1. 衰减值-----衰减值是衡量光缆传输过程中光信号减弱程度的重要指标。

在测试过程中,需要使用光功率计来测量发射端和接收端的光功率,通过计算两者之间的差异得出衰减值。

衰减值应符合产品规格书或相关标准的要求。

2. 透过率-----透过率是指光缆传输过程中光信号穿透光缆的能力。

透过率越高,表示光缆对光信号的传输能力越强。

在测试过程中,需要使用光源和光功率计来测量光信号在光缆中的透过率。

3. 信号延迟------信号延迟是指光缆传输过程中光信号所需的时间。

在测试过程中,需要使用光时域反射仪(OTDR)来测量信号延迟时间。

信号延迟应符合产品规格书或相关标准的要求。

4. 信号畸变------信号畸变是指光缆传输过程中光信号的波形变化。

信号畸变可能导致接收端无法准确解码光信号。

在测试过程中,需要使用示波器来观察光信号的波形变化,评估信号畸变程度。

5. 温度影响------温度变化可能影响光缆的性能。

在测试过程中,需要将光缆置于不同的温度环境中,观察并记录其性能变化。

温度影响应符合产品规格书或相关标准的要求。

6. 机械强度------光缆应具有一定的机械强度,以承受外力作用。

在测试过程中,需要进行拉力、弯曲、扭转等试验,以评估光缆的机械强度。

机械强度应符合产品规格书或相关标准的要求。

7. 环境适应性-------光缆应能够在不同的环境条件下正常工作。

在测试过程中,需要将光缆置于高温、低温、潮湿、干燥等环境条件下进行测试,以评估其环境适应性。

环境适应性应符合产品规格书或相关标准的要求。

8. 耐腐蚀性------在某些应用场景中,光缆需要具有较好的耐腐蚀性能。

在测试过程中,需要对光缆进行腐蚀试验,以评估其耐腐蚀性能。

光纤通信测量技术

光纤通信测量技术

~ ~ ~ 滤波器
相移法光纤色散测量系统框图
27
截止波长测量 根据公式,
c
2a n12 n22
2.405
实际截止波长的测量有:
1. 在弯曲状态下,测量损耗—波长函数的传输功率法; 2. 改变波长,观察LP01模和LP11模产生的两个脉冲变为一 个脉冲的时延法;
3. 改变波长,观察近场图由环形变为高斯形的近场法。
18
OTDR曲线示例:
OTDR 连接器
熔接点
连接器 (P.P.)
光纤末端
功率 (dB)
损耗 斜率显示衰减
反射
距离 (km)
19
AE3ቤተ መጻሕፍቲ ባይዱ00介绍
RJ45网口
2个USB接口
测试端口
6.4吋TFT彩屏
便携提 手
方向控制键
单键测试
一键智 能
20
简洁直观的结果显示
21
光纤带宽的测量
1) 时域法(又称脉冲法)
频 率f / MHz 0
-6
f 6dB
H1( f )
H(f ) H2( f )
光纤频率响应和6dB电带宽
25
色散测量
光纤色散测量有相移法、脉冲时延法
和干涉法等。这里只介绍相移法,这种方
法是测C量(单)L模 光纤色散C的(基) 准方法。
Lw
26
光源 振荡器
包层模消除器
光检测器
波长选择器
被测光纤
相位计 计算机
光 源 L> Le
连 接 器 P 1
稳 态 模 光 纤
被 测 光 纤 L
连 接 器光 功 P 2 率 计
10
2. 瑞利散射光功率与传输光功率成比例。利用与传输光相反 方向的瑞利散射光功率来确定光纤损耗系数的方法,称为后向 散射法。 正向和反向平均损耗系数

