考点精讲及典型例题解析
中考必考实验—粗略测算大气压值实验(实验精讲+典型例题)

实验十一、粗略测算大气压强的实验【实验目的】:粗略估算大气压强的数值。
【实验器材】:注射器;弹簧测力计;细线;橡皮帽;刻度尺。
【实验原理】:P=F/S知识依据:二力平衡(利用注射器的活塞受到弹簧测力计和大气压力处于平衡状态时,即二力平衡。
)【实验步骤】:①把注射器的活塞推至注射器针筒的底端,然后用橡皮帽封住注射器小孔;②如图甲所示,用细线拴住注射器活塞颈部,使线的一端与弹簧测力计的挂钩相连,然后水平向右慢慢拉动针筒,当活塞刚开始滑动时,记下弹簧测力计的示数为F;③读出注射器针筒上有刻度部分的容积V;④用刻度尺测出注射器针筒上有刻度部分的长度L。
【实验记录】:【数据处理】:①注射器近似圆柱体,由体积公式可以算出活塞的横截面积S=V/L②根据公式p=求出大气压强;【考点方向】1、该实验求出的大气压是估测数值,和真实的大气压数值存在差距主要原因是两方面:答:一、活塞与注射器之间存在摩擦;二、空气难以排尽。
2、若不考虑其它因素,根据二力平衡的知识可知,研究对象在水平方向所受的大气压力与拉力大小相等。
3、注射器顶端装针头处空气无法排尽,这将会使测量结果偏小。
4、空气无法排尽可以采取的方法是:将注射器内抽满水,端口向上推动活塞排水,使得顶端保留水,再封口。
5、实验前在活塞周围涂抹润滑油主要好处有:一、减小摩擦;二、增加气密性。
6、实验过程中让弹簧测力计和注射器保持在水平方向目的:可以减小活塞自身重力对实验的影响,从而提高实验的精确程度。
7、当弹簧测力计量程不够时或者为了拉动时更省力可以采取的方法是:可换用小量程注射器。
(减小活塞的横截面积)8、该实验的原理依据是:P=F/S知识依据:二力平衡(利用注射器的活塞受到弹簧测力计和大气压力处于平衡状态时,即二力平衡。
)9、把注射器的活塞推到注射器筒的底端,这样做的目的是排尽筒内空气,密封注射器。
(从而使得作用在活塞上的力只有大气压力和弹簧测力计拉力)10、实验过程中应该水平方向、缓慢匀速拉动注射器筒,当注射器的活塞刚被拉动时,记下弹簧测力计的示数,此时拉力等于大气压力。
专题01 地球仪与地图(精品讲义)-备战2023地理一轮复习全考点精讲练(浙江)(解析版)

专题01地球仪与地图一、课程标准深解读【课程标准】1.理解地球仪、经纬网及其地理意义。
2.学会使用地图上的方向、比例尺、常用图例与注记。
【核心素养】人地协调观:利用经纬网指导人们的生产、生活活动。
区域认知:理解经纬网的划分规律,学会利用经纬网进行区域定位。
正确使用地图上的图例和注记。
综合思维:正确利用经纬网定方向、定距离和定最短航线等。
地理实践力:综合分析经纬网在生产生活中的实际应用。
二、必备知识当堂清考点1.地球的形状和大小形状:赤道半径大于极半径,故地球为两极略扁、赤道略鼓的椭球体。
考点2.经纬网(一)经线和纬线经线指示南北方向,为半圆,长度都相等。
纬线指示东西方向,为圆圈,长度不等,赤道最长,往两极逐渐缩小为一点。
(二)经度和纬度(三)经纬网的应用1.定位置(1)经纬网图上经纬度位置的确定:在经纬网图上确定经纬度时,首先要判断出是经线还是纬线,然后根据度数确定出经纬度,再根据经纬度进一步确定半球位置、五带位置、时区位置、风带位置等。
(2)根据北极星仰角确定纬度为北纬,北极星仰角即当地地理纬度。
(3)确定区域位置:根据经纬度确定所在的地形区、气候区、自然带、大洲、大洋等区域。
2.定方向(1)同一幅经纬网图,经线指示南北方向,纬线指示东西方向。
(2)不同幅经纬网图,读出两点的经纬度后,将两点绘制到同一幅经纬网图中判读。
(3)判断东西方向要选择劣弧段,即两点间经度差小于180°的弧段。
3.定距离(1)在同一经线上,纬度相差1°的实际弧长大约为111千米。
若两地在同一经线上,只要知道两地的纬度差,就能计算出两地间的距离。
(2)在赤道上,经度相差1°的实际弧长大约为111千米。
在同一条纬线上,经度相差1°对应的实际弧长大约为111千米乘以该纬线纬度数的余弦值(不是最短距离)。
4.定范围:范围大小与跨经纬度的多少和纬线长度有关。
跨经度数相同,纬度越高,范围越小。
人教版小学六年级上册数学精品讲义第4讲 比(思维导图+知识梳理+例题精讲+易错专练)(含答案)

第4讲比(思维导图+知识梳理+例题精讲+易错专练)一、思维导图二、知识点梳理知识点一:比的意义和各个部分的名称1、比:两个数相除也叫两个数的比;2、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
3、比的读法、写法:a比b记作a:b,读作a比b。
4、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20= =12÷20= =0.6 12∶20读作:12比20知识点二:比的基本性质和化简比1、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。
2、化简比化简之后结果还是一个比,不是一个数。
(1)用比的前项和后项同时除以它们的最大公因数。
(2)两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
也可以求出比值再写成比的形式。
(3)两个小数的比,可以先把小数比化成整数比,再按整数比的化简方法化简。
知识点三:比的应用按比例分配问题的解决方法:1、已知单位“1”的量用乘法。
2、未知单位“1”的量用除法。
3、分数应用题基本数量关系(把分数看成比)(1)甲是乙的几分之几?甲=乙×几分之几乙=甲÷几分之几几分之几=甲÷乙(2)甲比乙多(少)几分之几?4、画线段图:(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。
(2)分析数量关系。
(3)找等量关系。
(4)列方程。
两个量的关系画两条线段图,部分和整体的关系画一条线段图。
三、例题精讲考点一:比的意义、比各部分的名称【典型一】一根绳子,用去,用去的和剩下的比是3:2,剩下的是总长度的。
【分析】把一根绳子总长度看作5份,用去,也就是用去5×=3份。
据此可求出用去的和剩下的比,再用除法求出剩下的是总长度的几分之几。
【解答】解:5×=3(份)5﹣3=2(份)用去的和剩下的比是3:2。
初中英语语法知识点精讲+习题+练习(精华版).doc

初中英语语法知识点精讲+习题+练习(精华版)(注:共四部分)第一部分1) leave的用法1.“leave+地点”表示“离开某地”。
例如:When did you leave Shanghai?你什么时候离开上海的?2.“leave for+地点”表示“动身去某地”。
例如:Next Friday, Alice is leaving for London.下周五,爱丽斯要去伦敦了。
3.“leave+地点+for+地点”表示“离开某地去某地”。
例如:Why are you leaving Shanghai for Beijing?你为什么要离开上海去北京?2) 情态动词should“应该”学会使用should作为情态动词用,常常表示意外、惊奇、不能理解等,有“竟会”的意思,例如:How should I know? 我怎么知道?Why should you be so late today? 你今天为什么来得这么晚?should有时表示应当做或发生的事,例如:We should help each other.我们应当互相帮助。
我们在使用时要注意以下几点:1. 用于表示“应该”或“不应该”的概念。
此时常指长辈教导或责备晚辈。
例如:You should be here with clean hands. 你应该把手洗干净了再来。
2. 用于提出意见劝导别人。
例如:You should go to the doctor if you feel ill. 如果你感觉不舒服,你最好去看医生。
3.用于表示可能性。
should的这一用法是考试中常常出现的考点之一。
例如:We should arrive by supper time. 我们在晚饭前就能到了。
She should be here any moment. 她随时都可能来。
3) What...? 与Which...?1. what 与which 都是疑问代词,都可以指人或事物,但是what仅用来询问职业。
专题13 水循环(精品讲义)-备战2023地理一轮复习全考点精讲练(浙江)(解析版)

专题13水循环一、课程标准深解读【课程标准】运用示意图,说明水循环的过程及其地理意义。
绘制示意图,解释各类陆地水体之间的相互关系。
【核心素养】综合思维:通过自然界水循环的学习,树立正确认识和利用水资源的自然规律,实现人类与环境的和谐发展的观念。
区域认知:认识可利用的淡水在地球水体中只占有很小的比例,增强学生对水资源的忧患意识,养成节约用水的习惯,树立科学的资源观。
人地协调观:结合图文材料,运用水循环原理,分析洪涝灾害产生的原因,并提出防治洪涝灾害的措施。
地理实践力:通过学习,增强学生探究知识内在联系,认识事物是有普遍联系、人与自然是相互影响的辨证唯物观。
二、必备知识当堂清考点1.水循环1、概念:指自然界的水在地理环境中的移动,以及与之相伴的状态变化。
2、类型:3、意义:(1)联系四大圈层,维持全球水量的动态平衡。
(2)海陆间联系的主要纽带。
(3)促进地球上物质迁移和能量转换。
(4)塑造多姿多彩的地表形态。
考点2.陆地水体间的相互关系1、陆地水:(1)概念:分布在陆地的各类水体的总称。
(2)分类:①地表水:包括河水、湖泊水、沼泽水、冰川、生物水等地表水体。
②地下水:是指埋藏于地表以下的水。
2、陆地水体间的相互关系:3、河流的补给类型:4、陆地水体与自然环境的关系:(1)自然环境制约了陆地水体的类型、水量、分布:自然环境陆地水体特征气候湿润地区河网密度大,水量丰富高纬度和高海拔地区多冰川发育地势较低的地区易形成湖泊沼泽断陷凹地可形成较大的湖泊(2)陆地水体对自然环境的影响:①河流、湖泊、沼泽对周边气候具有调节作用;②冰川、河流等是塑造地表形态的主要动力。
(3)陆地水体与人类活动的关系密切:①提供人类活动所必需的淡水资源;②具有航运、发电、水产养殖、生态服务等价值。
三、关键能力看拓展拓展1.人类活动对水循环的影响拓展2.区分水循环类型的方法(1)联系的圈层不同。
海陆间循环和陆地内循环涉及四个圈层,而海上内循环不涉及岩石圈。
人教版小学六年级上册数学精品讲义第5讲 圆(思维导图 知识梳理 例题精讲 易错专练)(含答案)

第5讲圆(思维导图+知识梳理+例题精讲+易错专练)一、思维导图二、知识点梳理知识点一:圆的认识1.圆心、半径、直径用圆规画圆时,针尖所在的点叫做圆心,一般用字母O表示,连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示,通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。
在任意一个圆中都可以画出无数条半径和无数条直径。
2.同圆或等圆中半径、之间的关系在同圆或等圆中,所有的半径都相等,所有的直径也都相等,直径是半径的2倍;圆心相同,半径不同的圆叫做同心圆;圆是轴对称图形,它有无数条对称轴。
3.用圆规画圆用圆规画圆的方法:先定好两脚之间的距离,再把带有针尖的脚固定在一点上,最后把装有铅笔的脚旋转一周,就画出了一个圆。
知识点二:圆的周长1.意义:围成圆的曲线的长叫做圆的周长,周长一般用字母C来表示。
2.测量方法:滚动法、绕绳法、直接测量法。
3.圆周率:圆的周长总是它的直径的3倍多一些,这个固定的比值叫做圆周率,用字母Π来表示,Π是一个无线不循环小数。
C=Πd或2Πr。
已知圆的半径,求周长时,用C=2Πr进行计算;已知圆的直径,求周长时,用C=Πd进行计算。
知识点三:圆的面积1.意义:圆所占平面的大小叫做圆的面积,圆的面积一般用S表示。
2.已知圆的半径为r,S=Πr2已知直径或周长求面积时,都要先求出半径,再求出面积。
3.圆环:两个半径不相等的同心圆之间的部分叫做圆环,也叫做环形。
S=ΠR2-Πr23.圆与正方形组合的面积问题的应用(1)“外方内圆”图形中,圆的直径等于正方形的边长。
如果圆的半径为r,那么正方形和圆之间部分的面积为0.86r2。
(2)“外圆内方”图形中,这个正方形的对角线等于圆的直径。
如果圆的半径为r,那么圆和正方形之间部分的面积为1.14r2。
知识点四:扇形1.意义:圆上两点之间的部分叫做弧;一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
注意:扇形的大小由圆心角的度数和半径的长短决定。
简易方程-五年级上册数学精品讲义(思维导图+知识梳理+例题精讲+易错专练) 人教版(含答案)
第5讲 简易方程(思维导图+学问梳理+例题精讲+易错专练)一、思维导图二、学问点梳理学问点一:用字母表示数1.用字母表示数:在含有字母的式子里,字母之间的乘号可以记作“.”,也可以省略不写;2.用字母表示运算定律加法交换律:a+b=b+a ;加法结合律:(a+b )+c=a+(b+c )乘法交换律:ab=ba乘法结合律:(ab )c=a (bc )乘法安排律:(a+b )c=ac+bc留意:数和字母相乘,省略乘号时,一般把数写在字母前面,数和数相等不能省略乘号。
3.用字母表示简单的数量关系(1)用字母可以表示数量关系。
(2)将字母的具体数值代入含有字母的式子中,即可求得相应式子的值。
简易方程用字母表示数方程的意义解方程解简易方程实际问题与方程解不同类型的方程解方程等式的性质4.化简含有字母的式子并代入数据求值计算含有字母的式子的时候,可以先运用运算定律将含有字母的式子进行化简,再求值。
学问点二:方程的意义及等式的性质1.意义:含有未知数的等式叫做方程。
2.等式的性质性质1:等式两边加上或者减去同一个数,左右两边仍旧相等;性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍旧相等。
留意:方程肯定是等式,但等式不肯定是方程。
学问点三:解方程及实际问题1.使方程左右相等的未知数的值,叫做方程的解,求方程的解的过程叫做解方程;2.依据等式的性质解不同形式的方程;3.把求得的未知数的值代入原方程,看方程左边的值是否等于右边的值,假如相等,所求的未知数的值就是原方程的解,否则就不是。
留意:解方程的依据是等式的性质;解方程时等号要上下对齐。
4.略微简单的方程(1)列方程解决实际问题的步骤:首先,找出未知数,用字母X表示;其次,分析实际问题中的数量关系,找出等量关系,列方程;最终,解方程并检验作答。
(2)方程解法与算式解法的区分列方程解决问题时,未知数用字母表示,参与列式,算式解法中未知数不参与列式;列方程解决问题时依据题中的数量关系,列出含有未知数的等式,求未知数由解方程来完成,算术解法是依据题中已知数和未知数之间的关系确定解答步骤,再进行计算。
第2讲 位置讲义-五年级上册数学讲义(思维导图+知识梳理+ 例题精讲+易错专练)人教版(含答案)
第2讲位置(思维导图+学问梳理+典型精讲+易错专练)一、思维导图二、学问点梳理学问点一:用数对表示具体情境中物体的位置。
1、列和行的意义:竖排为列,横排为行;2、确定列和行的方法:确定列数从左往右数,确定行数从前往后数;3、用数对表示物体的位置:先数列数,再数行数,把两个数写在括号里,用逗号隔开,表示为(列数,行数)。
三、典型精讲考点一:用数对表示物体位置【典型一】(2020春•高邑县期中)如图,一个正方形的四个顶点分别是A、B、C、D,假如A点的位置是(1,1),B点的位置是(5,1),C点的位置是(5,5),那么D点的位置是()A.(5,1)B.(1,5)C.(5,0)D.(0,5)【分析】依据用数对表示点的位置的方法,第一个数字表示列,其次个数字表示行,A点的位置是(1,1),可得点A在第1列第1行,C点的位置是(5,5),可得点C在第5列第5行,所以点D在第1列第5行,那么D点的位置是(1,5),据此得解.【解答】依据分析可知:D点的位置是(1,5).故选:B.【典型二】我会确定位置。
(1)民生学校所在位置用数对表示为(8,5),请在图中方格里标出来。
