采用TO38ICut封装的蓝光激光二极管BlueLaserDiodein-Octopart
TB1238

TB1238TB1238是东芝公司开发的单片电视信号处理集成电路该芯片采用I 2C 总线控制技术能够自动识别解调PAL NTSC SECAM 三种标准的彩色制式还能适应4.43NTSC 等非标准的彩色制式该单片还完成了对伴音信号图像同步信号行场小信号的处理TB1238集成电路是目前集成度较高功能较完善的电视信号处理芯片内藏了色度信号陷波器亮度延迟线黑电平延伸电路色带通滤波器等电路和东芝公司以往生产的芯片相比该芯片外围电路的复杂程度大大降低只有38MHz 一个可调元件大大方便了生产与维修 海信电器股份有限公司在华彩升级彩电世纪平休闲环保二代等多个系列的产品中采用了TB1238机芯其主要机型有TC2100TC2110A TC2110FM TC2110GTC2111G TC2139AD TC2175A TC2178TC2180A TC2193TC2198TF2111G TC2500TC2502G TC2510G TC2511L TC2566D TC2588A TC2589TC25100TC25109TF2511L TF25100TC2900TC2902G TC2910D TC2910G TC2911L TC2975G TC2997TC29105TF2901G TF2902G TF2977TF2988TF2988A TF2989TF2990等对地阻值k 引脚序号 符 号 功 能 直流电压V 黑笔接地 红笔接地1 DE EMP 去加重5 9 10 2 A OUT 音频输出3.5 9 12 3 IF VCC 中放电源9 5*100 5*100 4 AFT OUT AFT 输出2 7.5 17 5 IF GND 中频地0 0 0 6 IF IN1 中频信号输入0 8 12.5 7 IF IN2 中频信号输入1.7 8 12.5 8 RF AGC 高放AGC 输出6 8.5 11.5 9 IF AGC 中放AGC 滤波端4.3 9 12.5 10 APC APC 滤波2 8.6 12 11 XCO 色负载波晶体3.5 9 200K 12 Y/C GND Y/C 信号地0 0 0 13 FB 字符消隐输入0 8*100 8.2 14 R IN 红字符输入2.6 9 13 15 G IN 绿字符输入2.6 9 13 16 B IN 蓝字符输入2.6 9 13 17 RGB VCC RGB 电源9 5*100 5*100 18 R OUT 红信号输出2.5 8.2 10 19 G OUT 绿信号输出2.5 8.2 10 20 B OUT 蓝信号输出2.5 8.2 10 21 ABL 自动亮度控制5.5 9 12 22 V RAMP 锯齿波形成电路8.2 8.5 16 23 V FB 场反馈输入4.1 8 10.5 24 V OUT 场激励输出3.2 9*100 11*100 25 V AGC 场AGC0 8.7 16 26 SCL 总线时钟线3.8 6.5 927 SDA 总线数据线 4 6.5 928 H VCC 行电源9.3 3 329 ID CW SECAM识别 3.7 8.7 13.530 FBP IN 行逆程脉冲输入0.6 7.5 1031 SYNC OUT 同步脉冲输出 4.8 4 432 H OUT 行激励信号输出 3.1 7*100 7*10033 DEF GND 偏转电路地0 0 034 SCP 沙堡脉冲输出 1.4 8.7 13.535 CVBS OUT 视频信号输出 2.8 10*100 15*10036 DIG VCC 数字电源 5.1 7*100 17*10037 B-Y IN 蓝色差信号输入 2.4 9 12.538 R-Y IN 红色差信号输入 2.4 9 12.539 Y IN 亮度信号输入 2.8 9 12.540 H AFC 行AFC滤波7.1 9 1641 EXT Y IN 外视频输入 1.6 8.5 11.542 DIG GND 数字地0 0 043 TV Y IN 内视频输入 3 8.5 1244 BLACK DET 黑电平检测滤波 2.2 9 1245 C IN 外接色度信号输入 2.8 9 12.546 Y/C VCC 视频电源 4.8 7 10*10047 IF DET OUT 中频检波信号输出 3.4 9*100 9*10048 LOOP FILTER 中放滤波 4.4 8.5 1249 VCO GND 地0 0 050 VCO1 压控振荡器7.9 8*100 8*10051 VCO2 压控振荡器7.9 8*100 8*10052 VCO VCC 振荡器电源8.8 5*100 5*10053 SIF IN/H CORR 伴音输入/行曲线校正 4 6.5 12.554 REG 伴音滤波 5.6 8.5 1055 EXT A IN 外接伴音输入 4 9 1256 FM DC NF 直流负反馈滤波 3.5 8.7 12说明测量机型为海信TF2988采用MF10B型万用表在线电阻采用R*1k档特殊引脚注明采用R*100欧档测量。
LTST-S320TBKT-2A

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
2.2 二极管结构

将检测到的信号送到激光功率自动控制(APC)电路,以控
制半导体激光器的驱动电流,从而控制激光发射功率, 使激光功率保持恒定。
图2.8 普通型激光二极管的内部结构
图2.9 激光二极管外型
普通激光二极管有3个引出脚:激光器引出脚AL、光电 二极管引出脚AP及公共引脚K,其封装形式有M型、P型、N 型3种,如图2.10所示。
ቤተ መጻሕፍቲ ባይዱ
图2.10 封装形式
激光二极管结构
激光发射系统主要由激光二极管组成。普通型激光 器主要由激光二极管(LD)、光敏二极管(PD或MD)、散 热器、管帽、管座、管脚等构成,如图2.8所示,外型如 图2.9所示。CD/VCD激光器产生的激光波长一般为 780nm,(普通DVD激光器产生激光波长为650nm,蓝 光DVD波长为405nm)并从发射窗射出,激光的波长越 短,效果越好。激光器产生激光时会发热,散热器起散 热作用。激光器有负温度特性,它产生的激光的功率随 温度而变化。光敏二极管对发射的激光功率进行检测,
HSMP-3892中文资料

Surface Mount PIN Diodes Technical DataFeatures•Diodes Optimized for:Low Current SwitchingLow Distortion AttenuatingUltra-Low DistortionSwitchingMicrowave FrequencyOperation•Surface Mount SOT-23 and SOT-143 PackagesSingle and Dual VersionsTape and Reel OptionsAvailable•Low Failure in Time (FIT) Rate[1]Note:1.For more information see theSurface Mount PIN Reliability Data Sheet.HSMP-38XX andHSMP-48XX SeriesPackage Lead CodeIdentificationrequired. The HSMP-48XX seriesare special products featuringultra low parasitic inductance inthe SOT-23 package, specificallydesigned for use at frequencieswhich are much higher than theupper limit for conventionalSOT-23 PIN diodes. TheHSMP-4810 diode is a low distor-tion attenuating PIN designed foroperation to 3 GHz. TheHSMP-4820 diode is ideal forlimiting and low inductanceswitching applications up to1.5GHz. The HSMP-4890 isoptimized for low current switch-ing applications up to 3 GHz.The HSMP-386X series of generalpurpose PIN diodes are designedfor two classes of applications.The first is attenuators wherecurrent consumption is the mostimportant design consideration.The second application for thisseries of diodes is in switcheswhere low cost is the drivingissue for the designer.The HSMP-386X series TotalCapacitance (C T) and TotalResistance (R T) are typicalspecifications. For applicationsthat require guaranteed perfor-mance, the general purposeHSMP-383X series is recom-Description/Applications The HSMP-380X and HSMP-381X series are specifically designed for low distortion attenuator applica-tions. The HSMP-382X series is optimized for switching applica-tions where ultra-low resistance is required. The HSMP-3880 switch-ing diode is an ultra low distortion device optimized for higher power applications from 50 MHz to1.5GHz. The HSMP-389X series is optimized for switching applica-tions where low resistance at low attenuators, the HSMP-380X or -381X series are recommended. For high performance switching applications, the HSMP-389X series is recommended.A SPICE model is not available for PIN diodes as SPICE does not provide for a key PIN diode characteristic, carrier lifetime.Absolute Maximum Ratings [1] T A = 25°CSymbol ParameterUnits Absolute Maximum I f Forward Current (1 ms Pulse)Amp 1P t Total Device Dissipation mW [2]250P iv Peak Inverse Voltage —Same as V BRT j Junction Temperature °C 150T STGStorage Temperature°C-65 to 150Notes:1.Operation in excess of any one of these conditions may result in permanent damage to this device.2.CW Power Dissipation at T LEAD = 25°C. Derate to zero at maximum rated temperature.PIN Switching DiodesElectrical Specifications T A = 25°CNearest Maximum Equivalent Minimum Maximum Maximum Shunt Mode Part Package Axial Lead Breakdown Series Total Harmonic Number Marking LeadPart No.Voltage Resistance Capacitance Distortion HSMP-Code [1]Code Configuration 5082-V BR (V)R S (Ω)C T (pF)Hmd (dBc)3820F00Single 3188500.6*0.8*—3822F22Series3823F33Common