广东省汕头市金平区2018年初中毕业生学业模拟考试数学试卷(含答案)

合集下载

(完整word版)2018年广东省中考数学模拟试题及答案

(完整word版)2018年广东省中考数学模拟试题及答案

市城生卫建 创 第5题2018年广东省中考数学模拟试题一。

选择题(每题3分,共30分) 1.6-的倒数是( ).A .6-B 。

6C 。

16-D .162.2011年11月30日,“海峡号”客滚轮直航台湾旅游首发团正式起航。

“海峡号”由福建海峡高速客滚航运有限公司斥资近3亿元购进,将3亿用科学记数法表示正确的是( )A .8103⨯B 。

9103⨯C .10103⨯D .11103⨯3.下列计算中,正确的是( ).A .23x y xy +=B .22x x x ⋅=C .3262()x y x y =D 。

623x x x ÷=4.已知一个等腰三角形的一边长是3,另一边长为7,则这个等腰三角形的周长为( )A .13B . 17C . 13或17D . 45.如图,该图形经过折叠可以围成一个正方体,折好以后与“城”字相对的字是( )A .生B .创C .城D .卫6.将二次函数y =2(x -1)2-3的图像向右平移3个单位,则平移后的二次函数的顶点是( )A .(-2,-3)B .(4,3)C .(4,-3)D .(1,0)7.如图,□MNEF 的两条对角线ME ,NF 交于原点O ,点F 的坐标是(3,2),则点N 的坐标为( ) A (-3,-2) B(-3,2) C (-2,3) D(2,3) 8.已知12n 是整数,则满足条件的最小正整数n 是( ).A 。

2B .3C .4D .59.有2名男生和2名女生,王老师要随机地、两两一对地排座位, 一男一女排在一起的概率是( )A. 14B. 错误! C 。

错误! D. 错误!10。

若不等式组⎧<+,03a x 的解集为0<x ,则a 的取值范围为( )A 。

a >0 B. a =0 C 。

a >4 D. a =4 二、填空题(每题4分,共24分)11.如图,已知直线21//l l ,135︒∠=,那么2∠= . 12.经过点A(1,2)的反比例函数的解析式为:___ ___。

初中数学汕头市金平区中考模拟数学一模考试卷含答案解析.docx

初中数学汕头市金平区中考模拟数学一模考试卷含答案解析.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:在﹣1,0,2,四个数中,最大的数是()A.﹣1 B.0 C.2 D.试题2:地球的表面积约为510000000km2,将510000000用科学记数法表示为()A.0.51×109 B.5.1×109 C.5.1×108 D.0.51×107试题3:下列图案中既是中心对称图形,又是轴对称图形的是()A. B. C. D.试题4:下列运算中,结果是a6的式子是()A.(a3)3 B.a12﹣a6 C.a2•a3 D.(﹣a)6试题5:一个多边形的每个内角均为120°,则这个多边形是()A.七边形 B.六边形 C.五边形 D.四边形试题6:在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值为()A.10 B.8 C.5 D.3试题7:若△ABC与△DEF相似,相似比为2:3,则这两个三角形的面积比为()A.2:3 B.3:2 C.4:9 D.9:4试题8:.如图,平行四边形ABCD的周长为20,AE平分∠BAD,若CE=2,则AB的长度是()A.10 B.8 C.6 D.4试题9:若一元二次方程x2+2x+a=0有实数根,则a的取值范围是()A.a≤1 B.a≤4 C.a<1 D.a≥1试题10:如图,直线y=﹣x+2与y轴交于点A,与反比例函数y=(k≠0)的图象交于点C,过点C作CB⊥x轴于点B,AO=2BO,则反比例函数的解析式为()A.y= B.y=﹣ C.y= D.y=﹣试题11:在函数y=中,自变量x的取值范围是.试题12:如图,自行车的三角形支架,这是利用三角形具有性.试题13:因式分解:x3﹣xy2= .试题14:如图.将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF的大小为.试题15:有一列具有规律的数字:,,,,…则这列数字第10个数为.试题16:如图,腰长为3的等腰直角三角形ABC绕点A逆时针旋转15°,则图中阴影部分的面积为.试题17:计算:()﹣2﹣|﹣1|﹣()0+2cos60°.试题18:先化简,再求值:(x+1)2+x(x﹣2),其中x=.试题19:.已知:在△ABC中,AB=AC.(1)尺规作图:作△ABC的角平分线AD,延长AD至E点,使得DE=AD;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,连接BE,CE,求证:四边形ABEC是菱形.试题20:如图,一条光纤线路从A地到B地需要经过C地,图中AC=40千米,∠CAB=30°,∠CBA=45°,因线路整改需要,将从A地到B地之间铺设一条笔直的光纤线路.(1)求新铺设的光纤线路AB的长度;(结果保留根号)(2)问整改后从A地到B地的光纤线路比原来缩短了多少千米?(结果保留根号)试题21:某超市用5 000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11 000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的苹果定价为4元,超市在这两次苹果销售中的盈利不低于4 100元,那么余下的苹果最多多少千克?试题22:某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球 B.乒乓球C.羽毛球 D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)试题23:如图,抛物线y=﹣x2+3x+4交x轴于A、B两点(点A在B左边),交y轴于点C.(1)求A、B两点的坐标;(2)求直线BC的函数关系式;(3)点P在抛物线的对称轴上,连接PB,PC,若△PBC的面积为4,求点P的坐标.试题24:如图,AB切⊙O于点B,AD交⊙O于点C和点D,点E为的中点,连接OE交CD于点F,连接BE交CD于点G.(1)求证:AB=AG;(2)若DG=DE,求证:GB2=GC•GA;(3)在(2)的条件下,若tanD=,EG=,求⊙O的半径.试题25:有一副直角三角板,在三角板ABC中,∠BAC=90°,∠C=60°,AB=6,在三角板DEF中,∠FDE=90°,∠E=45°,EF=6.将这副直角三角板按如图1所示位置摆放,点A与点F重合,点E、F、A、C在同一条直线上.现固定三角板ABC,将三角板DEF以每秒1个单位的速度沿边AC匀速运动,DF与AB相交于点M.(1)如图2,连接ME,若∠EMA=67.5°,求证:△DEM≌△AEM;(2)如图3,在三角板DEF移动的同时,点N从点C出发,以每秒2个单位长度的速度沿CB向点B匀速移动,当三角板DEF的顶点D移动到AB边上时,三角板DEF停止移动,点N也随之停止移动.连接FN,设四边形AFNB的面积为y,在三角板DEF运动过程中,y存在最小值,请求出y的最小值;(3)在(2)的条件下,在三角板DEF运动过程中,是否存在某时刻,使E、M、N三点共线,若存在,请直接写出此时AF的长;若不存在,请直接回答.C【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣1<0<<2,故在﹣1,0,2,四个数中,最大的数是2.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.试题2答案:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于510000000有9位,所以可以确定n=9﹣1=8.【解答】解:510 000 000=5.1×108.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.试题3答案:A【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选:A.【点评】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.D【分析】根据同底数幂的乘法、幂的乘方、合并同类项和积的乘方进行计算即可.【解答】解:A、(a3)3=a9,故此选项错误;B、不能合并,故此选项错误;C、a2•a3=a5,故此选项错误;D、(﹣a)6=a6,故此选项正确;故选D.【点评】本题考查了幂的乘方和积的乘方,掌握运算法则是解题的关键.试题5答案:B【分析】一个多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:外角是180°﹣120°=60°,360÷60=6,则这个多边形是六边形.故选:B.【点评】考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.试题6答案:B【分析】根据红球的概率结合概率公式列出关于n的方程,求出n的值即可.【解答】解:∵在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,∴=,解得n=8.故选:B.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.试题7答案:C【分析】由△ABC与△DEF相似,相似比为2:3,根据相似三角形的性质,即可求得答案.【解答】解:∵△ABC与△DEF相似,相似比为2:3,∴这两个三角形的面积比为4:9.故选C.【点评】此题考查了相似三角形的性质.注意相似三角形的面积比等于相似比的平方.试题8答案:D【分析】根据平行四边形的性质得出AB=CD,AD=BC,AD∥BC,推出∠DAE=∠BAE,求出∠BAE=∠AEB,推出AB=BE,设AB=CD=x,则AD=BC=x+2得出方程x+x+2=10,求出方程的解即可.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠DAE=∠BAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,设AB=CD=x,则AD=BC=x+2∵▱ABCD的周长为20,∴x+x+2=10,解得:x=4,即AB=4,故选D.【点评】本题考查了平行四边形的在,平行线的性质,等腰三角形的判定的应用,解此题的关键是能推出AB=BE,题目比较好,难度适中.试题9答案:A【分析】首先得出根的判别式△=b2﹣4ac=4﹣4a≥0,进一步求得不等式的解集得出答案即可.【解答】解:∵一元二次方程x2+2x+a=0有实数根,∴△≥0,即△=4﹣4a≥0,∴a≤1.故选:A.【点评】此题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.试题10答案:B【分析】先求出点A的坐标,然后表示出AO、BO的长度,根据AO=2BO,求出点C的横坐标,代入直线解析式求出纵坐标,用待定系数法求出反比例函数解析式.【解答】解:∵直线y=﹣x+2与y轴交于点A,∴A(0,2),即OA=2,∵AO=2BO,∴OB=1,∴点C的横坐标为﹣1,∵点C在直线y=﹣x+2上,∴点C(﹣1,3),∴反比例函数的解析式为:y=﹣.故选:B.【点评】本题考查的是反比例函数与一次函数的交点问题,根据题意确定点C的横坐标并求出纵坐标是解题的关键.试题11答案:x≥﹣.【分析】当函数表达式是二次根式时,被开方数为非负数,即2x+1≥0.【解答】解:依题意,得2x+1≥0,解得x≥﹣.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.试题12答案:稳定.【分析】根据三角形具有稳定性解答.【解答】解:自行车的三角形车架,这是利用了三角形的稳定性.故答案为:稳定性.【点评】本题考查了三角形的稳定性,是基础题.试题13答案:x(x﹣y)(x+y).【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y).故答案为:x(x﹣y)(x+y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.试题14答案:45°.【分析】首先根据正方形的性质可得∠1+∠2+∠3+∠4=∠ABC=90°,再根据折叠可得∠1=∠2=∠ABD,∠3=∠4=∠DBC,进而可得∠2+∠3=45°,即∠EBF=45°.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,根据折叠可得∠1=∠2=∠ABD,∠3=∠4=∠DBC,∵∠1+∠2+∠3+∠4=∠ABC=90°,∴∠2+∠3=45°,即∠EBF=45°,故答案为:45°.【点评】此题主要考查了图形的翻折变换,关键是找准图形翻折后,哪些角是相等的.试题15答案:.【分析】由=,=,=,=,…找到规律即可解决问题.【解答】解:∵=,=,=,=,…根据此规律第10个数为:=.故答案为.【点评】本题考查规律型:数字的变化类,解题的关键是掌握从一般到特殊的探究方法,找到规律,属于中考常考题型.试题16答案:﹣.【分析】由等腰三角形的性质和已知条件得出∠BAC=45°,∠BAB′=15°,AB′=AB=3,∠B′=∠B=90°,得出∠B′AD=30°,由三角函数求出B′D,求出△AB′D的面积,阴影部分的面积=△AB′C′的面积﹣△AB′D的面积,即可得出结果.【解答】解:如图所示:∵将直角边长为3cm的等腰Rt△ABC绕点A逆时针旋转15°得到△AB′C′,∴∠BAC=45°,∠BAB′=15°,AB′=AB=3,∠B′=∠B=90°,∴∠B′AD=45°﹣15°=30°,∴在Rt△AB′D中,B′D=AB′•tan30°=3×=,∴S△AB′D=AB′•B′D=×3×=,∴阴影部分的面积=×3×3﹣=﹣;故答案为:﹣.【点评】此题考查了旋转的性质以及等腰直角三角形的性质、三角函数.此题难度不大,注意掌握旋转前后图形的对应关系,注意掌握数形结合思想的应用.试题17答案:【分析】原式第一项利用负整数指数幂法则计算,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=4﹣1﹣1+1=3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.试题18答案:【分析】先对所求的式子化简,然后再将x=代入化简后的式子求值即可解答本题.【解答】解:(x+1)2+x(x﹣2)=x2+2x+1+x2﹣2x=2x2+1,当x=时,原式==+1=.【点评】本题考查整式的混合运算﹣﹣化简求值,解题的关键是明确整式的混合运算的计算方法,会分母有理化.试题19答案:【分析】(1)直接利用角平分线的作法得出E点位置进而得出答案;(2)利用菱形的判定方法得出答案.【解答】(1)解:如图所示:AD,DE为所求;(2)证明:∵AB=AC,AD平分∠CAB,∴CD=BD,AD⊥BC,∵AD=DE,∴四边形ABEC是菱形.【点评】此题主要考查了菱形的判定以及复杂作图,正确把握菱形的判定方法是解题关键.试题20答案:【分析】(1)过C作CD⊥AB,交AB于点D,利用∠CAD的正弦和余弦分别求出CD、AD,再利用∠CBA的正切求出BD,然后根据AB=AD+BD计算即可得解;(2)利用勾股定理列式求出BC,然后列式计算即可得解.【解答】解:(1)过C作CD⊥AB,交AB于点D,在Rt△ACD中,CD=AC•sin∠CAD=AC•sin30°=40×=20(千米),AD=AC•cos∠CAD=AC•cos30°=40×=20(千米),在Rt△BCD中,BD====20(千米),∴AB=AD+DB=20+20=20(+1)(千米),则新铺设的光纤线路AB的长度20(+1)(千米);(2)在Rt△BCD中,根据勾股定理得:BC===20(千米),所以AC+CB﹣AB=40+20﹣20(+1)=20(1+﹣)(千米),则整改后从A地到B地的光纤线路比原来缩短了20(1+﹣)千米.【点评】本题考查了解直角三角形的应用,主要利用了锐角三角函数,作辅助线构造出直角三角形是解题的关键.试题21答案:【分析】(1)设试销时该品种苹果的进货价是每千克x元,则实际进货价为(0.5+x)元,根据这次购进苹果数量是试销时的2倍,列方程求解;(2)设余下的苹果为y千克,求出总购进的苹果数量,根据超市在这两次苹果销售中的盈利不低于4 100元,列不等式求解.【解答】解:(1)设试销时该品种苹果的进货价是每千克x元,则实际进货价为(0.5+x)元,由题意得,×2=,解得:x=5,经检验,x=5是原分式方程的解,且符合题意,答:试销时该品种苹果的进货价是每千克5元;(2)由(1)得,总共购进苹果:5000÷5×3=3000(kg),设余下的苹果为y千克,由题意得,7+4y﹣5000﹣11000≥4 100,解得:y≤300.答:余下的苹果最多为300千克.【点评】本题考查了一元一次不等式和分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.试题22答案:【分析】(1)由喜欢篮球的人数除以所占的百分比即可求出总人数;(2)由总人数减去喜欢A,B及D的人数求出喜欢C的人数,补全统计图即可;(3)根据题意列出表格,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:20÷=200(人),则这次被调查的学生共有200人;(2)补全图形,如图所示:(3)列表如下:甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣所有等可能的结果为12种,其中符合要求的只有2种,则P==.【点评】此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.试题23答案:【分析】(1)令y=0得﹣x2+3x+4=0解得方程的解即为A、B两点坐标;(2)令x=0,解得抛物线y=﹣x2+3x+4与y轴交点C的坐标,设直线BC的函数关系式y=kx+b,解得k和b的值即可得出直线BC的函数关系式;(3)求得抛物线y=﹣x2+3x+4的对称轴,设对称轴与直线BC的交点记为D,求得D点坐标,设点P的坐标,表示出PD,再根据三角形的面积公式得出点P的坐标.【解答】解:(1)由﹣x2+3x+4=0解得x=﹣1或x=4,所以A、B两点坐标为(﹣1,0)和(4,0);(2)抛物线y=﹣x2+3x+4与y轴交点C坐标为(0,4),由(1)得,B(4,0),设直线BC的函数关系式y=kx+b,∴,解得,∴直线BC的函数关系式为y=﹣x+4;(3)抛物线y=﹣x2+3x+4的对称轴为x=,对称轴与直线BC的交点记为D,则D点坐标为(,).∵点P在抛物线的对称轴上,∴设点P的坐标为(,m),∴PD=|m﹣|,∴S△PBC=OB•PD=4.∴×4×|m﹣|=4,∴m=或m=.∴点P的坐标为(,)或(,).【点评】本题考查了抛物线与x轴的交点问题,待定系数法求一次函数的解析式、二次函数的性质,是一道综合性的题目,难度不大,是中考的常见题型.试题24答案:【分析】(1)由AB为⊙O切线,得到OB⊥AB,根据垂径定理得到OE⊥CD,根据等腰三角形的性质得到∠OBG=∠OEG,等量代换得到∠ABG=∠BGA,即可得到结论;(2)根据等腰三角形的性质得到∠DGE=∠DEG,根据已知条件得到∠A=∠D,等量代换得到∠GBC=∠A,推出△GBC∽△GAB,根据相似三角形的性质即可得到结论;(3)在Rt△DEF中,tanD=,设EF=3x,则DF=4x,由勾股定理得DE=5x,根据勾股定理列方程得到x=1,设⊙O半径为r,根据勾股定理列方程即可得到结论.【解答】(1)证明:如图,连接OB.∵AB为⊙O切线,∴OB⊥AB,∴∠ABG+∠OBG=90°,∵点E为的中点,∴OE⊥CD,∴∠OEG+∠FGE=90°,又∵OB=OE,∴∠OBG=∠OEG,∴∠ABG=∠FGE,∵∠BGA=∠FGE,∴∠ABG=∠BGA,∴AB=AG;(2)证明:连接BC,∵DG=DE,∴∠DGE=∠DEG,由(1)得∠ABG=∠BGA,又∵∠BGA=∠DGE,∴∠A=∠D,∵∠GBC=∠D,∴∠GBC=∠A,∵∠BGC=∠AGB,∴△GBC∽△GAB,∴,∴GB2=GC•GA;(3)连接OD,在Rt△DEF中,tanD=,∴设EF=3x,则DF=4x,由勾股定理得DE=5x,∵DG=DE,∴DG=5x,∴GF=DG﹣DF=x.在Rt△EFG中,由勾股定理得GF2+EF2=EG2,即(3x)2+x2=()2,解得x=1,设⊙O半径为r,在Rt△ODF中,OD=r,OF=r﹣3x=r﹣3,DF=4x=4,由勾股定理得:OF2+FD2=OD2,即(r﹣3)2+(4)2=r2,解得r=,∴⊙O的半径为.【点评】本题考查了切线的性质,相似三角形的判定和性质,勾股定理,等腰三角形的性质,垂径定理,连接BC构造相似三角形是解决(2)的关键.试题25答案:【分析】(1)只要证明∠MED=∠MEA=22.5°,即可利用AAS证明△DEM≌△AEM.(2)如图2中,作FG⊥CB,垂足为G.设AF=x,则CN=2x,想办法构建二次函数,利用二次函数性质解决问题.(3)不存在.假设存在,推出矛盾即可.【解答】(1)证明:如图2中,∵∠EMA=67.5°,∠BAE=90°∴∠MEA=90°﹣∠EMA=90°﹣67.5°=22.5°,∴∠MED=∠DEA﹣∠EMA=45°﹣22.5°=22.5°=∠MEA,在△EMD和△EMA中,,∴△DEM≌△AEM.(2)解:如图2中,作FG⊥CB,垂足为G.设AF=x,则CN=2x.在Rt△ABC中,∠C=60°,AB=6,∴AC===2,∴CF=2﹣x,在Rt△CFG中,FG=CF•sin60°=2﹣x)•=3﹣x,∴y=S△ABC﹣S△CFN=AC•AB﹣CN•FG,=•2×6﹣•2x•(3﹣x)=x2﹣3x+6=(x﹣)2+,∴y的最小值为.(3)不存在.理由:解:如图3中,作NH⊥NH于H.当E、M、N共线时,∵NH∥AM,∴=,∴=,解得t=﹣2,不合题意.∴不存在某时刻,使E、M、N三点共线.【点评】本题考查三角形综合题、全等三角形的判定和性质、二次函数、勾股定理、平行线性质等知识,灵活运用这些知识是解题的关键,学会条件辅助线构造直角三角形解决问题,属于中考常考题型.。