(2)李刚同学家在(2,3),每天上学先向北面走2格,再向东面走6格就到学校了。
【分析】(1)依据数对的表示位置的方法,在图中标出民生学校的位置即可。
(2)依据地图上的方向和格数进行求解。
(答案不唯一)【解答】解:(1)(2)李刚同学家在(2,3),每天上学先向北面走2格,再向东面走6格就到学校了。
故答案为:北,2,东,6。
考点二:在方格纸上用数对确定物体位置【典型一】如图,假如有一个D点,顺次连接A、B、C、D、A能得到一个平行四边形.那么请你画出D点,并用数对表示.再按挨次连出这个平行四边形.【分析】依据平行四边形的特征,平行四边形对边平行且相等,因此,点D与点A在同一行,由于点A在点B的左边一列,点D也在点C的左一列,即点D在第7列,第2行,依据依据用数对表示点的位置的方法,第一个数字表示列数,其次个数字表示行数,即可用数对表示点D的位置.【解答】解:假如有一个D点,顺次连接A、B、C、D、A能得到一个平行四边形.那么请你画出D点,并用数对表示.再按挨次连出这个平行四边形(下图):点D用数对表示是:(7,2).【典型二】如图是绿苑动物园平面图的一部分.①熊猫馆在大门的正北方向200米处.②假如用(9,1)表示大门的位置,请你用数对表示出其它景点的位置.熊猫馆(9,3);鸟林(1,8);虎园(5,5);孔雀巢(2,4);猴山(12,7)③请你在图中标出这两个景点的位置.海底世界(4,7)狮子馆在大门东400m处.【分析】(1)依据给出的方向标,明确上北、下南、左西、右东,推断方位,在正北方,1格表示100米,向北2格即200米;(2)依据供应的数对,明确数对的表示方法即:先写列,再写行;进而得出;(3)依据给出的条件,画图即可;【解答】解:①熊猫馆在大门的正北方向200米处.②熊猫馆(9.3);鸟林(1,8);虎园(5,5);孔雀巢(2,4);猴山(12,7).③如图,故答案为:正北,200,(9,3),(1,8),(5,5),(2,4),(12,7).四、易错专练一、选择题(满分16分)1.王刚的座位用数对(3,5)表示,如图,他后面同学的座位用数对表示是()。
第03讲 平面向量的数量积 (精讲)(含答案解析)
第03讲平面向量的数量积(精讲)-2023年高考数学一轮复习讲练测(新教材新高考)第03讲平面向量的数量积(精讲)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:平面向量数量积的定义角度1:平面向量数量积的定义及辨析角度2:平面向量数量积的几何意义高频考点二:平面向量数量积的运算角度1:用定义求数量积角度2:向量模运算角度3:向量的夹角角度4:已知模求数量积角度5:已知模求参数高频考点三:平面向量的综合应用高频考点四:极化恒等式第四部分:高考真题感悟第一部分:知识点精准记忆1、平面向量数量积有关概念1.1向量的夹角已知两个非零向量a 和b ,如图所示,作OA a = ,OB b =,则AOB θ∠=(0θπ≤≤)叫做向量a 与b的夹角,记作,a b <> .(2)范围:夹角θ的范围是[0,]π.当0θ=时,两向量a ,b共线且同向;当2πθ=时,两向量a ,b 相互垂直,记作a b ⊥ ;当θπ=时,两向量a ,b共线但反向.1.2数量积的定义:已知两个非零向量a 与b ,我们把数量||||cos a b θ 叫做a 与b的数量积(或内积),记作a b ⋅ ,即||||cos a b a b θ⋅= ,其中θ是a 与b的夹角,记作:,a b θ=<> .规定:零向量与任一向量的数量积为零.记作:00a ⋅=.1.3向量的投影①定义:在平面内任取一点O ,作OM a ON b ==,.过点M 作直线ON 的垂线,垂足为1M ,则1OM 就是向量a 在向量b 上的投影向量.②投影向量计算公式:当θ为锐角(如图(1))时,1OM 与e 方向相同,1||||cos OM a λθ== ,所以11||||cos OM OM e a e θ== ;当θ为直角(如图(2))时,0λ=,所以10||cos 2OM a e π==;当θ为钝角(如图(3))时,1OM 与e方向相反,所以11||||cos ||cos()||cos OM a MOM a a λπθθ=-=-∠=--= ,即1||cos OM a e θ= .当0θ=时,||a λ=,所以1||||cos0OM a e a e == ;当πθ=时,||a λ=-,所以1||||cosπOM a e a e =-= 综上可知,对于任意的[0π]θ∈,,都有1||cos OM a e θ= .2、平面向量数量积的性质及其坐标表示已知向量1122(,),(,)a x y b x y == ,θ为向量a 和b的夹角:2.1数量积1212=||||cos x x y y a b a b θ⋅=+2.2模:2211||a a x y =⋅=+a 2.3夹角:121222221122cos ||||x x y y a ba b x y x y θ+⋅==++ 2.4非零向量a b ⊥的充要条件:121200a b x x y y ⋅=⇔+= 2.5三角不等式:||||||a b a b ⋅≤ (当且仅当a b∥时等号成立)⇔222212121122x x y y x y x y +≤+⋅+3、平面向量数量积的运算①a b b a⋅=⋅r r r r ②()()a b a b a b λλλ⋅=⋅=⋅ ③()c+⋅=⋅+⋅ a b c a c b 4、极化恒等式①平行四边形形式:若在平行四边形ABCD 中,则221()4AB AD AC DB ⋅=- ②三角形形式:在ABC ∆中,M 为BC 的中点,所以222214AB AC AM MB AM BC⋅=-=- 5、常用结论①22()()a b a b a b+-=- ②222()2a b a a b b+=+⋅+ ③222()2a b a a b b-=-⋅+ 第二部分:课前自我评估测试一、判断题(2022·全国·高一专题练习)1.判断(正确的填“正确”,错误的填“错误”)(1)两个向量的数量积仍然是向量.()(2)若0a b ⋅= ,则0a =或0b = .()(3)a ,b 共线⇔a ·b =|a ||b |.()(4)若a ·b =b ·c ,则一定有a =c.()(5)两个向量的数量积是一个实数,向量的加法、减法、数乘运算的运算结果是向量.()(2021·全国·高二课前预习)2.已知两个向量,NM MP的夹角为60°,则∠NMP =60°.()二、单选题(2022·河南安阳·高一阶段练习)3.已知向量()2,1a t =- ,()1,1b t =- ,若a b ⊥,则t =()A .1B .13-C .1-D .2(2022·全国·模拟预测(文))4.在边长为2的正三角形ABC 中,则AB BC ⋅= ()A .2-B .1-C .1D .2(2022·广东·深圳市龙岗区德琳学校高一期中)5.在ABC 中,若0AB AC ⋅<,则ABC -定是()A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形第三部分:典型例题剖析高频考点一:平面向量数量积的定义角度1:平面向量数量积的定义及辨析例题1.(2022·河北武强中学高一期中)已知向量a ,b满足1a = ,1a b ⋅=- ,则()2a a b ⋅-=()A .0B .2C .3D .4【答案】C22(2)222113a a b a a b a a b ⋅-=-⋅=-⋅=⨯+=.故选:C.例题2.(2022·山西太原·高一期中)给出以下结论,其中正确结论的个数是()①0a b a b ⇒⋅=∥ ②a b b a⋅=⋅r r r r ③()()a b c a b c ⋅⋅=⋅⋅ ④a b a b⋅≤⋅A .1B .2C .3D .4【答案】B由数量积的定义知||||cos a b a b θ⋅=,对于①,若a b∥,则||||a b a b ⋅= 或||||a b a b -⋅= ,0a b ⋅= 不一定成立,①错误对于②,a b b a ⋅=⋅r r r r成立,②正确对于③,()a b c ⋅⋅r r r 与a共线,()a b c ⋅⋅r r r 与c 共线,两向量不一定相等,③错误对于④,||||cos a b a b a b θ⋅=≤⋅,④正确故选:B例题3.(2022·江苏·涟水县第一中学高一阶段练习)在锐角ABC 中,关于向量夹角的说法,正确的是()A .AB 与BC的夹角是锐角B .AC 与BA的夹角是锐角C .AC 与BC的夹角是锐角D .AC 与BC的夹角是钝角【答案】C 如下图所示:对于A 选项,AB 与BC的夹角为ABC π-∠,为钝角,A 错;对于B 选项,AC 与BA的夹角为BAC π-∠,为钝角,B 错;对于CD 选项,AC 与BC的夹角等于ACB ∠,为锐角,C 对D 错;故选:C.例题4.(2022·宁夏·平罗中学模拟预测(理))已知向量,a b 的夹角为23π,且||3,a b ==,则b 在a方向上的投影为___________.【答案】1-由题意得2b = ,则b 在a 方向上的投影为2||cos ,2cos13π=⨯=- b a b .故答案为:1-.角度2:平面向量数量积的几何意义例题1.(2022·江西抚州·高一期中)已知向量()()1121a b ==- ,,,,则a 在b 方向上的投影数量为()A .15B .15-CD.5【答案】D因为()()1121a b ==-,,,,所以cos a b a b a b ⋅〈⋅〉==⋅ ,因此a 在b方向上的投影数量为cos ()105a ab 〈⋅〉=-=-,故选:D例题2.(2022·全国·高三专题练习(理))在圆O 中弦AB 的长度为8,则AO AB ⋅=()A .8B .16C .24D .32【答案】Dcos 8432AO AB AB AO OAB ⋅=⋅∠=⨯=.故选:D例题3.(2022·甘肃·高台县第一中学高一阶段练习)已知8,4a b == ,a 与b 的夹角为120°,则向量b 在a方向上的投影为()A .4B .-4C .2D .-2【答案】D由向量8,4a b == ,且a 与b 的夹角为120°,所以向量b 在a 方向上的投影为cos 4cos1202b θ=⨯=-,故选:D.例题4.(2022·吉林一中高一期中)在ABC中,AB =4BC =,30B =︒,P 为边上AC 的动点,则BC BP ⋅的取值范围是()A .[]6,16B .[]12,16C .[]4,12D .[]6,12【答案】A如图,作AE BC ⊥于E ,作PF BC ⊥于F ,由已知得AE =32BE ==,cos 4BC BP BC BP PBC BF ⋅=∠= ,当P 在线段AC 上运动时地,F 在线段EC 上运动,342BF ≤≤,所以6416BF ≤≤ ,故选:A .例题5.(2022·江西景德镇·三模(理))窗花是贴在窗纸或窗户玻璃上的剪纸,它是中国古老的传统民间艺术之一.在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均在正方形ABCD 各边的中点(如图2,若点P 在四个半圆的圆弧上运动,则AB OP ×uu u r uu u r 的取值范围是()A .[]22-,B .⎡⎣-C .⎡-⎣D .[]4,4-【答案】Dcos ,AB OP AB OP AB OP ×=<>uu u r uu u r uu u r uu u r uu u r uu u r ,即AB 与OP 在向量AB方向上的投影的积.由图2知,O 点在直线AB 上的射影是AB 中点,由于2AB =,圆弧直径是2,半径为1,所以OP 向量AB方向上的投影的最大值是2,最小值是-2,因此AB OP ×uu u r uu u r 的最大值是224⨯=,最小值是2(2)4⨯-=-,因此其取值范围为[4,4]-,故选:D .题型归类练(2022·黑龙江·佳木斯一中高一期中)6.已知△ABC 的外接圆圆心为O ,且AO AB AC +=,AO AC = ,则向量BA 在向量BC上的投影向量为()A .14BCB .12BC C .14BC - D .12BC -(2022·内蒙古呼和浩特·二模(理))7.非零向量a ,b ,c 满足()b a c ⊥- ,a 与b 的夹角为6π,3a = ,则c 在b 上的正射影的数量为()A .12-B .2-C .12D .2(2022·北京市第十九中学高一期中)8.如图,已知四边形ABCD 为直角梯形,AB BC ⊥,//AB DC ,AB =1,AD =3,23πBAD ∠=,设点P 为直角梯形ABCD 内一点(不包含边界),则AB AP ⋅的取值范围是()A .3,12⎛⎫- ⎪⎝⎭B .3,12⎡⎤-⎢⎥⎣⎦C .30,2⎛⎫ ⎪⎝⎭D .30,2⎡⎤⎢⎥⎣⎦(2022·全国·高三专题练习)9.在ABC 中,90BAC ∠=︒,2AD AB AC =+uuu r uu u r uuu r ,1AD AB == ,与BC方向相同的单位向量为e ,则向量AB 在BC上的投影向量为()A .12eB .12e- C D .(2022·河南河南·三模(理))10.在△ABC 中,“0AB BC ⋅<”是“△ABC 为钝角三角形”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2022·四川·宜宾市叙州区第一中学校高一期中)11.在圆O 中弦4AB =,则AO AB ⋅=__________.(2022·四川·树德中学高一阶段练习)12.如图,直径4AB =的半圆,D 为圆心,点C 在半圆弧上,3ADC π∠=,线段AC 上有动点P ,则DP BA ⋅的取值范围为_________.高频考点二:平面向量数量积的运算角度1:用定义求数量积例题1.(2022·全国·华中师大一附中模拟预测)正六边形ABCDEF 的边长为2,则CE FD ⋅u u r u u u r=()A .-6B .-C .D .6【答案】A在CDE 中,2CD DE ==,120CDE ∠=︒,所以CE =所以有CE DF == CE 与FD 所成的角为120°,所以(2162CE FD ⎛⎫⋅=⨯-=- ⎪⎝⎭,故选:A .例题2.(2022·广东·东莞市东方明珠学校高一期中)已知正方形ABCD 的边长为2,E 为BC 的中点,则()AB BE BC +⋅=()A .2-B .0C .12D .2【答案】D()AB BE BC +⋅= AB BC BE BC ⋅+⋅0122=+⨯=.故选:D例题3.(2022·北京·中关村中学高一期中)已知12a = ,4b = ,且a ,b的夹角为π3,则⋅=a b ()A .1B .1±C .2D .2±【答案】Aπ||||cos 3a b a b ⋅=⋅⋅114122=⨯⨯=.故选:A例题4.(2022·安徽·高二阶段练习)已知平面向量)1a =-,单位向量b满足20b a b +⋅= ,则向量a 与b夹角为___________.【答案】23π)1a =- ,2a =,由20b a b +⋅= 可知112cos ,0a b +⨯⨯= ,解得1cos ,2a b =- ,所以2,3a b π= .故答案为:23π例题5.(2022·上海奉贤区致远高级中学高一期中)在ABC 中,60,6,5B AB BC ∠=== ,则AB BC ⋅=_______【答案】15-因为60,6,5B AB BC ∠=== ,所以()1cos 1806065152AB BC AB BC ⎛⎫⋅=⋅-=⨯⨯-=- ⎪⎝⎭.故答案为:15-.角度2:向量模运算例题1.(2022·山东潍坊·高一期中)已知i ,j是平面内的两个向量,i j ⊥ ,且2,2,34j a i j b i i j ===+=-+,则a b -=r r ()A .B .C .D .【答案】D 【详解】由42a b i j -=-r r r r,则2222(42)1616480a b i j i i j j -=-=-⋅+=r r r r r r r r ,所以a b -=r r 故选:D例题2.(2022·四川绵阳·高一期中)已知向量a 与b 的夹角为2π3,且||2a = ,1b ||=,则|2|a b +=()A .2B .C .4D .12【答案】A∵2π13|s |co b a b a ⋅==- ||则222|2|444a b a a b b +=+⋅+= ,即|2|2a b += 故选:A .