Anode 3824F44Common Cathode 3880S00Single—100 6.50.40–553890G00Single —1002.50.30**—3892G22Series3893G33Common Anode 3894G44Common Cathode 3895G55Unconnected PairTest ConditionsV R = V BR I F = 5 mA V R = 50 V 2 f o, Z o = 50 W Measure f = 100 MHz f = 1 MHz f o = 400 MHz I R ≤ 10 µA I F = 10 mA*V R = 20 V*P in = +30 dBm V R = 5 V**0 V biasPIN Attenuator DiodesElectrical Specifications T A = 25°C (Each Diode)NearestEquivalent Minimum Maximum Maximum Minimum Maximum Part Package Axial Lead Breakdown Series Total High Low Number Marking LeadPart No.Voltage Resistance Capacitance Resistance Resistance HSMP-Code [1]Code Configuration 5082-V BR (V)R S (Ω)C T (pF)R H (Ω)R L (Ω)3800D00Single 30801002.00.37100083802D22Series3804D44Common Cathode 3810E00Single 3081100 3.00.351500103812E22Series3813E33Common Anode 3814E44Common CathodeTest ConditionsV R = V BR I F = 100 mA V R = 50 V I F = 0.01 mA I F = 20 mA Measure f = 100 MHz f = 1 MHz f = 100 MHz f= 100 MHzI R ≤ 10 µAPIN General Purpose Diodes, Electrical Specifications T A = 25°CNearestEquivalent Minimum Maximum Maximum Part Package Axial Lead Breakdown Series Total Number Marking Lead Part No.Voltage Resistance Capacitance HSMP-Code[1]Code Configuration5082-V BR (V)R S (Ω)C T (pF) 3830K00Single3077200 1.50.3 3832K22Series3833K33Common Anode3834K44Common CathodeTest Conditions V R = V BR I F = 100 mA V R = 50 VMeasure f = 100 MHz f = 1 MHzI R≤ 10 mAHigh Frequency (Low Inductance, 500 MHz – 3 GHz) PIN Diodes, Electrical Specifications T A = 25°CMinimum Maximum Typical Maximum TypicalBreak-Series Total Total Total Part Package down Resis-Capaci-Capaci-Induc-Number Marking Lead Config-Voltage tance tance tance tance Appli-HSMP-Code Code uration V BR (V)R S (Ω)C T (pF)C T (pF)L T (nH)cation 4810EB B Dual100 3.00.350.4 1.0Attenu-Cathode ator 4820FA A Dual Anode500.6*0.75* 1.0 1.0*Limiter 4890GA A Dual Anode100 2.5**0.330.375 1.0SwitchV R = V BR I F = 100 mA V R = 50 V V R = 50 V f = 500 MHz –Measure I F = 10 mA* f = 1 MHz f = 1 MHz 3 GHzI R≤ 10 µA I F = 5 mA**V R = 20 V*V R = 0 V V R = 20 V*PIN General Purpose Diodes, Typical Specifications T A = 25°CCode Minimum Typical Series Typical Total Part Number Marking Lead Breakdown Resistance Capacitance HSMP-Code[1]Code Configuration Voltage V BR (V)R S (Ω)C T (pF)3860L00Single50 3.0/1.5*0.203862L22Series3863L33Common Anode3864L44Common CathodeTest Conditions V R = V BR I F = 10 mA V R = 50 VMeasure f = 100 MHz f = 1 MHzI R≤ 10 µA*I F = 100 mATypical Parameters at T A = 25°CPart Number Series Resistance Carrier Lifetime Reverse Recovery Time Total Capacitance HSMP-R S (Ω)τ (ns)T rr (ns)C T (pF)380X5518005000.32 @ 50 V381X7515003000.27 @ 50 V382X 1.570*70.60 @ 20 V383X20500800.20 @ 50 V388X 3.825005500.30 @ 50 V389X 3.8200*–0.20 @ 5 V Test Conditions I F = 1 mA I F = 50 mA V R = 10 Vf = 100 MHz I R = 250 mA I F = 20 mAI F = 10 mA*I F = 10 mA*90% RecoveryI R = 6 mA*Typical Parameters at T A = 25°C (unless otherwise noted), Single DiodeFigure 2. RF Capacitance vs. Reverse Bias, HSMP-3830 Series.0.150.300.250.200.350.400.45T O T A L C A P A C I T A N C E (p F )REVERSE VOLTAGE (V)Figure 1. RF Capacitance vs. Reverse Bias, HSMP-3810 Series.Figure 3. Resistance at 25°C vs. Forward Bias Current.0.150.300.250.200.35T O T A L C A P A C I T A N C E (p F )REVERSE VOLTAGE (V)R E S I S T A N C E (O H M S )I F – FORWARD BIAS CURRENT (mA)0.010.11101000.010.1110100R F R E S I S T A N C E (O H M S )I F – FORWARD BIAS CURRENT (mA)R F R E S I S T A N C E (O H M S )0.010.1110100I F – FORWARD BIAS CURRENT (mA)Figure 5. RF Resistance vs. Forward Bias Current for HSMP-3810/HSMP-4810.V R – REVERSE VOLTAGE (V)C A P A C I T A N C E (p F )Figure 6. Capacitance vs. Reverse Voltage.Figure 4. RF Resistance vs. Forward Bias Current for HSMP-3800.100010010DIODE RF RESISTANCE (OHMS)Figure 7. 2nd Harmonic Input Intercept Point vs. Diode RFResistance for Attenuator Diodes.I N P U T I N T E R C E P T P O I N T (d B m )12011511010510095908511030I F – FORWARD BIAS CURRENT (mA)Figure 8. 2nd Harmonic Input Intercept Point vs. Forward Bias Current for Switch Diodes.I N P U T I N T E R C E P T P O I N T (d B m )FORWARD CURRENT (mA)Figure 9. Reverse Recovery Time vs. Forward Current for Various Reverse Voltages. HSMP-3820 Series.T r r – R E V E R S E R E C O V E R Y T I M E (n s )110100102030V R = 2V V R = 5VV R = 10VHSMP-382XTypical Parameters (continued)100010010102030T r r - R E V E R S E R E C O V E R Y T I M E (n S )FORWARD CURRENT (mA)Figure 10. Reverse Recovery Time vs. Forward Current for Various Reverse Voltage. HSMP-3830 Series.HSMP-3830V R = 5VV R = 10V V R = 20VR E V E R S E R E C O V E R Y T I M E (n S )FORWARD CURRENT (mA)Figure 11. Typical Reverse Recovery Time vs. Reverse Voltage. HSMP-3880 Series.1020152530T R R - R E V E R S E R E C O V E R Y T I M E (n S )FORWARD CURRENT (mA)Figure 12. Typical Reverse Recovery Time vs. Reverse Voltage. HSMP-3890 Series.1001010.10.01I F – F O R W A R D C U R R E N T (m A )I F – F O R W A R D C U R R E N T (m A )V F – FORWARD VOLTAGE (mA)Figure 14. Forward Current vs. Forward Voltage. HSMP-3810 and HSMP-4810 Series.V F – FORWARD VOLTAGE (mA)Figure 15. Forward Current vs. Forward Voltage. HSMP-3820 and HSMP-4820 Series.1001010.10.01I F – F O R W A R D C U R R E N T (m A )V F – FORWARD VOLTAGE (mA)Figure 16. Forward Current vs.Forward Voltage. HSMP-3830 Series.00.20.40.60.81.01.2I F – F O R W A R D C U R R E N T (m A )V F – FORWARD CURRENT (mA)Figure 17. Forward Current vs.Forward Voltage. HSMP-3880 Series.0.20.40.60.81.01.2V F – FORWARD VOLTAGE (mA)Figure 18. Forward Current vs. Forward Voltage. HSMP-3890 and HSMP-4890 Series.Typical