2018年广东省中考数学模拟试题及答案(一模定稿)

2018年广东省中考数学模拟试题及答案(一模定稿)

市城生卫建 创 第5题2018年广东省中考数学模拟试题(一模定稿)姓名 班级一.选择题(每题3分,共30分)1.6-的倒数是( ).A .6-B .6C .16-D .162.2011年11月30日,“海峡号”客滚轮直航台湾旅游首发团正式起航。

“海峡号”由福建海峡高速客滚航运有限公司斥资近3亿元购进,将3亿用科学记数法表示正确 的是( )A .8103⨯B .9103⨯C .10103⨯D .11103⨯ 3.下列计算中,正确的是( ).A .23x y xy +=B .22x x x ⋅=C .3262()x y x y =D .623x x x ÷=4.已知一个等腰三角形的一边长是3,另一边长为7,则这个等腰三角形的周长为( )A .13B . 17C . 13或17D . 4 5.如图,该图形经过折叠可以围成一个正方体,折好以后与“城”字相对的字是( ) A .生 B .创 C .城 D .卫6.将二次函数y =2(x -1)2-3的图像向右平移3个单位,则平移后的二次函数的顶点是( ) A .(-2,-3)B .(4,3)C .(4,-3)D .(1,0)7.如图,□MNEF 的两条对角线ME ,NF 交于原点O , 点F 的坐标是(3,2),则点N 的坐标为( )A (-3,-2)B (-3,2)C (-2,3)D (2,3)8.已知12n 是整数,则满足条件的最小正整数n 是( ).A .2B .3C .4D .59.有2名男生和2名女生,王老师要随机地、两两一对地排座位, 一男一女排在一起的概率是( )A. 14B. 13C. 12D. 23 10.若不等式组⎩⎨⎧->+<+1472,03x x a x 的解集为0<x ,则a 的取值范围为( )A. a >0B. a =0C. a >4D. a =4二、填空题(每题4分,共24分)11.如图,已知直线21//l l ,135︒∠=,那么2∠= .12.经过点A (1,2)的反比例函数的解析式为:___ ___。

2017-2018学年广东省汕头市金平区八年级(下)期末数学试卷(解析版)

2017-2018学年广东省汕头市金平区八年级(下)期末数学试卷(解析版)