例题3.(2022·河南安阳·高一阶段练习)已知向量a 与b的夹角为60︒,且||2,|2|a a b =-= ||b =()AB .1C .2D .4【答案】C解:向量a ,b夹角为60︒,且||2,|2|a a b =-= ∴222(2)44a b a a b b -=-⋅+ 22242||cos604||12b b ︒=-⨯⨯⨯+= ,即2||||20b b --=,解得||2b =或||1b =- (舍),∴||2b =,故选:C例题4.(2022·河南新乡·高一期中)已知向量a =,b ,且a 与b的夹角为6π,则2a b -= ()A .7B C .6D【答案】B2a ==,cos 362a b a b π∴⋅=⋅== ,222244161237a b a a b b ∴-=-⋅+=-+= ,2a b ∴-= 故选:B.例题5.(2022·河南·模拟预测(理))已知平面向量a ,b的夹角为π3,且3a = ,8b = ,则a b -=______.【答案】7因为平面向量a ,b的夹角为π3,且3a = ,8b = ,所以由7a b -====,故答案为:7例题6.(2022·河南·模拟预测(文))已知向量(a = ,4b = ,且向量a 与b 的夹角为34π,则a b -= ______.因为(a = ,所以a =又4b = ,3,4a b π〈〉=,所以34cos124a b π⋅==- 所以2222()218241658a b a b a a b b -=-=-⋅+=++=所以a b -角度3:向量的夹角例题1.(2022·内蒙古赤峰·模拟预测(理))若向量a ,b满足1a = ,2b = ,()235a a b ⋅+= ,则a 与b的夹角为()A .6πB .3πC .23πD .56π【答案】B解:因为1a = ,2b = ,()235a a b ⋅+= ,所以2235a a b +⋅=,即2235a a b +⋅= ,所以1a b ⋅= ,设a 与b的夹角为θ,则1cos 2a b a b θ⋅==⋅ ,因为[]0,θπ∈,所以3πθ=;故选:B例题2.(2022·山东济南·三模)已知单位向量a 、b 、c ,满足a b c +=,则向量a 和b的夹角为()A .2π3B .π2C .π3D .6π【答案】A∵a b c +=,∴()()a b a b c c +⋅+=⋅ ,∴2222a b a b c ++⋅= ,∴12a b ⋅=-r r ,∴1cos ,2a b a b a b ⋅==-⋅,∵[],0,π∈ a b ,∴2π,3a b = .故选:A .例题3.(2022·河北邯郸·二模)若向量a ,b 满足||2a =,b = 3a b ⋅=,则向量b 与b a -夹角的余弦值为().A.2BC.16D.20【答案】D因为b = 3a b ⋅=,所以22()39b b a b b a ⋅-=-⋅=-=,因为b a -==== ,所以向量b 与b a -夹角的余弦值为()20b b a b b a ⋅-==⋅- ,故选:D例题4.(2022·河南·扶沟县第二高中高一阶段练习)已知向量a = ,b 是单位向量,若|2|a b -= a 与b的夹角为_____.【答案】π3##60o由a = 、b为单位向量,|2|a b -= 得:2|23|1-= a b ,即224413a a b b -⋅+= ,由2a = ,=1b 所以cos ,1a b a b a b ⋅=⋅= ,1cos ,2a b = ,所以,a b =π3故答案为:π3例题5.(2022·山东烟台·高一期中)若||a =r ,||2b =,且|2|a b += a 与b的夹角大小为______.【答案】150︒##5π6因为|2|a b + 22447a a b b +⋅+= ,即34447a b +⋅+⨯= ,解得3a b ⋅=- ,所以cos ,2a b a b a b ⋅〈〉===-,而0,πa b ≤〈〉≤ ,所以5π,6a b 〈〉= .故答案为:150︒.例题6.(2022·安徽·巢湖市第一中学模拟预测(文))已知向量()1,2a =-r,()1,b λ= ,则“12λ<”是“a 与b 的夹角为锐角”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B当a 与b 的夹角为锐角时,0a b ⋅> 且a 与b不共线,即12020λλ->⎧⎨+≠⎩,∴12λ<且2λ≠-,∴“12λ<”是“a 与b 的夹角为锐角”的必要不充分条件.故选:B.例题7.(2022·辽宁·东北育才学校高一期中)已知向量()1,2a = ,()2,b λ= ,且a 与b的夹角为锐角,则实数λ的取值范围是______.【答案】1λ>-且4λ≠因向量()1,2a = ,()2,b λ= ,且a 与b 的夹角为锐角,于是得0a b ⋅> ,且a 与b 不共线,因此,220λ+>且40λ-≠,解得1λ>-且4λ≠,所以实数λ的取值范围是1λ>-且4λ≠.故答案为:1λ>-且4λ≠例题8.(2022·黑龙江·勃利县高级中学高一期中)已知向量()2,4a =-r 与向量()1,b λ=-r所成角为钝角.则λ的取值范围是______.【答案】12λ>-且2λ≠解:因为向量()2,4a =-r 与向量()1,b λ=-r所成角为钝角,所以0a b ⋅<且两个向量不共线,即240240λλ--<⎧⎨-≠⎩,解得12λ>-且2λ≠.故答案为:12λ>-且2λ≠.例题9.(2022·河北·高一期中)已知向量(),2a λ=- ,()3,4b =- ,若a ,b 的夹角为钝角,则λ的取值范围为______【答案】833,,322⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭解:由题意得380a b λ⋅=--< ,且46λ≠,解得83λ>-且32λ≠,即833,,322λ⎛⎫⎛⎫∈-⋃+∞ ⎪ ⎪⎝⎭⎝⎭;故答案为:833,,322⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭角度4:已知模求数量积例题1.(2022·吉林长春·模拟预测(文))已知向量a ,b满足2a b == ,a b -=r r ,则⋅=a b ()A .2-B .-C .D .6【答案】A||a b -==4241 2,2a b a b ∴-⋅+=⋅=- 故选:A例题2.(2022·全国·模拟预测(文))已知向量a 、b 满足2a b b ==-=,则a b ⋅= ()A .6B .-C .D .-2【答案】D2244122||21222b a b a b a b a b +--=⇒-=+-⋅=⇒⋅==- .故选:D.例题3.(2022·北京十五中高一期中)若向量,a b满足122a b a b ==-= ,,,则a b ⋅=_____.【答案】12##0.5因为122a b a b ==-= ,,,所以22224a ba ab b-=-⋅+= ,即1244a b -⋅+=,所以12a b ⋅= .故答案为:12.例题4.(2022·安徽马鞍山·三模(文))设向量a ,b满足1a = ,2b = ,a b -= 则a b ⋅=___________.【答案】0解:因为向量a ,b满足1a = ,2b = ,a b -= 所以()22222221225a b a ba ab b a b -=-=-⋅+=+-⋅=,所以0a b ⋅=,故答案为:0.例题5.(2022·贵州贵阳·二模(理))已知向量0a b c ++=,||||||1a b c === ,则a b b c c a ⋅+⋅+⋅=________.【答案】32-##-1.5∵向量0a b c ++=,||||||1a b c === ,∴()()()22222320a b ca b a b b c c a a b b c c c a =⋅+⋅+⋅⋅+++++=+⋅=+⋅+,∴32a b b c c a ⋅+⋅+⋅=- .故答案为:32-.角度5:已知模求参数例题1.(2022·全国·高三专题练习)已知0m ≠,向量(,),(2,)a m n b m ==-,若||||a b a b +=-,则实数n =()A .BC .-2D .2【答案】D 【详解】由||||a b a b +=-可得22()()a b a b +=-2222220a a b b a a b b a b ∴+⋅+=-⋅+∴⋅= 20a b m mn ∴⋅=-+=,因为0m ≠,所以2n =.故选:D例题2.(2022·广东·高一阶段练习)已知单位向量,a b满足12a b ⋅= ,则()a tb t R +∈ 的最小值为()A .2B .34C .12D .14【答案】A 【详解】,a b为单位向量,1a b ∴==,2222221a tb a ta b t b t t ∴+=+⋅+=++,则当12t =-时,()2min314t t ++=,mina tb∴+=.故选:A.例题3.(2022·湖北鄂州·高二期末)已知向量(),2a m = ,()1,1b =r,若a b a += 则实数m =()A .2B .2-C .12D .12-【答案】A因为()1,1b =r,则b = a b a b +=+,等式a b a b +=+ 两边平方可得222222a a b b a a b b +⋅+=+⋅+ ,则a b a b ⋅=⋅ ,故a 与b同向,所以,2m =.故选:A.例题4.(2022·安徽·高二阶段练习(文))已知向量a ,b满足4a =,(b =- ,且0a kb +=,则k 的值为______.【答案】2∵0a kb += ,∴0a kb += ,∴a kb =-,∴a kb k b == ,∵(b =-,∴2b ==.又∵4a =,∴2a k b==.故答案为:2.题型归类练(2022·北京·潞河中学三模)13.已知菱形ABCD 的边长为,60a ABC ∠= ,则DB CD ⋅=()A .232a-B .234a-C .234aD .232a(2022·河南·方城第一高级中学模拟预测(理))14.已知向量a ,b 为单位向量,()0a b a b λλλ+=-≠ ,则a 与b的夹角为()A .6πB .π3C .π2D .2π3(2022·全国·高一单元测试)15.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,3cos 10C =,若92CB CA ⋅= ,则c 的最小值为()A .2B .4CD .17(2022·四川省内江市第六中学高一期中(理))16.如图,ABC 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足12AP mAC AB =+ ,若AC =3,AB =4,则AP CD ⋅的值为()A .125B .512C .1312D .1213(2022·湖南·长沙市明德中学二模)17.已知非零向量a 、b 满足0a b ⋅=,()()0a b a b +⋅-= ,则向量b 与向量a b - 夹角的余弦值为()A .2B .0C .2D .2(2022·广东·模拟预测)18.已知单位向量a ,b 满足()2a a b ⊥- ,则向量a ,b 的夹角为()A .120︒B .60︒C .45︒D .30︒(2022·安徽师范大学附属中学模拟预测(文))19.设,a b 为非零向量,且22a b a b +=- ,则a ,b的夹角为___________.(2022·广东广州·三模)20.已知,a b为单位向量,若2a b -= 2a b += __________.(2022·山东济宁·三模)21.在边长为4的等边ABC 中,已知23AD AB =,点P 在线段CD 上,且12AP mAC AB =+,则AP = ________.高频考点三:平面向量的综合应用例题1.(2022·湖南·高二阶段练习)“赵爽弦图”是中国古代数学的图腾,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如图,某人仿照赵爽弦图,用四个三角形和一个小的平行四边形拼成一个大平行四边形,其中,,,E F G H 分别是,,,DF AG BH CE 的中点,若AG x AB y AD =+,则xy =()A .625B .625-C .825D .825-【答案】C由题意,可得()11112224AG AB BG AB BH AB BC CH AB BC CE =+=+=++=++ ,因为EFGH 是平行四边形,所以AG CE =-,所以1124AG AB BC AG =+- ,所以4255AG AB BC =+ ,因为AG x AB y AD =+ ,所以42,55x y ==,则4285525xy =⨯=.故选:C.例题2.(2022·河南·唐河县第一高级中学高一阶段练习)2022年北京冬奥会开幕式中,当《雪花》这个节目开始后,一片巨大的“雪花”呈现在舞台中央,十分壮观.理论上,一片雪花的周长可以无限长,围成雪花的曲线称作“雪花曲线”,又称“科赫曲线”,是瑞典数学家科赫在1904年研究的一种分形曲线.如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边,重复进行这一过程.已知图①中正三角形的边长为6,则图③中OM ON ⋅的值为()A .24B .6C .D .【答案】A在图③中,以O 为坐标原点建立如图所示的平面直角坐标系,4OM =,(2cos ,2sin )(2,33OM ππ== ,83MP = ,即8(,0)3MP = ,23PN = ,由分形知//PN OM ,所以1(,)33PN = ,所以(5,)3ON OM MP PN =++= ,所以2524OM ON ⋅=⨯+= .故选:A .例题4.(2022·江苏·常州市第二中学高一阶段练习)如图,已知平行四边形ABCD 的对角线相交于点O ,过点O 的直线与,AB AD 所在直线分别交于点M ,N ,满足,,(0,0)AB mAM AN nAD m n ==>> ,若13mn =,则mn 的值为()A .23B .34C .45D .56【答案】B 【详解】因平行四边形ABCD 的对角线相交于点O ,则1122AO AB AD =+,而,,(0,0)AB mAM AN nAD m n ==>>,于是得122m AO AM AN n=+,又点M ,O ,N 共线,因此,1122m n +=,即12mn n +=,又13mn =,解得12,23m n ==,所以34m n =.故选:B例题5.(2022·江苏·常州市第二中学高一阶段练习)在梯形ABCD 中,,2,1,120,,AB CD AB BC CD BCD P Q ===∠=∥ 分别为线段BC ,CD 上的动点.(1)求BC AB ⋅ ;(2)若14BP BC =,求AP ;(3)若1,6BP BC DQ DC μμ== ,求AP BQ ⋅u u u r u u u r 的最小值;【答案】(1)2-76(1)因为,2,120AB CD AB BC BCD ==∠= ∥,所以60ABC ∠= ,所以,180120BC AB ABC =-∠=,所以cos 22cos1202BC AB BC AB BC AB =⨯⨯=⨯⨯=⋅-⋅ .(2)由(1)知,2BC AB -⋅=,因为14BP BC = ,所以14AP AB BP AB BC =+=+ ,所以()222222111111322221146264AP AB AB AB BC BC BC ⎛⎫=+=+⋅+=+⨯-+⨯= ⎪⎝⎭ ,所以AP = .(3)因为BP BC μ= ,16DQ DC μ=,则()()()616AP BQ AB BP BC CQ AB BC BC CD μμμ⎛⎫-⋅=+⋅+=+⋅+ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2611666AB BC AB CD BC CB CDμμμμ--=⋅+⋅++⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r 261161125221221566236μμμμμμ--⎛⎫=--⨯⨯+⨯+⨯⨯⨯-=+- ⎪⎝⎭,因为011016μμ<≤⎧⎪⎨<≤⎪⎩,解得116μ≤≤,设()125536f μμμ=+-,116μ≤≤,根据对勾函数的单调性可知,()f μ在1,16⎡⎤⎢⎥⎣⎦单调递增,所以当1μ=时,()f μ取得最大值:()125715366f =+-=.22.