Parameters (continued)Figure 19. Typical RF Resistance vs. Forward Bias Current for HSMP-3860.Figure 20. Forward Current vs. Forward Voltage for HSMP-3860.Figure 21. Typical Capacitance vs. Reverse Bias for HSMP-3860.10001R E S I S T A N C E (O HM S )BIAS CURRENT (mA)10100I F – F O R W A R D C U R R E N T (m A )V F – FORWARD VOLTAGE (V)0200.515C T – C A P A C I T A N C E (p F )V R – REVERSE VOLTAGE (V)0.20.41050.10.30.12 pF** Measured at -20 V C p 0.08 pFR j = 12ΩI 0.9C T = C P + C jI = Forward Bias Current in mAEquivalent Circuit ModelHSMS-3860Typical Applications for Multiple Diode ProductsRF COMMONRF 1RF 1Figure 24. Switch Using Both Positive and Negative Bias Current.Figure 25. Very High Isolation SPDT Switch, Dual Bias.Typical Applications for Multiple Diode Products (continued)INPUT RF IN/OUTFigure 26. Four Diode π Attenuator.Figure 27. High Isolation SPST Switch (Repeat Cells as Required).VOLTAGEBIASFigure 28. Power Limiter Using HSMP-3822Diode Pair.Typical Applications for HSMP-48XX Low Inductance SeriesFigure 29. Internal Connections.HSMP-4820 & HSMP-4890HSMP-48100.5 nH*0.8pF TYPICAL FOR HSMP-3820Figure 30. Equivalent Circuit.*0.8 pF TYPICAL FOR HSMP-3820Figure 32. Equivalent Circuit.Figure 31. Circuit Layout.Microstrip SeriesConnection for HSMP-48XX SeriesIn order to take full advantage of the low inductance of the HSMP-48XX series when using them in series application,both lead 1 and lead 2 should beconnected together, as shown above.Microstrip Shunt Connections for HSMP-48XX SeriesIn the diagram above, the center conductor of themicrostrip line is interrupted and leads 1 and 2 of theHSMP-38XX series diode are placed across the resulting gap. This forces the 0.5 nH lead inductance of leads 1 and 2 to appear as part of a low pass filter, reducing the shunt parasitic inductance andincreasing the maximumavailable attenuation. The 0.3 nH of shunt inductance external to the diode is created by the via holes, and is a good estimate for 0.032" thick material.Co-Planar Waveguide Shunt Connection for HSMP-48XX SeriesCo-Planar waveguide, with ground on the top side of the printed circuit board, is shownin the diagram above. Since it eliminates the need for via holes to ground, it offers lower shunt parasitic inductance and higher maximum attenuation whencompared to a microstrip circuit.GROUND BY TWOVIA HOLES*0.8 pF TYPICAL FOR HSMP-4820Figure 34. Equivalent Circuit.Figure 33. Circuit Layout.*0.8 pF TYPICAL FOR HSMP-4820Figure 36. Equivalent Circuit.Figure 35. Circuit Layout.11Package DimensionsOutline 23 (SOT-23)PC Board FootprintsSOT-23Package CharacteristicsLead Material......................................................................................Alloy 42Lead Finish............................................................................Tin-Lead 85-15%Maximum Soldering Temperature..............................260°C for 5 seconds Minimum Lead Strength..........................................................2 pounds pull Typical Package Inductance ..................................................................2 nH Typical Package Capacitance ..............................0.08 pF (opposite leads)SOT-143Outline 143 (SOT-143)SIDE VIEWEND VIEWDIMENSIONS ARE IN MILLIMETERS (INCHES)DIMENSIONS ARE IN MILLIMETERS (INCHES)PACKAGE MARKING/go/rfFor technical assistance or the location of your nearest Hewlett-Packard salesoffice, distributor or representative call:Americas/Canada: 1-800-235-0312 or 408-654-8675Far East/Australasia: Call your local HP sales office.Japan: (81 3) 3335-8152Europe: Call your local HP sales office.Data subject to change.Copyright © 1999 Hewlett-Packard Co.Obsoletes 5968-3435E5968-5439E (6/99)Profile Option Descriptions-BLK = Bulk-TR1 = 3K pc. Tape and Reel, Device Orientation; See Figures 37 and 38-TR2 = 10K pc. Tape and Reel, Device Orientation; See Figures 37 and 38Tape and Reeling conforms to Electronic Industries RS-481, “Taping of Surface Mounted Components for Automated Placement.”Ordering InformationSpecify part number followed by option under. For example:H SMP -38XX -XXXBulk or Tape and Reel OptionPart NumberSurface Mount PIN Diode Hewlett-PackardUSER FEEDEND VIEWTOP VIEW Figure 37. Options -TR1, -TR2 for SOT-23 Packages.Figure 38. Options -TR1, -TR2 for SOT-143 Packages.END VIEWTOP VIEW。
贴片三极管封装

贴片三极管封装各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢贴片三极管代码查找贴片三极管资料及其封装贴片三极管代码查找贴片三极管资料及其封装JX SOT23BA V170B dual cc Si diode low IrJY SOT23BA V199 dioda-2xJY SOT23BA V199D dual series Si diode lowIrJZ SOT23BAW 156JZ SOT23BAW156A dual ca Si diode low Ir K SCD80 BBY52-02W I UHF varicap K SOD323BAT68-03W I BAT68 SchottkyK SOT232SK211 JFETK SOT323MRF917N npn RF fT 6GHzK0SOT23HSMP-3830 C gp pin diode HP3830K1SOT23BCW71 NPNK1SOT23BCW71N BC107AK1SOT23HSMP-3831 K gp pin diode HP3830 K14 DTA114G N pnp sw 50V 100mA w. b-eres K15DTA124G N pnp sw 50V 50mA w. b-e resK1p SOT23BCW71N BC107AK1t SOT23BCW71N BC107AK1X SOT23KSC3265 NPNK2SOT23BCW72 NPNK2SOT23BCW72NBC107B ZXT300K2SOT23HSMP-3832 D dual HP3830 pin diode K24 DTC114G N npn sw 50V 100mA w. b-eres K25DTA124G N pnp sw 50V 50mA w. b-e res K2p SOT23BCW72N BC107B ZXT300K2t SOT23BCW72N BC107B ZXT300K3SOT23BCW81 NPNK3SOT23BCW81N npn 50V hfe 420K3SOT23HSMP-3833 A dual HP3830 pin diode K31 BCW81R R npn 50V hfe 420 K31SOT23BCW81R NPNK3p SOT23BCW81N npn 50V hfe 420 K3t SOT23 BCW81N npn 50V hfe 420K4SOT23BCW71R NPNK4SOT23HSMP-3834 B dual HP3830 pin diodeK4SOT23R BCW71R R BC107AK5SOT23BCW72R NPNK5SOT23R BCW72R R BC107B ZTX300K6SOT23BCV71R NPNK6SOT23R BCV71R R BC546AK7SOT23BCV71 NPNK7SOT23BCV71N BC546AK71SOT23BCV71R NPNK7p SOT23BCV71N BC546AK7t SOT23BCV71N