2017-2018学年广东省汕头市金平区八年级(下)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,请将答题卡上对应的小题所选的选项涂黑)1.(3分)下列二次根式中,最简二次根式是()A.B.C.D.2.(3分)以下列各组数为边长,能构成直角三角形的是()A.2,3,4B.3,4,6C.5,12,13D.1,2,33.(3分)如图,▱ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为()A.1B.2C.3D.44.(3分)下面哪个点在函数y=2x+1的图象上()A.(2,1)B.(﹣2,1)C.(2,0)D.(﹣2,﹣3)5.(3分)某市一周的日最高气温如图所示,则该市这周的日最高气温的众数是()A.25B.26C.27D.286.(3分)某学习小组7名同学在一学期阅读课外书籍的册数分别是14,12,13,12,17,18,16,则这组数据中位数是()A.12B.13C.14D.167.(3分)下列计算正确的是()A.=2B.×=C.()2=4D.÷=38.(3分)如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD 的周长为()A.40cm B.30cm C.20cm D.10cm9.(3分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里10.(3分)如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)式子y=中,x的取值范围是.12.(4分)已知,一次函数y=kx+b的图象在直角坐标系中如图所示,则k0(填“>”,“<”或“=”)13.(4分)某校生物小组7人到校外采集标本,其中2人每人采集到3件,3人每人采集到4件,2人每个采集到5件,则这个小组平均每人采集标本件.14.(4分)如图,菱形ABCD的周长为20,对角线AC与BD相交于点O,AC=8,则BD =.15.(4分)如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有m.16.(4分)如图,点A在线段BG上,四边形ABCD和四边形DEFG都是正方形,面积分别是10和19,则△CDE的面积为.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.(6分)计算:(﹣1)2+4÷18.(6分)直线y=2x﹣2与x轴交于点A,与y轴交于点B,(1)求点A,B的坐标,画出直线AB;(2)点C在x轴上,且AC=AB,直接写出点C坐标.19.(6分)已知:如图,E、F分别是▱ABCD的边BC、AD上的点,且∠1=∠2.求证:AE=CF.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.(7分)世界上大部分国家都使用摄氏温度(℃),但美国、英国等国家的天气预报使用华氏温度(°F)两种计量之间有如下对应:已知华氏温度y(℉)是摄氏温度x(℃)的一次函数.(1)求该一次函数的表达式;(2)当华氏温度14℉时,求其所对应的摄氏温度.21.(7分)如图,在平行四边形ABCD中,点E是边BC的中点,连接AE并延长,交DC 的延长线于点F.连接AC、BF.(1)求证:△ABE≌△FCE;(2)当四边形ABFC是矩形时,若∠AEC=80°,求∠D的度数.22.(7分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm),请你用所学过的有关统计的知识回答下列问题(数据15,16,16,14,14,15的方差S甲2=,数据11,15,18,17,10,19的方差S乙2=)(1)分别求甲、乙两段台阶路的高度平均数;(2)哪段台阶路走起来更舒服?与哪个数据(平均数,中位数方差和极差)有关?(3)为方便游客行走,需要重新整修上山的小路,对于这两段台阶路,在总高度及台阶数不变的情况下,请你提出合理的整修建议.五、解答籍(三)(本大共3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A (4,2).(1)求直线AB的解析式;(2)求△OAC的面积;(3)动点M沿路线O→A→C运动,当△OMC的面积是△OAC的面积的时,求出这时点M的坐标.24.(9分)如图,在矩形ABCD中,E是AD的中点,将△ABE沿BE折叠,点A的对应点为点G.(1)填空:如图1,当点G恰好在BC边上时,四边形ABGE的形状是;(2)如图2,当点G在矩形ABCD内部时,延长BG交DC边于点F.①求证:BF=AB+DF;②若AD=AB,试探索线段DF与FC的数量关系.25.(9分)在平面直角坐标系中,坐标A(0,8),B(21,8),C(15,0),点P从点O 出发,以每秒1个单位的速度向x轴正方向运动,同时点Q从点B出发,在线段AB上匀速向A点方向运动.(1)当Q以每秒1个单位的速度运动,使PQ∥BC时,需经过几秒?(2)当Q以每秒3个单位的速度运动,使PQ=BC时,需经过几秒?(3)填空:当以P,C,B,Q为顶点的四边形有机会能成为菱形时,点Q的速度是每秒个单位.2017-2018学年广东省汕头市金平区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,请将答题卡上对应的小题所选的选项涂黑)1.【解答】解:A、=2,不是最简二次根式;B、=,不是最简二次根式;C、=|a|,不是最简二次根式;D、是最简二次根式;故选:D.2.【解答】解:A、22+32=13,42=16,13≠16,∴2、3、4不能构成直角三角形;B、32+42=25,62=36,25≠36,∴3、4、6不能构成直角三角形;C、∵52+122=169,132=169,169=169,∴5、12、13能构成直角三角形;D、∵1+2=3,∴1、2、3不能构成三角形.故选:C.3.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=5,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=3,∴CE=BC﹣BE=5﹣3=2,故选:B.4.【解答】解:将x=2代入y=2x+1得,2×2+1=5,将x=﹣2代入y=2x+1得,2×(﹣2)+1=﹣3,故D正确;故选:D.5.【解答】解:由图形可知,25出现了3次,次数最多,所以众数是25.故选:A.6.【解答】解:将这组数据重新排列为12、12、13、14、16、17、18,所以这组数据的中位数为14,故选:C.7.【解答】解:A、==4,故此选项错误;B、×==,故此选项正确;C、()2=2,故此选项错误;D、÷==,故此选项错误;故选:B.8.【解答】解:∵菱形的对角线互相垂直平分,又直角三角形斜边上的中线等于斜边的一半,∴根据三角形中位线定理可得:BC=2OM=10,则菱形ABCD的周长为40cm.故选:A.9.【解答】解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:BP==30(海里)故选:D.10.【解答】解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x≤2,s=,当2<x≤3,s=1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分.故选:C.二、填空题(本大题共6小题,每小题4分,共24分)11.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.12.【解答】解:∵一次函数y=kx+b的图象经过二、三、四象限,∴k<0.故答案为:<.13.【解答】解:由题意,可得这个小组平均每人采集标本:=4(件).故答案为4.14.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=AC=4,BO=DO,AD=AB=DC=BC,∵菱形ABCD的周长为20,∴AB=5,∴BO==3,∴DO=3,∴DB=6,故答案为:6.15.【解答】解:由图形及题意可知,AB2+BC2=AC2设旗杆顶部距离底部有x米,有32+x2=52,得x=4,故答案为4.16.【解答】解:如图:过点E作EH⊥CD,交CD的延长线与H.∵四边形ABCD和四边形DEFG都是正方形,面积分别是10和19∴AD⊥CD,DG=DE=,∠BAD=90°,AD=CD=在Rt△ADG中,AG==3∵∠ADG+∠GDH=90°,∠DGH=∠EDH=90°∴∠EDH=∠ADG,且∠DAG=∠H=90°,DE=DG∴△ADG≌△DEH∴EH=AG=3∴S△CDE=×CD×EH=故答案为三、解答题(一)(本大题共3小题,每小题6分,共18分)17.【解答】解:原式=3﹣2+1+4=4+2.18.【解答】解:(1)令x=0,得到y=﹣2,∴B(0,﹣2),令y=0,得到x=1,∴A(1,0),如图直线AB如图所示,(2)∵AB==,∵AC=AB=,∴C(1+,0),C′(1﹣,0)19.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵∠1=∠2,∴∠DAE=∠2,∴AE∥CF,∵AF∥EC,∴四边形AECF是平行四边形,∴AE=CF.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.【解答】解:(1)设一次函数表式为y=kx+b(k≠0)由题意解得∴一次函数表达式为y=1.8x+32(2)当y=14时,14=1.8x+32解得x=﹣10∴当华氏温度14℉时,求其所对应的摄氏温度为﹣10°C 21.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DC即AB∥DF,∴∠ABE=∠FCB,∵点E是BC的中点,∴BE=CE.在△ABE和△FCE中,,∴△ABE≌△FCE.(2)∵四边形ABFC是矩形,∴AF=BC,AE=AF,BE=BC,∴AE=BE,∵∠AEC=80°,∴∠ABE=∠BAE=40°,∵平行四边形ABCD,∴∠D=∠ABE=40°.22.【解答】解:(1)甲段台阶路的高度平均数=×(15+16+16+14+14+15)=15,乙段台阶路的高度平均数=×(11+15+18+17+10+19)=15;(2)∵S甲2<S乙2,∴甲段台阶的波动小,∴甲段台阶路走起来更舒服;(3)每个台阶的高度均为15cm,使方差为0,游客行走比较舒服.五、解答籍(三)(本大共3小题,每小题9分,共27分)23.【解答】解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=﹣x+6;(2)在y=﹣x+6中,令x=0,解得:y=6,S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=,则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).24.【解答】(1)解:如图1,四边形ABGE是正方形,(2分)理由是:∵四边形ABCD是矩形,∴∠A=∠ABC=90°,由折叠得:∠BGE=∠A=90°,∠ABE=∠EBG=45°,∴四边形ABGE是矩形,∵∠ABE=∠EBG,AE⊥AB,EG⊥BG,∴AE=EG,∴矩形ABGE是正方形;故答案为:正方形;(2)①证明:如图2,连接EF,在矩形ABCD中,AB=CD,AD=BC,∠A=∠C=∠D=90°,∵E是AD的中点,∴AE=DE,∵△ABE沿BE折叠得到△GBE,∴BG=AB,EG=AE=ED,∠A=∠BGE=90°,(4分)∴∠EGF=∠D=90°,在Rt△EGF和Rt△EDF中,∵EG=ED,EF=EF,∴Rt△EGF≌△EDF,(5分)∴DF=FG,∴BF=BG+GF=AB+DF;(6分)②解:设AB=DC=a,则DF=b,∴AD=BC=a,由①得:BF=AB+DF,∴BF=a+b,CF=a﹣b,(7分)在Rt△BCF中,由勾股定理得:BF2=BC2+CF2,∴,∴4ab=3a2,(8分)∵a≠0,∴4b=3a,∵CF=DF﹣DF,∴3CF=DF.(9分)25.【解答】解:设点Q运动的时间为x秒,(1)由题意得:OP=x,PC=15﹣x,BQ=x,如图1,∵A(0,8),B(21,8),∴AB∥x轴,∵当PQ∥BC时,四边形QPCB是平行四边形,∴BQ=PC,即15﹣x=x,x=,答:使PQ∥BC时,需经过秒;(2)由题意得:PC=15﹣x,BQ=3x,∵BQ∥PC∴使PQ=BC时,存在两种情况:①当PC=BQ时,四边形QPCB是平行四边形,如图1,有PQ=BC,得:15﹣x=3x,x=,②过Q作QE⊥x轴于E,过B作BF⊥x轴于F,如图2,∵AB∥PC∴QE=BF∵PQ=BC∴Rt△QEP≌Rt△BFC(HL)∴EP=CF=21﹣15=6,∵AQ=21﹣3x,OE=OP﹣EP=x﹣6,∵AQ=OE,∴21﹣3x=x﹣6,x=,答:使PQ=BC时,需经过秒或秒;(3)设点Q的速度为每秒v个单位,当以P,C,B,Q为顶点的四边形有机会能成为菱形时,存在两种情况:①如图3,点P在C的左侧时,由勾股定理得:BC==10,∵四边形QPCB是菱形,∴BQ=BC=PC,∴15﹣x=10=vx,∴x=5,v=2;②当点P在C的右侧时,如图4,过B作BF⊥PC于F,∵四边形QCPB是菱形,∴BQ=BP=PC,∴vx==x﹣15,∴x=,v=,综上所述,点Q的速度是每秒2或个单位;故答案为:2或.。

【最新】汕头市金平区中考数学一模试卷含答案 (2)

【最新】汕头市金平区中考数学一模试卷含答案 (2)

广东省汕头市金平区中考数学一模试卷一、相信你,都能选择对!四个选项中只有一个是正确的.(本大题10小题,每题3分,共30分)1.在﹣1,0,2,四个数中,最大的数是()A.﹣1 B.0 C.2 D.2.地球的表面积约为510000000km2,将510000000用科学记数法表示为()A.0.51×109B.5.1×109C.5.1×108D.0.51×1073.下列图案中既是中心对称图形,又是轴对称图形的是()A. B.C.D.4.下列运算中,结果是a6的式子是()A.(a3)3B.a12﹣a6C.a2•a3 D.(﹣a)65.一个多边形的每个内角均为120°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形6.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值为()A.10 B.8 C.5 D.37.若△ABC与△DEF相似,相似比为2:3,则这两个三角形的面积比为()A.2:3 B.3:2 C.4:9 D.9:48.如图,平行四边形ABCD的周长为20,AE平分∠BAD,若CE=2,则AB的长度是()A.10 B.8 C.6 D.49.若一元二次方程x2+2x+a=0有实数根,则a的取值范围是()A.a≤1 B.a≤4 C.a<1 D.a≥110.如图,直线y=﹣x+2与y轴交于点A,与反比例函数y=(k≠0)的图象交于点C,过点C作CB⊥x轴于点B,AO=2BO,则反比例函数的解析式为()A.y=B.y=﹣C.y=D.y=﹣二.填空题(本大题6小题,每小题4分,共24分)11.在函数y=中,自变量x的取值范围是.12.如图,自行车的三角形支架,这是利用三角形具有性.13.因式分解:x3﹣xy2=.14.如图.将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF的大小为.15.有一列具有规律的数字:,,,,…则这列数字第10个数为.16.如图,腰长为3的等腰直角三角形ABC绕点A逆时针旋转15°,则图中阴影部分的面积为.三.解答题(一)(本大题3小题,每题6分,共18分)17.计算:()﹣2﹣|﹣1|﹣()0+2cos60°.18.先化简,再求值:(x+1)2+x(x﹣2),其中x=.19.已知:在△ABC中,AB=AC.(1)尺规作图:作△ABC的角平分线AD,延长AD至E点,使得DE=AD;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,连接BE,CE,求证:四边形ABEC是菱形.四.解答题(二)(本大题3小题,每小题7分,共21分)20.如图,一条光纤线路从A地到B地需要经过C地,图中AC=40千米,∠CAB=30°,∠CBA=45°,因线路整改需要,将从A地到B地之间铺设一条笔直的光纤线路.(1)求新铺设的光纤线路AB的长度;(结果保留根号)(2)问整改后从A地到B地的光纤线路比原来缩短了多少千米?(结果保留根号)21.某超市用5 000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11 000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的苹果定价为4元,超市在这两次苹果销售中的盈利不低于4 100元,那么余下的苹果最多多少千克?22.某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球B.乒乓球C.羽毛球D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)五.解答题(三)(本大题3小题,每小题9分,共27分)23.如图,抛物线y=﹣x2+3x+4交x轴于A、B两点(点A在B左边),交y轴于点C.(1)求A、B两点的坐标;(2)求直线BC的函数关系式;(3)点P在抛物线的对称轴上,连接PB,PC,若△PBC的面积为4,求点P的坐标.24.如图,AB切⊙O于点B,AD交⊙O于点C和点D,点E为的中点,连接OE交CD 于点F,连接BE交CD于点G.(1)求证:AB=AG;(2)若DG=DE,求证:GB2=GC•GA;(3)在(2)的条件下,若tanD=,EG=,求⊙O的半径.25.有一副直角三角板,在三角板ABC中,∠BAC=90°,∠C=60°,AB=6,在三角板DEF 中,∠FDE=90°,∠E=45°,EF=6.将这副直角三角板按如图1所示位置摆放,点A与点F 重合,点E、F、A、C在同一条直线上.现固定三角板ABC,将三角板DEF以每秒1个单位的速度沿边AC匀速运动,DF与AB相交于点M.(1)如图2,连接ME,若∠EMA=67.5°,求证:△DEM≌△AEM;(2)如图3,在三角板DEF移动的同时,点N从点C出发,以每秒2个单位长度的速度沿CB向点B匀速移动,当三角板DEF的顶点D移动到AB边上时,三角板DEF停止移动,点N也随之停止移动.连接FN,设四边形AFNB的面积为y,在三角板DEF运动过程中,y存在最小值,请求出y的最小值;(3)在(2)的条件下,在三角板DEF运动过程中,是否存在某时刻,使E、M、N三点共线,若存在,请直接写出此时AF的长;若不存在,请直接回答.广东省汕头市金平区中考数学一模试卷参考答案与试题解析一、相信你,都能选择对!四个选项中只有一个是正确的.(本大题10小题,每题3分,共30分)1.在﹣1,0,2,四个数中,最大的数是()A.﹣1 B.0 C.2 D.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣1<0<<2,故在﹣1,0,2,四个数中,最大的数是2.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.地球的表面积约为510000000km2,将510000000用科学记数法表示为()A.0.51×109B.5.1×109C.5.1×108D.0.51×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于510000000有9位,所以可以确定n=9﹣1=8.【解答】解:510 000 000=5.1×108.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.下列图案中既是中心对称图形,又是轴对称图形的是()A. B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选:A.【点评】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.下列运算中,结果是a6的式子是()A.(a3)3B.a12﹣a6C.a2•a3 D.(﹣a)6【分析】根据同底数幂的乘法、幂的乘方、合并同类项和积的乘方进行计算即可.【解答】解:A、(a3)3=a9,故此选项错误;B、不能合并,故此选项错误;C、a2•a3=a5,故此选项错误;D、(﹣a)6=a6,故此选项正确;故选D.【点评】本题考查了幂的乘方和积的乘方,掌握运算法则是解题的关键.5.一个多边形的每个内角均为120°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形【分析】一个多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:外角是180°﹣120°=60°,360÷60=6,则这个多边形是六边形.故选:B.【点评】考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.6.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值为()A.10 B.8 C.5 D.3【分析】根据红球的概率结合概率公式列出关于n的方程,求出n的值即可.【解答】解:∵在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,∴=,解得n=8.故选:B.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.若△ABC与△DEF相似,相似比为2:3,则这两个三角形的面积比为()A.2:3 B.3:2 C.4:9 D.9:4【分析】由△ABC与△DEF相似,相似比为2:3,根据相似三角形的性质,即可求得答案.【解答】解:∵△ABC与△DEF相似,相似比为2:3,∴这两个三角形的面积比为4:9.故选C.【点评】此题考查了相似三角形的性质.注意相似三角形的面积比等于相似比的平方.8.如图,平行四边形ABCD的周长为20,AE平分∠BAD,若CE=2,则AB的长度是()A.10 B.8 C.6 D.4【分析】根据平行四边形的性质得出AB=CD,AD=BC,AD∥BC,推出∠DAE=∠BAE,求出∠BAE=∠AEB,推出AB=BE,设AB=CD=x,则AD=BC=x+2得出方程x+x+2=10,求出方程的解即可.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠DAE=∠BAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,设AB=CD=x,则AD=BC=x+2∵▱ABCD的周长为20,∴x+x+2=10,解得:x=4,即AB=4,故选D.【点评】本题考查了平行四边形的在,平行线的性质,等腰三角形的判定的应用,解此题的关键是能推出AB=BE,题目比较好,难度适中.9.若一元二次方程x2+2x+a=0有实数根,则a的取值范围是()A.a≤1 B.a≤4 C.a<1 D.a≥1【分析】首先得出根的判别式△=b2﹣4ac=4﹣4a≥0,进一步求得不等式的解集得出答案即可.【解答】解:∵一元二次方程x2+2x+a=0有实数根,∴△≥0,即△=4﹣4a≥0,∴a≤1.故选:A.【点评】此题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.如图,直线y=﹣x+2与y轴交于点A,与反比例函数y=(k≠0)的图象交于点C,过点C作CB⊥x轴于点B,AO=2BO,则反比例函数的解析式为()A.y=B.y=﹣C.y=D.y=﹣【分析】先求出点A的坐标,然后表示出AO、BO的长度,根据AO=2BO,求出点C的横坐标,代入直线解析式求出纵坐标,用待定系数法求出反比例函数解析式.【解答】解:∵直线y=﹣x+2与y轴交于点A,∴A(0,2),即OA=2,∵AO=2BO,∴OB=1,∴点C的横坐标为﹣1,∵点C在直线y=﹣x+2上,∴点C(﹣1,3),∴反比例函数的解析式为:y=﹣.故选:B.【点评】本题考查的是反比例函数与一次函数的交点问题,根据题意确定点C的横坐标并求出纵坐标是解题的关键.二.填空题(本大题6小题,每小题4分,共24分)11.在函数y=中,自变量x的取值范围是x≥﹣.【分析】当函数表达式是二次根式时,被开方数为非负数,即2x+1≥0.【解答】解:依题意,得2x+1≥0,解得x≥﹣.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.如图,自行车的三角形支架,这是利用三角形具有性稳定.【分析】根据三角形具有稳定性解答.【解答】解:自行车的三角形车架,这是利用了三角形的稳定性.故答案为:稳定性.【点评】本题考查了三角形的稳定性,是基础题.13.因式分解:x3﹣xy2=x(x﹣y)(x+y).【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y).故答案为:x(x﹣y)(x+y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.如图.将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF的大小为45°.【分析】首先根据正方形的性质可得∠1+∠2+∠3+∠4=∠ABC=90°,再根据折叠可得∠1=∠2=∠ABD,∠3=∠4=∠DBC,进而可得∠2+∠3=45°,即∠EBF=45°.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,根据折叠可得∠1=∠2=∠ABD,∠3=∠4=∠DBC,∵∠1+∠2+∠3+∠4=∠ABC=90°,∴∠2+∠3=45°,即∠EBF=45°,故答案为:45°.【点评】此题主要考查了图形的翻折变换,关键是找准图形翻折后,哪些角是相等的.15.有一列具有规律的数字:,,,,…则这列数字第10个数为.【分析】由=,=,=,=,…找到规律即可解决问题.【解答】解:∵=,=,=,=,…根据此规律第10个数为:=.故答案为.【点评】本题考查规律型:数字的变化类,解题的关键是掌握从一般到特殊的探究方法,找到规律,属于中考常考题型.16.如图,腰长为3的等腰直角三角形ABC绕点A逆时针旋转15°,则图中阴影部分的面积为﹣.【分析】由等腰三角形的性质和已知条件得出∠BAC=45°,∠BAB′=15°,AB′=AB=3,∠B′=∠B=90°,得出∠B′AD=30°,由三角函数求出B′D,求出△AB′D的面积,阴影部分的面积=△AB′C′的面积﹣△AB′D的面积,即可得出结果.【解答】解:如图所示:∵将直角边长为3cm的等腰Rt△ABC绕点A逆时针旋转15°得到△AB′C′,∴∠BAC=45°,∠BAB′=15°,AB′=AB=3,∠B′=∠B=90°,∴∠B′AD=45°﹣15°=30°,∴在Rt△AB′D中,B′D=AB′•tan30°=3×=,∴S△AB′D=AB′•B′D=×3×=,∴阴影部分的面积=×3×3﹣=﹣;故答案为:﹣.【点评】此题考查了旋转的性质以及等腰直角三角形的性质、三角函数.此题难度不大,注意掌握旋转前后图形的对应关系,注意掌握数形结合思想的应用.三.解答题(一)(本大题3小题,每题6分,共18分)17.计算:()﹣2﹣|﹣1|﹣()0+2cos60°.【分析】原式第一项利用负整数指数幂法则计算,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=4﹣1﹣1+1=3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.先化简,再求值:(x+1)2+x(x﹣2),其中x=.【分析】先对所求的式子化简,然后再将x=代入化简后的式子求值即可解答本题.【解答】解:(x+1)2+x(x﹣2)=x2+2x+1+x2﹣2x=2x2+1,当x=时,原式==+1=.【点评】本题考查整式的混合运算﹣﹣化简求值,解题的关键是明确整式的混合运算的计算方法,会分母有理化.19.已知:在△ABC中,AB=AC.(1)尺规作图:作△ABC的角平分线AD,延长AD至E点,使得DE=AD;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,连接BE,CE,求证:四边形ABEC是菱形.【分析】(1)直接利用角平分线的作法得出E点位置进而得出答案;(2)利用菱形的判定方法得出答案.【解答】(1)解:如图所示:AD,DE为所求;(2)证明:∵AB=AC,AD平分∠CAB,∴CD=BD,AD⊥BC,∵AD=DE,∴四边形ABEC是菱形.【点评】此题主要考查了菱形的判定以及复杂作图,正确把握菱形的判定方法是解题关键.四.解答题(二)(本大题3小题,每小题7分,共21分)20.如图,一条光纤线路从A地到B地需要经过C地,图中AC=40千米,∠CAB=30°,∠CBA=45°,因线路整改需要,将从A地到B地之间铺设一条笔直的光纤线路.(1)求新铺设的光纤线路AB的长度;(结果保留根号)(2)问整改后从A地到B地的光纤线路比原来缩短了多少千米?(结果保留根号)【分析】(1)过C作CD⊥AB,交AB于点D,利用∠CAD的正弦和余弦分别求出CD、AD,再利用∠CBA的正切求出BD,然后根据AB=AD+BD计算即可得解;(2)利用勾股定理列式求出BC,然后列式计算即可得解.【解答】解:(1)过C作CD⊥AB,交AB于点D,在Rt△ACD中,CD=AC•sin∠CAD=AC•sin30°=40×=20(千米),AD=AC•cos∠CAD=AC•cos30°=40×=20(千米),在Rt△BCD中,BD====20(千米),∴AB=AD+DB=20+20=20(+1)(千米),则新铺设的光纤线路AB的长度20(+1)(千米);(2)在Rt△BCD中,根据勾股定理得:BC===20(千米),所以AC+CB﹣AB=40+20﹣20(+1)=20(1+﹣)(千米),则整改后从A地到B地的光纤线路比原来缩短了20(1+﹣)千米.【点评】本题考查了解直角三角形的应用,主要利用了锐角三角函数,作辅助线构造出直角三角形是解题的关键.21.某超市用5 000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11 000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的苹果定价为4元,超市在这两次苹果销售中的盈利不低于4 100元,那么余下的苹果最多多少千克?【分析】(1)设试销时该品种苹果的进货价是每千克x元,则实际进货价为(0.5+x)元,根据这次购进苹果数量是试销时的2倍,列方程求解;(2)设余下的苹果为y千克,求出总购进的苹果数量,根据超市在这两次苹果销售中的盈利不低于4 100元,列不等式求解.【解答】解:(1)设试销时该品种苹果的进货价是每千克x元,则实际进货价为(0.5+x)元,由题意得,×2=,解得:x=5,经检验,x=5是原分式方程的解,且符合题意,答:试销时该品种苹果的进货价是每千克5元;(2)由(1)得,总共购进苹果:5000÷5×3=3000(kg),设余下的苹果为y千克,由题意得,7+4y﹣5000﹣11000≥4 100,解得:y≤300.答:余下的苹果最多为300千克.【点评】本题考查了一元一次不等式和分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.22.某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球B.乒乓球C.羽毛球D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有200人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)【分析】(1)由喜欢篮球的人数除以所占的百分比即可求出总人数;(2)由总人数减去喜欢A,B及D的人数求出喜欢C的人数,补全统计图即可;(3)根据题意列出表格,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:20÷=200(人),则这次被调查的学生共有200人;(2)补全图形,如图所示:(3)列表如下:甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣所有等可能的结果为12种,其中符合要求的只有2种,则P==.【点评】此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.五.解答题(三)(本大题3小题,每小题9分,共27分)23.如图,抛物线y=﹣x2+3x+4交x轴于A、B两点(点A在B左边),交y轴于点C.(1)求A、B两点的坐标;(2)求直线BC的函数关系式;(3)点P在抛物线的对称轴上,连接PB,PC,若△PBC的面积为4,求点P的坐标.【分析】(1)令y=0得﹣x2+3x+4=0解得方程的解即为A、B两点坐标;(2)令x=0,解得抛物线y=﹣x2+3x+4与y轴交点C的坐标,设直线BC的函数关系式y=kx+b,解得k和b的值即可得出直线BC的函数关系式;(3)求得抛物线y=﹣x2+3x+4的对称轴,设对称轴与直线BC的交点记为D,求得D点坐标,设点P的坐标,表示出PD,再根据三角形的面积公式得出点P的坐标.【解答】解:(1)由﹣x2+3x+4=0解得x=﹣1或x=4,所以A、B两点坐标为(﹣1,0)和(4,0);(2)抛物线y=﹣x2+3x+4与y轴交点C坐标为(0,4),由(1)得,B(4,0),设直线BC的函数关系式y=kx+b,∴,解得,∴直线BC的函数关系式为y=﹣x+4;(3)抛物线y=﹣x2+3x+4的对称轴为x=,对称轴与直线BC的交点记为D,则D点坐标为(,).∵点P在抛物线的对称轴上,∴设点P的坐标为(,m),∴PD=|m﹣|,∴S△PBC=OB•PD=4.∴×4×|m﹣|=4,∴m=或m=.∴点P的坐标为(,)或(,).【点评】本题考查了抛物线与x轴的交点问题,待定系数法求一次函数的解析式、二次函数的性质,是一道综合性的题目,难度不大,是中考的常见题型.24.如图,AB切⊙O于点B,AD交⊙O于点C和点D,点E为的中点,连接OE交CD 于点F,连接BE交CD于点G.(1)求证:AB=AG;(2)若DG=DE,求证:GB2=GC•GA;(3)在(2)的条件下,若tanD=,EG=,求⊙O的半径.【分析】(1)由AB为⊙O切线,得到OB⊥AB,根据垂径定理得到OE⊥CD,根据等腰三角形的性质得到∠OBG=∠OEG,等量代换得到∠ABG=∠BGA,即可得到结论;(2)根据等腰三角形的性质得到∠DGE=∠DEG,根据已知条件得到∠A=∠D,等量代换得到∠GBC=∠A,推出△GBC∽△GAB,根据相似三角形的性质即可得到结论;(3)在Rt△DEF中,tanD=,设EF=3x,则DF=4x,由勾股定理得DE=5x,根据勾股定理列方程得到x=1,设⊙O半径为r,根据勾股定理列方程即可得到结论.【解答】(1)证明:如图,连接OB.∵AB为⊙O切线,∴OB⊥AB,∴∠ABG+∠OBG=90°,∵点E为的中点,∴OE⊥CD,∴∠OEG+∠FGE=90°,又∵OB=OE,∴∠OBG=∠OEG,∴∠ABG=∠FGE,∵∠BGA=∠FGE,∴∠ABG=∠BGA,∴AB=AG;(2)证明:连接BC,∵DG=DE,∴∠DGE=∠DEG,由(1)得∠ABG=∠BGA,又∵∠BGA=∠DGE,∴∠A=∠D,∵∠GBC=∠D,∴∠GBC=∠A,∵∠BGC=∠AGB,∴△GBC∽△GAB,∴,∴GB2=GC•GA;(3)连接OD,在Rt△DEF中,tanD=,∴设EF=3x,则DF=4x,由勾股定理得DE=5x,∵DG=DE,∴DG=5x,∴GF=DG﹣DF=x.在Rt△EFG中,由勾股定理得GF2+EF2=EG2,即(3x)2+x2=()2,解得x=1,设⊙O半径为r,在Rt△ODF中,OD=r,OF=r﹣3x=r﹣3,DF=4x=4,由勾股定理得:OF2+FD2=OD2,即(r﹣3)2+(4)2=r2,解得r=,∴⊙O的半径为.【点评】本题考查了切线的性质,相似三角形的判定和性质,勾股定理,等腰三角形的性质,垂径定理,连接BC构造相似三角形是解决(2)的关键.25.有一副直角三角板,在三角板ABC中,∠BAC=90°,∠C=60°,AB=6,在三角板DEF 中,∠FDE=90°,∠E=45°,EF=6.将这副直角三角板按如图1所示位置摆放,点A与点F 重合,点E、F、A、C在同一条直线上.现固定三角板ABC,将三角板DEF以每秒1个单位的速度沿边AC匀速运动,DF与AB相交于点M.(1)如图2,连接ME,若∠EMA=67.5°,求证:△DEM≌△AEM;(2)如图3,在三角板DEF移动的同时,点N从点C出发,以每秒2个单位长度的速度沿CB向点B匀速移动,当三角板DEF的顶点D移动到AB边上时,三角板DEF停止移动,点N也随之停止移动.连接FN,设四边形AFNB的面积为y,在三角板DEF运动过程中,y存在最小值,请求出y的最小值;(3)在(2)的条件下,在三角板DEF运动过程中,是否存在某时刻,使E、M、N三点共线,若存在,请直接写出此时AF的长;若不存在,请直接回答.【分析】(1)只要证明∠MED=∠MEA=22.5°,即可利用AAS证明△DEM≌△AEM.(2)如图2中,作FG⊥CB,垂足为G.设AF=x,则CN=2x,想办法构建二次函数,利用二次函数性质解决问题.(3)不存在.假设存在,推出矛盾即可.【解答】(1)证明:如图2中,∵∠EMA=67.5°,∠BAE=90°∴∠MEA=90°﹣∠EMA=90°﹣67.5°=22.5°,∴∠MED=∠DEA﹣∠EMA=45°﹣22.5°=22.5°=∠MEA,在△EMD和△EMA中,,∴△DEM≌△AEM.(2)解:如图2中,作FG⊥CB,垂足为G.设AF=x,则CN=2x.在Rt△ABC中,∠C=60°,AB=6,∴AC===2,∴CF=2﹣x,在Rt△CFG中,FG=CF•sin60°=2﹣x)•=3﹣x,∴y=S△ABC﹣S△CFN=AC•AB﹣CN•FG,=•2×6﹣•2x•(3﹣x)=x2﹣3x+6=(x﹣)2+,∴y的最小值为.(3)不存在.理由:解:如图3中,作NH⊥NH于H.当E、M、N共线时,∵NH∥AM,∴=,∴=,解得t=﹣2,不合题意.∴不存在某时刻,使E、M、N三点共线.【点评】本题考查三角形综合题、全等三角形的判定和性质、二次函数、勾股定理、平行线性质等知识,灵活运用这些知识是解题的关键,学会条件辅助线构造直角三角形解决问题,属于中考常考题型.6月17日。