已知P 是ABC 的外心,且3420PA PB PC +-=uu r uu uu u r r r,则cos C =()A .-4B .-14C.4或-4D .14或-14(2022·河南洛阳·高二阶段练习(文))23.在△ABC 中,点D 满足AD =1162AB AC +,直线AD 与BC 交于点E ,则CE CB的值为()A .12B .13C .14D .15(2022·山东淄博·高一期中)24.如图,1,3,90,2AB AC A CD DB ==∠=︒= ,则AD AB ⋅=_________(2022·湖南·模拟预测)25.在三角形ABC 中,点D 在边BC 上,若2BD D C =,AD AB AC λμ=+ (),λμ∈R ,则λμ-=______.(2022·浙江·高一阶段练习)26.平面内的三个向量(1,1),(2,2),(,3)a b c k =-==.(1)若(2)//()a b c a +-,求实数k 的值;(2)若()()c a c b -⊥-,求实数k 的值.(2022·重庆市二0三中学校高一阶段练习)27.已知平面向量()()1,2,2,a b m =-=.(1)若a b ⊥,求2a b + ;与a夹角的余弦值.28.已知平行四边形ABCD 中,2DE EC = ,0AF DF +=,AE 和BF 交于点P.(1)试用AB,AD 表示向量AP .(2)若BPE 的面积为1S ,APF 的面积为2S ,求12S S 的值.(3)若AB AD AB AD +=- ,0AC BD ⋅= ,求APF ∠的余弦值.(2022·四川省内江市第六中学高一期中(文))29.如图,设△ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,AD 为BC 边上的中线,已知2AD =,c =1且12sin cos sin sin sin 4c A B a A b B b C =-+.(1)求b 边的长;(2)求△ABC 的面积;(3)设点E ,F 分别为边AB ,AC 上的动点,线段EF 交AD 于G ,且△AEF 的面积为△ABC 面积的一半,求AG EF ⋅的最小值.高频考点四:极化恒等式例题1.(2021·全国·高一课时练习)阅读一下一段文字:2222a b a a b b →→→→→→⎛⎫+=+⋅+ ⎪⎝⎭,2222a b a a b b →→→→→→⎛⎫-=-⋅+ ⎪⎝⎭,两式相减得:22221()44a b a b a b a b a b a b →→→→→→→→→→→→⎡⎤⎛⎫⎛⎫⎛⎫+--=⋅⇒⋅=+--⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦,我们把这个等式称作“极化恒等式”,它实现了在没有夹角的参与下将两个向量的数量积运算化为“模”的运算.试根据上面的内容解决以下问题:如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点.(1)若6AD =,4BC =,求→→⋅的值;(2)若4AB AC →→⋅=,1FB FC →→⋅=-,求EB EC →→⋅的值.【答案】(1)32;(2)78.【自主解答】解:(1)因为2,AB AC AD AB AC CB →→→→→→+=-=,所以2222113643244AB AC AB AC AB AC AD CB →→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-=-=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦.(2)设3AD m =,2(0,0)BC n m n =>>,因为4AB AC →→⋅=,由(1)知222214494AD CB m n →→=⇒-=-①因为2,3FB FC AD FB FC CB →→→→→→+=-=,所以根据2222111494FB FC FB FC FB FC AD CB →→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦,又因为1FB FC →→⋅=-,所以2222111194AD CB m n →→-=-⇒-=-②由①②解得258m =,2138n =.所以2222141494EB EC EB EC EB EC AD CB→→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦22201374888m n =-=-=.例题2.(2022·河北唐山·高三期末)ABC 中,D 为BC 的中点,4BC =,3AD =,则AB AC ⋅=______.【答案】5【自主解答】解:因为D 为BC 的中点,4BC =,所以DB DC =-,2DB DC ==,AB AD DB AC AD DC =+=+ ,所AB AC ⋅=()()AD DB AD DC =+⋅+ ()()22945AD DC AD DC AD DC =-⋅+=-=-= 故答案为:5法二:由极化恒等式2211916544AB AC AD BC ⋅=-=-⨯= 例题3.(2022届高三开年摸底联考新高考)已知直线l :10x y +-=与圆C :22()(1)1x a y a -++-=交于A ,B 两点,O 为坐标原点,则OA OB ⋅的最小值为:()A.12-B.D.12【自主解答】如图:圆C 22()(1)1x a y a -++-=的圆心(,1)C a a -,在直线l :10x y +-=上,由极化恒等式,2214OA OB OC BA ⋅=- ,而24BA = ,所以222114OA OB OC BA OC ⋅=-=- ,C是直线l :10x y +-=上的动点,所以||OC的最小值,就是点O 到直线l 的距离d 2min 1()12OA OB d ⋅=-=- .题型归类练30.设向量,a b 满足a b += a b -=r r a b ⋅=A .1B .2C .3D .531.如图,在ABC 中,90,2,2ABC AB BC ∠=== ,M 点是线段AC 上一动点.若以M 为圆心、半径为1的圆与线段AC 交于,P Q 两点,则BP BQ ⋅的最小值为()A .1B .2C .3D .432.已知ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC +的最小值是()A .2-B .32-C .43-D .1-33.如图放置的边长为1的正方形ABCD 的顶点A,D 分别在x 轴、y 轴正半轴(含原点)滑动,则OB OC ⋅的最大值为__________.第四部分:高考真题感悟(2021·浙江·高考真题)34.已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件(2021·全国·高考真题)35.已知向量0a b c ++= ,1a = ,2b c == ,a b b c c a ⋅+⋅+⋅=_______.(2021·全国·高考真题(文))36.若向量,a b满足3,5,1a a b a b =-=⋅= ,则b = _________.(2021·全国·高考真题(理))37.已知向量()()3,1,1,0,a b c a kb ===+ .若a c ⊥,则k =________.(2021·天津·高考真题)38.在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE AB ⊥且交AB 于点E .//DF AB 且交AC 于点F ,则|2|BE DF +的值为____________;()DE DF DA +⋅的最小值为____________.(2021·北京·高考真题)39.已知向量,,a b c在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅=________;=a b ⋅ ________.参考答案:1.错误错误错误错误正确【分析】根据数量积的相关概念逐一判断即可【详解】对于(1):两个向量的数量积是数量,故错误;对于(2):若0a b ⋅= ,除了0a = 或0b = 之外,还有可能a b ⊥,故错误;对于(3):a ,b 共线a ·b =±|a ||b|,故错误;对于(4):数量积是一个整体,这里面b 不能直接约去,故a 与c无固定关系,故错误;对于(5):两个向量的数量积是一个实数,向量的加法、减法、数乘运算的运算结果是向量,符合向量的运算规律,故正确.2.错误【解析】略3.C【分析】由题可得0a b ⋅=,即可求出.【详解】因为()2,1a t =- ,()1,1b t =- ,a b ⊥,所以()210a b t t ⋅=--=,解得1t =-.故选:C.4.A【分析】根据数量积的定义计算可得;【详解】解:()1cos 2222AB BC AB BC B π⎛⎫⋅=⋅-=⨯⨯-=- ⎪⎝⎭故选:A 5.C【分析】根据向量的数量积的运算公式,求得cos 0A <,得到A 为钝角,即可求解.【详解】由向量的数量积的运算公式,可得cos 0AB AC AB AC A ⋅=⋅< ,即cos 0A <,因为(0,)A π∈,所以A 为钝角,所以ABC -定是钝角三角形.故选:C.6.B【分析】由题意作出符合题意的图形,判断出OBAC 为菱形,直接得到向量BA在向量BC 上的投影向量.【详解】如图示:因为△ABC 的外接圆圆心为O ,AO AB AC+=,AO AC = ,所以AO AC CO ==,所以△AOC 为等边三角形,所以OBAC 为菱形,所以OA BC ⊥.所以向量BA 在向量BC 上的投影向量为12BC .故选:B 7.D【分析】利用垂直的向量表示,再利用正射影的数量的意义计算作答.【详解】非零向量a ,b ,c 满足()b a c ⊥- ,则()·0b a c a b c b -=⋅-⋅= ,即c b a b ⋅=⋅ ,又a 与b的夹角为6π,3a = ,所以c 在b 上的正射影的数量||cos ,||cos 62||||c ba b c c b a b b π⋅⋅〈〉====.故选:D 8.A【分析】依题意过点D 作DE AB ⊥交BA 的延长线于点E ,即可求出AE ,设AP 与AB的夹角为θ,结合图形即可得到AP 在AB方向上的投影的取值范围,再根据数量积的几何意义计算可得;【详解】解:依题意过点D 作DE AB ⊥交BA 的延长线于点E ,则3cos 602AE AD =︒=,设AP 与AB的夹角为θ,因为点P 为直角梯形ABCD 内一点(不包含边界),所以AP 在AB方向上的投影cos AP θ ,且3cos 12AP θ-<<,所以3cos cos ,12AB AP AB AP AP θθ⎛⎫⋅=⋅=∈- ⎪⎝⎭故选:A 9.B【分析】易知ABD △是等边三角形,再根据BC 方向相同的单位向量为e ,由2cos 3AB e π⋅⋅求解.【详解】在ABC 中,90BAC ∠=︒,2AD AB AC =+uuu r uu u r uuu r,所以D 为BC 的中点,且|AD |=|BD |,又1AD AB ==,所以ABD △是等边三角形,因为BC方向相同的单位向量为e ,所以向量AB 在BC 上的投影向量为21cos 32AB e e π⋅⋅=-,故选:B 10.D【分析】利用充分、必要性的定义,结合向量数量积的定义及钝角三角形的性质判断题设条件间的推出关系,即可知答案.【详解】由||||cos 0AB BC BA BC BA BC B =-=⋅-⋅<,即cos 0B >,又0B π<<,所以02B π<<,不能推出△ABC 为钝角三角形,充分性不成立;△ABC 为钝角三角形时,若2B ππ<<,则||||cos 0AB BC BA BC BA BC B =-=⋅-⋅>,不能推出0AB BC ⋅<,必要性不成立.所以“0AB BC ⋅<”是“△ABC 为钝角三角形”的既不充分也不必要条件.故选:D 11.8【分析】利用向量的数量积、投影的定义即可求解.【详解】过点O 作OC AB ⊥于点C ,则点C 为AB 的中点,12AC AB =,所以2211cos ,4822AO AB AO AB AO AB AB AC AB ⋅=⋅===⨯= ,故答案为:8.12.[]4,8【分析】由数量积的定义求解【详解】过点P 作AB 的垂线,交AB 于点H 可得||||DP BA DH BA ⋅=⋅当P 在C 点时,DP BA ⋅ 取最小值4,当P 在A 点时,DP BA ⋅取最大值8故答案为:[4,8]13.A【分析】将,DB CD 分别用,BA BC表示,再根据数量积的运算律即可得出答案.【详解】解:,DB DA AB BC BA CD BA =+=--=,则()22221322DB CD BC BA BA BC BA BA a a a ⋅=--⋅=-⋅-=--=- .故选:A.14.C【分析】由题干条件平方得到()0a b λ⋅= ,从而得到0a b ⋅= ,得到a 与b 的夹角.【详解】由()0a b a b λλλ+=-≠,两边平方可得:22222222a a b b a a b b λλλλ+⋅+=-⋅+ ,因为向量a ,b为单位向量,所以221221a b a b λλλλ+⋅+=-⋅+,即()0a b λ⋅= .因为0λ≠,所以0a b ⋅= ,即a 与b 的夹角为π2.故选:C 15.C【分析】首先由数量积的定义求出ab ,再由余弦定理及基本不等式求出c 的最小值;【详解】解:∵92CB CA ⋅= ,∴9cos 2a b C ⋅⋅=,∴15ab =,由余弦定理得22232cos 222110c a b ab C ab ab =+-⋅≥-⨯=,当且仅当a b =时取等号,∵0c >,∴c ≥c ,故选:C .16.C【分析】根据,,C P D 三点共线求出14m =,然后把,AB AC 当基底表示出,AP CD ,从而求出AP CD ⋅的值【详解】 2AD DB =,32AB AD∴= ∴1324AP m AC AB m AC AD=+=+ ,,C P D 三点共线,31144m m ∴+=⇒=1142AP AC AB ∴=+,又23CD AD AC AB AC=-=- 112()()423AP CD AC AB AB AC ∴=+- 22111343AB AC AB AC =--22111πcos 3433AB AC AB AC =--1111169433432=⨯-⨯-⨯⨯⨯1312=故选:C 17.A【分析】根据0a b ⋅= ,设(1,0)a = ,(0,)b t = ,根据()()0a b a b +⋅-= 求出21t =,再根据平面向量的夹角公式计算可得解.【详解】因为0a b ⋅=,所以可设(1,0)a = ,(0,)b t = ,则(1,)a b t += ,(1,)a b t -=- ,因为()()0a b a b +⋅-= ,所以210t -=,即21t =.则()cos ,||||b a b b a b b a b ⋅-<->=⋅-2=2=-,故选:A.18.B【分析】利用向量垂直,向量数量积的定义及运算法则可得1cos ,2a b = ,即得.【详解】因为1a b ==r r ,()2a a b ⊥-,所以()22222cos ,12cos ,0a a b a a b a a b a b a b ⋅-=-⋅=-⋅⋅=-=,所以1cos ,2a b = ,又,0,180a b ⎡⎤∈⎣⎦ ,所以向量a ,b的夹角为60°.故选:B .19.2π##90 【分析】由|22a b a b +=- |两边平方化简分析即可【详解】由22a b a b +=- ,平方得到22224444a a b b a a b b +⋅+=-⋅+ ,即0a b ⋅=,所以a ,b 夹角为2π故答案为:2π.20【分析】先由225a b -= 求得0a b ⋅=,再求得22a b +r r 即可求解.