BC546AK8SOT23BCV72 NPNK8SOT23BCV72N BC546BK81SOT23BCV72R NPNK8p SOT23BCV72N BC546BK8t SOT23BCV72N BC546BK9SOT23BCF81 NPNK9SOT23BCV72R NPNK9SOT23R BCV72R R BC546BK91SOT23BCF81R NPNKA SOT232SK368 JFETMOSFETKB SOT23MMBT8099L N npn 80V gpKB SOT89BSS192 MOSFETKC BFQ29P N BFT66KC SOT232SK625 JFETKC SOT23BFQ29P NPNKM BST80T VN10KM SOT89BST80 FETKN BST84T Nch VMOS 200VKN SOT89BST84 FETKO BST86T nch VMOS 180VFETKX SOT23PMBF170 MOSFETL SCD80BBY53-02W I varicap pFL SOD323BAT62-03W I BAT62 schottky detectorL SOT232SC2712 NPNL0SOT23BAT721S C dual series 40V 200mA schottkyL0SOT23HSMP-3860 C dual series pin diodeL0SOT323HSMP-386B C gp RF pin diodeL1BSS65N pnp 12V 400MHz swL1SOT23BSS65 PNPL12SOT89ZVNL120Z MOSFETL2BSS69N pnp 40V 200MHz swL2SOT23BSS69 PNPL2SOT23HSMP-3862 D dual RF pin diodeL20SOT23BAS29 diodaL20SOT23BAS29C Si diode 120V 50mAL21SOT23BAS31 dioda-2xL21SOT23BAS31D dual BAS29 diodesL22SOT23BAS35 dioda-2xL22SOT23BAS35A dual BAS29 diodesL3BSS70N pnp 40V 200MHz swL3MMBC1623L3N npn 40V gpL3SOT23BSS70 PNPL3SOT23HSMP-3863 A ca gp RF pin diodeL3SOT23MMBC1623L3 NPNL30SOT143BA V23 dioda-2xL30SOT143BA V23S dual 200V 225mA diodesL31SOT23BA V23S dioda-2xL4MMBC1623L4N npn 40V gpL4SOT23BAT54 diodaL4SOT23HSMP-3864 B cc gp RF pin diodeL4SOT23MMBC1623L4 NPNL4SOT323BAT54W diodaL4SOT323BAT54W C BAT85 schottkyL41SOT143BAT74 dioda-2xL41SOT143BAT74S 2x BAT85L42SOT23BAT54A dioda-2xL42SOT323BAT54AW dioda-2xL42p SOT23BAT54A A dual c anode schottkyL43SOT23BAT54C dioda-2xL43SOT323BAT54CW dioda-2xL43p SOT23BAT54C B dual c cathode schottkyL44SOT23BAT54S dioda-2xL44SOT323BAT54SW dioda-2xL44p SOT23BAT54S D dual series schottkyL4p SOT23BAT54C BAT85 schottkyL4Z SOT23BAT54C BAT85 schottkyL5BSS65R R pnp 12V 400MHz swL5MMBC1623L5N MPS3904 hfe 135-270L5SOT23BAS55 diodaL5SOT23BSS65R PNPL5SOT23MMBC1623L5 NPNL51SOT143BAS56 dioda-2xL51SOT143BAS56S dual 60V 200mA diodesL52SOT23BAS678 diodaL6BAR17C pin diodeL6BSS69R N pnp 40V 200MHz swL6MMBC1623L6N MPS3904 hfe 200-400L6SOT23BAR17 diodaL6SOT23BSS69R PNPL6SOT23MMBC1623L6 NPNL7BAR14-1D dual pin 100mA maxL7BSS70R N pnp 40V 200MHz swL7MMBC1623L7N MPS3904 hfe 300-600L7SOT23BAR14-1 diodax2L7SOT23BSS70R PNPL7SOT23MMBC1623L7 NPNL8BAR15-1A dual pin 100mA maxL8SOT23BAR15-1 dioda-2xL8SOT23BAT721A A dual c anode 40V 200mA schottkyL9BAR16-1B dual pin 100mA maxL9SOT23BAR16-1 dioda-2xL9SOT23BAT721C B dual c cathode 40V 200mAschottkyLA SOT23BF550 PNPLAp SOT23BF550N pnp 40V 25mALB S525T G n-ch vhf mosfet 200MHzLB SOT143BF999 FETLBs SOT23BF999G n-ch vhf mosfet 300MHzLD SOT23BF543 FETLDs SOT23BF543G n-ch vhf mosfet 300MHzLE SOT23BF660 PNPLEs SOT23BF660N BF606A pnp vhf osc fT 800MHzLF SOT23BF777 NPNLG SOT23BF775A NPNLGs SOT23BF775A N npn RF fT for IFampLH BF569R R BF970 pnp RFLH SOT23BF569 PNPLHs SOT23BF569N BF970 pnp RFLJ SOT23BF579 PNPLK SOT23BF799 NPNLKs SOT23BF799N BF959LKs SOT323BF799W N BF959LM d >BST120T p-ch DMOSfet 60VLM SOT23BF569R PNPLM SOT89BST120 FETLN BST122T p-ch DMOSfet 50VLN SOT89BST122 FETLO SOT23BF775 NPNLOs SOT23BF775N BFQ69LOs SOT323BF775W N BFQ69LR SOT23BF517 NPNLRs SOT23BF517T BF763 GHzLS SOT23BF770A NPNLSs SOT23BF770A N npn low noise RF, Ft 6GHzM SCD80BAR64-02W I pin diodeM SOT143BAR65-07S dual pin diodeM SOT892SC2873 NPNM (blue)SOD323 BAR65-03W I pin diodeM (white)SOD323 BBY55-03W I varicap inM01SOT143BF901 FETM02SOT143BF901R FETM04SOT143BF904 FETM06SOT143BF904R FETM08SOT23PMBFJ308 F VHF n-ch JFET J308M09SOT23PMBFJ309 FETM09SOT23PMBFJ309 F VHF n-ch JFET J309M1SOT23BFR30 FETM1SOT23BFR30F BFW11 BF245M10SOT23PMBFJ310 FETM10SOT23PMBFJ310 F J310 n-ch jfetM10SOT23PMBFJ310 F VHF n-ch JFET J310FETM1B SOT23MMBT2222L N2N2222M1E SOT23MMBTA43L N MPSA43 200V Vce npn M1F SOT23MMBT5550L N 2N5550 npn 140VM1J SOT23MMBT2369L N2N2369AM2SOT23BFR31 FETM2SOT23BFR31F BFW12 BF245M20SOT143BFR200 FETM2B SOT23MMBT2907L N2N2907 pnp gpM2C SOT23MMBTA70L N gp pnp MPSA70M3MMBA812M3N 2N5086 hfe 60-120 pnpFETM3SOT23BFT46F n-ch fet gp low level ampM3SOT23MMBA812M3 PNPM31BSD20XQ n-ch depl sw mosfet 10VM31SOT89BSD20 FETM32BSD22XQ n-ch depl sw mosfet 20VM32SOT89BSD22 FETM3A SOT23MMBTH24L N npn VHF amp 400MHz fT 30V M3B SOT23MMBT918L N2N918 UHF ampM3J SOT23MMBTH69L N pnp VHF amp 2GHz fT 15VM4BSR56F 2N4856 n-ch fetFETM4SOT23MMBA812M4 PNPM4SOT363MBD110DW DL dual UHF schottky M4A SOT323MMBV109C Hyperabrupt varicap M4B SOT23 MMBV432B dual cc varicap 45pF/2VM4C SOT23MMBV3102 C Hyperabrupt varicap M4E SOT23MMBV105G C Hyperabrupt varicap M4F SOT23 MMBD353D dual MBD101 in series M4G SOT23MMBV2101 C varicap MV2101M5BSR57F 2N5457 n-ch fetM5MMBA812M5N 2N5086 hfe 135-270 pnpM5SOT23BSR57M5SOT23MMBA812M5 PNPM5SOT323MMBD352W Z2x MBD101 in series M5C SOT23MMBD7000D100V 2x series sw diodesM6BSS66N npn 40V sw fT 250MHz M6 MMBA812M6N2N5086 hfe 200-400 pnpM6SOT23BSR58 FETM6SOT23BSR58F 2N4858 n-ch fetM6SOT23BSS66 NPNM6SOT23MMBA812M6 PNPM65SOT23BF545A FETM66SOT23BF545BM67SOT23BF545C FETM6A SOT23MMBF4416 F2N4416 n-ch rf jfet M6B SOT23MMBF5484F 2N5484 n-ch rf jfet M6C SOT23 MMBFU310F U310 n-ch rf jfet M6E SOT23MMBF5460F 2N5460 n-ch rf jfet M6H SOT23 MMBD354A dual MBD101 cc M7BSS67N npn 40V sw fT 300MHz M7 MMBA812M7N2N5086 hfe 300-600 pnpM7SOT23BSS67 NPNM7SOT23MMBA812M7 PNPM74BSS83XQ n-ch enh sw mosfetM74SOT143BSS83MOSFETM8BSS66R R npn 40V sw fT 250MHzM8SOT23BSH103M n-ch 50V mosfetM8SOT23BSS66R NPNM84SOT23BF556A FETM85SOT143BF990AR FETM85SOT23BF556B FETM86SOT23BF556C FETM87SOT143BF990A FETM89BF989K BF960M89SOT143BF989 FETM8p SOT23BSN20Mn-ch 50V mosfet M9BSS67R R npn 40V sw fT 300MHzM9SOT23BSS67R NPNM90BF990W BF980M90SOT143BF990 FETM91BF991W BF981M91SOT143BF991 FETM92BF992W BF982M92SOT143BF992 FETM94BF994W BF964M94SOT143BF994 FETM96BF996W BF966M96SOT143BF996 FETM97BFR101AM97SOT143BFR101A