广东汕头市金平区2018~2019学年八年级第二学期教学质量监测数学试卷

广东汕头市金平区2018~2019学年八年级第二学期教学质量监测数学试卷

金平区2018~2019学年度第二学期八年级教学质量监测数学试卷说明:本试卷共4项,25小题,满分120分,考试用时100分钟一、选择题(本题共10小题,每小题3分,共30分)1.若1x -在实数范围内有意义,则实数x 的取值范围是( )A 、1x ≥B 、1x ≤C 、1x <D 、1x ≠2、由线段a ,b ,c 组成的三角形为直角三角形的是( ) A 、=234a b c ==,, B 、=345a b c ==,,C 、=689a b c ==,,D 、=24258a b c ==,,3、如图,菱形ABCD 的对角线相交于点O ,点E 是CD 的中点,且OE =4,则菱形的周长为( )A 、12B 、16C 、20D 、324、一次函数21y x =--的图象不经过下列哪个象限( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限5、数据2,4,3,4,5,3,4的中位数是( )A 、2B 、3C 、4D 、56、下列计算中,正确的是( )A 、1826÷=B 、()2428=C 、()222-= D 、232226⨯=7、能辉专卖店专营雅戈尔衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的統计量是( )A 、平均数B 、众数C 、中位数D 、方差8、已知点()12,y -,()21,y 都在直线122y x =-+上,则12,y y 大小关系是( )A 、12y y >B 、12y y =C 、12y y <D 、不能比较9、直角三角形的两边上为5和12,则第三边的长为( ) A 、13B 、13或119C 、119D 、无法确定10、如图,在坐标系中放置一菱形OABC ,已知∠ABC=60°,点B 在y 轴上,OA=1,先将菱形OABC 沿x 轴正方向无滑动翻转,每次转60°,连续翻转2019次,点B 的落点依次为1232019,,,,B B B B L 则的坐标为( )A 、32(1344.5,) B 、(1345,0)C 、3(1345.5,)D 、(1346,0)二、填空题(本大题共6小题,每小题4分,共24分)11、某公司招聘考试分笔试和面试,其中笔试按60%,面试按40%计算加权平均数作为总成绩,小红笔试成绩为90分,面试成绩为80分,那么小红的总成绩为____________分12、如图,四边形ABCD 中,AD ∥BC ,∠D=90°,要使它变为矩形,需要添加的条件_______________ (写出一种情况即可)13、将直线y=2x-1向上平移2个单位后所得的图象对应的函数解析式为______________14、如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”。

2024年广东省汕头市金平区中考一模数学试题(含答案)

数学试卷说明:本试卷共4页,满分120分.考试用时120分钟.注意事项:1.答题前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写准考证号、姓名、学生考号,再用2B 铅笔把学生考号的对应数字涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应答案选项涂黑,如需改动,用橡皮擦擦干净后,再重新选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题(本题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,请将答题卡上对应的小题所选的选项涂黑.1.下列各数中,最小的数是( ).A.1B.2C.D.2.下列设计的图案中既是中心对称图形又是轴对称图形的是( ).A. B. C. D.3.到目前为止我国已建成海水淡化工程123个,海水淡化能力每天超过1600000吨.数据1600000用科学记数法表示为( ).A. B. C. D.4.射击比赛中,某队员10次射击成绩如图所示,则该队员成绩(单位:环)的中位数为( ).A.8B.8.5C.9D.25.如图是由4个大小相同的小立方块搭成的几何体,这个几何体的俯视图是( ).A. B. C.D.12-3-51610⨯516010⨯51.610⨯61.610⨯6.下列运算正确的是( ).A. B. C. D.7.若关于x 的方程有实数根,则实数k 的取值范围是( )A. B. C. D.8.如图,在中,平分,若,,则( )A. B. C. D.9.若,则直线与直线的交点在( ).A.第一象限B.第二象限C.第三象限D.第四象限10.如图,正方形边长为2,以为直径在正方形内作半圆,若为半圆的切线,则( ).A. B.2二、填空题(本大题共6小题,每小题3分,共18分)11.点在x 轴上,则点M 的坐标为_____.12.分解因式:_______.13.如图,将三角板与直尺贴在一起,使三角板的直角顶点A 落在直尺的一边上,若,则∠________.236236a a a ⋅=523a a a÷=()222a b a b +=+()325a a =2240x x k --=14k ≤14k <14k ≥-14k >-ABC △AD BAC ∠8AB =6AC =:ABD ACD S S =△△16:94:39:163:40n m <<2y x n =+y x m =-+ABCD AB DE tan ABE ∠=12()2,4M m m --29x -=128∠=︒2=︒14.,则的值为_________.15.如图,在平面直角坐标系中,菱形的对角线在x 轴上,顶点A 在反比例函数的图象上,则菱形的面积为___________.16.如图,矩形中,,把矩形沿直线折叠,点B 落在点E 处,连接,则的长为_____.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:18.将长为,宽为的长方形白纸若干张,按如图所示的方式黏合起来,黏合部分的宽为.(1)根据题意,将下面的表格补充完整;白纸张数n12345纸条总长度20_______5471_______(2)直接写出y 与n 的表达式19.如图,已知,是的一个外角.(1)请用尺规作图法,作的平分线;(保留作图痕迹,不写作法)(2)在(1)的条件下,若,求证:.()2210b +-=247a b +-OABC OB )0y x =>OABC ABCD 28AB AD ==AC DE DE 10134sin 602π-⎛⎫-+-︒ ⎪⎝⎭20cm 8cm 3cm cmy ABC △ACD ∠ABC △ACD ∠CP //CP AB CA CB =四、解答题(二)(本大题共3小题,每小题8分,共24分)20.育才中学音乐组围绕在“舞蹈、乐器、声乐、戏曲、其他活动”项目中,你最喜欢哪一项活动(每人只限一项)的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两种统计图.请根据统计图解答下列问题:(1)在这次调查中,一共抽查了______名学生;扇形统计图中喜欢“声乐”部分扇形的圆心角为_______度.(2)若在“舞蹈、乐器、声乐、戏曲”项目中任选两项成立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项的概率.21.已知图1是超市购物车,图2是超市购物车侧面示意图,测得支架,,,,均与地面平行.图1图2(1)求两轮轮轴A ,B 之间的距离;(2)若,,求扶手F 到所在直线的距离.22.为提高快递包裹分拣效率,物流公司引进了A 型自动分拣流水线,一条A 型自动分拣流水线每小时分拣的包裹量是1名工人每小时分拣包裹量的4倍,分拣6000件包裹,用一条A 型自动分拣流水线分拣比1名工人分拣少用7.5小时.(1)一条A 型自动分拣流水线每小时能分拣多少件包裹?(2)春节将至,S 地转运中心预计每日需分拣的包裹量高达576000件,现准备购买A 型自动分拣流水线进行24小时作业,则至少应购买多少条?五、解答题(三)(本大题共3小题,每小题10分,共30分)23.如图,一次函数的图象与反比例函数的图象交于点,与x 轴交于点B.80cm AC =60cm BC =90ACB ∠=︒ABDO OF =135FOD ∠=︒AB 2y kx =+31k y x+=()1,A a -(1)求k 的值;(2)把一次函数向下平移个单位长度后,与y 轴交于点C ,与x 轴交于点D .①若,求的面积;②若四边形为平行四边形,求m 的值.24.如图,、为的直径,连接、、、.点M 在上,点N 在上,且,.(1)求证:;(2)求证:;(3)若,求的长。

广东省汕头市潮南区2018年初中毕业生学业考试模拟数学试题(附答案)

2018年汕头市潮南区初中毕业生学业考试(模拟)数学科试题一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,请将答题卡上对应题目所选的选项涂黑.1.﹣5的倒数是()A.B.±5 C.5 D.﹣2.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.3.下列计算正确的是()A.a2+a2=a4B.a2•a3=a6C.(﹣a2)2=a4D.(a+1)2=a2+14.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140 B.120 C.160 D.1005.已知一组数据:3,4,6,7,8,8,下列说法正确的是()A.众数是2 B.众数是8 C.中位数是6 D.中位数是76.如图,a∥b,∠1=∠2,∠3=40°,则∠4 等于( )A.40°B.50°C.60°D.70°7.2017年广东汕头GDP总量超过2300亿人民币,2300亿用科学记数法表示为()A.0.23×1011B.2.3×1010C.2.3×1011D.0.23×10128.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A.6米B.6米C.3米D.3米9.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b10.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共6小题,每小题4分,共24分)请把下列各题的正确答案填写在答卷对应横线上.11.分解因式:2x2﹣4x+2=.12.函数y=中,自变量x的取值范围是.13.正八边形一个内角的度数为.14.定义运算“*”,规定x*y=ax2+by,其中a、b为常数,且1*2=5,2*1=6,则2*3=.15.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC=.16.如图,已知OB=1,以OB为直角边作等腰直角三角形A1BO,再以OA1为直角边作等腰直角三角形A2A1O,如此下去,则线段OA n的长度为.三、解答题(本大题共3小题,每小题6分,共18分)解答须写出文字说明、证明过程和演算步骤.17.计算:|﹣2|+2sin60°+﹣()02018.18.先化简,再求值:(+)÷.其中a=-119.如图,已知在△ABC中,AB=AC.(1)试用直尺和圆规在AC上找一点D,使AD=BD(不写作法,但需保留作图痕迹).(2)在(1)中,连接BD,若BD=BC,求∠A的度数.四、解答题(本大题共3小题,每小题7分,共21分)解答须作出文字说明、证明过程和演算步骤.20.某中学组织七、八、九年级学生参加全区作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)此次参赛的作文篇数共有篇;(2)扇形统计图中九年级参赛作文篇数对应的圆心角是度,并补全条形统计图;(3)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.21. 如图,在平行四边形ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.22.倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B 两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A ,B 两种型号的健身器材共50套,且恰好支出20000元,求A ,B 两种型号健身器材各购买多少套?(2)若购买A ,B 两种型号的健身器材共50套,且支出不超过18000元,求A 种型号健身器材至少要购买多少套?五、解答题(本大题共有3小题,每小题9分,共27分) 解答须作出文字说明、证明过程和演算步骤.23.如图,在平面直角坐标系中,一次函数y=mx+n (m ≠0)的图象与反比例函数y=(k ≠0)的图象交于第一、三象限内的A 、B 两点,与y 轴交于点C ,过点B 作BM ⊥x 轴,垂足为M ,BM=OM ,OB=2,点A 的纵坐标为4.(1)求该反比例函数和一次函数的解析式;(2)直接写出不等式mx+n< 的解集;(3)连接MC ,求四边形MBOC 的面积.24.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于点P ,AC=PC ,∠COB=2∠PCB.(1)求证:PC 是⊙O 的切线; (2)求证:BC=21AB ;(3)点M 是弧AB 的中点,CM 交AB 于点N ,若AB=4,求MN ·MC 的值。