【详解】由2a b -= 222244545a b a a b b a b -=-⋅+=-⋅= ,则0a b ⋅=,又2222445a b a a b b +=+⋅+= ,则2a b +21【分析】根据题意得34AP m AC AD =+ ,求出14m =,所以1142AP AC AB =+ ,即AP = .【详解】因为23AD AB = ,所以32AB AD = ,又12AP mAC AB =+ ,即1324AP m AC AB m AC AD =+=+,因为点P 在线段CD 上,所以P ,C ,D 三点共线,由平面向量三点共线定理得,314m +=,即14m =,所以1142AP AC AB =+,又ABC 是边长为4的等边三角形,所以222211111cos 60421644AP AC AB AC AC AB AB⎛⎫=+=++ ⎪⎝⎭1111164416716424=⨯+⨯⨯⨯+⨯=,故AP = ..22.B【分析】将234PC PA PB =+uu u r uu r uu r 两边平方得可得4916+24cos 2C =+,从而解出1cos 4C =±,然后由条件可得3455PC AC BC =+uu u r uuu r uu u r ,判断出C 与外心P 在AB 的异侧,从而得出答案.【详解】因为P 是ABC 的外心,所以||||||PA PB PC ==uu r uu r uu u r,由题知234PC PA PB =+uu u r uu r uu r,两边平方得222491624PC PA PB PA PB =++⋅uu u r uu r uu r uu r uu r 即222491624cos 2PC PA PB PA PB C +⋅=+uu u r uu r uu r uu r uu r,即4916+24cos 2C =+,所以221cos 22cos 124C C -==-,则1cos 4C =±,又由23433PC PA PB PC CA =+=++uu u r uu r uu r uu u r uu r44PC CB +uu u r uu r ,得3455PC AC BC =+uu u r uuu r uu u r ,因为34155+>,则C 与外心P 在AB 的异侧,即C 在劣弧上,所以C 为钝角,即1cos 4C =-.故选:B 23.C【分析】根据向量的减法运算及共线向量计算,可得出1144CE AB AC →→→=-即可求解.【详解】设62AE AD AB AC λλλ→→→→==+,则16262CE AE AC AD AC AB AC AC AB AC λλλλλ→→→→→→→→→→⎛⎫=-=-=+-=+-⎪⎝⎭,CB AB AC→→→=-,且CE →,CB →共线,则CE kCB = ,162AB AC λλ→→⎛⎫+-= ⎪⎝⎭()k AB AC →→-所以612k k λλ⎧=⎪⎪⎨⎪-=-⎪⎩所以162λλ=-,解得32λ=,此时1144CE AB AC →→→=-,所以14CE CB →→=,故14CE CB =.故选:C 24.23【分析】先用,AC AB 表示向量AD,再利用向量数量积运算求解.【详解】解:因为1,3,90,2AB AC A CD DB ==∠=︒=,所以()22=+=++==- AD AC CD AC AC CD DB AB AD ,即1233AD AC AB =+ ,所以21212233333⎛⎫⋅=+⋅=⋅+= ⎪⎝⎭AD AB AC AB AB AC AB AB ,故答案为:2325.13-【分析】由平面向量基本定理得到13λ=,23μ=,从而求出答案.【详解】由已知2BD D C =,得()2233BD BC AC AB ==- ,所以()212333A A C AB D AB BD AB A A BC -+===++ ,因为(),AD AB AC λμλμ=+∈R uuu r uu u r uuu r ,所以13λ=,23μ=,所以121333λμ-=-=-.故答案为:13-26.(1)15k =(2)0k =或1k =【分析】(1)先求出()()3,512a+2b =,c a =k +,-,再利用向量平行的坐标表示列方程即可求解;(2)先求出(1,2),(2,1)c a k c b k -=+-=- ,再利用向量垂直的坐标表示列方程即可求解;(1)因为(1,1),(2,2),(,3)a b c k =-==,所以()()3,512a+2b =,c a =k +,- .因为(2)//()a b c a +-,所以()32510k ⨯-⨯+=,解得:15k =.(2)因为(1,1),(2,2),(,3)a b c k =-== ,所以(1,2),(2,1)c a k c b k -=+-=-.因为()()c a c b -⊥-,则(1)(2)20k k +⋅-+=,解得:0k =或1k =.27.(1)5;(2)35【分析】(1)利用垂直的坐标表示求出m ,再利用向量线性运算的坐标表示及模的坐标表示计算作答.。
专题14 指、对、幂形数的大小比较问题(精讲精练)(解析版)
专题14 指、对、幂形数的大小比较问题【命题规律】指、对、幂形数的大小比较问题是高考重点考查的内容之一,也是高考的热点问题,命题形式主要以选择题为主.每年高考题都会出现,难度逐年上升.【核心考点目录】核心考点一:直接利用单调性 核心考点二:引入媒介值 核心考点三:含变量问题 核心考点四:构造函数 核心考点五:数形结合核心考点六:特殊值法、估算法 核心考点七:放缩法 核心考点八:不定方程【真题回归】1.(2022·天津·统考高考真题)已知0.72a =,0.713b ⎛⎫= ⎪⎝⎭,21log 3c =,则( )A .a c b >>B .b c a >>C .a b c >>D .c a b >>【答案】C 【解析】因为0.70.7221120log 1log 33⎛⎫>>=> ⎪⎝⎭,故a b c >>.故答案为:C.2.(2022·全国·统考高考真题)已知910,1011,89m m m a b ==-=-,则( ) A .0a b >> B .0a b >> C .0b a >> D .0b a >>【答案】A【解析】[方法一]:(指对数函数性质)由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m >, 所以8log 989890m b =-<-=.综上,0a b >>. [方法二]:【最优解】(构造函数)由910m =,可得9log 10(1,1.5)m =∈.根据,a b 的形式构造函数()1(1)m f x x x x =--> ,则1()1m f x mx -'=-, 令()0f x '=,解得110m x m -= ,由9log 10(1,1.5)m =∈ 知0(0,1)x ∈ .()f x 在 (1,)+∞ 上单调递增,所以(10)(8)f f > ,即 a b > ,又因为9log 10(9)9100f =-= ,所以0a b >> .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用,a b 的形式构造函数()1(1)m f x x x x =-->,根据函数的单调性得出大小关系,简单明了,是该题的最优解.3.(2022·全国·统考高考真题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c<a<bD .a c b <<【答案】C【解析】方法一:构造法设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++, 当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增, 所以1()(0)09f f <=,所以101ln 099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln +01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11xx x g x x x x -+'=+=--, 令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当01x <<时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,11x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增, 又(0)0h =,所以当01x <<时,()0h x <,所以当01x <<时,()0g x '>,函数()e ln(1)x g x x x =+-单调递增, 所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c > 故选:C.方法二:比较法 0.10.1a e = , 0.110.1b =- , ln(10.1)c =-- , ① ln ln 0.1ln(10.1)a b -=+- , 令()ln(1),(0,0.1],f x x x x =+-∈则 1()1011x f x x x-'=-=<-- , 故 ()f x 在 (0,0.1]上单调递减,可得(0.1)(0)0f f <=,即 ln ln 0a b -< ,所以 a b < ;② 0.10.1ln(10.1)a c e -=+- , 令 ()ln(1),(0,0.1],x g x xe x x =+-∈则 ()()()1111'11x xxx x e g x xe e x x+--=+-=-- , 令 ()(1)(1)1x k x x x e =+-- ,所以 2()(12)0x k x x x e '=--> , 所以 ()k x 在 (0,0.1] 上单调递增,可得 ()(0)0k x k >>,即 ()0g x '> ,所以 ()g x 在 (0,0.1]上单调递增,可得 (0.1)(0)0g g >= ,即 0a c -> ,所以 .a c >故 .c a b <<4.(2021·天津·统考高考真题)设0.3212log 0.3,log 0.4,0.4a b c ===,则a ,b ,c 的大小关系为( ) A .a b c << B .c<a<b C .b<c<a D .a c b <<【答案】D【解析】22log 0.3log 10<=,<0a ∴, 122225log 0.4log 0.4log log 212=-=>=,1b ∴>, 0.3000.40.41<<=,01c ∴<<, a c b ∴<<.故选:D.5.(2022·全国·统考高考真题)已知3111,cos ,4sin 3244a b c ===,则( ) A .c b a >> B .b a c >> C .a b c >> D .a c b >>【答案】A【解析】[方法一]:构造函数 因为当π0,,tan 2x x x ⎛⎫∈< ⎪⎝⎭故14tan 14c b =>,故1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞, ()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,故1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->, 所以b a >,所以c b a >>,故选A [方法二]:不等式放缩 因为当π0,,sin 2x x x ⎛⎫∈< ⎪⎝⎭,取18x得:2211131cos 12sin 1248832⎛⎫=->-= ⎪⎝⎭,故b a >1114sin cos 444ϕ⎛⎫+=+ ⎪⎝⎭,其中0,2πϕ⎛⎫∈ ⎪⎝⎭,且sin ϕϕ==当114sin cos 44+=142πϕ+=,及124πϕ=-此时1sin cos 4ϕ==1cos sin 4ϕ==故1cos4=11sin 4sin 44<=<,故b c < 所以b a >,所以c b a >>,故选A [方法三]:泰勒展开设0.25x =,则2310.251322a ==-,2410.250.25cos 1424!b =≈-+, 241sin10.250.2544sin1143!5!4c ==≈-+,计算得c b a >>,故选A. [方法四]:构造函数 因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭,所以11tan 44>,即1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞,()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->,所以b a >,所以c b a >>, 故选:A .[方法五]:【最优解】不等式放缩 因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭,所以11tan 44>,即1cb >,所以c b >;因为当π0,,sin 2x x x ⎛⎫∈< ⎪⎝⎭,取18x 得2211131cos 12sin 1248832⎛⎫=->-= ⎪⎝⎭,故b a >,所以c b a >>. 故选:A .【整体点评】方法4:利用函数的单调性比较大小,是常见思路,难点在于构造合适的函数,属于通性通法; 方法5:利用二倍角公式以及不等式π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭放缩,即可得出大小关系,属于最优解.【方法技巧与总结】(1)利用函数与方程的思想,构造函数,结合导数研究其单调性或极值,从而确定a ,b ,c 的大小. (2)指、对、幂大小比较的常用方法:①底数相同,指数不同时,如1x a 和2x a ,利用指数函数x y a =的单调性; ②指数相同,底数不同,如1ax 和2ax 利用幂函数a y x =单调性比较大小;③底数相同,真数不同,如1log a x 和2log a x 利用指数函数log a x 单调性比较大小;④底数、指数、真数都不同,寻找中间变量0,1或者其它能判断大小关系的中间量,借助中间量进行大小关系的判定.(3)转化为两函数图象交点的横坐标 (4)特殊值法 (5)估算法(6)放缩法、基本不等式法、作差法、作商法、平方法【核心考点】核心考点一:直接利用单调性 【典型例题】例1.(2023·全国·高三专题练习)已知三个函数112()21,()e 1,()log (1)1x x f x x g x h x x x --=+-=-=-+-的零点依次为,,a b c ,则,,a b c 的大小关系( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>【答案】D【解析】∵函数1()21x f x x -=+-为增函数,又11(0)210,(1)102f f -=-=-<=>,∴()0,1a ∈,由1()e 10x g x -=-=,得1x =,即1b =, ∵2()log (1)1h x x x =-+-在()1,+∞单调递增,又223331()log (1)10,(2)log (21)21102222h h =-+-=-<=-+-=>,∴322c <<, ∴c b a >>. 故选:D.例2.(2022春·辽宁大连·高三校联考期中)已知111m n>>,n a n =,m b n =,n c m =,则a ,b ,c 的大小关系正确的为( ) A .c >a >b B .b >a >c C .b >c >a D .a >b >c【答案】B 【解析】由题意111m n>>,故01m n <<<, 由指数函数的单调性,x y n =单调递减,故b a >, 由幂函数的单调性,n y x =在(0,)+∞单调递增,故a c >, 综上:b a c >>. 故选:B例3.