OTDR实验报告

OTDR实验报告

实验名称:自构建光纤链路的otdr测试实验实验日期:指导老师:林远芳学生姓名:同组学生姓名:成绩:一、实验目的和要求二、实验内容和原理三、主要仪器设备四、实验结果记录与分析五、数据记录和处理六、结果与分析七、讨论、心得一、实验目的和要求1. 了解瑞利散射及菲涅尔反射的概念及特点;2. 熟练掌握裸纤端面切割、清洁、连接对准方法及熔接技术;3. 熟悉光时域反射仪(optical time domain reflectometer,以下简称 otdr)的工作原理、操作方法和使用要点,能利用 otdr 测试、判断和分析光纤链路中的事件点位置及其产生原因,提高工程应用能力。

二、实验内容和原理1.otdr 测试基本理论散射:光遇到微小粒子或不均匀结构时发生的一种光学现象,此时光传输不再具有良好的方向性。

瑞利散射:当光在光纤中传播时,由于光纤的基本结构不完美(光纤本身的缺陷、制作工艺和材料组分存在着分子级大小的结构上的不均匀性),一部分光纤会改变其原有传播方向而向四周散射(图 1-3-1),引起光能量损失,其强度与波长的 4 次方成反比,随着波长的增加,损耗迅速下降。

后向或背向散射:瑞利散射的方向是分布于整个立体角的,其中一部分散射光纤和原来的传播方向相反,返回到光纤的注入端,形成连续的后向散射回波。

光纤中某一点的后向回波可以反映出光纤中光功率的分布情况,椐此可以测试出光纤的损耗。

菲涅尔反射:当光纤由一种媒质进入另一种媒质时会产生的一种反射,其强度与两种媒质的相对折射率的平方成正比。

如图1-3-2 所示,一束能量为p0 的光,由媒质 1(折射率为nl)进入媒质 2(折射率为 n2)产生的反射信号为p1,则n1n2p1nn21 2 衰减:指信号沿链路传输过程中损失的量度,以 db 表示。