FETM98BFR101BM98SOT143BFR101B FETMA SC59M1MA151A diodaMA SOT143BF989 FETMA SOT232SC3011 NPNMA SOT23FMMT-A06R NPNMA SOT346M1MA151AT E40V 100mA sw diodeMA SOT346M1MA152AT E80V 100mA sw diode MA SOT363MBT3904DW1DN dual 2N3904 MB BF995Wn-ch vhf dg mosfet BF961MB MBT3904DW9 dual 2N3904MB SOT143BF995 FETMB SOT232SC3098 NPN三极管封装及贴片型号三极管封装贴片三极管型号直插封装的型号贴片的型号90111T 90122T 9013 J3 9014 J6 9015 M6 9016 Y6 9018 J8 S8050 J3Y S8550 2TY 8050 Y1 8550 Y22SA1015BA 2SC1815HF 2SC945CR MMBT39041AM MMBT39062A MMBT22221P MMBT54012L MMBT5551G1 MMBTA421D MMBTA922DBC807-16 5A BC807-255B BC807-405C BC817-166A BC817-256B BC817-406C BC846A1A BC846B1B BC847A1E BC847B1F BC847C1G BC848A1JBC848B1K BC848C1L BC856A3A BC856B3B BC857A3E BC857B3F BC858A3J BC858B3KBC858C 3L 2SA733 CS UN2111 V1 UN2112 V2 UN2113 V3 UN2211 V4 UN2212 V5 UN2213 V6 2SC3356 R23 2SC3838 AD 2N7002 702贴片三极管封装资料和尺寸下面是一些贴片三级管的封装1B SOT23 IRLML2803 F n-chmosfet 30V1B SOT23 MMBT2222 NPN1B SOT23 MMBT2222 N 2N22221B SOT23 PMBT2222 NPN1B SOT23 SMBT2222 NPN1B SOT23 YTS2222 NPN1B SOT323 BC846BW NPN1B SOT416 BC846BT N BC546B1B SOT89 PXT2222 NPN-1B SOT323 PMST2222 N 2N22221B- SOT323 >BC846BW N BC546B1Bp SOT23 BC846B N BC546B1Bs SC74 BC817UPN N1Bt SOT23 BC846B N BC546B下图是贴片三极管封装SOT-23尺寸资料(贴片三极管s9014LT1)1Bt SOT323 BC846BW N BC546B1C SOT23 FMMT-A20 NPN1C SOT23 FMMT-A20 N MPSA201C SOT23 IRLML6302 F p-ch mosfet 20V1C SOT23 MMBTA20 NPN1C SOT23 MMBTA20L N MPS39041C SOT23 SMBTA20 NPN1Cp SOT23 BAP50-05 B dual cc GP RF pin diode1Cs SOT363 BC847S BC4571D SOT23 BC846 NPN1D SOT23 IRLML5103 F p-ch mosfet 30V1D SOT23 MMBTA42 NPN1D SOT23 MMBTA42 N MPSA42 300V npn1D SOT323 BC846W NPN1D SOT89 SXTA42 NPN1D- SOT323 BC846W N BC4561DN 2SC4083 N npn 11V TV tuners 1Dp SOT23 BC846 N BC4561DR SC59 MSD1328-RT1 NPN1A SOT323 BC846AW NPN1A SOT416 BC846AT N BC546A1A SOT89 PXT3904 NPN1A SOT89 SXT3904 NPN-1A SOT323 PMST3904 N 2N39041A- SOT323 BC846AW N BC546A1AM SOT23 MMBT3904L N 2N39041Ap SOT23 BC846A N BC546A1At SOT23 BC846A N BC546A1At SOT323 BC846AW N BC546A1B SOT23 BC846B NPN1B SOT23 BC846B N BC546B1B SOT23 FMMT2222 NPN1B SOT23 FMMT2222 N 2N22221DR SOT346 MSD1328R N npn gp 25V 500mA 1Ds SC74 BC846U N BC456 1Ds SOT363 BC846U BC4561Dt SOT23 BC846 N BC4561Dt SOT323 BC846W N BC4561E FMMT-A43 N MPSA431E SOT23 BC847A NPN1E SOT23 BC847A N BC547A1E SOT23 FMMT-A43 NPN1E SOT23 MMBTA43 NPN1E SOT23 MMBTA43 N MPSA43200V npn 1E SOT23 SMBTA43 NPN 1F SOT23 FMMT5550 NPN1F SOT23 MMBT5550 NPN1F SOT23 MMBT5550 N 2N5550 140V npn 1F SOT23 PMBT5550 NPN 1F SOT323 BC847BW NPN1F SOT416 BC847BT N BC547B1F- SOT323 BC847BW N BC547B1Fp SOT23 BC847B N BC547B1FR SOT23R BC847BR R BC547B1Fs SC75 BC847BT N BC547B1Fs SOT23 BC847B N BC547B1Fs SOT323 BC847BW N BC547B1G FMMT-A06 N MPSA061G SOT23 BC847C NPN1G SOT23 BC847C N BC547C1G SOT23 FMMT-A06 NPN1G SOT23 MMBTA06 NPN1G SOT23 MMBTA06 N MPSA061G SOT23 SMBTA06 NPN1G SOT323 BC847CW NPN1G SOT416 BC847CT N BC547C1G- SOT323 BC847CW N BC547C 1GM SOT23 MMBTA06 N MPSA06 1Gp SOT23 BC847C N BC547C1GR SOT23R BC847CR R BC547C 1Gs SOT23 BC847C N BC547C1Gs SOT323 BC847CW N BC547C 1GT SOA06 N MPSA061GT SOT23 SOA06 NPN1Gt SOT323 BC847CW N BC547C 1H FMMT-A05 N MPSA051H SOT23 BC847 NPN1H SOT23 FMMT-A05 NPN1H SOT23 MMBTA05 NPN1H SOT23 MMBTA05 N MPSA05 1H SOT23 SMBTA05 NPN1H SOT323 BC847W NPN1H- SOT323 BC847W N BC5471Hp SOT23 BC847 N BC5471Ht SOT23 BC847 N BC5471HT SOT23 SOA05 NPN1HT SOT23 SOA05 N MPSA051Ht SOT323 BC847W N BC5471J FMMT2369 N 2N23691J SOT23 BC848A N BC548A1J SOT23 MMBT2369 N MPS2369 1JA SOT23 MMBT2369A N MPS2369A1JR SOT23R BC848AR R BC548A1Js SOT143 BCV61A VQ npn current mirror hFe 180 1Js SOT23 BC848A N BC548A1Js SOT323 BC848AW N BC548A1K FMMT4400 N 2N44001K SOT143 BCV61B NPN1K SOT23 BC848B NPN1K SOT23 BC848B N BC548B1K SOT23 MMBT6428 N MPSA18 50V1K SOT23 PMBT6428 NPN1K SOT23 SMBT6428 NPN1K SOT323 BC848BW NPN1KM SOT23 MMBT6428L N MPSA18 50V1Kp SOT23 BC848B N BC548B1KR SOT23R BC848BR R BC548B1Ks SOT143B BCV61B VQ npn current mirror hFe 290 1Ks SOT23 BC848B N BC548B1Ks SOT323 BC848BW N BC548B1L FMMT4401 N 2N44011L MMBT6429 N MPSA18 45V1L SOT143 BCV61C NPN1L SOT143B BCV61C VQ npn current mirror hFe 520 1L SOT23 BC848C NPN1L SOT23 BC848C N BC548C1L SOT23 FMMT4401 NPN1L SOT23 FMMT5400 PNP1L SOT23 MMBT6429 NPN1L SOT23 PMBT6429 NPN1L SOT23 SMBT6429 NPN1L SOT323 BC848CW NPN1Lp SOT143B BCV61C VQ npn current mirror hFe 520 1Lp SOT23 BC848C N BC548C1LR SOT23R BC848CR R BC548C1Ls SOT23 BC848C N BC548C1Ls SOT323 BC848CW N BC548C1M SOT143 BCV61 NPN1M SOT23 BC848 NPN1M SOT23 FMMT-A13 NPN1M SOT23 FMMT-A13 N MPSA131M SOT23 MMBTA13 NPN1M SOT23 MMBTA13 N MPSA13 darlington 1M SOT23 PMBTA13 NPN 1M SOT23 SMBTA13 NPN1M SOT323 BC848W NPN1Mp SOT143B BCV61 VQ npn current mirror 1Mp SOT23 BC848 N BC5481N SOT23 FMMT-A14 NPN1N SOT23 FMMT-A14 N MPSA141N SOT23 MMBTA14 NPN1N SOT23 MMBTA14 N MPSA14 darlington 1N SOT23 PMBTA14 NPN1N10 SOT223 MMFT1N10ET1 MOSFET 1P BC847PN DI pnp/npn separate pair gpAF 1P FMMT2222A N2N2222A1P SOT23 FMMT2222A NPN1P SOT23 MMBT2222A NPN1P SOT23 MMBT2222A N 2N2222A 1P SOT23 PMBT2222A NPN1P SOT23 SMBT2222A NPN1P SOT23 YTS2222A NPN1P SOT89 PKT2222A NPN1Q SOT23 FMMT5088 NPN1Q SOT23 MMBT5088 NPN1Q SOT23 MMBT5088 N MPSA18 Vce 30V 1Q SOT23 PMBT5088 NPN 1E SOT323 BC847AW NPN1E SOT416 BC847AT N BC547A 1E SOT89 SXTA43 NPN1E- SOT323 BC847A N BC547A1EN 2SC4084 N npn 20V TV tuners 1Ep SOT23 BC847A N BC547A 1ER SOT23R BC847AR R BC547A 1Es SOT23 BC847A N BC4571Es SOT323 BC847AW N BC457 1Et SOT23 BC847A N BC547A1Et SOT323 BC847A N BC547A1F SOT23 BC847B NPN1F SOT23 BC847B N BC547B贴片三极管代码型号封装贴片三极管代码型号封装时间:2016-07-14 08:37来源:未知作者:电路网点击:次JX SOT23 BA V170 B dual cc Si diode low Ir JY SOT23 BA V199 dioda-2xJY SOT23 BA V199 D dual series Si diode lowIr JZ SOT23 BAW 156JZ SOT23 BAW156 A dual ca Si diode low Ir K SCD80 BBY52-02W I UHF varicap K SOD323 BAT68-03W I BAT68 SchottkyK SOT23 2SK211 JFETK SOT323 MRF917 N npn RF fT 6GHzK0 SOT23 HSMP-3830 C gp pin diode HP3830 K1 SOT23 BCW71 NPN K1 SOT23 BCW71 N BC107AK1 SOT23 HSMP-3831 K gp pindiode HP3830 K14 DTA114G N pnp sw 50V 100mA w. b-eres K15 DTA124G N pnp sw 50V 50mA w. b-e res K1p SOT23 BCW71 N BC107AK1t SOT23 BCW71 N BC107AK1X SOT23 KSC3265 NPNK2 SOT23 BCW72 NPNK2 SOT23 BCW72 N BC107B ZXT300K2 SOT23 HSMP-3832 D dual HP3830 pin diodeK24 DTC114G N npn sw 50V 100mA w. b-eresK25 DTA124G N pnp sw 50V 50mA w. b-e resK2p SOT23 BCW72 N BC107B ZXT300K2t SOT23 BCW72 N BC107B ZXT300K3 SOT23 BCW81 NPNK3 SOT23 BCW81 N npn 50V hfe 420K3 SOT23 HSMP-3833 A dual HP3830 pin diodeK31 BCW81R R npn 50V hfe 420K31 SOT23 BCW81R NPNK3p SOT23 BCW81 N npn 50V hfe 420 K3t SOT23 BCW81 N npn 50V hfe 420 K4 SOT23 BCW71R NPNK4 SOT23 HSMP-3834 B dual HP3830 pin diodeK4 SOT23R BCW71R R BC107AK5 SOT23 BCW72R NPNK5 SOT23R BCW72R R BC107B ZTX300K6 SOT23 BCV71R NPNK6 SOT23R BCV71R R BC546AK7 SOT23 BCV71 NPNK7 SOT23 BCV71 N BC546AK71 SOT23 BCV71R NPNK7p SOT23 BCV71 N BC546AK7t SOT23 BCV71 N BC546AK8 SOT23 BCV72 NPNK8 SOT23 BCV72 N BC546BK81 SOT23 BCV72R NPNK8p SOT23 BCV72 N BC546BK8t SOT23 BCV72 N BC546BK9 SOT23 BCF81 NPNK9 SOT23 BCV72R NPNK9 SOT23R BCV72R R BC546BK91 SOT23 BCF81R NPNKA SOT23 2SK368 JFETKA SOT87 BSS87 MOSFETKB SOT23 MMBT8099L N npn 80V gpKB SOT89 BSS192 MOSFETKC BFQ29P N BFT66KC SOT23 2SK625 JFETKC SOT23 BFQ29P NPNKM BST80 T VN10KM SOT89 BST80 FETKN BST84 T Nch VMOS 200VKN SOT89 BST84 FETKO BST86 T nch VMOS 180VKO SOT89 BST86 FETKX SOT23 PMBF170 MOSFETL SCD80 BBY53-02W I varicap pFL SOD323 BAT62-03W I BAT62 schottky detector L SOT23 2SC2712 NPN L0 SOT23 BAT721S C dual series 40V 200mA schottky L0 SOT23 HSMP-3860 C dual series pin diodeL0 SOT323 HSMP-386B C gp RF pin diodeL1 BSS65 N pnp 12V 400MHz swL1 SOT23 BSS65 PNPL12 SOT89 ZVNL120Z MOSFETL2 BSS69 N pnp 40V 200MHz swL2 SOT23 BSS69 PNPL2 SOT23 HSMP-3862 D dual RF pin diodeL20 SOT23 BAS29 diodaL20 SOT23 BAS29 C Si diode 120V 50mAL21 SOT23 BAS31 dioda-2xL21 SOT23 BAS31 D dual BAS29 diodesL22 SOT23 BAS35 dioda-2xL22 SOT23 BAS35 A dual BAS29 diodesL3 BSS70 N pnp 40V 200MHz swL3 MMBC1623L3 N npn 40V gpL3 SOT23 BSS70 PNPL3 SOT23 HSMP-3863 A ca gp RF pin diodeL3 SOT23 MMBC1623L3 NPNL30 SOT143 BA V23 dioda-2xL30 SOT143 BA V23 S dual 200V 225mA diodesL31 SOT23 BA V23S dioda-2xL4 MMBC1623L4 N npn 40V gpL4 SOT23 BAT54 diodaL4 SOT23 HSMP-3864 B cc gp RF pin diodeL4 SOT23 MMBC1623L4 NPNL4 SOT323 BAT54W diodaL4 SOT323 BAT54W C BAT85 schottkyL41 SOT143 BAT74 dioda-2xL41 SOT143 BAT74 S 2x BAT85L42 SOT23 BAT54A dioda-2xL42 SOT323 BAT54AW dioda-2xL42p SOT23 BAT54A A dual c anode schottkyL43 SOT23 BAT54C dioda-2xL43 SOT323 BAT54CW dioda-2xL43p SOT23 BAT54C B dual c cathode schottky L44 SOT23 BAT54S dioda-2xL44 SOT323 BAT54SW dioda-2xL44p SOT23 BAT54S D dual series schottkyL4p SOT23 BAT54 C BAT85 schottkyL4Z SOT23 BAT54 C BAT85 schottkyL5 BSS65R R pnp 12V 400MHz swL5 MMBC1623L5 N MPS3904 hfe 135-270L5 SOT23 BAS55 diodaL5 SOT23 BSS65R PNPL5 SOT23 MMBC1623L5 NPNL51 SOT143 BAS56 dioda-2xL51 SOT143 BAS56 S dual 60V 200mA diodesL52 SOT23 BAS678 diodaL6 BAR17 C pin diodeL6 BSS69R N pnp 40V 200MHz swL6 MMBC1623L6 N MPS3904 hfe 200-400L6 SOT23 BAR17 diodaL6 SOT23 BSS69R PNPL6 SOT23 MMBC1623L6 NPNL7 BAR14-1 D dual pin 100mA maxL7 BSS70R N pnp 40V 200MHz swL7 MMBC1623L7 N MPS3904 hfe 300-600L7 SOT23 BAR14-1 diodax2L7 SOT23 BSS70R PNPL7 SOT23 MMBC1623L7 NPNL8 BAR15-1 A dual pin 100mA maxL8 SOT23 BAR15-1 dioda-2xL8 SOT23 BAT721A A dual c anode 40V 200mA schottky L9 BAR16-1 B dual pin 100mA maxL9 SOT23 BAR16-1 dioda-2xL9 SOT23 BAT721C B dual c cathode 40V 200mAschottky JX SOT23 BA V170 B dual cc Si diode low IrJY SOT23 BA V199 dioda-2xJY SOT23 BA V199 D dual series Si diode lowIr JZ SOT23 BAW 156JZ SOT23 BAW156 A dual ca Si diode low IrK SCD80 BBY52-02W I UHF varicap K SOD323 BAT68-03W I BAT68 SchottkyK SOT23 2SK211 JFETK SOT323 MRF917 N npn RF fT 6GHzK0 SOT23 HSMP-3830 C gp pin diode HP3830K1 SOT23 BCW71 NPNK1 SOT23 BCW71 N BC107AK1 SOT23 HSMP-3831 K gp pin diode HP3830K14 DTA114G N pnp sw 50V 100mA w. b-eresK15 DTA124G N pnp sw 50V 50mA w. b-e resK1p SOT23 BCW71 N BC107AK1t SOT23 BCW71 N BC107AK1X SOT23 KSC3265 NPNK2 SOT23 BCW72 NPNK2 SOT23 BCW72 N BC107B ZXT300K2 SOT23 HSMP-3832 D dual HP3830 pin diodeK24 DTC114G N npn sw 50V 100mA w. b-eres K25 DTA124G N pnp sw 50V 50mA w. b-e res K2p SOT23 BCW72 N BC107B ZXT300K2t SOT23 BCW72 N BC107B ZXT300K3 SOT23 BCW81 NPNK3 SOT23 BCW81 N npn 50V hfe 420 K3 SOT23 HSMP-3833 A dual HP3830 pin diode K31 BCW81R R npn 50V hfe 420K31 SOT23 BCW81R NPNK3p SOT23 BCW81 N npn 50V hfe 420 K3t SOT23 BCW81 N npn 50V hfe 420 K4 SOT23 BCW71R NPNK4 SOT23 HSMP-3834 B dual HP3830 pin diode K4 SOT23R BCW71R R BC107AK5 SOT23 BCW72R NPNK5 SOT23R BCW72R R BC107B ZTX300K6 SOT23 BCV71R NPNK6 SOT23R BCV71R R BC546AK7 SOT23 BCV71 NPNK7 SOT23 BCV71 N BC546AK71 SOT23 BCV71R NPNK7p SOT23 BCV71 N BC546AK7t SOT23 BCV71 N BC546AK8 SOT23 BCV72 NPNK8 SOT23 BCV72 N BC546BK81 SOT23 BCV72R NPNK8p SOT23 BCV72 N BC546BK8t SOT23 BCV72 N BC546BK9 SOT23 BCF81 NPNK9 SOT23 BCV72R NPNK9 SOT23R BCV72R R BC546BK91 SOT23 BCF81R NPNKA SOT23 2SK368 JFETKA SOT87 BSS87 MOSFETKB SOT23 MMBT8099L N npn 80V gpKB SOT89 BSS192 MOSFETKC BFQ29P N BFT66KC SOT23 2SK625 JFETKC SOT23 BFQ29P NPNKM BST80 T VN10KM SOT89 BST80 FETKN BST84 T Nch VMOS 200VKN SOT89 BST84 FETKO BST86 T nch VMOS 180VKO SOT89 BST86 FETKX SOT23 PMBF170 MOSFETL SCD80 BBY53-02W I varicap pFL SOD323 BAT62-03W I BAT62 schottky detector L SOT23 2SC2712 NPN L0 SOT23 BAT721S C dual series 40V 200mA schottky L0 SOT23 HSMP-3860 C dual series pin diode L0 SOT323 HSMP-386B C gp RF pin diode L1 BSS65 N pnp 12V 400MHz swL1 SOT23 BSS65 PNPL12 SOT89 ZVNL120Z MOSFETL2 BSS69 N pnp 40V 200MHz swL2 SOT23 BSS69 PNPL2 SOT23 HSMP-3862 D dual RF pin diodeL20 SOT23 BAS29 diodaL20 SOT23 BAS29 C Si diode 120V 50mAL21 SOT23 BAS31 dioda-2xL21 SOT23 BAS31 D dual BAS29 diodesL22 SOT23 BAS35 dioda-2x。