2018-2019学年广东省汕头市金平区七年级(上)期末数学试卷(解析版)

2018-2019学年广东省汕头市金平区七年级(上)期末数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确答案填在答题卷相应的位置上. 1.8-的相反数是( ) A .18B .8-C .8D .18-2.北京某天的最高气温是10C ︒,最低气温是2C ︒-,则这天的温差是( ) A .12C ︒B .10C ︒-C .6C ︒D .6C ︒-3.在今年四川汶川地震抗震救灾过程中,国内外社会各界纷纷伸出援助之手,截止5月30日12时,共收到各类捐赠款物折合人民币约399亿元,这个数据用科学记数法表示为( )A .93.9910⨯元B .103.9910⨯元C .113.9910⨯元D .239910⨯元4.下列计算正确的是( ) A .224x x x += B .2352x x x +=C .321x x -=D .2222x y x y x y -=-5.方程22x x -=-的解是( ) A .1x =B .1x =-C .2x =D .0x =6.中国讲究五谷丰登,六畜兴旺.如图是一个正方体展开图,图中的六个正方形店内分别标有六畜:“猪”、“牛”、“羊”、“马”、“鸡”、“狗”.将其围成一个正方体后,则与“牛”相对的是( )A .猪B .马C .狗D .鸡7.如图,甲从A 点出发向北偏东70︒走到点B ,乙从点A 出发向南偏西15︒方向走到点C ,则BAC ∠的度数是( )A .125︒B .160︒C .85︒D .105︒8.根据等式的性质,下列变形正确的是( ) A .如果23x =,那么23x a a= B .如果x y =,那么55x y -=- C .如果x y =,那么22x y -=-D .如果162x =,那么3x =9.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( )A .0ab >B .0a b +<C .||||a b <D .0a b ->10.程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .3(100)1003xx +-= B .3(100)1003xx --= C .10031003xx -+= D .10031003xx --= 二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卷相应的位置上.11.若规定汽车向右行驶2千米记作2+千米,则向左行驶6千米记作 千米. 12.|8|-= .13.计算:222(2)-+-= .14.如图,将a 、b 、c 用“<”号连接是 .15.已知5018a ∠=︒',则a ∠的余角是 ︒ '.16.下列图案是晋商大院窗格的一部分,其中“〇”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“〇”的个数为 个.三、解答题(一)(本大题3小题,每小题6分,共18分) 17.计算:22331(126)()2-+-+⨯-18.解方程:12123x x+--=. 19.如图,平面上有三个点A 、B 、C ,根据下列语句画图: ①画射线BC ; ②画直线AB ; ③画线段AC .四、解答题(二)(本大题3小题,每小题7分,共21分)20.先化简,再求值:2233(62)12x y xy xy x y --+++,其中1x =-,2y =.21.某书店在促销活动中,推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.有一次,小明到该书店购书,到收银台付款时,他先买优惠卡再凭卡付款,结果节省了12元,求小明不凭卡购书的书价为多少元? 22.根据题意及解答过程填空:如图所示,10AB cm =,D 为AC 的中点,2DC cm =,13BE BC =,求CE 的长.解:因为D 为AC 的中点,2DC cm =. 所以AC = DC = cm . 由图可知:BC = AC - 10cm =- cm= cm .所以13BE BC == cm .所以CE BC BE =-= cm .五、解答题(三)(本大题3小题,每小题9分,共27分)23.我们定义一种新运算:*2a b a ab=+(等号右边为统筹意义的运算):(1)若13**2x x=,求x的值;(2)若(3)*(2*)24x x-=+,求x的值.24.如图,90AOB DOC∠=∠=︒,OE平分AOD∠,反向延长射线OE至F.(1)AOD∠和BOC∠是否互补?说明理由;(2)射线OF是BOC∠的平分线吗?说明理由;(3)反向延长射线OA至点G,射线OG将COF∠分成了4:3的两个角,求AOD∠.25.如图1,已知面积为12的长方形ABCD,一边AB在数轴上.点A表示的数为2-,点B 表示的数为1,动点P从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,设点P运动时间为(0)t t>秒.(1)长方形的边AD长为单位长度;(2)当三角形ADP面积为3时,求P点在数轴上表示的数是多少;(3)如图2,若动点Q以每秒3个单位长度的速度,从点A沿数轴向右匀速运动,与P点出发时间相同.那么当三角形BDQ,三角形BPC两者面积之差为12时,直接写出运动时间t的值.2018-2019学年广东省汕头市金平区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确答案填在答题卷相应的位置上. 1.8-的相反数是( ) A .18B .8-C .8D .18-【解答】解:8-的相反数是8,故C 符合题意, 故选:C .2.北京某天的最高气温是10C ︒,最低气温是2C ︒-,则这天的温差是( ) A .12C ︒B .10C ︒-C .6C ︒D .6C ︒-【解答】解:10(2)--, 102=+,12C ︒=.故选:A .3.在今年四川汶川地震抗震救灾过程中,国内外社会各界纷纷伸出援助之手,截止5月30日12时,共收到各类捐赠款物折合人民币约399亿元,这个数据用科学记数法表示为( ) A .93.9910⨯元B .103.9910⨯元C .113.9910⨯元D .239910⨯元【解答】解:399亿元这个数据用科学记数法表示为103.9910⨯元. 故选:B .4.下列计算正确的是( ) A .224x x x += B .2352x x x +=C .321x x -=D .2222x y x y x y -=-【解答】解:A 、原式22x =,错误;B 、原式不能合并,错误;C 、原式x =,错误;D 、原式2x y =-,正确,故选:D .5.方程22-=-的解是()x xA.1x=x=D.0 x=B.1x=-C.2【解答】解:移项得:22+=+x x即24x=∴=.x2故选:C.6.中国讲究五谷丰登,六畜兴旺.如图是一个正方体展开图,图中的六个正方形店内分别标有六畜:“猪”、“牛”、“羊”、“马”、“鸡”、“狗”.将其围成一个正方体后,则与“牛”相对的是()A.猪B.马C.狗D.鸡【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“猪”相对的字是“羊”;“马”相对的字是“狗”;“牛”相对的字是“鸡”.故选:D.7.如图,甲从A点出发向北偏东70︒走到点B,乙从点A出发向南偏西15︒方向走到点C,则BAC∠的度数是()A.125︒B.160︒C.85︒D.105︒【解答】解:AB于正东方向的夹角的度数是:907020︒-︒=︒,则209015125BAC∠=︒+︒+︒=︒.故选:A.8.根据等式的性质,下列变形正确的是()A .如果23x =,那么23x a a= B .如果x y =,那么55x y -=- C .如果x y =,那么22x y -=- D .如果162x =,那么3x =【解答】解:A 、如果23x =,那么23x a a=,(0)a ≠,故此选项错误; B 、如果x y =,那么55x y -=-,故此选项错误; C 、如果x y =,那么22x y -=-,正确;D 、如果162x =,那么12x =,故此选项错误;故选:C .9.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( )A .0ab >B .0a b +<C .||||a b <D .0a b ->【解答】解:0b a <<,||||b a <. A 、0ab <,故A 不符合题意; B 、0a b +>,故B 不符合题意; C 、||||b a <,故C 不符合题意;D 、0a b ->,故D 符合题意;故选:D .10.程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .3(100)1003xx +-= B .3(100)1003xx --= C .10031003xx -+= D .10031003xx --= 【解答】解:设大和尚有x 人,则小和尚有(100)x -人, 根据题意得:10031003xx -+=; 故选:C .二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卷相应的位置上.11.若规定汽车向右行驶2千米记作2+千米,则向左行驶6千米记作 6- 千米. 【解答】解:向右行驶2千米记作2+千米, ∴向左行驶6千米记作6-千米,故答案为:6-. 12.|8|-= 8 . 【解答】解:80-<, |8|(8)8∴-=--=.故答案为:8.13.计算:222(2)-+-= 0 . 【解答】解:222(2)-+- 44=-+ 0=.故答案为:0.14.如图,将a 、b 、c 用“<”号连接是 c b a << .【解答】解:根据数轴上右边的数大于左边的数,可得:c b a <<. 故答案为:c b a <<15.已知5018a ∠=︒',则a ∠的余角是 39 ︒ '. 【解答】解:5018a ∠=︒', 则a ∠的余角9050183942'=︒-︒'=︒; 故答案为:39,42.16.下列图案是晋商大院窗格的一部分,其中“〇”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“〇”的个数为 32n + 个.【解答】解:第一个图案为325+=个窗花; 第二个图案为2328⨯+=个窗花;第三个图案为33211⨯+=个窗花; ⋯从而可以探究:第n 个图案所贴窗花数为(32)n +个. 故答案为:32n +.三、解答题(一)(本大题3小题,每小题6分,共18分) 17.计算:22331(126)()2-+-+⨯-【解答】解:22331(126)()2-+-+⨯-2271(6)()8=-+-⨯- 27136()8=-+⨯- 1121.5=--122.5=-.18.解方程:12123x x+--=. 【解答】解:去分母得:33642x x +-=-, 移项合并得:57x =, 解得: 1.4x =.19.如图,平面上有三个点A 、B 、C ,根据下列语句画图: ①画射线BC ; ②画直线AB ; ③画线段AC .【解答】解:如图,射线BC 、直线AB 、线段AC 为所作.四、解答题(二)(本大题3小题,每小题7分,共21分)20.先化简,再求值:2233(62)12x y xy xy x y --+++,其中1x =-,2y =. 【解答】解:原式223183612x y xy xy x y =-+-++25155x y xy =--,当1x =-,2y =时,原式5121512535=⨯⨯+⨯⨯-=.21.某书店在促销活动中,推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.有一次,小明到该书店购书,到收银台付款时,他先买优惠卡再凭卡付款,结果节省了12元,求小明不凭卡购书的书价为多少元?【解答】解:设李明同学此次购书的总价值是人民币是x 元, 则有:200.812x x +=- 解得:160x =答:小明不凭卡购书的书价为160元. 22.根据题意及解答过程填空:如图所示,10AB cm =,D 为AC 的中点,2DC cm =,13BE BC =,求CE 的长.解:因为D 为AC 的中点,2DC cm =. 所以AC = 2 DC = cm . 由图可知:BC = AC - 10cm =- cm= cm .所以13BE BC == cm .所以CE BC BE =-= cm .【解答】解:因为D 为AC 的中点,2DC cm =. 所以24AC DC cm ==.⋯+(1分)由图可知:BC AB AC =-⋯104cm cm =- ⋯6cm =.⋯ 所以123BE BC cm ==.⋯ 所以4CE BC BE cm =-=.⋯故答案为:2,4,AB ,4,6,2,4.五、解答题(三)(本大题3小题,每小题9分,共27分)23.我们定义一种新运算:*2a b a ab =+(等号右边为统筹意义的运算):(1)若13**2x x =,求x 的值; (2)若(3)*(2*)24x x -=+,求x 的值.【解答】解:(1)3*23363x x x =⨯+=+1111*212222x x x =⨯+=+, 16312x x ∴+=+, 2x ∴=; (2)2*22242x x x =⨯+=+,3*(2*)2(3)(3)(42)6126186x x x x ∴-=-+-+=---=--, 18624x x ∴--=+,6x ∴=-24.如图,90AOB DOC ∠=∠=︒,OE 平分AOD ∠,反向延长射线OE 至F .(1)AOD ∠和BOC ∠是否互补?说明理由;(2)射线OF 是BOC ∠的平分线吗?说明理由;(3)反向延长射线OA 至点G ,射线OG 将COF ∠分成了4:3的两个角,求AOD ∠.【解答】解:(1)因为AOD BOC∠+∠360AOB DOC=︒-∠-∠3609090=︒-︒-︒180=︒,所以AOD∠和BOC∠互补.(2)因为OE平分AOD∠,所以AOE DOE∠=∠,因为18090COF DOC DOE DOE∠=︒-∠-∠=︒-∠,18090BOF AOB AOE AOE∠=︒-∠-∠=︒-∠,所以COF BOF∠=∠,即OF是BOC∠的平分线.(3)因为OG将COF∠分成了4:3的两个部分,所以:4:3COG GOF∠∠=或者:3:4COG GOF∠∠=.①当:4:3COG GOF∠∠=时,设4COG x∠=︒,3GOF x∠=︒,由(2)得:7BOF COF x∠=∠=︒因为180AOB BOF FOG∠+∠+∠=,所以9073180x x++=,解方程得:9x=,所以1801801454AOD BOC x∠=-∠=-=.②当:3:4COG GOF∠∠=时,设3COG x∠=︒,4GOF x∠=︒,同理可列出方程:9074180x x++=,解得:9011x=,所以7201801801411 AOD BOC x∠=-∠=-=.综上所述,AOD∠的度数是54或720 11.25.如图1,已知面积为12的长方形ABCD,一边AB在数轴上.点A表示的数为2-,点B表示的数为1,动点P从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,设点P运动时间为(0)t t>秒.(1)长方形的边AD长为4单位长度;(2)当三角形ADP面积为3时,求P点在数轴上表示的数是多少;(3)如图2,若动点Q以每秒3个单位长度的速度,从点A沿数轴向右匀速运动,与P点出发时间相同.那么当三角形BDQ,三角形BPC两者面积之差为12时,直接写出运动时间t的值.【解答】解:(1)点A表示的数为2-,点B表示的数为1,3AB∴=,长方形ABCD的面积为12,4CD∴=,故答案为4;(2)114322ADPS AP AD AP∆==⨯=,1.5AP∴=,点P在点A之左时,2 1.5 3.5--=-,P点在数轴上表示 3.5-;点P在点A之右时,1.520.5-=-,P点在数轴上表示0.5-;(3)①当Q在B点的左侧,且12BDQ BPCS S∆∆-=时,则111(33)44222t t-⨯-⨯=,解得1116t=;②当Q在B点的左侧,12BPC BDQS S∆∆-=时,则1114(33)4222t t⨯--⨯=,解得1316t=;③当Q在B点的右侧,且12BDQ BPCS S∆∆-=时,则111(33)44222t t-⨯-⨯=,解得138t=;④当Q在B点的右侧侧,12BPC BDQS S∆∆-=时,则1114(33)4222t t⨯--⨯=,解得118t=.。