(2022春·贵州黔东南·高二凯里一中阶段练习)设21log 3aa ⎛⎫= ⎪⎝⎭,132log bb =,154c⎛⎫= ⎪⎝⎭,则a 、b 、c的大小关系是( ) A .b a c << B .c b a << C .a b c << D .b<c<a【答案】B【解析】构造函数()21log 3xf x x ⎛⎫=- ⎪⎝⎭,因为函数2log y x =、13xy ⎛⎫=- ⎪⎝⎭在()0,∞+上均为增函数,所以,函数()f x 为()0,∞+上的增函数,且()1103f =-<,()8209f =>,因为()0f a =,由零点存在定理可知12a <<;构造函数()132log xg x x =-,因为函数2x y =、13log y x =-在()0,∞+上均为增函数, 所以,函数()g x 为()0,∞+上的增函数,且1912209g ⎛⎫=-< ⎪⎝⎭,1312103g ⎛⎫=-> ⎪⎝⎭,因为()0g b =,由零点存在定理可知1193b <<.因为154c⎛⎫= ⎪⎝⎭,则1144log 5log 10c =<=,因此,c b a <<.故选:B.例4.(2023·全国·高三专题练习)已知54m =,89n =,0.90.8p =,则正数m ,n ,p 的大小关系为( ) A .p m n >> B .m n p >>C .m p n >>D .p n m >>【答案】A【解析】由54m =,得125542m ==<89n =,得118493n ==, 因此,122112020855202011520442222561324333m n ⨯⨯⎛⎫⎛⎫⎛⎫ ⎪====> ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭m n >, 由0.90.8p =,得0.90.9log 0.8log 0.812p =>=,于是得p m n >>, 所以正数m ,n ,p 的大小关系为p m n >>. 故选:A核心考点二:引入媒介值 【典型例题】例5.(2023·全国·高三专题练习)已知3110π,53,log 2a bc ===-,则a ,b ,c 的大小关系为( )A .a b c <<B .b a c <<C .c<a<bD .a c b <<【答案】D【解析】由3110,53,log 2a bc π===-可得,lg πa =,5log 3b =,123c -=,由于1213,12c -⎛⎫==⎪⎝⎭,1lg π2a ==,551log 3log 2b =>=,而35c =<,3553<,所以35553log 3log 55b =>=,所以ac b <<. 故选:D .例6.(2023·全国·高三专题练习)设0.124log 3,log 5,2a b c -===,则a ,b ,c 的大小关系为( )A .a b c >>B .b a c >>C .c b a >>D .a c b >>【答案】A【解析】依题意,24ln 3log 3ln 32ln 22ln 3ln 9ln 21,ln 5log 5ln 2ln 5ln 5ln 5ln 4a a b b ===⨯==>∴>, 0.14404121log 5log ,2b c ->==<==,所以1a b c >>> 故选:A例7.(2023·全国·高三专题练习)已知14sin 4,ln 4,4a b c -===,则a ,b ,c 的大小关系是( )A .c b a <<B .a b c <<C .a c b <<D .b<c<a【答案】C【解析】()sin4sin 40π==--<a , ln 4ln e 1=>=b , 14124210--==<=<c , 所以a c b <<. 故选:C .例8.(2022·云南昆明·昆明一中模拟预测)已知13e a =,ln 2b =,3log 2c =,则,,a b c 的大小关系为( ) A .a c b >> B .a b c >> C .b c a >> D .c b a >>【答案】B 【解析】103e e 1=>=a ,ln 2ln e 1b =<=,33log 2log 31c =<=∴a 最大,3lg 2lg 211ln 2log 2lg 20lge lg3lge lg3⎛⎫-=-=-=⋅-> ⎪⎝⎭b c ,∴b c >, ∴a b c >>,故选:B例9.(2023·广西南宁·南宁二中校考一模)已知0.20.212log 0.5,0.5,log 0.4a b c ===,则a ,b ,c 的大小关系为( ) A .a b c << B .a c b << C .b<c<a D .c<a<b【答案】A【解析】因为0.20.20.21log 0.5log log 2a ==<=,而150.2110.522b ⎛⎫==> ⎪⎝⎭,且0.20.51<,所以a b <. 又12225log 0.4log log 212c ==>>, 所以a b c <<, 故选:A.例10.(2023·全国·高三专题练习)三个数a =0.42,b =log 20.3,c =20.6之间的大小关系是( ) A .a <c <b B .a <b <cC .b <a <cD .b <c <a【答案】C【解析】∵0<0.42<0.40=1,∴0<a <1, ∵log 20.3<log 21=0,∴b <0, ∵20.6>20=1,∴c >1, ∴b <a <c , 故选:C .核心考点三:含变量问题 【典型例题】例11.(2022·广西·统考模拟预测)已知正数,,x y z 满足e ,x y =且,,x y z 成等比数列,则,,x y z 的大小关系为( ) A .x y z >> B .y x z >> C .x z y >> D .z y x >>【答案】D【解析】令()e ,0x f x y x x x =-=->,则()e 1xf x '=-,当0x >时,()e 10x f x '=->,()f x 单调递增,所以()0=e >e =1x f x x -,所以e x x >,故y x >,因为正数,,x y z 成等比数列,所以2y xz =即2e x xz =,故2e x z x=,所以2e e 1e x xx z y x x==>,故z y >, 综上所述,z y x >>, 故选:D例12.(2022春·湖南岳阳·高三统考阶段练习)已知正数,,a b c ,满足ln c a b b e c a =⋅=⋅,则,,a b c 的大小关系为( ) A .a b c << B .a c b << C .b c a << D .c b a <<【答案】D【解析】,,a b c 均为正数,因为ln a b c a =⋅,所以ln c b =,设()ln 0ca b b e c a t t =⋅=⋅=>,则,=,ln ln e c t t ta b c b b b===, 令()()ln 0f x x x x =->,则()111xf x x x-'=-=,当01x <<时0f x,()f x 单调递增,当1x >时()0f x '<,()f x 单调递减,所以()()110f x f ≤=-<,即ln x x <,所以ln b b <,可得a b >, 又ln c b =得c b <,综上,c b a <<. 故选:D.例13.(2022春·湖北·高三校联考开学考试)已知,,a b c 均为不等于1的正实数,且ln ln ,ln ln c a b a b c ==,则,,a b c 的大小关系是( )A .c a b >>B .b c a >>C .a b c >>D .a c b >>【答案】D【解析】ln ln ,ln ln c a b a b c ==且a 、b 、c 均为不等于1的正实数, 则ln c 与ln b 同号,ln c 与ln a 同号,从而ln a 、ln b 、ln c 同号. ①若a 、b 、()0,1c ∈,则ln a 、ln b 、ln c 均为负数,ln ln ln a b c c =>,可得a c >,ln ln ln c a b b =>,可得c b >,此时a c b >>;②若a 、b 、()1,c ∈+∞,则ln a 、ln b 、ln c 均为正数,ln ln ln a b c c =>,可得a c >,ln ln ln c a b b =>,可得c b >,此时a c b >>.综上所述,a c b >>. 故选:D.例14.(2023·全国·高三专题练习)已知实数a ,b ,c 满足ln ln ln 0e a a b cb c==-<,则a ,b ,c 的大小关系为( ) A .b a c << B .c b a <<C .a b c <<D .c<a<b【答案】C【解析】由题意知0,0,0a b c >>>,由ln ln ln 0a a b ce b c==-<,得01,01,1a b c <<<<>, 设ln ()(0)x f x x x =>,则21ln ()xf x x -'=, 当01x <<时,()0,()'>f x f x 单调递增,因1x e x ≥+, 当且仅当0x =时取等号,故(01)a e a a ><<, 又ln 0a <,所以ln ln a a ae a >,故ln ln b a b a>, ∴()()f b f a >,则b a >,即有01a b c <<<<,故a b c <<. 故选:C .例15.(2023·全国·高三专题练习)已知,42x ππ⎛⎫∈ ⎪⎝⎭且222sin 2sin 1exx a +=,cos cos 1e x x b +=,sin sin 1e x x c +=,则a ,b ,c 的大小关系为( ) A .a b c << B .b<c<a C .a c b << D .c<a<b【答案】C【解析】构造函数()()10e x x f x x +=>,则()2222sin 2sin 12sin exx a f x +==,()cos cos 1cos e x x b f x +==,()sin sin 1sin e xx c f x +==. 因为()()()2e 1e 0e e x xxx x xf x -+'==-<在()0,∞+上恒成立,所以函数()f x 在()0,∞+上单调递减. 又因为,42x ππ⎛⎫∈ ⎪⎝⎭,所以()22sin sin sin 2sin 10x x x x -=->,且sin cos x x >,故a c b <<.故选:C .例16.(2023·四川绵阳·四川省绵阳南山中学校考一模)已知()1e ,1x -∈,记ln ln 1ln ,,e 2⎛⎫=== ⎪⎝⎭xx a x b c ,则,,a b c的大小关系是( ) A .a c b << B .a b c << C .c b a << D .b<c<a【答案】A【解析】因为()1e ,1x -∈,所以()()ln ln 1ln 1,0,,e 211,2,1e ⎛⎫=∈-== ⎪⎛⎫∈∈ ⎝⎝⎭⎪⎭xx a x b c ,所以a c b <<, 故选:A核心考点四:构造函数 【典型例题】例17.(2023·全国·高三专题练习)已知0.03e 1a =-,3103b =,ln1.03c =,则a ,b ,c 的大小关系为( )A .a b c >>B .a c b >>C .c a b >>D .b a c >>【答案】B【解析】记()()e 1,0xf x x x =--≥.因为,所以当0x >时,,所以()f x 在()0,+∞上单调递增函数,所以当0x >时,()()00f x f >=,即1x e x ->,所以0.03e 10.03->.记()()()ln 1,0g x x x x =+-≥.因为,所以()g x 在()0,+∞上单调递减函数,所以当0x >时,()()00g x g <=,即()ln 1x x +<,所以ln1.030.03<.所以a c >.记()()()ln 1,01xh x x x x=+-≥+. 因为,所以当0x >时,,所以()h x 在()0,+∞上单调递增函数,所以当0x >时,()()00h x h >=,即()ln 11x x x +>+,所以0.033ln1.0310.03103>=+. 所以c b >.综上所述:a c b >>. 故选:B例18.(四川省眉山市2023届高三第一次诊断性考试数学(文)试题)设 1.02a =,0025.e b =,0.92sin 0.06c =+,则a ,b ,c 的大小关系是( ) A .c b a << B .a b c << C .b<c<a D .c<a<b【答案】D【解析】令()e x f x x =-,则()e 1xf x '=-,当0x >,()0f x >′,此时()f x 单调递增, 当0x <,()0f x <′,此时()f x 单调递减, 所以()()00e 01f x f >=-=,所以()0.020.02e 0.021f =->,即0.02e 1.02>,所以0.0250.02e e 1.02b a =>>=;又设()sin g x x x =-,()cos 10g x x '=-≤恒成立, ∴当0x >, ()g x 单调递减,()sin (0)0g x x x g =-<= 当0x >时,有sin x x <,则sin0.060.06<, 所以0.92sin0.060.920.06 1.02c a =+<+⨯==, 综上可得c a b <<. 故选:D .例19.(2023春·广东广州·高三统考阶段练习)设0.1a =,sin0.1b =, 1.1ln1.1c =,则,,a b c 的大小关系正确的是( ) A .b c a << B .b a c <<C .a b c <<D .a c b <<【答案】B【解析】令函数()sin f x x x =-,[0,)2x π∈,当02x π<<时,()cos 10f x x '=-<,即()f x 在(0,)2π上递减,则当02x π<<时,()(0)<f x f ,即sin x x <,因此sin 0.10.1<,即b a <;令函数()(1)ln(1)g x x x x =++-,01x ≤<,当01x <<时,()ln(1)0g x x '=+>,则()g x 在(0,1)上单调递增, 则当01x <<时,()(0)0g x g >=,即(1)ln(1)x x x ++>,因此0.1 1.1ln1.1<,即a c <,所以,,a b c 的大小关系正确的是b a c <<. 故选:B例20.(2023·全国·高三专题练习)设150a =,()ln 1sin0.02b =+,5121n 50c =,则a ,b ,c 的大小关系正确的是( ) A .a b c << B .a c b << C .b<c<a D .b a c <<【答案】D【解析】设()sin ,0,2f x x x x π⎛⎫=-∈ ⎪⎝⎭,则()cos 10f x x '=-≤,所以()f x 在0,2x π⎛⎫∈ ⎪⎝⎭上递减,所以()()00f x f <=,即sin x x <,设()()ln 1,0,1g x x x x =-+∈,则()110g x x'=->,()g x 递增, 则()()10g x g <=,即ln 1x x <-,所以()ln 1sin0.02sin0.020.02b a =+<<=,令()()2e 1x h x x =-+,则()()e 21x h x x '=-+,()e 2xh x ''=-,当ln 2x <时,()0h x ''<,则()h x '递减,又()()ln 22ln 20,010h h ''=-<=-<, 所以当()0,ln 2x ∈时,()0h x '<,()h x 递减, 则()()00h x h <=,即()2e 1x x <+,因为()0.020,ln 2∈,则()0.020h <, 所以512ln 0.02250e 1.02e <=,即150a =<5121n 50c =, 故b a c <<, 故选:D例21.(2023·全国·高三专题练习)设11166,2ln sin cos ,ln 5101055a b c ⎛⎫==+= ⎪⎝⎭,则,,a b c 的大小关系是___________. 