LED照明试卷

《LED制造技术与应用》阶段考试(一)一、填空题(每空1分,共23分)1、590nm波长的光是黄光(填颜色);380nm波长的光是紫光(填颜色),可见光的波长范围是380-780 nm。
2、目前市场主流的白光LED产品是由InGaN(蓝光)芯片产生的蓝光与其激发YAG荧光粉产生的黄光混合而成的,且该方面的专利技术主要掌握在日本日亚化学公司手中。
3、色温越偏蓝,色温越高(冷) ,偏红则色温越低(暖) .4、对于GaAs,SiC导电衬底,具有面电极的红、黄(单电极或L型) LED芯片,采用银胶来固晶;对于蓝宝石绝缘衬底的蓝、绿(双电极或V型)LED 芯片,采用绝缘胶来固定芯片.6、银胶的性能和作用主要体现在: 固定芯片、导电性、导热性 .7、翻译以下行业术语:示例:外延片Wafer(1)发光二极管Light emitting diode(2)芯片chip(3)荧光粉phosphor直插式LED LED Lamp8、若已知外延材料的禁带宽度(符号:Eg,单位:eV),则该外延片制作的LED发光波长与禁带宽度的关系通常可表示为:nm9、金丝球焊机在操作过程中,四要素是:时间、功率、压力、温度。
二、判断题(对的打“√”,错的打“×",16分,每小题2分)1、现有YAG黄色荧光粉,分别采用波长为460nm和470nm的蓝光LED芯片激发,则470nm一定比460nm激发的效率高。
(×)2、在CIE图中,x代表蓝色,y代表绿色,z代表红色,且x+y+z=1。
(×)3、发光强度大于100mcd的LED,称之为超高亮度的LED。
(√)4、对于InGaAlP材料,可选取合适的Al-Ga组分配比,以便在黄绿色到深红色的光谱范围内调整LED的波长. (√)5、LED芯片一般采用蓝宝石(Al2O3)、硅(Si)、碳化硅(SiC)等半导体材料,其中SiC可作为V型接触的芯片衬底。
(×)6、1W的LED称之为中功率LED,大于3W的称之为大功率LED. (×)7、红光单电极LED芯片可以采用银胶固晶,也可以采用绝缘胶固晶,不过一般采用银胶固晶.(×)8、经过测试得到样品A的光通量比样品B的光通量高,则样品A的发光强度比样品B的发光强度高。
905nm脉冲激光二极管驱动电路
905nm脉冲激光二极管驱动电路的设计905nm脉冲激光二极管在许多领域都有广泛的应用,如通信、激光雷达、光学传感等。
为了充分发挥其性能,一个优秀的驱动电路是必不可少的。
本文将详细介绍一种针对905nm脉冲激光二极管的驱动电路设计。
一、电路设计1. 电源供电驱动电路需要稳定的电源供电以提供所需的电压和电流。
我们选择一个开关电源,通过DC-DC转换器将输入电压转换为稳定的输出电压。
这种转换器具有高效率、低噪声和良好的负载响应特性。
2. 脉冲发生器为了产生脉冲激光,我们需要一个脉冲发生器。
我们选择一个基于TTL (Transistor-Transistor Logic)的脉冲发生器,它可以产生高速脉冲信号。
TTL脉冲发生器具有陡峭的前沿和后沿,能够确保激光二极管在脉冲期间正常工作。
3. 激光二极管驱动器激光二极管驱动器是核心部分,它需要能够提供足够的电流驱动激光二极管。
我们选择一个具有高带宽、低噪声和高驱动能力的驱动器。
该驱动器能够根据脉冲发生器的信号驱动激光二极管,使其在脉冲期间正常工作。
4. 反馈控制电路为了确保稳定的输出功率,我们设计了一个反馈控制电路。
该电路通过监测激光二极管的输出功率,调整驱动器的输出电流,从而保持输出功率稳定。
二、电路优化为了提高驱动电路的性能,我们采取了以下优化措施:1. 降低噪声:我们选择低噪声元件,并在电路中加入去耦电容,以降低电源噪声和电磁干扰。
2. 提高效率:我们优化电源电路的设计,降低功耗和热损耗,提高整个驱动电路的能效。
3. 保护二极管:我们设计了一个快速关断电路,能够在异常情况下快速关闭激光二极管,防止其损坏。
4. 温度补偿:我们加入了温度传感器和补偿电路,以补偿温度对激光二极管性能的影响。
三、总结本文介绍了一种针对905nm脉冲激光二极管的驱动电路设计。
该设计考虑了电源供电、脉冲发生器、二极管驱动器和反馈控制电路等多个方面,并进行了优化措施以提高性能。
这种驱动电路能够为905nm脉冲激光二极管提供稳定的、高效的驱动能力,使其在各种应用中发挥出色的性能。
HS0038BD
ABSOLUTE MAXIMUM RATINGS
PARAMETER Supply voltage Supply current Output voltage Output current Junction temperature Storage temperature range Operating temperature range Power consumption Soldering temperature
Customer Special
HS0038BD
Vishay Semiconductors
TEST CONDITION SYMBOL VS IS VO IO Tj Tstg Tamb Tamb 85 °C t 10 s, 1 mm from case Ptot Tsd VALUE - 0.3 to + 6 3 - 0.3 to (VS + 0.3) 5 100 - 25 to + 85 - 25 to + 85 10 260 UNIT V mA V mA °C °C °C mW °C
Customer Special
HS0038BD
Vishay Semiconductors
IR Receiver Modules for Remote Control Systems
FEATURES
• Very low supply current • Photo detector and preamplifier in one package • Internal filter for PCM frequency • Improved shielding against EMI • Supply voltage: 2.5 V to 5.5 V
ICE3AR0680JZ-规格书
®
ICE3AR0680JZ
Off-Line SMPS Current Mode Controller with integrated 800V CoolMOS® and Startup cell (brownout & frequency jitter) in DIP-7
Product Highlights • 800V avalanche rugged CoolMOS® with startup cell • Active Burst Mode to reach the lowest Standby Power <100mW • Selectable entry and exit burst mode level • Adjustable blanking Window for high load jumps • Frequency jitter and soft driving for low EMI • Adjustable brownout feature • Auto Restart protection for over load, over temperature, over voltage and external protection enable function • Pb-free lead plating; RoHS compliant
Edition 2012-1-11 Published by Infineon Technologies AG 81726 München, Germany
© Infineon Technologies AG 1/11/12.
All Rights Reserved. Attention please! The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
调制激光
调制激光二极管调制激光二极管Scott Remington简介许多ILX Lightwave 电流源的外部电路模块功能强大,能够适用于各种应用场景.如果要使电流源产生细微的变动,使激光器的行距增宽或者进行波长控制,很小的模拟模块就可以实现. 也通过调制电流源将激光器的输出调制到音频或者更高频率. 对电流源进行调制同样可以实现产生数字脉冲,并且上下沿很陡而且不连续.使用这种调制就必须接受在中心输出附近的振荡.仔细的研究测试调制的参数和设备的规格书有利于决定是否可以将大容量的T型网络从设备中移除,用激光控制器取代它,很多情况下已经安装在机架上或者整合到实验室的测试中.电流源直接调节的能力比偏置T型设备的带宽要小,因为电流源带宽越大输出噪声越大.即使有这个限制,电流源的应用还是非常广的.任何连接到电流源的激光器都可以进行调制.相比下,只有具有配线的激光器可以和偏置T型网络一起使用.外部的偏置T型电路可以用来调制激光二极管,但是这些设备体积都更大,或者和连接的激光器一样大.这就是为什么直接调制电流源更加受欢迎的两个原因.测试建立通过这些讨论,我们将会使用示波器的波形来解释激光器调制的很多方面概念.这些波形是ILX Lightwave LDC3724B激光二极管产生,使用Tektronix TDS 3014示波器来观察的.使用Agilent 33120A函数发生器来调制输出.NEL NLK1556STG DFB 激光器通过标准LDM-4984蝴蝶激光器衬架连接到LDC-3724B电流源上.将一台ThorLabs PDA400光电探测器的带宽设置到最大来观察激光器的输出.为了使电流源可以在所有范围内使用,使用了一个JDS-Fitel HA1光衰减器来防止检测器饱和.配置电流源用于调制每个ILX Lightwave 电流源的可调制性对应每个电流源输出范围都有一个转移函数.在很多情况下,转移函数将会在输入的连接器的附近显示.转移函数指明了在正常输出时的额定输入,单位为毫安每伏特(mA/V).比如说, LDC-3724B 的输出范围为200mA,它的转移函数为20mA/V.这意味着1V直流信号输入到调制器的输入连接器将产生标称直流电压20mA电流.这个电流是除标称恒流外的电流.在这个例子中,如果设置点是100mA,那么总的输出将是120mA.如果输出使用0V的1K的正弦波调制,将得到1K的正弦波电流,最大值为120mA,最小值为80mA.和转移函数一样,调制电路是用输入阻抗值来定义的.这个阻抗的范围为50到10K 范围内,根据设备而不同.这些值可以参考设备的文档.当设置模块电压时这些阻抗时很重要的.如果输入阻抗太低,连接的时候函数发生器的信号很明显会过载,输出和期望值不同.最好用函数发生器的输出来设置调制的级别,当连接调制器的输入的时候最好将激光器输出关闭.所以,电路将正确的加载,激光器也不会有过载损坏的风险.高频衰减和确定带宽许多ILX Lightwave激光器电流源有低带宽和高带宽输出模式.象先前描述的,低带宽模式设计的输出噪声十分小,不适合使用外部调制器.高带宽模式,换句话说,提供了很大的频率响应,设计用于连接外部调制模块的输入.除了转移函数和输入阻抗,定义ILX电流源外部调制电路的信息还有它的带宽.带宽是输出频率的范围,依赖于调制的方法.调制的方法可以分为模拟和数字的.模拟调制就是波形的振幅是连续改变的.正弦波就是最好的例子.另一方面,数字调制就是指振幅不连续变化.方形波就是数字调制的例子.ILX Lightwave的电流源在中间刻度输出设置为50%,调制的输出变化不会超过3dB.换句话说,当CW输出设置为中间刻度,将调制输出从75%降到50%的时候,最大带宽使输出的峰峰电压产生变化.下面的图片说明3dB的衰减.图 1. Low Frequency Performance, CW Mode, Analog Modulation图1中,通道 2 (蓝色踪迹)显示的是激光器的输出从100到150mA在1K时的调制.通道1是调制输入信号. LDC-3724B工作在低带宽模式,200mA工作范围,CW设置为100mA.图2显示的是激光器因为第二个因素减少后的峰峰输出(912mV到460mV).如图可见,这种规格的激光控制器CW模式的带宽是31kHz.发布的规格是15kHz. 图 2. High Frequency Performance, CW Mode, Analog Modulation图3说明了在低带宽模式下调制输入改为方波的情形.