2018-2019学年广东省汕头市金平区九年级(上)期末数学试卷(解析版)

2018-2019学年广东省汕头市金平区九年级(上)期末数学试卷一、选择题(本大题10小题,每题3分,共30分)在每小题列出的四个选项中,只有一个是正确.1.关于x的一元二次方程2x2﹣mx﹣3=0的一个解为x=﹣1,则m的值为()A.﹣1B.﹣3C.5D.12.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是()A.B.C.D.3.下列事件中,必然事件是()A.抛一枚硬币,正面朝上B.打开电视频道,正在播放《今日视线》C.射击运动员射击一次,命中10环D.地球绕着太阳转4.如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=1,则⊙O的半径为()A.8.5B.7.5C.9.5D.85.双曲线y=在第一、三象限内,则k的取值范围是()A.k>0B.k<0C.k>1D.k<16.如图,为了美化校园,学校在一块边角空地建造了一个扇形花圃,扇形圆心角∠AOB=120°,半径OA为3m,那么花圃的面积为()A.6πm2B.3πm2C.2πm2D.πm27.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=130°,则∠BOD=()A.50°B.80°C.100°D.130°8.已知关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则k的取值范围是()A.k<B.k<﹣C.k<3D.k>﹣39.如图,某小区规划在一个长50米,宽30米的矩形场地ABCD上,修建三条同样宽的道路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若使每块草坪面积都为178平方米,设道路宽度为x米,则()A.(50﹣2x)(30﹣x)=178×6B.30×50﹣2×30x﹣50x=178×6C.(30﹣2x)(50﹣x)=178D.(50﹣2x)(30﹣x)=17810.已知:如图,矩形ABCD中,AB=2cm,AD=3cm.点P和点Q同时从点A出发,点P以3cm/s的速度沿A→D方向运动到点D为止,点Q以2cm/s的速度沿A→B→C→D 方向运动到点D为止,则△APQ的面积S(cm2)与运动时间t(s)之间函数关系的大致图象是()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分)11.方程2x2﹣6=0的解是.12.在一个不透明的布袋中装有4个白球和n个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=.13.抛物线y=3(x﹣2)2+5的顶点坐标是.14.若点(p,2)与(﹣3,q)关于原点对称,则p+q=.15.如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为.16.如图,⊙O为△ABC的内切圆,D、E、F分别为切点,已知∠C=90°,⊙O半径长为1cm,BC=3cm,则AD长度为cm.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.解方程:x2﹣6x﹣40=018.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有144台电脑被感染,每轮感染中平均一台电脑会感染多少台电脑?19.已知:AB为⊙O的直径.(1)作OB的垂直平分线CD,交⊙O于C、D两点;(2)在(1)的条件下,连接AC、AD,则△ACD为三角形.四、解答题(二)(本大题共3小题,每小题6分,共21分)20.小明和小亮两同学做游戏,游戏规则是:有一个不透明的盒子,里面装有两张红卡片,两张绿卡片,卡片除颜色外其它均相同,两人先后从盒子中取出一张卡片(不放回),若两人所取卡片的颜色相同,则小明获胜,否则小亮获胜.(1)请用画树状图或列表法列出游戏所有可能的结果;(2)请根据你的计算结果说明游戏是否公平,若不公平,你认为对谁有利?21.某影城装修后重新开业,试营业期间统计发现,影院每天售出的电影票张数y(张)与电影票售价x(元/张)之间满足一次函数的关系:y=﹣2x+240(50≤x≤80),x是整数,影院每天运营成本为2200元,设影院每天的利润为w(元)(利润=票房收入﹣运营成本)(1)试求w与x之间的函数关系式;(2)影院将电影票售价定为多少时,每天获利最大?最大利润是多少元?22.如图,将矩形ABCD绕点C旋转得到矩形EFCG,点E在AD上.延长AD交FG于点H(1)求证:△EDC≌△HFE;(2)若∠BCE=60°,连接BE、CH.证明:四边形BEHC是菱形.五、解答题(三)(本大题共3小题,每题9分,共27分)23.如图,在平面直角坐标系中,点B在x轴上,∠ABO=90°,AB=BO,直线y=﹣3x﹣4与反比例函数y=交于点A,交y轴于C点.(1)求k的值;(2)点D与点O关于AB对称,连接AD、CD,证明△ACD是直角三角形;(3)在(2)的条件下,点E在反比例函数图象上,若S△OCE=S△OCD,求点E的坐标.24.如图1,AB为⊙O的直径,点C为⊙O上一点,CD平分∠ACB交⊙O于点D,交AB 于点E.(1)求证:△ABD为等腰直角三角形;(2)如图2,ED绕点D顺时针旋转90°,得到DE′,连接BE′,证明:BE′为⊙O 的切线;(3)如图3,点F为弧BD的中点,连接AF,交BD于点G,若DF=1,求AG的长.25.已知抛物线y=x2+bx+c与x轴交于A(4,0)、B(﹣2,0),与y轴交于点C.(1)求抛物线的解析式;(2)点D为第四象限抛物线上一点,设点D的横坐标为m,四边形ABCD的面积为S,求S与m的函数关系式,并求S的最值;(3)点P在抛物线的对称轴上,且∠BPC=45°,请直接写出点P的坐标.2018-2019学年广东省汕头市金平区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题10小题,每题3分,共30分)在每小题列出的四个选项中,只有一个是正确.1.关于x的一元二次方程2x2﹣mx﹣3=0的一个解为x=﹣1,则m的值为()A.﹣1B.﹣3C.5D.1【解答】解:把x=﹣1代入方程2x2﹣mx﹣3=0得2+m﹣3=0,解得m=1.故选:D.2.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是()A.B.C.D.【解答】解:A、不是中心对称图形的卡片,故此选项错误;B、是中心对称图形的卡片,故此选项正确;C、不是中心对称图形的卡片,故此选项错误;D、不是中心对称图形的卡片,故此选项错误;故选:B.3.下列事件中,必然事件是()A.抛一枚硬币,正面朝上B.打开电视频道,正在播放《今日视线》C.射击运动员射击一次,命中10环D.地球绕着太阳转【解答】解:A、抛一枚硬币,正面朝上是随机事件;B、打开电视频道,正在播放《今日视线》是随机事件;C、射击运动员射击一次,命中10环是随机事件;D、地球绕着太阳转是必然事件;故选:D.4.如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=1,则⊙O的半径为()A.8.5B.7.5C.9.5D.8【解答】解:连接OA,∵AB⊥OD,∴AC=AB=4,设⊙O的半径为x,则OC=x﹣1,由勾股定理得,OA2=AC2+OC2,即x2=16+(x﹣1)2,解得,x=,答:⊙O的半径为.故选:A.5.双曲线y=在第一、三象限内,则k的取值范围是()A.k>0B.k<0C.k>1D.k<1【解答】解:∵函数图象在第一、三象限,∴k﹣1>0,解得k>1.故选:C.6.如图,为了美化校园,学校在一块边角空地建造了一个扇形花圃,扇形圆心角∠AOB=120°,半径OA为3m,那么花圃的面积为()A.6πm2B.3πm2C.2πm2D.πm2【解答】解:∵扇形花圃的圆心角∠AOB=120°,半径OA为3cm,∴花圃的面积为=3π,故选:B.7.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=130°,则∠BOD=()A.50°B.80°C.100°D.130°【解答】解:∵四边形ABCD为⊙O的内接四边形,∠BCD=130°,∴∠A+∠BCD=180°,∴∠A=50°,由圆周角定理得,2∠A=∠BOD=100°,故选:C.8.已知关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则k的取值范围是()A.k<B.k<﹣C.k<3D.k>﹣3【解答】解:∵关于x的方程x2﹣2x+3k=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×3k>0,解得:k<.故选:A.9.如图,某小区规划在一个长50米,宽30米的矩形场地ABCD上,修建三条同样宽的道路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若使每块草坪面积都为178平方米,设道路宽度为x米,则()A.(50﹣2x)(30﹣x)=178×6B.30×50﹣2×30x﹣50x=178×6C.(30﹣2x)(50﹣x)=178D.(50﹣2x)(30﹣x)=178【解答】解:设横、纵道路的宽分别为x米、2x米,则每块草坪的相邻两边的长度分别为(50﹣2x)米、(30﹣x)米,根据题意得:(50﹣2x)×(30﹣x)=178×6,故选:A.10.已知:如图,矩形ABCD中,AB=2cm,AD=3cm.点P和点Q同时从点A出发,点P以3cm/s的速度沿A→D方向运动到点D为止,点Q以2cm/s的速度沿A→B→C→D 方向运动到点D为止,则△APQ的面积S(cm2)与运动时间t(s)之间函数关系的大致图象是()A.B.C.D.【解答】解:根据两个动点的运动状态可知(1)当0≤t≤1时,S=,此时抛物线开口向上;(2)当1≤t≤2.5时,S==3,此时,函数值不变,函数图象为平行于x轴的线段;(3)当2.5≤t≤3.5时,S=×3×(7﹣2t))=﹣t+.S随t的增大而减小.故选:C.二、填空题(本大题共6小题,每小题4分,共24分)11.方程2x2﹣6=0的解是x1=,x2=﹣.【解答】解:方程2x2﹣6=0,即x2=3,开方得:x=±,解得:x1=,x2=﹣,故答案为:x1=,x2=﹣12.在一个不透明的布袋中装有4个白球和n个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=12.【解答】解:不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,根据古典型概率公式知:P(白球)=,解得:n=12,故答案为:12.13.抛物线y=3(x﹣2)2+5的顶点坐标是(2,5).【解答】解:∵y=3(x﹣2)2+5,∴抛物线顶点坐标为(2,5),故答案为:(2,5).14.若点(p,2)与(﹣3,q)关于原点对称,则p+q=1.【解答】解:∵点(p,2)与(﹣3,q)关于原点对称,∴p=3,q=﹣2,∴p+q=3﹣2=1.故答案为:1.15.如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为4.【解答】解:设D(x,y),∵反比例函数y=的图象经过点D,∴xy=2,∵D为AB的中点,∴B(x,2y),∴OA=x,OC=2y,∴S矩形OABC=OA•OC=x•2y=2xy=2×2=4,故答案为:4.16.如图,⊙O为△ABC的内切圆,D、E、F分别为切点,已知∠C=90°,⊙O半径长为1cm,BC=3cm,则AD长度为3cm.【解答】解:如图,连接OE,OF,OD,∵⊙O为△ABC内切圆,与三边分别相切于D、E、F,∴OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,∴四边形OECF为矩形而OF=OE,∴四边形OECF为正方形,∴CE=OE=CF=OF=1cm,∴BE=BD=2cm,∵AC2+BC2=AB2,∴(AD+1)2+9=(AD+2)2,∴AD=3cm,故答案为:3.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.解方程:x2﹣6x﹣40=0【解答】解:x2﹣6x﹣40=0(x﹣10)(x+4)=0,∴x﹣10=0或x+4=0,∴x1=10,x2=﹣4.18.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有144台电脑被感染,每轮感染中平均一台电脑会感染多少台电脑?【解答】解:设每轮感染中平均一台电脑感染x台,依题意,得:(1+x)2=144,解得:x1=11,x2=﹣13(不合题意,舍去).答:每轮感染中平均一台电脑感染11台.19.已知:AB为⊙O的直径.(1)作OB的垂直平分线CD,交⊙O于C、D两点;(2)在(1)的条件下,连接AC、AD,则△ACD为等边三角形.【解答】解:(1)如图,CD为所作;(2)连接OC、OD、BC、BD,如图,∵CD垂直平分OB,∴OC=CB,DO=DB,∴OC=BC=OB=BD,∴△OCB、△OBD都是等边三角形,∴∠ABC=∠ABD=60°,∴∠ADC=∠ACD=60°,∴△ACD为等边三角形.故答案为等边.四、解答题(二)(本大题共3小题,每小题6分,共21分)20.小明和小亮两同学做游戏,游戏规则是:有一个不透明的盒子,里面装有两张红卡片,两张绿卡片,卡片除颜色外其它均相同,两人先后从盒子中取出一张卡片(不放回),若两人所取卡片的颜色相同,则小明获胜,否则小亮获胜.(1)请用画树状图或列表法列出游戏所有可能的结果;(2)请根据你的计算结果说明游戏是否公平,若不公平,你认为对谁有利?【解答】解:(1)画树状图如下:(2)不公平,理由如下:由树状图知共有12种等可能结果,其中两种颜色相同的有4种结果,两种颜色不同的有8种结果,所以小明获胜的概率为=,小亮获胜的概率为=,因为>,所以小亮获胜的可能性大,故此游戏不公平.21.某影城装修后重新开业,试营业期间统计发现,影院每天售出的电影票张数y(张)与电影票售价x(元/张)之间满足一次函数的关系:y=﹣2x+240(50≤x≤80),x是整数,影院每天运营成本为2200元,设影院每天的利润为w(元)(利润=票房收入﹣运营成本)(1)试求w与x之间的函数关系式;(2)影院将电影票售价定为多少时,每天获利最大?最大利润是多少元?【解答】解:(1)由题意:w=(﹣2x+240)•x﹣2200=﹣2x2+240x﹣2200(50≤x≤80).(2)w=﹣2x2+240x﹣2200=﹣2(x2﹣120x)﹣2200=﹣2(x﹣60)2+5000.∵x是整数,50≤x≤80,∴当x=60时,w取得最大值,最大值为5000.答:影院将电影票售价定为60元/张时,每天获利最大,最大利润是5000元.22.如图,将矩形ABCD绕点C旋转得到矩形EFCG,点E在AD上.延长AD交FG于点H(1)求证:△EDC≌△HFE;(2)若∠BCE=60°,连接BE、CH.证明:四边形BEHC是菱形.【解答】解:(1)证明:∵矩形FECG由矩形ABCD旋转得到,∴FE=AB=DC,∠F=∠EDC=90°,FH∥EC,∴∠FHE=∠CED.在△EDC和△HFE中,,∴△EDC≌△HFE(AAS);(2)∵△EDC≌△HFE,∴EH=EC.∵矩形FECG由矩形ABCD旋转得到,∴EH=EC=BC,EH∥BC,∴四边形BEHC为平行四边形.∵∠BCE=60°,EC=BC,∴△BCE是等边三角形,∴BE=BC,∴四边形BEHC是菱形.五、解答题(三)(本大题共3小题,每题9分,共27分)23.如图,在平面直角坐标系中,点B在x轴上,∠ABO=90°,AB=BO,直线y=﹣3x ﹣4与反比例函数y=交于点A,交y轴于C点.(1)求k的值;(2)点D与点O关于AB对称,连接AD、CD,证明△ACD是直角三角形;(3)在(2)的条件下,点E在反比例函数图象上,若S△OCE=S△OCD,求点E的坐标.【解答】解:(1)设点B的坐标为(a,0),∵∠ABO=90°,AB=BO,∴点A的坐标为(a,﹣a),∵点A在直线y=﹣3x﹣4上,∴﹣a=﹣3a﹣4,解得,a=﹣2,即点A的坐标为(﹣2,2),∵点A在反比例函数y=上,∴k=﹣4;(2)∵点D与点O关于AB对称,∴点D的坐标为(﹣4,0)∴OD=4,∴DB=BA=2,则∠ADB=45°,∵直线y=﹣3x﹣4交y轴于C点,∴点C的坐标为(0,﹣4),∴OD=OC,∴∠ODC=45°,∴∠ADC=∠ADB+∠ODC=90°,即△ACD是直角三角形;(3)设点E的坐标为(m,﹣),∵S△OCE=S△OCD,∴×4×4=×4×(﹣m),解得,m=﹣4,∴点E的坐标为(﹣4,1).24.如图1,AB为⊙O的直径,点C为⊙O上一点,CD平分∠ACB交⊙O于点D,交AB 于点E.(1)求证:△ABD为等腰直角三角形;(2)如图2,ED绕点D顺时针旋转90°,得到DE′,连接BE′,证明:BE′为⊙O 的切线;(3)如图3,点F为弧BD的中点,连接AF,交BD于点G,若DF=1,求AG的长.【解答】证明(1):∵AB是⊙O的直径,∴∠ADB=∠ADB=90°,∵CD平分∠ACB,∴=,∴AD=BD,∴△ABD是等腰直角三角形.(2)由旋转的性质得,∠EDE'=90°,DE=DE',∵∠ADB=90°,∴∠ADE=∠BDE',∵AD=BD,∴△ADE≌△BDE'(SAS),∴∠DAE=∠DBE',∵∠EAD=∠DCB=45°,∠ABD=∠DCA=45°,∴∠OBE'=∠ABD+∠DBE'=90°,∴BE′为⊙O的切线;(3)解:∵点F为的中点,∴∠FAD=∠DAB=22.5°,取AG的中点H,连结DH,∵∠ADB=90°,∴DH=AH=GH,∴∠ADH=∠FAD=22.5°,∴∠DHF=∠ADH+∠FAD=45°,∵∠AFD=∠ACD=45°,∴∠DHF=∠AFD,∴DH=DF=1,∴AG=2DH=2.25.已知抛物线y=x2+bx+c与x轴交于A(4,0)、B(﹣2,0),与y轴交于点C.(1)求抛物线的解析式;(2)点D为第四象限抛物线上一点,设点D的横坐标为m,四边形ABCD的面积为S,求S与m的函数关系式,并求S的最值;(3)点P在抛物线的对称轴上,且∠BPC=45°,请直接写出点P的坐标.【解答】解:(1)抛物线的了表达式为:y=(x﹣4)(x+2)=x2﹣x﹣4;(2)设点D(m,m2﹣m﹣4),S=S△OBC+S△OCD+S△ODA=AO×y D=+=[﹣(m2﹣m﹣4)]=﹣(m﹣2)2+16,当m=2时,S的最大值为16;(3)∠BPC=45°,则BC对应的圆心角为90°,如图作圆R,则∠BRC=90°,圆R交函数对称轴为点P,过点R作y轴的平行线交过点C与x轴的平行线于点N、交x轴于点M,设点R(m,n).∵∠BMR+∠MRB=90°,∠MRB+∠CRN=90°,∴∠CRN=∠MBR,∠BMR=∠RNC=90°,BR=RC,∴△BMR≌△RNC(AAS),∴CN=RM,RN=BM,即m+2=n+4,﹣n=m,解得:m=1,n=﹣1,即点R(1,﹣1),即点R在函数对称轴上,圆的半径为:=,则点P的坐标为:(1,﹣1+)或(1,﹣1﹣).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E
D
C
B