衰减是光纤中光功率减少量的一种度量,光纤内径中的瑞利散射是引起光纤衰减的主要原因。

通常,对于均匀光纤来说,可用单位长度的衰减,即衰减系数来反映光纤的衰减性能的好坏。

中国光纤测试标准

中国光纤测试标准

中国光纤测试标准一、引言随着光纤通信技术的快速发展,光纤测试标准已成为确保光纤通信系统性能和质量的重要依据。

本文将介绍中国光纤测试标准中的几个重要方面,包括光纤衰减检测、光纤连通性检测、光纤污染检测以及光纤故障定位检测。

二、光纤衰减检测光纤衰减是衡量光纤通信系统性能的重要指标之一。

中国光纤测试标准对光纤衰减的测试方法进行了详细规定。

主要测试方法包括插入法、剪断法、背向散射法等。

这些方法分别适用于不同的情况和需求。

在测试过程中,需要对测试设备进行校准,以确保测试结果的准确性和可靠性。

三、光纤连通性检测光纤连通性检测是验证光纤通信链路连接是否正常的关键步骤。

中国光纤测试标准规定了对光纤连通性进行测试的方法。

一种常用的方法是使用光源和光功率计来检测光纤链路的连通性。

首先,将光源连接到光纤的一端,然后将光功率计连接到光纤的另一端。

如果链路连通,则可以在光功率计上看到光信号。

如果链路不连通,则光功率计将显示零或非常低的读数。

四、光纤污染检测光纤污染会对光纤通信系统的性能产生严重影响。

中国光纤测试标准规定了对光纤进行污染检测的方法。

一种常用的方法是使用可视显微镜来观察光纤的表面。

如果光纤表面存在污染,则可以在显微镜下看到杂质或不规则的斑点。

此外,还可以使用一些专门的测试仪器来检测光纤表面的污染程度。

五、光纤故障定位检测在光纤通信系统中,当发生故障时,快速准确地定位故障位置至关重要。

中国光纤测试标准规定了一些用于故障定位的测试方法。

其中一种是时域反射仪(TDR)法,该方法利用在光纤中反射回来的信号来确定故障位置。

通过向光纤发送脉冲信号并测量返回的信号时间,可以计算出故障位置的距离。

另一种常用方法是光时域反射仪(OTDR)法,它利用光的背向散射来检测故障。

通过测量背向散射光的强度和时间,可以确定故障的位置和类型。

六、总结中国光纤测试标准为确保光纤通信系统的性能和质量提供了重要的指导和依据。

通过对光纤衰减、连通性、污染以及故障定位的检测,可以全面评估和提升光纤通信系统的性能。

光纤光缆基本知识

光纤光缆基本知识光纤光缆基本知识1、光纤通信及发展史1、1966年英籍华⼈⾼锟提出'光纤通信'.2、以激光为光源,经光纤为传输媒质的通信⽅式,叫做光纤通信.3、1983年武汉三镇使⽤光纤通信投⼊电话⽹中使⽤,标志着我国光纤通信进⼊使⽤阶段.⼆、光通信原理介绍及光纤通信的特点1、全反射原理:1)光从光密介质射⼊光疏介质。

2)⼊射⾓⼤于临界⾓。

2、光通信特点:优点:1)传输频带宽、通信容量⼤2) 中继距离远、损耗低3)抗电磁能⼒强、⽆串话4)重量轻5)资源丰富6)抗化学腐蚀、柔软可绕缺点:1)强度不如⾦属2)连接⽐较困难3)分路耦合不变4)弯曲半径不宜太⼩5)传输能量⽐较困难三、光纤通信系统的组成光发送光传输光接收光端机四、光纤简介1、光纤的结构:由纤芯、包层、涂覆层组成2、光纤分类:1)按材料组成分:玻璃光纤、塑料光纤2)按传输模式分:单模光纤、多模光纤3)按折射率分布分:突变型、渐变型、阶跃型单模光纤G652 折射率:1310nm 1.4677 1550nm 1.4682G655 折射率:1550nm 1.4690多模光纤芯径62.5um A1b 折射率:850nm 1.496 1300nm 1.487芯径50um A1a 折射率:850nm 1.482 1300nm 1.4773、常⽤光纤的主要技术特性及部分指标介绍指标的介绍:1) 衰减:光在光纤中传输时能量的损耗2) ⾊散:光脉冲在光纤中传输时脉冲的展宽3) 偏振模⾊散:基模可分解成两个垂直相交的偏振模,光脉冲在光纤中传输时现两个垂直的偏振模间的时延差4) 光纤⼏何参数:包层直径、涂层直径、光纤不圆度同⼼度误差:芯/包层<1um><>不圆度=长轴直径-短轴直径/标准值4、模场直径:基模光斑的⼤⼩标准:9.2+0.4um模:光在光纤中的传输⽅式(单模、多模)纤芯直径:8.3um5、截⽌波长:保证光纤以基模传输的最⼩波长(G652 1100-1330nm)常⽤光纤的主要技术特性G652 衰减 1310nm≤0.36dB/km 1550nm≤0.22dB/km模场直径 1310nm 9.3+0.5um 1550nm 10.5+0.8um包层直径 125+1.0um包层不圆度 ≤02%模场/包层同⼼度误差 ≤1um涂层直径 245+5um涂层不圆度 /涂层与包层同⼼度误差 <>截⽌波长 1100nm≤λc≤1330nm零⾊散波长 1300nm-1324nm零⾊散斜率 ≤0.093Ps/nm2.km1288-1339nm波长范围内⾊散系数≤3.5 Ps/nm.km1271-1360nm波长范围内⾊散系数≤5.3 Ps/nm.km1550nm波长范围内⾊散系数 ≤17 Ps/nm.km衰减不连续性—--在1310nm或1550nm处均没有⼤于0.01dB的不连续点,实际⼀般控制≤0.03dB.衰减不均匀性----在光纤后向散射曲线上,任意500⽶长度上的实测衰减值与全长平均每500⽶的衰减值之差的最坏值应≤0.05dB.外观检查----排丝整齐,颜⾊鲜明涂覆层牢固光洁,不脱⽪.G655 (康宁LEAF、朗讯真波、长飞⼤保实)康宁 LEAF :衰减: 1550nm ≤ 0.22dB/km模场直径(MFD):9.5±0.6um截⽌波长(λcc) 1470nm⾊散:1530-1565nm 2.0-6.0 PS/nm.km1565-1625nm 4.5-11.2 PS/nm.km零⾊散斜率 ≤0.1Ps/nm2.kmPMD ≤0.1PS/km 1/2朗讯真波:衰减:1550nm≤ 0.22dB/km模场直径(MFD):9.4±0.6um截⽌波长(λcc) 1260nm⾊散:1530-1565nm 2.0-6.0 PS/nm.km1565-1625nm 4.0-8.6 PS/nm.km零⾊散斜率 ≤0.05Ps/nm2.kmPMD ≤0.5PS/km 1/2光缆的简单介绍1、缆的分类按光纤类别分:单模光纤光缆、多模光纤光缆按缆芯结构分:中⼼束管式、层绞式、⾻架式层绞式把松套光纤绕在中⼼加强件周围绞合⽽构成。