因为CW模式下的噪声过滤导致激光器的输出波形严重变形.滤波器过滤掉了方形波的高频部分,形成了齿型.图 3. High Frequency Performance, CWMode, Digital Modulation图 4. High Frequency Performance, CW Mode, Digital Modulation如果输出在没有消弱前可以达到最大最小的设置值,那么这个带宽就是矩形波调制的带宽的最大频率,否则带宽必须减少.如果图4所示,蓝色的通道到达了最大输出(白色的痕迹),最大频率是10kHz.图5显示的是LDC-3724B 在高带宽模式下,200mA 工作范围,设置点为100mA.IHBW 模式的带宽规格定义到1M,但是,图5所示,控制的衰减发生在2.7MHz 左右.注意更高的频率,在调制输入和输出之间有个类似π相位偏移.图 5. High Frequency Response, High Bandwidth Mode, Analog Modulation如果调制频率响应如图6所示,那么在1.9MHz 附近可以观察到共振.这就是相位偏移的原因.随着频率超过共振频率,调制如预期减少.图 6. Frequency Response, High Bandwidth Mode, Analog Modulation图7显示,在高频时调制从模拟改变为数字的时候,输出没有太大的不同.这是因为输入超过了数字带宽的极限.图7. High Frequency Response,High Bandwidth Mode, Overdriven Digital Modulation图8显示将调制频率减少一个数量级电路的运行.图 8. High Frequency Response, High Bandwidth Mode, bandwidth-Limited Digital Modulation在这种情况下,调制频率不能超过200kHz,甚至在IHBW 模式下,因为许多频率要求矩形波.在矩形波输入时,当在高频调制时会超过电流限制.图8显示的通道2的横坐标是激光器在150mA 和155mA 时的输出.在这个例子中,电流限制为155mA.脉冲操作有适当的脉冲和函数发生器, 具有外部调制能力的ILX Lightwave 电流源能够当作脉冲电流源工作在限容模式下. 在这种工作模式下,调制信号配置从0V 到测试或者激光器电流限制的最大值.通过调节调制信号的占空比,输出电流可以接近脉冲的特性.正如其他高频数字调制的例子,可以达到的最高频率是脉冲波形公差决定的.如果要求矩形的角要很方,那么只能得到低频和小量级输出.如果允许更大误差,就可以得到更高的带宽和更大量级的频率.图9显示了配置调制输入产生50%占空比的结果.振荡发生在起始处.增加频率或者减少脉冲宽度会导致脉冲在峰值时难以调制.输出时的小脉冲是因为电流切断时的发生的振荡.激光器保护电路被设计用来组织电流反转和损坏激光器.然而,当正循环发生,控制器的电路不能阻止脉冲的输出.图 9. High Frequency Response, High Bandwidth Mode, Quasi-Pulsed Modulation控制器可以使用反偏压保护电路产生干净的脉冲.可以增加调制的振幅和减少驱动负电压的偏置来实现.当电压变负,输出被钳制为0来保护激光器.如果电压足够负,那么将持续为0.图10显示了一个配置的例子.输出时一些200kHz 宽度为2.3us 的脉冲.蓝色横坐标指示驱动电流150mA.图 10. High Frequency Response, HighBandwidth Mode, Pulsed Modulation with 50% Duty Cycle结论大部分的ILX Lightwave 激光二极管电流源能够外部调制.外部调制信号能够可以使用任何形态,只要电路3个参数在范围内:转移函数,输入阻抗,和调制带宽.每个参数都会影响输出响应.选择正确的CW 设置点,调制信号级别,和频率,可以用来增宽行距或者进行激光器电源波长控制.这些任务要求调制总驱动电流中的一部分,称之小信号调制.大幅度的信号,可以使输出到达100%,可以叫做大信号调制.这种信号的调制可能是连续的信号进行简单的幅度调制或者是不连续的数字信号.当试图用数字波形来调制电流源,电流源的调制带宽很不可靠.有尖峰的波形有许多频率成分,必须被电流源复制以产生真正的输入波形.因为这个原因,可用的带宽要比模拟信号调制时看到要低(单个频率或者很有限的频率).带宽因应用场景而不同.在高频时会有振荡,当在一些场景下可以接受, 如果测试要求在一些时候输出到最大值,它能够在很高数量级或者更多的调制频率工作.外部调制电路可以多种多样.这个应用文档描述了几种配置的正确应用和具体应用场景.如需更多关于技术支持和产品的信息, 请与我们联系ILX Lightwave CorporationPO Box 6310, Bozeman, MT 59771-6310电话: 406-556-2481 . 800-459-9459 . 传真: 406-586-9405电邮: sales@欲获得ILX国际代理和产品维修中心的联系方式,或者需要最快索取产品、技术支持、LabView驱动及其它应用指南,请浏览。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3) 在最大额定值下运行可能会影响使用寿命 Operation at maximum ratings may influence the life time
Safety Advice
Depending on the mode of operation, these devices emit highly concentrated visible light which can be hazardous to the human eye. Products which incorporate these devices have to follow the safety precautions found in IEC 608251 “Safety of laser products”.
Popt = f (IF)
工作电压
Operating Voltage
VF = f (IF)
PL 450
阈值电流
Threshold Current
Ith = f (TCase)
发射波长
Emission Wavelength
= f (TCase)
2010-04-27
4
光束发散度
Beam Divergence
The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances. For information on the types in question please contact our Sales Organization. Packing Please use the recycling operators known to you. We can also help you get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred. Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components, may only be used in life-support devices or systems with the express written approval of OSRAM OS. A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system. Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.
a) Safety of laser product: The laser diode is classified in class 3B acc. IEC 60825-1. The actual laser light emitted by the laser diode strongly depends on the mode of operation.
c) Mounting instructions: In order to maintain the lifetime of the laser diode proper heat management is essential. Due to the design of the laser diode heat is dissipated only through the base plate of the diode‘s body. A proper heat conducting interconnection between the diodes base plate and the heat sink must be maintained.
2010-04-27
7
PL 450
欧司朗光电半导体有限公司出版 德国雷根斯堡莱布尼茨大街 4 号 D-93055 © 保留所有权利
Published by OSRAM Opto Semiconductors GmbH Leibnizstrasse 4, D-93055 Regensburg © All Rights Reserved.
值 Values
最小值 / min. –
最大值 / max. 80
单位 Unit
mW
–
120
mA
+ 10
+ 70
C
- 40
+ 85
Байду номын сангаасC
–
2
V
–
260
C
2010-04-27
2
PL 450
激光特性 (Tcase = 25C)
Laser Characteristics
参数 Parameter
发射波长3) Emission Wavelength3) 谱宽 (FWHM)3) Spectral Width (FWHM)3) 阈值电流 Threshold Current 工作电流3) Operating Current3) 工作电压3) Operating Voltage3) 光束发散度 (FWHM)3) Beam Divergence (FWHM)3) 偏振3) Polarization3)
Popt = f (θ), TCase C
PL 450
2010-04-27
5
激光二极管运行的重要注意事项:
PL 450
Important notes of operation for laser diode:
a) 激光产品的安全: 根据 IEC 60825-1 标准,激光二极管属于 3B 类 产品。激光二极管实际发射的激光量很大程度上取 决于工作模式。
b) Electrical operation: OSRAM’s laser diodes are designed for maximum performance and reliability. Operating the laser diode above the maximum rating even for very short periods of time can damage the laser diode or reduce its lifetime. The laser diode must be operated with a suitable power supply with minimized electrical noise. The laser diode is very sensitive to electrostatic discharge (ESD). Proper precautions must be taken.
参数 Parameter
符号 Symbol
最大光输出功率1) 2) 3) Max. Optical Output Power 1) 2) 3)
工作电流 Operating Current 工作温度 Operating Temperature
储存温度 Storage Temperature
反向电压 Reverse Voltage
元件类型的描述性信息不应被视作对特性的保证。 欧司朗保留交货条件和变更设计的权力。因技术需要,元件可能包含危险物质。如果对相关信息有疑问,请联系我们的销 售部门。 封装 请联系您所熟悉的物资回收公司。我们也可以帮助您联系最近的销售办事处。如果您已对包装材料进行分类,我们将根据 协议进行回收,所产生的运输费用须由您承担。对于未经分类即退回本公司或我们没有责任接受的包装材料,我们将开发 票由您支付因此产生的一切费用。 生命支持装置或系统所采用的元件必须获取用于该目的的明确授权!仅当获得欧司朗光电半导体的明确书面许可时,方可 将关键元件用于生命支持装置或系统。 关键元件指用在生命支持装置或系统中、一旦发生故障即会引起装置或系统故障或影响其安全性或有效性的元件。 生命支持装置或系统拟用于 (a) 植入人体或 (b) 支持和/或维持人的生命。如果发生故障,即会威胁使用者的健康。