A

EDCBA

广东省汕头市金平区2018年初中毕业生学业模拟考试数学试卷(含答案)
说明:本试卷共 4页,25小题,满分 120 分.考试用时100 分钟.
注意事项:
1.答题前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写准考证号、姓名、试室号、座位号,
再用2B铅笔把试室号、座位号的对应数字涂黑.
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应答案选项涂黑,如需改动,用橡皮擦擦干净
后,再重新选涂其他答案,答案不能答在试卷上.
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;
如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的
答案无效.
4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.

一、相信你,都能选择对!四个选项中只有一个是正确的.(本大题10小题,每题3分,共30分)
1.﹣4的绝对值是( )A.4 B.﹣4 C.41 D.41
2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总
人口约为4400000000人,这个数用科学记数法表示为( )

A.44×108 B.4.4×109 C.4.4×108 D.4.4×1010
3.一组数据从小到大排列为2,3,4,x,6,9.这组数据的中位数是5,那么这组数据的众数为( )
A.4 B.5 C.5.5 D.6
4.下列四边形中,是中心对称而不是轴对称图形的是( )
A.平行四边形 B.矩形 C.菱形 D.正方形

5.如图,能判定EB∥AC的条件是( )
A.∠A=∠ABE B.∠A=∠EBD
C.∠C=∠ABC D.∠C=∠ABE

6.下列计算正确的是( )
A.a2+a2=a4 B.(﹣a)2﹣a2=0 C.a8÷a2=a4 D.a2•a3=a
6

7.一元二次方程x2﹣2x+p=0总有实数根,则p应满足的条件是( )
A.p>1 B. p=1 C.p<1 D
.p≤1

8.如图,沿AC方向修隧道,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取

∠ABD=145°,BD=500米,∠D=55°,使A、C、E在一条直线上,那么开挖点E与D的距离是( )
A.500sin55°米 B.500cos35°米 C.500cos55°米 D.500tan55°米
9.如图,在Rt△ABC中,∠C=90°,∠ABC=60°,AB的垂直平分线分别
交AB与AC于点D和点E,若CE=2,则AB的长是( )

A.4 B.43 C.8 D.83
10.如图,菱形ABCD的对角线AC与BD交于点O,AC=6,BD=8.动点E从点B出发,沿着
P
O
F

E

D
C
B

A

O
D'

C'

B'
D
C

B
A

D
C

B
A

O

D
C

BA

B﹣A﹣D在菱形ABCD的边上运动,运动到点D停止.点F是点E关于BD的对称点,EF交
BD于点P,若BP=x,△OEF的面积为y,则y与x之间的函数图象大致为( )

A. B.
C. D.
二.填空题(本大题6小题,每小题4分,共24分)

11.比较大小:4 17(填“>”或“<”)
12.一个多边形的每个外角都是60°,则这个多边形边数为 .
13.若|x+2|+5y=0,则xy的值为 .

14.分式方程aa134的根是 .
15.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD的长是 .
16.把边长为1的正方形ABCD绕点A逆时针旋转45°得到正方形AB′C′D′,
边B′C′与DC交于点O,则四边形AB′OD的周长为 .
三.解答题(一)(本大题3小题,每题6分,共18分)

17.(本题满分6分)计算:332160tan3101.

18.(本题满分6分)先化简,再求值: xxxxxx1121222,其中x=3.
19.(本题满分6分)在平行四边形ABCD中,AB=2AD.
(1)作AE平分∠BAD交DC于E(尺规作图,保留作图痕迹);
(2)在(1)的条件下,连接BE,判定△ABE的形状

(不要求证明).
四.解答题(二)(本大题3小题,每小题7分,共21分)
20.(本题满分7分)中秋佳节我国有赏月和吃月饼的传统,英才学校数学兴趣小组为了了解本校
学生喜爱月饼的情况,随机抽取了60名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计
图.(注:参与问卷调查的每一位同学在任何一种分类统计中只有一种选择)
请根据统计图完成下列问题:
(1)扇形统计图中,“很喜欢”的部分所对应的圆心角为 度;
条形统计图中,“很喜欢”月饼中喜欢“豆沙”月饼的学生有 人;
(2)若该校共有学生1200人,请根据上述调查结果,
估计该校学生中“很喜欢”月饼的有 人.
(3)李民同学最爱吃莲蓉月饼,陈丽同学最爱吃豆沙
月饼,现有重量、包装完全一样的豆沙、莲蓉、蛋黄
三种月饼各一个,让李民、陈丽每人各选一个,则
李民、陈丽两人都选中自己最爱吃的月饼的概率为 .

21.(本题满分7分)如图,将矩形纸片ABCD折叠,使点C与
点A重合,折痕EF分别与AB、DC交于点E和点F.
(1)证明:△ADF≌△AB′E;
(2)若AD=12,DC=18,求△AEF的面积.

22.(本题满分7分)飞马汽车销售公司3月份销售新上市一种新型低能耗汽车8辆,由于该型汽车的
优越的经济适用性,销量快速上升,5月份该公司销售该型汽车达18辆.
(1)求该公司销售该型汽车4月份和5月份的平均增长率;
(2)该型汽车每辆的进价为9万元,该公司的该型车售价为9.8万元/辆.且销售m辆汽车,汽车厂
返利销售公司0.04m万元/辆.若使6月份每辆车盈利不低于1.7万元,那么该公司6月份至少需要销
售该型汽车多少辆?(盈利=销售利润+返利)

五.解答题(三)(本大题3小题,每小题9分,共27分)
23.(本题满分9分)如图,在平面直角坐标系中,一次函数的图象y1=kx+b与反比例函数xny2的
GFEDCB
A

O
G
F

ED

C
B

A

图象交于点A(1,5)和点B(m,1).
(1)求m的值和反比例函数的解析式;
(2)当x>0时,根据图象直接写出不等式xn≥kx+b的解集;
(3)若经过点B的抛物线的顶点为A,求该抛物线的解析式.

24.(本题满分9分)如图,四边形ABCD内接于⊙O,AB=AD,对角线BD为⊙O的直径,AC与BD
交于点E.点F为CD延长线上,且DF=BC.
(1)证明:AC=AF;

(2)若AD=2,AF=13,求AE的长;
(3)若EG∥CF交AF于点G,连接DG.证明:DG为⊙O的切线.

25.(本题满分9分)如图,在矩形ABCD中,AB=5,AD=4,E为AD边上一动点(不与点A重合),
AF⊥BE,垂足为F,GF⊥CF,交AB于点G,连接EG.设AE=x,S△BEG=y.
(1)证明:△AFG∽△BFC;
(2)求y与x的函数关系式,并求出y的最大值;
(3)若△BFC为等腰三角形,请直接写出x的值.

考试数学参考答案
一.选择题(本大题10小题,每题3分,共30分)
1.A 2.B 3.D 4.A 5.A 6.B 7.D 8.C 9.B 10.D
二.填空题(本大题6小题,每小题4分,共24分)

相关文档
最新文档