光时域反射仪(OTDR)测试光缆线路曲线故障总结报告

光时域反射仪(OTDR)测试光缆线路曲线故障总结报告一、光缆传输网络概述光缆传输网是我国公用通信网和国民经济信息化基础设施的重要组成部分,它是公用电话网、数字传输网和增殖网等各种网络的基础网。

二、otdr的测量原理otdr的测量原理:光脉冲发生器产生的脉冲驱动半导体激光器而发出的测试光脉冲进入光纤沿途返回到入射端的光。

就其物理原因包括两种:一种是由于光纤折射率的不匹配或不连续性而产生的菲涅尔反射;另一种是由于光纤芯折射率,微观的不均匀而引起的瑞利散射。

瑞利散射光的强弱与通过该处的光功率成正比。

而菲涅尔反射又与光纤的衰耗有直接关系,因此,其强弱也就反映了光纤各点的衰耗大小。

由于散射是向四面八方的,因此这些反射光总有一部分传输到输入端。

同时,如果传输通道完全中断,从此点以后的后向散射光功率也降到零,因此,根据反射传输回来的散射光的情况又可以判断光纤断点的位置和光纤的长度。

otdr就是通过测量被测光纤所产生的后向散射光,以及菲涅尔反射光来测量光纤的衰减特性,故障点、光纤长度、接头损耗等光特性,并能以轨迹的形式显示到显示器。

三、曲线故障测试实例分析1、故障判断及类型。

主要有两类:全程损耗增大和完全中断。

光缆线路损耗增大和中断的原因归纳起来有如下几点:a、有弯曲和微弯曲。

这里指的是外因造成的光缆变形和弯曲。

b、因光缆本身质量引起的损耗增大。

例如光缆温度特性不好,当温度变化时,损耗增大。

或者制造光缆的材料因气温变化引起热胀冷缩不均匀而造成光缆或光纤的微弯曲。

c、光纤接头故障。

光纤固定接头有粘接法、熔接法、精密套管和三棒法。

目前国内基本上都采用熔接法。

不管采用哪种方法,由于在接头部位光纤的原涂覆层已经去掉,连接后虽经保护但该部位纤维自身的强度、可挠性都比原纤维差,同时,该部位的可靠性要受到保护工艺和方法、保护材料、操作技巧以及当时的环境污染、气候等诸因素的影响。

架空光缆还要受到日晒雨淋和风吹摆动、车辆震动等影响,这些都有可能使接头部位发生故障。

MTT-410_OTDR_产品培训


MTTplus 410 OTDR Overview
Confidential & Proprietary Information of VeEX Inc.
3
OTDR基础知识-光纤介绍
耦合损耗 不纯 接头损耗
输入
输出
入射损耗
吸收损耗 散射损耗 异类结构 散射损耗
微弯或宏弯损耗