【答案】.b a c <<【解析】由已知可得2111112ln sin cos ln sin cos ln(1sin )101010105b ⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭,设()sin f x x x =-,(0,1)x ∈,则()1cos 0f x x '=->, 所以()sin f x x x =-在(0,1)上单调递增,所以1(0)05f f ⎛⎫>= ⎪⎝⎭,即11sin 55>,所以11ln 1sin ln 155b ⎛⎫⎛⎫=+<+ ⎪ ⎪⎝⎭⎝⎭,设()ln(1)g x x x =-+,(0,1)x ∈,则1()1011x g x x x '=-=>++, 所以()ln(1)g x x x =-+在(0,1)上单调递增,所以1(0)05g g ⎛⎫>= ⎪⎝⎭,即111ln 1ln 1sin 555⎛⎫⎛⎫>+>+ ⎪ ⎪⎝⎭⎝⎭,所以a b >,设6()ln(1)5h x x x =-+,(0,1)x ∈,则651()1551x h x x x -'=-=++,当105x ⎛⎫∈ ⎪⎝⎭,时,()0h x '<,当1,15x ⎛⎫∈ ⎪⎝⎭时,()0h x '>,所以6()ln(1)5h x x x =-+在105⎛⎫⎪⎝⎭,上单调递减,在1,15⎛⎫ ⎪⎝⎭上单调递增,所以1(0)05h h ⎛⎫<= ⎪⎝⎭,即16166ln 1ln 55555⎛⎫<+= ⎪⎝⎭,所以a c <,所以.b a c << 故答案为:.b a c <<.例22.(2023·四川南充·四川省南充高级中学校考模拟预测)设150a =,112ln sin cos 100100b ⎛⎫=+ ⎪⎝⎭,651ln 550c =,则a ,b ,c 的大小关系正确的是( ) A .a b c << B .a c b << C .b<c<a D .b a c <<【答案】D【解析】因为10.0250ln e ln e a ==,211ln sin cos 100100b ⎛⎫=+ ⎪⎝⎭,6551ln 50c ⎛⎫= ⎪⎝⎭,所以只要比较6250.02 1.211151e ,sin cos 1sin 1sin 0.02,(10.02)1001005050x y z ⎛⎫⎛⎫==+=+=+==+ ⎪ ⎪⎝⎭⎝⎭的大小即可,令()e (1sin )(0)x f x x x =-+>,则()e cos 0x f x x '=->,所以()f x 在 (0,)+∞上递增, 所以()(0)f x f >,所以e 1sin x x >+, 所以0.02e 1sin 0.02>+,即1x y >>,令 1.2()(1)e x g x x =+-,则0.2() 1.2(1)e x g x x '=+-,0.8()0.24(1)e x g x x -''=+- 因为()g x ''在(0.)+∞上为减函数,且(0)0.2410g ''=-<, 所以当0x >时,()0g x ''<, 所以()g x '在(0.)+∞上为减函数,因为(0) 1.210g '=->,0.20.2 1.20.2(0.2) 1.2 1.2e 1.2e g '=⨯-=-,要比较 1.21.2与0.2e 的大小,只要比较 1.2ln1.2 1.2ln1.2=与0.2lne 0.2=的大小, 令()(1)ln(1)(0)h x x x x x =++->,则()ln(1)11ln(1)0h x x x '=++-=+>,所以()h x 在上递增,所以()(0)0h x h >=,所以当,()0x ∈+∞时,(1)ln(1)x x x ++>,所以1.2ln1.20.2>, 所以 1.21.2>0.2e ,所以0.20.2 1.20.2(0.2) 1.2 1.2e 1.2e 0g '=⨯-=->, 所以当(0,0.2)x ∈时,()0g x '>, 所以()g x 在(0,0.2)上递增,所以()(0)0g x g >=,所以 1.2(1)e x x +>,所以 1.20.02(10.02)e +>,所以z x >,所以z x y >>, 所以c a b >>, 故选:D例23.(2022春·湖南长沙·高三长沙一中校考阶段练习)已知πln ,2,2tan 13a b c ⎫===⎪⎪⎭,则,,a b c 的大小关系是( ) A .c b a >> B .a b c >> C .b a c >> D .a c b >>【答案】A【解析】设()ln (1)f x x x =--,则1()1f x x'=-,当01x <<时,()0f x '>, 当1x <时,()0f x '<,所以函数()f x 在(0,1)上单调递增,在(1,)+∞单调递减, 所以1x =时,max ()(1)0f x f ==,所以()0f x <,即ln 1x x <-,所以πln213a b ⎫==<=⎪⎪⎭,又(2tan 121tan c b x x ⎫⎫=>=>⎪⎪⎪⎪⎭⎭,对任意π0,2x ⎛⎫∈ ⎪⎝⎭恒成立). 因此c b a >>, 故选:A .例24.(2023·全国·高三专题练习)设23a =ln 2)b =-,3c =,则,,a b c 的大小关系是( ) A .b<c<a B .c b a << C .b a c << D .a b c <<【答案】A【解析】①先比较,a c:2332a ==,3c =,设函数2e ()x f x x =, 则'3e (2)()0x x f x x -=<,得函数()f x 在(0,2)单调递减,'3e (2)()0x xf x x-=>得函数()f x 在(2,)+∞单调递增 所以f f<即c a<;②再比较,b c:由①知2mine()(2)4f x f f c==<=,而1ln2)2b=-=,设2(ln2)3()xh xx+=,'22(ln1)3()xh xx+=-当1ex<<,'()0h x>,()h x单调递增,当1ex>,'()0h x<,()h x单调递减,所以max12()()ee3b h h x h=<==,而22e ee.e344f c<=<=,所以b c<,故选:A核心考点五:数形结合【典型例题】例25.(2023·全国·高三专题练习)已知函数()2xf x x=+,2()logg x x x=+,()2sinh x x x=+的零点分别为a,b,c则a,b,c的大小顺序为()A.a b c>>B.b a c>>C.c a b>>D.b c a>>【答案】D【解析】由()2sin0h x x x=+=得0x=,0c∴=,由()0f x=得2x x=-,由()0g x=得2log x x=-.在同一平面直角坐标系中画出2xy=、2logy x=、y x=-的图象,由图象知a<0,0b>,a c b∴<<.故选:D例26.(2023·江苏·高三专题练习)已知正实数a,b,c满足2e e e ec a a c--+=+,28log3log6b=+,2log2c c+=,则a,b,c的大小关系为()A.a b c<<B.a c b<<C.c a b<<D.c b a<<【答案】B【解析】22e e e e e e e e c a a c c c a a ----⇒+=+-=-,故令()e e x x f x -=-,则()e e c c f c -=-,()e e a af a -=-.易知1e exx y -=-=-和e x y =均为()0,+∞上的增函数,故()f x 在()0,+∞为增函数. ∵2e e a a --<,故由题可知,2e e e e e e c c a a a a ----=->-,即()()f c f a >,则0c a >>.易知22log 3log log 2b =+>,2log 2c c =-, 作出函数2log y x =与函数2y x =-的图象,如图所示,则两图象交点横坐标在()1,2内,即12c <<,c b ∴<,a cb ∴<<.故选:B .例27.(2023·全国·高三专题练习)已知e ππee ,π,a b c ===,则这三个数的大小关系为( )A .c b a <<B .b c a <<C .b a c <<D .c a b <<【答案】A 【解析】令()()ln ,0x f x x x =>,则()()21ln ,0x f x x x -'=>, 由0fx,解得0e x <<,由()0f x '<,解得e x >,所以()()ln ,0xf x x x=>在()0,e 上单调递增,在()e,+∞上单调递减; 因为πe >, 所以()()πe f f <,即ln πln eπe<, 所以eln ππlne <,所以e πln πln e <, 又ln y x =递增, 所以e ππe <,即b a <;ee ππ=⎡⎤⎢⎥⎣⎦,在同一坐标系中作出xy =与y x =的图象,如图:由图象可知在()2,4中恒有xx >,又2π4<<,所以ππ>,又e y x =在()0,∞+上单调递增,且ππ>所以eπe πeπ=⎡⎤>⎢⎥⎣⎦,即b c >;综上可知:c b a <<, 故选:A例28.(2022春·四川内江·高三校考阶段练习)最近公布的2021年网络新词,我们非常熟悉的有“yyds ”、“内卷”、“躺平”等.定义方程()()f x f x '=的实数根x 叫做函数()f x 的“躺平点”.若函数()ln g x x =,()31h x x =-的“躺平点”分别为α,β,则α,β的大小关系为( ) A .αβ≥ B .αβ> C .αβ≤ D .αβ<【答案】D【解析】∵()ln g x x =,则()1g x x'=, 由题意可得:1ln aα=, 令()1ln G x x x=-,则α为()G x 的零点,可知()G x 在定义域()0,∞+内单调递增,且1110,e 10eG G ,∴()1,e α∈;又∵()31h x x =-,则()23h x x '=,由题意可得:3213ββ-=,令()3231H x x x =--,则β为()H x 的零点,()()23632H x x x x x '=-=-,令()0H x '>,则0x <或2x >,∴()H x 在(),0∞-,()2,+∞内单调递增,在()0,2内单调递减, 当(),2x ∈-∞时,()()010H x H ≤=-<,则()H x 在(),2-∞内无零点, 当[)2,x ∞∈+时,()()310,4150H H =-<=>,则()3,4β∈, 综上所述:()3,4β∈; 故αβ<. 故选:D.核心考点六:特殊值法、估算法 【典型例题】例29.(2022·全国·高三专题练习)已知3142342,3,log 4,log 5a b c d ====,则a b c d ,,,的大小关系为( )A .b a d c >>>B .b c a d >>>C .b a c d >>>D .a b d c >>>【答案】C 【解析】 依题意,314222)a ==,函数y =[0,)+∞上单调递增,而934<<,于是得112232)32<<,即32b a >>, 函数4log y x =在(0,)+∞单调递增,并且有44log 30,log 50>>, 则44442log 16log 15log 3log 5=>=+=2+>于是得44log 3log 51⨯<,即4341log 5log 4log 3<=,则c d >, 又函数3log y x =在(0,)+∞单调递增,且4<333log 4log 2<=, 所以32b acd >>>>. 故选:C例30.(2022·全国·高三专题练习)已知a =142b =,2e log c =,则a ,b ,c 的大小关系为( ) A .a b c >>B .a c b >>C .b a c >>D .b c a >>【答案】B 【解析】由49a =,42b =,可知1a b >>,又由2e 8<,从而32e 2<=,可得23log e 2c a =<<,因为4461296()205625b -=-<,所以615b <<; 因为565e 2 2.7640->->,从而56e 2>,即65e 2>, 由对数函数单调性可知,65226log e >log 25c ==, 综上所述,a c b >>. 故选:B.例31.(2023·全国·高三专题练习)若e b a >>>b m a =,a n b =,log a p b =,则m ,n ,p 这三个数的大小关系为( ) A .m n p >> B .n p m >> C .n m p >> D .m p n >>【答案】C【解析】因为e b a >>> 所以取52,2a b ==,则()5225,6bm a ===,25256.2524a n b ⎛⎫=== ⎪⎝⎭=,()25log log 1,22a pb ==∈,所以n m p >>.故选:C.核心考点七:放缩法 【典型例题】例32.(2022·全国·模拟预测)已知2022a =,2223b =,c a b =,则a ,b ,c 的大小关系为( ) A .c a b >> B .b a c >> C .a c b >> D .a b c >>【答案】D【解析】分别对2022a =,2223b =,c a b =两边取对数,得20log 22a =,22log 23b =,log a c b =.()22022lg 22lg 20lg 23lg 22lg 23log 22log 23lg 20lg 22lg 20lg 22a b -⋅-=-=-=⋅. 由基本不等式,得:()222222lg 20lg 23lg 460lg 484lg 22lg 20lg 23lg 222222⎛⎫+⎛⎫⎛⎫⎛⎫⋅<=<== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 所以()2lg 22lg 20lg 230-⋅>, 即0a b ->,所以1a b >>.又log log 1a a c b a =<=,所以a b c >>. 故选:D .例33.(2023·全国·高三专题练习)已知:0.42e a =,0.52b =,4log 5c =,则a 、b 、c 大小关系为( ) A .b a c >> B .a b c >> C .c a b >> D .b c a >>【答案】B【解析】令()e 1x f x x =--,则()e 1xf x '=-,当0x >时,0fx,所以函数()f x 在()0,∞+上递增, 所以()()0.4200f f >=, 即0.42e 0.421>+, 又21.42 2.01642=>, 所以0.420.5e 0.4212>+>, 所以a b >,又25252416⎛⎫=< ⎪⎝⎭,所以0.5524>,54444441024log 54log 5log 4log 55625log 504444---===>, 所以0.5452log 54>>, 所以a b c >>. 故选:B.例34.(2023·全国·高三校联考阶段练习)已知实数,,a b c 满足12330a b +⨯-=1=()()25log 3a c x x x =+-+∈R ,则,,a b c 的大小关系是( )A .a b c >>B .b c a >>C .c b a >>D .a c b >>【答案】D【解析】由12330a b +⨯-=得:2333a b ⨯=⨯,3312a b-∴=>,0a b ∴->,即a b >;31b +=>c b >;由()()25log 3a c x x x =+-+∈R 得:()25log 3a c x x -=-+,221553222y x x x ⎛⎫=-+=-+≥ ⎪⎝⎭,()25555log 3log log 102x x ∴-+≥>=,即a c >;综上所述:a c b >>. 故选:D.例35.(2022·全国·高三专题练习)己知544567,117<<,设6711log 5,log 6,log 7a b c ===,则a ,b ,c 的大小关系为_______.(用“<”连接) 【答案】a b c <<【解析】由544567,117<<得 7115log 645log 7<<,即7114log 6log 75<<, b c ∴<,又267lg 5lg 6lg 5lg 7lg 6log 5log 6lg 6lg 7lg 6lg 7a b ⋅--=-=-=⋅22lg5lg 7lg 62lg 6lg 7+⎛⎫- ⎪⎝⎭⋅<, lg5lg7lg35lg36+=<,lg5lg 7lg 62+∴<, 22lg5lg 7lg 62+⎛⎫∴ ⎪⎝⎭<,a b ∴<,综上:a b c <<. 故答案为:a b c <<.核心考点八:不定方程 【典型例题】例36.