衰减 当光信号通过光纤传输时,它的功率电平减少。功率电平的增加以dB或 者每单位距离上的损耗的比率(dB/km)来表示。
VeEX MTTplus 410 OTDR 产品培训
March 2014 | Rev. A02
议程
OTDR基础知识(原理、术语、参数及用例分析) MTTplus
410 OTDR功能介绍
V-Scout智能光链路功能 Fiberizer云端存储及分析功能 MTTplus测试平台支持的其他模块
MTTplus 410 OTDR Overview
Confidential & Proprietary Information of VeEX Inc.
10
OTDR基础知识-原理
菲涅尔反射—— 光纤连接器或者端点典型的反射值
转换边界
玻璃-到-空气
PC-到-PC连接 器
菲涅尔反射
-14 dB
-35 dB 到 -50 dB
原因 由于菲涅尔反射大于后向瑞利散射,造成探测器以及放大器饱和,为了使接收机回 复正常值,需要一定的释放时间,而在这个时间内将无法测得有用信息,这个时间 对应的光纤距离范围称为盲区。
MTTplus 410 OTDR Overview
Confidential & Proprietary Information of VeEX Inc.

光纤参数测量实验报告(3篇)

第1篇一、实验目的1. 熟悉光纤的基本特性和结构。

2. 掌握光纤参数测量的基本原理和方法。

3. 了解光纤连接、衰减、色散等关键参数的测量方法。

4. 培养实验操作技能和数据分析能力。

二、实验原理光纤作为一种传输信息的介质,其性能参数直接关系到光通信系统的质量和效率。

本实验主要测量以下光纤参数:1. 光纤长度:通过光时域反射仪(OTDR)测量光纤的长度。

2. 光纤衰减:通过插入损耗测试仪测量光纤在特定波长下的衰减。

3. 光纤色散:通过色散分析仪测量光纤在特定波长下的色散。

4. 光纤连接损耗:通过插入损耗测试仪测量光纤连接器的插入损耗。

三、实验仪器与材料1. 光纤测试仪:包括光时域反射仪(OTDR)、插入损耗测试仪、色散分析仪等。

2. 光纤跳线:用于连接测试仪和被测光纤。

3. 被测光纤:用于测试的光纤。

4. 光纤连接器:用于连接被测光纤和跳线。

四、实验步骤1. 光纤长度测量- 将被测光纤连接到OTDR上。

- 启动OTDR,进行光纤长度测量。

- 记录测量结果。

2. 光纤衰减测量- 将被测光纤连接到插入损耗测试仪上。

- 选择测试波长,设置测试参数。

- 进行衰减测量,记录结果。

3. 光纤色散测量- 将被测光纤连接到色散分析仪上。

- 选择测试波长,设置测试参数。

- 进行色散测量,记录结果。

4. 光纤连接损耗测量- 将被测光纤连接到跳线上,再将跳线连接到插入损耗测试仪上。

- 进行连接损耗测量,记录结果。

五、实验数据与分析1. 光纤长度测量结果- 测量结果:X米- 分析:与理论值基本一致,说明被测光纤长度准确。

2. 光纤衰减测量结果- 测量结果:Y dB- 分析:与理论值基本一致,说明被测光纤衰减符合要求。

3. 光纤色散测量结果- 测量结果:Z ps/nm·km- 分析:与理论值基本一致,说明被测光纤色散符合要求。

4. 光纤连接损耗测量结果- 测量结果:A dB- 分析:与理论值基本一致,说明被测光纤连接器质量良好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光时域反射仪的主要技术指标
光时域反射仪是一种用于光纤传输线路检测的仪器,其主要技术指标包括:
1. 测量距离范围:通常为0~10km,也有更远的测量距离。

2. 动态范围:通常为40dB以上,表示在信号传输中允许最小和最大的信噪比。

3. 分辨率:通常为1m以下,表示对光纤传输线路上每个点的精度,也决定了其检测精度。

4. 测量时间:通常为数秒到几十秒不等,决定了一次测试所需的时间长度。

5. 适用波长范围:通常为1310nm和1550nm,但也有些仪器可以测试更多的波长范围。

6. 工作温度范围:通常为0~50摄氏度,也有更高和更低的工作温度范围。

7. 接口类型:通常为FC和SC等标准接口,可以更方便地与光纤连接。

总体来说,光时域反射仪的主要技术指标直接决定了其检测精度和实用性,同时也为用户提供了更好的光纤传输线路维护方式。

相关文档
最新文档