(2022·宁夏·银川一中一模(文))已知实数a ,b ,c ,满足ln e a b c ==,则a ,b ,c 的大小关系为( ) A .a b c >> B .c b a >> C .b c a >> D .a c b >>【答案】C解:设e ()x x f x =-,则()e 1x f x '=-,当0x <时,()0f x '<,当0x >时,()0f x '>, 所以()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增, 所以min ()(0)10f x f ==>,故e x x >, 所以e a c a =>,又ln b c =, 所以e c b c =>, 所以b c a >>. 故选:C .例37.(2023·全国·高三专题练习)正实数,,a b c 满足422,33,log 4ab a bc c -+=+=+=,则实数,,a b c 之间的大小关系为( ) A .b a c << B .a b c << C .a c d << D .b<c<a【答案】A【解析】22a a -+=,即220a a -+-=,即22a a -=-,2xy -=与2y x =-的图象在()0,∞+只有一个交点,则220x x -+-=在()0,∞+只有一个根a ,令()22xf x x -=+-,()21222204f -=+-=>,()11112202f -=+-=-<,()()120f f <,则12a <<; 33b b +=,即330b b +-=,即33b b =-,由3xy =与3y x =-的图象在()0,∞+只有一个交点,则330x x +-=在()0,∞+只有一个根b ,令()33xg x x =+-,()113310g =+-=>, 12115330222g ⎛⎫=+-=< ⎪⎝⎭,()1102g g ⎛⎫< ⎪⎝⎭,故112b <<;4log 4c c +=,即4log 4c c =-,即4log 40c c +-=,由4log y x =与4y x =-的图象在()0,∞+只有一个交点,则4log 40x x +-=在()0,∞+只有一个根c ,令()4log 4h x x x =+-,()444log 4410h =+-=>,()4433log 34log 310h =+-=-<,()()340h h <,则34c <<;b ac ∴<<故选:A.【新题速递】一、单选题1.(2022春·天津和平·高三耀华中学阶段练习)已知0.5x x =,0.5log y y x =,log 0.5zx z =,则( ) A .y x z <<B .z x y <<C .x z y <<D .z y x <<【解析】要比较0.5x x =,0.5log y y x =,log 0.5zx z =中的,,x y z 大小, 等价于比较0.5log x x =,0.5log y y x =,log 0.5zx z =中的,,x y z 大小,∵0.5log x x =,由定义域可知0x >, 故0.50.51log 0log x >=,∵0.5log y x =在定义域上单调递减, 0.501,0log 1x x ∴<<<<,0.51x ∴<<,∵0.50z >, ∴1log 0log x x z >=, ∵0.51x <<, ∴01z <<,故()0.50,1z∈,则()log 0,1x z ∈,1x z ∴<<,0.5log y y x =,由定义域可知:0y >,又∵0.51x <<,∴()0,1yx ∈,则()0.5log 0,1y ∈,()0.5,1y ∴∈,故y x x <,∵0.5log x x =,0.5log yy x =, ∴0.50.5log log x y <,x y ∴>,y x z ∴<<. 故选:A.2.(2022·浙江·模拟预测)已知正数a ,b ,c 满足3e 1.1a =,251030b b +-=,e 1.3c =,则( ) A .a c b << B .b a c << C .c<a<b D .c b a <<【答案】D【解析】由251030b b +-=解得1b =-,构造函数21()ln(1)2f x x x x =--+,(1)x >-,显然2()01x f x x -'=<+, 故()f x 是减函数,结合(0)0f =,故0x >时,()0f x <,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点精讲及典型例题解析 一、增值税法律制度 (一)增值税纳税人和扣缴义务人 1.纳税人 在中华人民共和国境内销售货物或者提供加工、修理修配劳务以及进口货物的单位和个人,为增值税的纳税人。单位租赁或者承包给其他单位或者个人经营的,以承租人或者承包人为纳税人。 根据纳税人的经营规模以及会计核算健全程度的不同,增值税的纳税人,可划分为一般纳税人和小规模纳税人。 (1)小规模纳税人。 包括:①从事货物生产或者提供应税劳务的纳税人,或兼营货物批发或者零售的纳税人,年应征增值税销售额在50万元以下的;②除①以外的纳税人,年应税销售额在80万元以下的。 (2)一般纳税人。 是指年应税销售,超过小规模纳税人标准的企业和企业性单位。 例外:①年应税销售额未超过小规模纳税人标准的企业;②个人(除个体经营者以外的其他个人);③非企业性单位;④不经常发生增值税应税行为的企业。 【例4-1】(单选题〕下列纳税人中,不属于增值税一般纳税人的有( )。 A.年销售额为60万元的从事货物生产的个体经营者 B.年销售额为100万元的从事货物批发的个人 C.年销售额为60万元的从事货物生产的企业 D.年销售额为100万元的从事货物批发零售的企业 【答案】B 【解析】根据增值税法律制度的规定,除个体营者以外的其他个人,不属于增值税一般鈉税人,应按小规模纳税人纳税。 2.扣缴义务人 中华人民共和国境外的单位或者个人在境内提供应税劳务,在境内未设有经营机构的,以其境内代理人为扣缴义务人;在境内没有代理人的,以购买方为扣缴义务人。
(二)增值税征税范围 一般:增值税的征税范围包括在中国境内销售货物、提供加工、修理修配劳务和进口货物。 特殊 1.视同销售货物行为 单位或者个体工商户的下列行为,视同销售货物: (1)将货物交付其他单位或者个人代销; (2)销售代销货物; (3)设有两个以上机构并实行统一核算的纳税人,将货物从一个机构移送至其他机构用于销售,但相关机构设在同一县(市)的除外; (4)将自产或者委托加工的货物用于非增值税应税项目; (5)将自产,委托加工的货用于集体福利或者个人消费; (6)将自产、委托加工或者购进的货物作为投资,提供给其他单位或者个体工商户; (7)将自产、委托加工或者购进的货物分配给股东或者投资者; (8)将资产、委托加工或者购进的货物无偿赠送其他单位或者个人。 【例4-2】(单选题)甲企业销售给乙企业一批货物,乙企业因资金紧张无法支付货款。经双方友好协商,乙企业用自产的产品抵顶货款,下列表述中正确的是( )。 A.甲企业收到乙企业的抵顶货物不应作购货处理 B.乙企业发出抵顶货款的货物不应作销售处理,不应计算销项税额 C.甲、乙双方发出货物都作销售处理但收到货物所含增值税额一律不能计入进项税额 D.甲、乙双方都作购销处理,可对开增值税专用发票分别核算销售额和购进额,并计算销项税和进项税额 【答案】D 【解析】以物易物双方都应作购销处理,以各自发出的货物核算销售额并计算销项税额,以各自收到的货物桉规定核算购货额并计算进项税额。在以物易物活动中,应分别开具合法的票据,如收到的货物不能取得相应的增值税专用发票或其他合法票据的,不能抵扣进项税额。 【例4-3】下列行为中,应视同销售货物征收增值税的有( )。 A.将外购的货物抵付员工工资 B.将自产货物作为股利分配給股东 C.将外购的货物用于集体福利 D.将委托加工收回的货物用于个人消 【答案】BD 【解析】根据增值税法律制度的规定,选项B、D,将外购货物用于投资、分配股东或投资者、无偿赠送行为的,属于增值税视同销售行为,外购货物用于集体福利,不属于增值税视同销售行为。 2.混合销售行为 根据《营业税改征增值税试点实施办法》及相关规定,一项销售行为如果既涉及货物又涉及服务,为混合销售。从事货物的生产、批发或者零售的单位和个体工商户的混合销售行为,按照销售货物繳纳增值税;其他单位和个体工商户的混合销售行为,按照销售服务繳纳增值税。上述从事货物的生产、批发或者零售的单位和个体工商户,包括以从事货物的生产、批发或者零售为主,并兼营销售服务的单位和个体工商户在内。 混合销售行为具有以下的特征,一是在同一次交易中发生;二是涉及的是同一个纳税人(销售方);三是涉及的是同了个消费者;四是交易的内容既涉及货物又涉及非增值税应税劳务。 销售自产货物并同时提供建筑业劳务的行为,应当分别核算货物的销售额和非增值税应税劳务的营业额,并根据其销售货物的铜售额计算繳纳增值税,非增值税应税劳务的营业额不繳纳增值税;未分别核算的,由主管税务机关核定其货物的销售额。 以从事货物生产、批发或者零售为主,并兼营非增值税应税劳务的单位和个体工商户的混合销售行为,视为销售货物,应当繳纳增值税;其他单位和个人的混合销售行为,视为销售非增值税应税劳务,不缴纳增值税。 【例4-4】(多选题)下列各项中。属于增值税混合销行为的有( )。 A.百货商店在销售商品的同时又提供送货服务 B.餐饮公司提拱餐饮服务的同时又销售烟酒 C.建材商店在木质地板的同时并提供安装服务 D.KTV在提供娱乐服务的同时销售酒水 【答案】ABCD 【解析】根据增值税法律制度的规定,选项ABCD均属于增值税混合销售行为。 3.兼营行为 根据《营业税改征增值税试点实施办法》及相关规定,兼营,是指纳税人的经营中既包括销售货物和加工修理修配劳务,又包括销售服务、无形资产和不动产的行为。 纳税人兼营销售货物、劳务、服务、无形资产或者不动产,适用不同税率或者征收率的。应当分别核算适用不同税率或者征收率的销售额;未分别核算的,从高适用税率。 混合销售与兼营相比既有相同之处,又有不同之处。相同之处是:纳税人在生产经营活动中都涉及销售货物和服务两类业务。不同之处是:混合销售是在同一项(次)销售业务中同时涉及货物和应税服务,货物销售款和服务价款同时从同一个客户处收取,这两种款项在财务上难以分别核算0兼营是纳税人兼有销售货物和服务两类业务。并且这种营活动并不发生在同一项(次)业务中,收取的两种款项在财务上可以分别核算。 4.征税范围的特殊规定 征收增值税:(1)货物期货(包括商品期货和贵金属期货);(2)银行销售金银的业务;(3)典当业的死当物品销售业务和寄售业代委托人销售寄售物品的业务;(4)缝纫业务;(5)基本建设单位和从事建筑安装业务的企业附设的工厂、车间生产的水泥预制构件、其他构件或建筑材料,用于本单位或本企业建筑工程的,在移送使用时;(6)电力公司向发电企业收取的过网费;(7)旅店业和饮食业纳税人销售非现场消费的食品;(8)纳税人提供的矿产资源开采`挖掘、切割、破碎、分拣、洗选等劳务,属于增值税应税劳务,应当缴纳增值税。 【例4-5】(多选题)下列各项中,属于增值税征税范围的有( )。 A.汽车维修 B.手机修配 C.金银首饰加工 D.邮政部门销售集邮商品 【答案】ABCD 【解析】根据增值税法律制度的规定,提供加工、理修配劳务属于增值税征税范围,邮政业已改征增值税。 (三)增值税率和征收率 我国增值税采用比例税率,分为基本税率、低税率和零税率三档,适用于一般纳税人,小规模纳税人采取征收率。 1.税率 (1)基本税率17%。 (2)低税率13%。适用:粮食、食用植物油;自来水、暖气、冷气、热水、煤气、石油液化气、天然气、沼气、民用煤炭品;书报纸、杂志,饲料、化肥、农药`农机、农膜;农产品;音像制品;电子出版物;二甲醚;食用盐。 (3)低税率11%。提供交通运输业服务、邮政业服务、基础电信服务。 (4)低税率6%。提供现代服务业服务(有形动产租赁服务为17%),增值电信服务。 (5)零税率。纳税人出口货物、国际运输服务、向境外提供的研发和设计服务。 【例4-6】(单选题)某电脑股份有限公司一般纳税人销售给某商场100台电脑,不含税单价为4300元/台,已开具税控专用发票。双方议定送货上门,另收取商场运费1500元,开具普通发票。该电脑股份公司该笔业务的销项税额为( )元。 A.74205 B.75917.95 C.73205 D.76127.95 【答案】C 【解析】销售电脑的项税额=4300×100×17%=73100(元);收取运费的销项税额=1500×7%=105(元),该笔业务应纳项税额73100+105=73205(元)。 2.征收率 小规模纳税人采用简易办法征收增值税,征收率为3%。一般纳税人在特殊情况下,也按简易办法依照3%的征收率计算缴纳增值税。 【例4-7】(单选题)某生产企业增值税小规模纳税人,2012年6月对部分资产盘点后进行处理,销售边角废料由税务关代开增值税专用发票,取得含税收入81600元;销售使用过的小汽车1辆取得含税收入71400元。原值为14000元。该企业上述业务应繳纳增值税( )元。 A.2400 B.3773.08 C.3000 D.4500 【答案】C 【解析】小规模纳税人销售自己使用过的固定资产,依照3%的征收率减按2%征收增值税。应纳税额=81600/(1+2%)×2%+71400/(1+2%)×2%=3000(元)。
(四)增值税应纳税额的计算 1.一般纳税人应纳税额的计算 应纳税额=当期销项税-当期进项税额 销项税额=销售额×适用税率 (1)销售额的确定。 根据《增值税暂行条例实施细则》及《营业税改征增值税试点实施办法》的规定,销售额是指纳税人销售货物、劳务、服务、无形资产或者不动产向购买方收取的全部价款和价外费用,但是不包括收取的销项税额。根据《营业税改征增值税试点实施办法》及相关规定,混合销售的销售额为货物的铊售额与服务销售的合计。根据《营业税改征增值税试点实施办法》及相关规定,“纳税人兼营不同税率的货物、劳务、服务、无形资产或者不动产,应当分别核算不同税率或者征收率的销售额;未分别核算销售额的,从高适用税率。” 价外费用,包后价外向购买方收取的手续费、补贴、基金、集资费、返还利润、奖励费、违约金、滞纳金、延期付款利息、陪金、代收款项、代垫款项、包装费、包装物租金、储备费、优质费、运输装卸费以及其他各种性质的价外收费。 (2)进项税额的确定。 根据《营业税改征增值税试点实施办法》的规定,进项税额是指纳税人购进货物、加工修理修配劳务、服务、无形资产或者不动产,支付或者负担的增值税。 注:①已抵扣进项税额的购进货物(不含固定资产)、劳务、服务,发生《增值税暂行条例实施细则》和《营业税改征增值税试点实施办法》规定的不得从销项税额中抵情形(简易计税方法计税项目、免征增值税项目除外)的,应当将该进项税额从当期进项税额中扣减;无法确定该进项税额的,按照当期实际成本计算应扣减的进项税额。 ②已抵扣进项税额的固定资产、无形资产或者不动产,发生《增值税暂行条例实施细则》和《营业税改征增值税试点实施办法》规定的不得从销项税额中 抵扣情形的,按照下列公式计算不得抵扣的进项税额: 不得抵扣的进项税额=固定资产、无形资产或者不动产净值×适用税率 固定资产、无形资产或者不动产净值,是指纳税人根据财务会计制度计提折旧或摊销后的余额。 纳税人适用一般计税方法计税的,因销售折让、中止或者退回而退还给购买方的增值税额,应当从当期的销项税额中扣减;因销售折让、中、上或者退回而收回的增值税领,应当从当期的进项税额中扣减。 按照《增值税暂行条例》和《营业税改征增值税试点有关事项的规定》不得抵扣且未抵扣进项税额的固定资产、无形资产、不动产,发生用途改变,用于允许抵扣进项税额的应税项目,可在用途改变的次月按照下列公式,依据合法有效的增值税扣税凭证,计算可以抵扣的进项税额: 可以抵扣的进项税额=固定资产、无形资产、不动产净值/(1+适用税率)×适用税率 上述可以抵扣的进项税额应取得合法有效的增值税扣税凭证。 【例4-8】(多选题)下列关于出租出借包装物押金的处理,正确的有( )。 A.纳税人为销售货物而出租出借包装物收取的押金,单独记账核算的,一律不并入销售额征税 B.对逾期超过一年的包装物押金,无论是否退还,都要并入销售额征税 C.个别包装物周转使用期限较长的,报经税务征收机关批准后可适当放宽逾期期限 D.对销售酒类产品收取的包装物押金,无论是否返还以及会计上如何核算,均应并入当期销售额征税 【答案】BC 【解析】纳税人为销售货物而出租、出借包装物收取的押金,单独记账算的,且时间在1年以内,又未过期的,不并入销售额征税;但对因逾期未收回包装物不再退还的押金,应按所包装货物的适用税率计算增值税